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Cuius rei demonstrationem mirabilem
sane detexi. Hanc marginis exiguitas non
caperet.

Fermat, margin note in his copy of
Arithmetica of Diophantus

CHAPTER 5

TRAPHIC in GADGET

implementation and tests

Andreas H. Pawlik & Joop Schaye

This chapter contains material that has been published together with the material presented in
the previous chapter, Chapter 4, in MNRAS 389 (2008), 651-677. It provides an updated and

significantly extended version of Section 5 in that publication.

W
E present and test a parallel numerical implementation of our radia-

tive transfer scheme TRAPHIC, specified for the transport of mono-
chromatic hydrogen-ionising radiation, in the smoothed particle hy-

drodynamics code GADGET-2. The tests comprise several radiative transfer
problems of increasing complexity. Some of these tests have been specifi-
cally designed to investigate TRAPHIC’s ability to solve the radiative transfer
problem in the large cosmological reionisation simulations that it was devel-
oped for, while others have been designed to demonstrate that TRAPHIC can
also be employed in more general contexts. The results of all tests are in
excellent agreement with both analytic solutions and numerical reference
results obtained with state-of-the-art radiative transfer codes.
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88 Simulating cosmic reionisation

5.1 INTRODUCTION

Ionising radiation is thought to play a key role in determining the ionisation state and shaping
the spatial distribution of the baryonic matter in our Universe on both small and large scales.
Examples include the triggering and quenching of star formation through radiative feedback
from nearby ionising stellar sources both in the early (e.g. Yoshida et al. 2007; Wise & Abel 2007;
Johnson, Greif, & Bromm 2007; Alvarez, Bromm, & Shapiro 2006; Susa & Umemura 2006) and
present-day universe (e.g. Gritschneder et al. 2007; Dale, Bonnell, & Whitworth 2007), the thin
shell instability (for a recent simulation see Whalen & Norman 2007) and the growth and perco-
lation of ionised regions generated by the first stars and quasars during the so-called Epoch of
Reionisation (for recent simulations see e.g. Iliev et al. 2006a; Trac & Cen 2007; Kohler, Gnedin,
& Hamilton 2007; Paschos et al. 2007). Accomplishing the transport of ionising radiation in
hydrodynamical simulations of our Universe, both on large and small scales, in an efficient,
computationally feasible manner has therefore become one of the primary goals in numerical
astrophysics.

TRAPHIC is a novel radiative transfer scheme that we have developed to solve the radia-
tive transfer problem in Smoothed Particle Hydrodynamics (SPH) simulations (Chapter 4). Its
design has been guided by the wish to transport radiation in an adaptive manner directly on
the unstructured grid traced out by the particles in SPH simulations, in parallel on distributed
memory and with a computation time that does not scale with the number of radiation sources.
This is done by transporting photon packets subject to absorption and scattering on a particle-
by-particle basis with a well-defined spatial and angular resolution. In this chapter we apply
TRAPHIC to the transport of ionising radiation.

It is helpful to briefly recall some basic concepts and notations that we have used in our
description of TRAPHIC in Chapter 4 and that will be frequently employed here. The transport
process can be decomposed into the emission of photon packets by source particles followed
by their directed transport on the irregular set of SPH particles. Photon packets are emitted
from source particles to their Ñngb neighbouring SPH particles (residing in a sphere of radius
h̃ centred on the source) using a tessellating set of Nc emission cones. The number of cones
is a parameter that determines the angular resolution of the radiative transfer. The number of
neighbours Ñngb is a parameter that determines the spatial resolution and is usually matched
to the number of neighbours Nngb (residing in the sphere of radius h) used in the computation
of the SPH particle properties, Ñngb . Nngb.

To each of the emitted photon packets we associate a propagation direction that is parallel
to the central axis of the corresponding emission cone. After emission, the photon packets are
traced downstream along their propagation direction. The packets thereby remain confined
to the solid angle they were originally emitted into thanks to the use of transmission cones
with solid angle 4π/Nc. Virtual particles (ViPs) are introduced to accomplish the photon trans-
port along directions for which no neighbouring SPH particle could be found in the associated
cones. Finally, the photon transport is supplemented with a photon packet (or, equivalently,
source) merging procedure that respects the chosen angular resolution to strictly limit the re-
quired computation time.

The photon transport is performed using (radiative transfer) time steps ∆tr. During each
such time step, photons are propagated and their interactions with the gas are computed until
a certain stopping criterion is satisfied. The form of this criterion depends on whether one aims
to solve the time-independent or the time-dependent radiative transfer equation. In the first
case, photons are propagated until they are absorbed or have left the computational domain.
In the second case, photon clocks associated with each photon packet are used to synchronise
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the packet’s travel time with the simulation time such that the photon packet travels at the
speed of light. After each time step, the state of the SPH particles is updated according to
the interactions (absorptions, scatterings) with photon packets they experienced. Finally, the
radiative transfer time is advanced, which concludes the algorithm. The reader is referred to
Chapter 4 for more details.

This chapter is organised as follows. We start by briefly reviewing the physics of photo-
ionisation (Sec. 5.2). We will then describe a numerical implementation of TRAPHIC specified
for the transport of mono-chromatic hydrogen-ionising radiation in the SPH code GADGET-2
(Springel 2005) (Sec. 5.3). We will verify our implementation in several tests that are set up to
allow comparisons to accurate reference solutions, obtained either analytically or numerically
with state-of-the-art radiative transfer codes (Sec. 5.4). Finally, we will present our conclusions
(Sec. 5.5).

5.2 PHOTO-IONISATION RATE EQUATION

Here we briefly recall the principles of the photo-ionisation and recombination process occur-
ring for a hydrogen-only gas parcel of mass density ρ exposed to hydrogen-ionising radiation.
We will employ the equations derived in this section in the description of the numerical imple-
mentation of TRAPHIC.

Hydrogen-ionising photons can be absorbed by neutral hydrogen. The absorption strength
is typically expressed using the frequency-dependent mass absorption coefficient κν for hydro-
gen-ionising radiation (e.g. Osterbrock 1989). For the demonstrational purpose of this chapter
it will be sufficient to approximate the frequency-dependence of κν by (see, e.g., Fig. 7.1 in
Chapter 7)

κν ≡
σνnHI

ρ
(5.1)

σν = σ0

(

ν

ν0

)−3

Θ(ν − ν0), (5.2)

with nHI = (1 − χ)ρ/mH the neutral hydrogen number density, ν0 the Lyman-limit frequency
of energy hpν0 = 13.6 eV, σ0 = 6.3 × 10−18 cm2 the absorption cross-section for photons at
the Lyman-limit, mH the mass of a hydrogen atom and Θ(x) the Heaviside step function; the
ionised fraction is χ ≡ nHII/nH. The number of photo-ionisations per unit time per neutral
hydrogen atom at a certain point in space is determined by the photo-ionisation rate Γ,

Γ =

∫

∞

0
dν

4πJν(ν)

hpν
σν , (5.3)

where Jν ≡
∫

dΩ Iν/(4π) is the mean ionising intensity. The rate of change of the neutral
fraction η ≡ 1 − χ at this point is then

d

dt
η = α(T )neχ− Γη ≡

χ

τrec
−

η

τion
. (5.4)

In the last equation, α(T )ne is the number of recombinations occurring per unit time per ionised
hydrogen atom, τrec ≡ 1/(αne) is the recombination time scale and τion ≡ 1/γ is the photo-
ionisation time scale.1

1Note that in Eq. 5.4 collisional ionisations can easily be taken into account by replacing Γ with (Γ + C(T )ne),
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With the definition χ̃ ≡ τrec/(τion + τrec) we can rewrite Eq. 5.4 to read

dχ

dt
= −

χ− χ̃

τionχ̃
. (5.5)

Setting dχ/dt = 0 yields the equilibrium ionised fraction χeq = τrec,eq/(τion + τrec,eq). Over
time scales that are short compared with τrec/|dτrec/dt| and ne/|dne/dt|, Eq. 5.5 constitutes a
first order linear homogeneous differential equation in χ− χ̃ with constant coefficients, whose
solution reads

χ(t) − χeq = (χ(t0) − χeq)e
−

t−t0
τeq (5.6)

τeq ≡
τionτrec
τion + τrec

. (5.7)

From Eq. 5.6 we see that the equilibrium ionised fraction is exponentially approached on the
instantaneous ionisation equilibrium time scale τeq. We will employ this time scale later on for
the numerical integration of the rate equation.

We emphasise that our derivation of Eq. 5.6 was based on the assumption that the electron
density does not change significantly. We have adopted this assumption in order to point out
the characteristic time scales involved. In Sec. 5.4.1 we will present an alternative derivation of
the solution of the photo-ionisation rate equation (Eq. 5.4) that is also valid for the case of an
evolving electron density.

5.3 NUMERICAL IMPLEMENTATION

We have adapted the description of TRAPHIC that we have presented in Chapter 4 for the trans-
port of hydrogen-ionising radiation according to the physics of photo-ionisation as reviewed
in Sec. 5.2. We implemented it using a single frequency bin in the parallel N-body-Tree-SPH
code GADGET-2 (Springel 2005). The description of (important aspects of) this implementation
is the subject of this section.

5.3.1 Transport of ionising photons and computation of the photo-ionisation rate

The transport of ionising photons is performed in finite radiative transfer time steps of size
∆tr, during which photon packets emitted by ionising sources are propagated through the SPH
density field guided by cones as we have described in Chapter 4. This propagation starts with
the emission of photons using a set of tessellating emission cones with random orientation.
For definiteness, we present our choice of the emission cone tessellation in App. 5.B.1 and our
implementation of the random rotations applied to it in App. 5.B.2.

During each time step the number of photons that are absorbed by neutral hydrogen is
computed using the absorption coefficient κν , given by Eqs. 5.1 and 5.2, together with the ex-
pression for the optical depth in Chapter 4 (Eq. 4.10). At the end of the time step, i.e. at time
tr + ∆tr, where tr is the simulation time, the number of ionising photons ∆Nin,i impinging on
and the number of ionising photons ∆Nabs,i absorbed by particle i over the time interval ∆tr

where C(T )ne describes the number of collisional ionisations per unit time per neutral hydrogen atom. In this
chapter, however, we assume that collisional ionisations are unimportant, setting C ≡ 0 throughout. We will
extend our description to include collisional ionisations in Chapter 7.
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are then known. The photo-ionisation rate Γi is obtained directly from the number of absorbed
photons using

ηtr
i NH,iΓ

tr
i ∆tr = ∆Nin,i

[

1 − exp(−τ tr
i )
]

, (5.8)

where NH,i ≡ mtr
i X

tr
i /mH is the number of hydrogen atoms associated with particle i (Xi is the

hydrogen mass fraction) and superscripts indicate the time at which quantities are evaluated.
Thereby

τ tr
i ≡ − ln

(

1 −
∆Nabs,i

∆Nin,i

)

(5.9)

is the a posteriori optical depth2 that relates the number of impinging photons ∆Nin,i to the
number of absorbed photons ∆Nabs,i. In the next section we describe how the photo-ionisation
rate is used to update the neutral fraction of particle i.

5.3.2 Solving the rate equation

The photo-ionisation rate equation, i.e. the differential equation Eq. 5.4, belongs to a class
of problems that are referred to as stiff (for useful introductions to stiff problems see, e.g.,
Shampine & Gear 1979; Press et al. 1992). There is no universally accepted definition of stiff-
ness. Often, the classification of a problem as stiff is based on examinations of the stability of
numerical integrators applied to solve this problem.

As an example, consider the equation (cp. Press et al. 1992)

d

dt
y = −

y

τ
(5.10)

with solution
y(t) = y(t0)e

−(t−t0)/τ (5.11)

Hereby, τ is a constant with dimensions of time. Accordingly, the equilibrium solution obtained
considering the limit t → ∞ is y → 0. The explicit (or forward) Euler scheme for integrating
this equation with step size ∆t is (Press et al. 1992)

yt+∆t = yt + ∆t
d

dt
yt = yt(1 −

∆t

τ
), (5.12)

where we used Eq. 5.10 in the last step. The method is unstable for ∆t/τ > 2 as then |y| → ∞
for t → ∞. Its stable integration requires steps ∆t < 2τ , which become prohibitively small for
τ → 0. Observe that this limit on the integration step is independent of the value of the solution
y. Small integration steps are therefore needed even when simulating the equilibrium solution,
despite the fact that this solution is not changing at all.

Applied to the integration of the photo-ionisation rate equation (Eq. 5.4), the explicit Euler
scheme reads

ηtr+∆tr
i − ηtr

i

∆tr
= αtr

i n
tr
e,iχ

tr
i − Γtr

i η
tr
i (5.13)

In Appendix 5.A we demonstrate that in order not to violate the physical bound 0 ≤ ηi ≤ 1,
the integration in the explicit Euler discretisation would require time steps ∆tr < τeq, where τeq

2We use the expression a posteriori since this optical depth is computed after finishing the transport of photons
over the radiative transfer time step ∆tr, using the total number of photons ∆Nin,i and ∆Nabs,i that were, respec-
tively, impinging on and absorbed by particle i over that time step.
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is the characteristic time scale over which the neutral fraction changes (see Eq. 5.7). We would
like to choose the radiative transfer time step ∆tr independently of the time scale τeq because
the latter can be prohibitively small to allow efficient radiative transfer computations. In the
following, we discuss two approaches to accomplish this.

Implicit integration

The first approach to decouple the radiative transfer time step ∆tr from the time scale τeq we
consider is the use of implicit integrators. These integrators, which advance the solution based
on the advanced solution itself, are in fact commonly employed to deal with stiff problems
like the problem at hand. As an example, consider the so-called implicit or (backward) Euler
integration of Eq. 5.10 (Press et al. 1992),

yt+∆t = yt + ∆t
d

dt
yt+∆t = yt + ∆t(−

yt+∆t

τ
), (5.14)

or,

yt+∆t =
yt

1 + ∆t/τ
. (5.15)

This integrator is stable: even for ∆t → ∞ it yields y → 0 as t → ∞, which is the correct
equilibrium solution. Note, however, that this gain in stability typically comes along with a
loss in accuracy in following the approach to equilibrium (Press et al. 1992).

Applied to the integration of the photo-ionisation rate equation, Eq. 5.4, the backwards
Euler scheme reads

ηtr+∆tr
i − ηtr

i

∆tr
= αtr+∆tr

i ntr+∆tr
e,i χtr+∆tr

i − Γtr+∆tr
i ηtr+∆tr

i . (5.16)

To proceed, we need to evaluate the photo-ionisation rate Γtr+∆tr
i at time tr + ∆tr. Because

of the discretisation of the photon transport using times steps ∆tr, the flux dNin,i/dt of ionis-
ing photons impinging on particle i may be considered as constant over the time step ∆tr, i.e.
dNin,i/dt = ∆Nin,i/∆tr. Employing the last equality in Eq. 5.8 yields the following, instanta-
neous scaling of the photo-ionisation rate,

Γ(η) ∝ (1 − e−τ(η))η−1. (5.17)

A similar derivation of this scaling can be found in Mellema et al. (2006). Hence,

Γtr+∆tr
i = Γtr

i

[

1 − exp(−τ tr+∆tr
i )

1 − exp(−τ tr
i )

]

ηtr
i

ηtr+∆tr
i

, (5.18)

where Γtr
i and τ tr

i are the photo-ionisation rate and the optical depth at the beginning of the
step, given by Eqs. 5.8 and 5.9, and τ tr+∆tr

i = τ tr
i η

tr+∆tr
i /ηtr

i is the optical depth at time tr + ∆tr.
In general, Eq. 5.16 needs to be solved iteratively3. This may be done by finding the zero of

the function

f(χtr+∆tr
i ) =

χtr+∆tr
i − χtr

i

∆tr
+ αtr+∆tr

i ntr+∆tr
e,i χtr+∆tr

i − Γtr+∆tr
i (1 − χtr+∆tr

i ) (5.19)

3For the special case η = 1−χ and a non-evolving photo-ionisation rate Γ(η) = const, Eq. 5.16 yields a quadratic
equation that can be directly solved (Petkova & Springel 2008).
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using a combination of bracketing (Press et al. 1992; to set the interval within which to look for
the zero) and bisection (Press et al. 1992; to locate the zero).

Because the neutral fraction changes continuously within the time step (although this is
hidden behind the implicit integrator), the number of ionisations ∆Nimpl,i that have been used
to advance it may be less than the number of photons ∆Nabs,i that have been removed due
to absorptions during the radiation transport over the time step ∆tr based on the assumption
of a non-evolving neutral fraction. Photon conservation requires reinserting the number of
absorbed photons that have not been used to advance the ionised fraction, ∆N tr

abs,i − ∆N tr
impl,i,

into the photon transport (in the next radiative transfer time step). This number is, however,
not well-defined, because the decomposition of the change in the ionised fraction as being due
to ionisations or recombinations is ambiguous.

A possible interpretation of Eq. 5.16 is that the first term on the right-hand side determines
the number of recombinations, while the second term determines the number of ionisations
that have led to the change ηtr+∆tr

i − ηtr
i of the neutral fraction over the time step ∆tr. If we

follow this interpretation, we find that the number of ionising photons that have been used to
advance the neutral fraction is

∆N tr
impl,i = N tr

H,iΓ
tr+∆tr
i ηtr+∆tr

i ∆tr. (5.20)

Note, however, that this interpretation of Eq. 5.16 is only one of (infinitely) many interpreta-
tions. This ambiguity makes it generally impossible to strictly conserve photons when employ-
ing the implicit Euler integrator.

The loss of accuracy during the approach to equilibrium and the impossibility of a strictly
photon-conserving formulation lead us to consider a more direct integration method that does
not suffer from these problems.

Explicit integration: Sub-cycling

To decouple the radiative transfer time step ∆tr from the time scale τeq in a strictly photon-
conserving manner, we employ the following sub-cycling procedure. We explicitly follow the
evolution of the neutral fraction during the time interval tr ≤ ti < tr + ∆tr on sub-cycle steps
δti ≤ ∆tr,

ηti+δti
i − ηti

i = αti
i n

ti
e,iχ

ti
i δti − Γti

i η
ti
i δti. (5.21)

As noted above (Eq. 5.17), the photo-ionisation rate Γ(η) ∝ (1− e−τ(η))η−1. Hence, a change in
the neutral fraction implies a change in the photo-ionisation rate Γti

i ,

Γti
i = Γtr

i

[

1 − exp(−τ ti
i )

1 − exp(−τ tr
i )

]

ηtr
i

ηti
i

, (5.22)

where Γtr
i and τ tr

i are the photo-ionisation rate and the optical depth at the beginning of the
sub-cycling, given by Eqs. 5.8 and 5.9, and τ ti

i = τ tr
i η

ti
i /η

tr
i is the optical depth at time ti.

The number of ionisations ∆Nsub,i occurring over the radiative transfer time step ∆tr is
then ∆Nsub,i = NH,i

∑

Γti
i η

ti
i δti, where the sum is over all sub-steps δti in (tr, tr + ∆tr). We set

δti ≡ min(fτ ti
eq,i, tr + ∆tr − ti), where f < 1 is a dimensionless factor. That is, we follow the

evolution of the neutral fraction using an integration step that ensures its accurate integration
(see Appendix 5.A). If ∆Nsub,i = ∆Nabs,i for ti < tr + ∆tr, we set Γti

i = 0 for the remaining
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sub-cycles4. If at the end of the sub-cycling ∆Nsub,i < ∆Nabs,i, we explicitly conserve photons
by adding ∆Nabs,i−∆Nsub,i photons to the photon transport in the next radiative transfer step.

When either the photo-ionisation rate or the recombination rate is high, τeq and hence δt
will be very small (dropping the particle index i for simplicity). For δt ≪ ∆tr the sub-cycling
would become computationally very expensive. We could set a lower limit to the sub-cycling
step δt to speed up the numerical integration of the rate equation. Of course, this would imply
a loss of accuracy, and until the physical problem would re-adjust to match the condition δt <
τeq, the numerical integration could even lead to a neutral fraction outside the physical range
0 ≤ η ≤ 1. For instance, the number of ionisations ∆Nsub occurring for a particle during
the sub-cycling over the time step ∆tr could then be larger than the number of neutral atoms
ηtrN tr

H it represents at the beginning of the time step. In this case we could set η = 0 and add
∆Nsub − ηtrN tr

H photons to the photon transport in the next radiative transfer time step.

We find, however, that photo-ionisation equilibrium is typically reached after only a few
sub-cycles. Once photo-ionisation equilibrium is reached, integration of the rate equation is no
longer necessary, since the solution does not change anymore. Instead of imposing a minimum
size on the sub-cycle step, we therefore take the following short-cut to speed up the compu-
tation. We integrate the rate equation over the few sub-cycles required to reach equilibrium.
Thereafter, we stop and simply keep the neutral fraction fixed. As opposed to imposing a min-
imum size on the sub-cycle step, this approach gives the exact solution. At the same time, it
is very fast. For a photon-conserving transport we still need to know the number of photo-
ionisations and recombinations occurring during the equilibrium phase. Both can, however,
be obtained in a stroke, based on the number of photo-ionisations and recombinations that
occurred during the last sub-cycle step over which the rate equation was integrated explicitly.

An evolving photo-ionisation rate

In the above presentation of our numerical implementation of the integration of the photo-
ionisation rate equation we have changed the photo-ionisation rate according to the changes
in the neutral fraction during that integration (Eq. 5.22). The importance5 of properly follow-
ing the evolution of the photo-ionisation rate in the presence of an evolving neutral fraction
has been pointed out by Mellema et al. (2006). There, a time-averaged photo-ionisation rate
obtained from an iterative (implicit) procedure was employed. While the derivation of the
Mellema et al. (2006) procedure assumes a vanishing recombination rate (see the discussion
in their Sec. 2.2), the sub-cycling procedure (Eq. 5.22) presented here does not suffer from this
limitation.

If one is only interested in obtaining the equilibrium neutral fraction, the detailed handling
of the photo-ionisation rate is, however, rather unimportant. This is because ionisation equilib-
rium implies that the number of photo-ionisations dNin/dt(1 − e−τ )∆tr over the time interval
∆tr exactly equals the number of recombinations (1−η)NHneα∆tr over that same time interval.

4The particle then only recombines. This situation essentially occurs because the radiative transfer is discretized
using finite time steps. In reality (i.e. for time steps ∆tr → 0), the ionisation rate will be constant. One may
therefore also consider not to change the photo-ionisation rate, even though all photons that have been absorbed
over the time step have already been used up in the integration of the photo-ionisation rate equation, to prevent the
particle from artificially recombining.

5As already pointed out by Mellema et al. (2006), it actually is only important for large optical depths. For
τ ≪ 1, Eq. 5.22 implies that the photo-ionisation rate is constant, Γti

i = Γtr
i . In the optically thick regime, the

assumption of Γ = const would, however, generally lead to an underestimate of the true photo-ionisation rate,
since Γ(η) ∝ (1 − e−τ(η))η−1 is a monotonically increasing function of decreasing neutral fraction (see Fig. 1 in
Mellema et al. 2006).
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This balance, however, has a unique (and stable; see Eq. 5.6) solution for the neutral fraction6.
The equilibrium neutral fraction then also implies the correct photo-ionisation rate, via Eq. 5.8.
When one is interested in following the details of the evolution of the neutral fraction towards
photo-ionisation equilibrium, on the other hand, the dependence of the photo-ionisation rate
on the neutral fraction needs to be taken into account, as presented above.

5.3.3 The time step ∆tr

Our main consideration when choosing the size of the radiative transfer time step for the sim-
ulations we are presenting in this work, is that we wish to accurately reproduce the analyt-
ical and numerical reference results we are comparing with. These results include the time-
dependence of the size of ionised regions around ionising sources. At early times, just after
the sources start to emit ionising photons, the ionised regions expand quickly into the neu-
tral hydrogen field surrounding the sources. To accurately reproduce this early phase of rapid
growth, we necessarily have to employ time steps ∆tr that are relatively small. The phase
of rapid growth is, however, only of relatively short duration. The subsequent evolutionary
stages of modest resp. slow growth, which account for most of the (simulation) time, are often
more interesting. We show in Sec. 5.4.2 that whenever we are not interested in the very early
phase of rapid growth we can, thanks to the photon-conserving nature of TRAPHIC, choose
substantially larger time steps without affecting the final outcome of our simulations.

For all but one of the simulations we present in this work, we will be concerned with solving
the time-independent radiative transfer equation (see Sec. 4.4.4 in Chapter 4). In these simula-
tions, we choose to propagate photon packets downstream from their location of emission only
over a single inter-particle distance per radiative transfer time step, unless stated otherwise.
This approach is equivalent to solving the time-independent radiative transfer equation in the
limit of small radiative transfer time steps7, ∆tr → 0. We have explicitly checked for all our
simulations that the time step was chosen sufficiently small to be in agreement with this limit.

Our treatment of the time-independent radiation transport reduces the computational ef-
fort for the simulation of problems for which the time step has been fixed to a small value,
e.g. by considerations like those presented in the beginning of this section. In the limit that
radiation completely fills the simulation box, the computational effort required to solve the
time-independent radiative transfer equation over the time interval T by propagating photon
packets only over a single inter-particle distance per radiative transfer time step ∆tr is propor-
tional to (cp. Sec. 4.4.2)NSPH×Ñngb×Nc×T/∆tr. This has to be compared to the computational
effort required to follow all photon packets over each time step until they leave the simulation

box, which is proportional to NSPH × Ñngb × Nc × N
1/3
SPH × T/∆tr. This is larger by a factor of

N
1/3
SPH, which for typical simulations reaches values of the order of 100.

In Sec. 5.4.5 we will present one simulation in which we solve the time-dependent radia-
tive transfer equation. In this simulation we will employ the photon clock (see Chapter 4)
to accurately control the distance over which photon packets are propagated over each time
step ∆tr to match the light crossing distance c∆tr. In this context it is interesting to note
that in the case of small time steps, i.e. c∆tr < Lbox, it is less expensive to solve the time-

6Note that this balance does not depend on the size of the time step ∆tr, since it appears on both sides of the
equation describing it.

7In the limit of small time steps ∆tr → 0, the time it takes for photons to travel to the simulation box bound-
aries by only propagating a single inter-particle distance per time step goes to zero. Hence, in this limit photons
immediately leave the simulation box, as required for solving the time-independent radiative transfer equation.
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dependent than the time-independent radiative transfer equation. This is because the com-
putational effort to solve the time-dependent equation (again in the limit that radiation com-
pletely fills the simulation box and assuming that its boundaries are photon-absorbing) scales

as NSPH × Ñngb × Nc × c∆tr/Lbox × N
1/3
SPH × T/∆tr, which is smaller than the computational

effort for obtaining the time-independent solution (assuming that over each radiative transfer
time step photon packets are transported until they leave the box) by the factor8 c∆tr/Lbox.

5.3.4 Resampling

For some of the simulations that we present in Secs. 5.4.2 - 5.4.5 we employ the resampling
technique described in Chapter 4 to reduce numerical artefacts that arise from the representa-
tion of the continuous density field with a discrete set of particles. The resampling requires the
sampling of the SPH kernel used in GADGET-2, which is the spline given in Chapter 4, Eq. 4.4.
We approximate this kernel by a Gaussian,

Wσ(r) =
1

(2π)3/2σ3
exp(−r2/2σ2). (5.23)

We find that with a standard deviation of σ ∼ 0.29 × h, the Gaussian provides a reasonable fit
to the spline. A similar relation was employed in Alvarez, Bromm, & Shapiro (2006). When
we resample the SPH density field, all SPH particles are redistributed by randomly displac-
ing them from the positions given by the hydrodynamical simulation, with the probability to
find a given particle displaced by the distance r given by Eq. 5.23. The (rare) displacements
larger than h are discarded; in this case the original particle positions as determined by the
hydrodynamical simulation are used.

5.3.5 Effective multi-frequency description - grey approximation

In our current implementation we use only a single frequency. Thus, we either assume that
the ionising radiation is mono-chromatic, or we assume ionising radiation with a frequency
spectrum Jν and provide an effective multi-frequency description using only a single frequency
bin. This is called the grey approximation (for a textbook discussion on the numerical treatment
of multi-frequency radiation and the grey approximation see, e.g., Mihalas & Weibel Mihalas
1984).

For the latter case, we define a frequency-independent (grey) photo-ionisation cross-section
σ̄ such that the total photo-ionisation rate (Eq. 5.3) is conserved,

Γ =

∫

∞

0
dν

4πJν(ν)

hpν
σν ≡ σ̄

∫

∞

ν0

dν
4πJν(ν)

hpν
, (5.24)

with

σ̄ =

∫

∞

0
dν

4πJν(ν)

hpν
σν ×

[∫

∞

ν0

dν
4πJν(ν)

hpν

]−1

. (5.25)

8Observe that for larger time steps, i.e. ∆tr ≥ Lbox/c, and assuming photon-absorbing boundaries, the com-
putational effort for solving the time-dependent radiative transfer equation equals the computational effort for
solving the time-independent radiative transfer equation. It exceeds the computational effort for solving the time-
independent radiative transfer equation with photon packets propagating only a single inter-particle distance per

radiative transfer time step if c∆tr > Lbox/N
1/3
SPH.
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We note that for the purpose of computing the photo-ionisation rate the grey approximation
provides an exact description of the multi-frequency problem if the radiation spectrum Jν(ν)
is known. If instead the radiation spectrum is also computed in the grey approximation, i.e. by
performing radiative transfer simulations using only a single frequency bin, then this approx-
imation will provide an exact description of the multi-frequency problem only in the optically
thin regime. In the optically thick regime, the frequency dependence of the photo-ionisation
cross-section results in a deformation of the radiation field spectral shape that favours high-
energy photons, because low-frequency photons are more likely to be absorbed (Eq. 5.2). This
spectral hardening can only be accounted for by performing true multi-frequency radiative trans-
fer, i.e. by using sufficiently many frequency bins (see Sec. 7.6.2 in Chapter 7 for a discussion
of spectral hardening).

In the following we will be interested in the special case where the mean intensity obeys a
black-body spectrum with temperature Tbb = 105 K. That is, Jν(ν) ∝ Bν(ν), where

Bν(ν, Tbb) =
2hp

c2
ν3

exp
(

hpν
kTbb

)

− 1
, (5.26)

is the Planck function. Eq. 5.25 then implies a value

σ̄ = 1.49 × 10−18 cm−2 (5.27)

for the grey photo-ionisation cross-section.

5.4 TESTS

In this section we report the performance of the implementation of TRAPHIC that we have
presented in the previous section in well-defined tests. We will demonstrate that TRAPHIC can
be used to accurately solve the radiative transfer equation for hydrogen-ionising radiation in
arbitrary geometries and arbitrary optical depth regimes.

We start by verifying the accuracy of our sub-cycling approach in computing the non-
equilibrium neutral fraction (Sec. 5.4.1). We then perform several three-dimensional radiative
transfer simulations of increasing complexity. These simulations comprise the evolution of the
ionised region around a single star in a homogeneous density field (Sec. 5.4.2), the casting of a
shadow behind an opaque obstacle (Sec. 5.4.1), the propagation of an ionisation front around
a star in a centrally peaked density profile (Sec. 5.4.4) and the propagation of ionisation fronts
driven by the ionising radiation of multiple stars in an inhomogeneous density field obtained
from a cosmological simulation (Sec. 5.4.5).

We compare the results obtained with TRAPHIC with analytic solutions, where available.
For all but the simplest test problems, however, no analytic solution is known, mainly due to
the complex geometries involved. We have therefore designed the test problems in Secs. 5.4.1,
5.4.2 and 5.4.5 to closely follow the description given in the Cosmological Radiative Transfer
Codes Comparison Project (Iliev et al. 2006b), which provides a useful set of numerical refer-
ence solutions to compare with. We have designed the test problems in Sec. 5.4.3 and 5.4.4 to
resemble the corresponding test problems presented in Mellema et al. (2006). In addition, we
have developed a radiative transfer code that solves the radiative transfer equation for spher-
ically symmetric problems on a one-dimensional regular mesh. We refer to this code as TT1D

(TestTraphic1D). We will use TT1D to obtain reference solutions for the spherically symmetric
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test problems in Secs. 5.4.2 and 5.4.4. We will refer to these reference solutions as the exact
solutions to the corresponding radiative transfer problems.

Throughout we will assume that the density field is static. We defer a discussion of radia-
tive transfer simulations on dynamically evolving density fields to Chapter 6. To facilitate a
direct comparison with Iliev et al. (2006b), we present results after mapping physical quantities
defined on the SPH particles to a regular grid, unless stated otherwise. This is done using a
mass-conserving SPH interpolation similar to the one described in Alvarez, Bromm, & Shapiro
(2006) that we have implemented for this purpose. We opted for the SPH interpolation since
it is consistent with the SPH simulation we are employing. For comparison, we repeated our
analysis using TSC mass-conserving interpolation (Hockney & Eastwood 1988) but found no
significant differences.

For all tests reported in this section we employ the on-the-spot approximation (e.g. Oster-
brock 1989) in order to allow a direct comparison with Iliev et al. (2006b). In the on-the-spot
approximation diffuse photons emitted during recombinations to the hydrogen ground energy
level are assumed to be immediately re-absorbed by neutral hydrogen atoms close to the loca-
tion of emission. The effect of recombination radiation can then be simply taken into account
by setting the recombination coefficient α to the so-called case B value αB, which can be well
approximated by (see, e.g., Fig. 7.3 in Chapter 7)

αB(T ) = 2.59 × 10−13

(

T

104 K

)−0.7

cm3 s−1, (5.28)

where T ≈ 104 K is the gas temperature. We will report on the study of diffuse radiation in
which we will explicitly follow the scattering of recombination photons instead of employing
the on-the-spot approximation in future work.

To keep the tests problems clean, we furthermore assume that the gas temperature T is
constant, taking T = 104 K for the ionised gas. In Chapter 7 we will extend our implementation
of TRAPHIC to also compute the temperature of the gas, in a self-consistent manner in step with
the evolution of its ionisation state, and repeat some of the test problems discussed here.

In their simulations, Iliev et al. (2006b) and Mellema et al. (2006) assumed that the speed of
light is infinite, i.e. they solved the time-independent radiative transfer equation. For the com-
parison with these simulations we will therefore make the same assumption (recall Sec. 5.3.3
for the discussion of how we solve the time-independent radiative transfer equation). From
now on, when referring to the radiative transfer equation, we therefore assume it to be of the
time-independent form, unless stated otherwise. We will repeat one of the simulations pre-
sented in Sec. 5.4.5 to solve the time-dependent radiative transfer equation by employing the
photon packet clocks as described in Sec. 4.4.4 in Chapter 4.

Since its publication in Pawlik & Schaye (2008), TRAPHIC has been continuously improved.
An important change with respect to the description in Pawlik & Schaye (2008) is a new treat-
ment of how virtual particles (ViPs) distribute the photons they absorbed amongst their Ñngb

neighbouring SPH particles that have been used to compute the ViPs’ neutral density. Previ-
ously, this was done by giving, to each of the neighbours, a fraction of the absorbed photons
that is proportional to the value of the ViPs’ SPH kernel at their position. In the current version,
the distribution is done by giving, to each of the neighbours, a fraction of the absorbed pho-
tons that is proportional to the neutral mass with which they contributed to the SPH estimate
of the neutral density of the given ViP. The new way of distributing the absorptions is more
consistent, since each of the SPH neighbours contributed to the ViP’s absorptions coefficient
(that is then used to compute the number of photons it absorbs and distributes amongst its
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Figure 5.1: Test 0. Optically thin gas particle ionising up and recombining. Top panel: evolution of
the neutral fraction obtained from the numerical integration (using Euler sub-cycling) of the photo-
ionisation rate equation (Eq. 5.29). The curves show the neutral fraction evolution obtained using the
integration steps ∆tr indicated in the legend. Bottom panel: relative difference between the numerically
computed evolution shown in the top panel and the exact result, Eq. 5.35. Thanks to the sub-cycling,
the numerical integration accurately reproduces the exact evolution of the neutral fraction for all sizes
of the radiative transfer time step. Note that the simulations with time step ∆tr ≤ 10−2 yr have been
stopped before tend = 5 Myr because they are computationally very expensive.

neighbours) in proportion to its neutral fraction. Unless noted otherwise, the results presented
in the following have been obtained with this new version of TRAPHIC. They may therefore
differ slightly from those presented in Pawlik & Schaye (2008). We discuss these differences in
detail in App. 5.C, to which the reader is referred.

5.4.1 Test 0: Sub-cycling the photo-ionisation rate equation

We start by testing the sub-cycling approach to the computation of the non-equilibrium neutral
fraction of gas exposed to ionising radiation that we have introduced in Sec. 5.3.2. Our aim is
to demonstrate that, given a flux impinging on a gas parcel (or, equivalently, a photo-ionisation
rate experienced by this parcel), the sub-cycling allows for an accurate computation of the
evolution of its ionisation state, independent of the size of the radiative transfer time step ∆tr.

In close analogy to Test 0 in Iliev et al. (2006b) we simulate the evolution of the ionisation
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state of an optically thin gas parcel with hydrogen number density nH = 1 cm−3. The simula-
tion starts with a fully neutral parcel at time t = 0. We then apply a flux of F = 1012 s−1 cm−2

hydrogen-ionising photons with a black-body spectrum Bν(ν, Tbb) of characteristic tempera-
ture Tbb = 105 K. Consequently, the parcel becomes highly ionised. After t = 0.5 Myr we
switch off the ionising flux and the parcel only recombines. The simulation ends at tend =
5 Myr. Throughout the simulation we assume a constant gas temperature T = 104 K (note that
this is in contrast to the test described in Iliev et al. 2006b, where the temperature evolution
was followed self-consistently). This simplification will allow us to analytically derive the evo-
lution of the neutral fraction with which our numerical results will then be compared. We will
consider the combined evolution of the neutral fraction and the temperature of an optically
thin gas parcel exposed to ionising radiation in Chapter 7.

We simulate the evolution of the gas parcel’s neutral fraction η = 1 − χ by numerically
integrating the photo-ionisation rate equation (see Eq. 5.4),

d

dt
η = α(T )neχ− Γη, (5.29)

employing the sub-cycling procedure described in Sec. 5.3.2. Recall that the sub-cycling inte-
grates Eq. 5.29 explicitly using sub-cycle steps δt ≡ fτeq ≤ ∆tr. The dimensionless parameter f
controls the accuracy of the integration. The recombination coefficient α(T ) is given by Eq. 5.28
and the photo-ionisation rate Γ is (see Eq. 5.24)

Γ = σ̄

∫

∞

ν0

dν
4πJν(ν)

hpν
. (5.30)

Using σ̄ = 1.49×10−18 cm−2 appropriate for the black body-spectrumBν(ν, Tbb) under consid-
eration (cp. Eq. 5.27) and 4πJν(ν)/(hpν) = FBν(ν, Tbb)/

∫

ν0
dν Bν(ν, Tbb), the photo-ionisation

rate becomes Γ = 1.49 × 10−6 s−1.
Eq. 5.29 can also be integrated analytically9. To see this, we write it in the form

dχ

dt
= −b(χ− χ+)(χ− χ−), (5.31)

where

χ± ≡
a

2b

(

−1 ±

√

1 +
4b

a

)

, (5.32)

a ≡ Γ−1, (5.33)

b ≡ nHα. (5.34)

Eq. 5.31 is a differential equation of Riccati type. Its integration by separation of variables yields

χ(t) =
χ+ − χ− exp[(−bt+ C)(χ+ − χ−)]

1 − exp[(−bt+ C)(χ+ − χ−)]
. (5.35)

The integration constant C is fixed by the initial condition χ(t0) = χ0,

C = (χ+ − χ−)−1 ln
χ0 − χ+

χ0 − χ−

+ bt0. (5.36)

9This is a standard result from kinetic theory. For a discussion in the astrophysical literature see, e.g., Dove &
Shull (1994).
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In Fig. 5.1 we show the result of the simulation and compare it to the analytical result, which
we will refer to as the exact result. The top panel shows the evolution of the neutral fraction
for simulations using time steps ∆tr = 5 × (10−6,10−4, 10−2, 100, 102, 104 yr), which span 10
orders in magnitude. Note that the photo-ionisation rate implies a photo-ionisation time of
only τion ≡ Γ−1 ≈ 0.02 yr and that the recombination time is (αnH)−1 ≈ 0.1 Myr. The bottom
panel shows the relative difference between the numerically computed evolutions shown in
the top panel and the exact result. The agreement is excellent, with the numerical evolution
never deviating by more than 10% from the exact result. This small deviation can be further
reduced by lowering the value of the parameter f that controls the size of the sub-cycle steps10.
The calculation presented here employed f = 0.01.

In conclusion, we have shown that with our sub-cycling approach we are able to accurately
follow the evolution of the ionisation state of a gas parcel, regardless of the size of the radia-
tive transfer time step ∆tr (assuming that the impinging flux is correctly computed over this
time step), which was our main motivation to introduce the sub-cycling. It allows us to per-
form the radiative transfer and correctly compute the neutral fractions using radiative transfer
time steps whose sizes are independent (and generally much larger) of the occurring photo-
ionisation and recombination times, which are often impractically small.

Having established our method to solve the photo-ionisation rate equation, which com-
prises an important building block of our numerical implementation of TRAPHIC, we can now
confidently turn to testing TRAPHIC’s performance in radiative transfer problems. This will be
the subject of Secs. 5.4.2 to 5.4.5.

5.4.2 Test 1: HII region expansion in a uniform medium

In this section we consider the problem of a steady ionising source emitting Ṅγ mono-chromatic
photons of frequency hpν = 13.6 eV per unit time, which is turned on in a static, initially
neutral, uniform medium of constant hydrogen number density nH. This is a standard test
problem, for which there exists a well-known analytical solution (for a text book discussion see
Dopita & Sutherland 2003).

In equilibrium, the number of photons emitted by the source has to compensate the number
of recombinations within the surrounding, stationary, ionised region, the so-called Strömgren
sphere. Assuming that the Strömgren sphere is fully ionised, i.e. χ ≡ 1, its radius rs is therefore
given by the balance equation

Ṅγ =
4

3
πr3sαB(T )n2

H. (5.37)

The evolution of the spherical, fully ionised region towards the equilibrium Strömgren
sphere is described by the following equation for its radius rI, the ionisation front,

4πr2I nH
drI
dt

= Ṅγ − 4π

∫ rI

0
dr r2αB(T )n2

H(r), (5.38)

which, for the case of constant density nH(r) = nH that is of interest here, reads

4πr2I nH
drI
dt

= Ṅγ −
4

3
πr3IαB(T )n2

H. (5.39)

10In the simulations with time step ∆tr < f × Γ−1 (here: in the simulations using ∆tr = 5 × 10−6 yr) the
integration accuracy is controlled by the size of ∆tr. This is the reason why the relative error for the simulation with
time step ∆tr = 5 × 10−6 yr is smaller than that for the simulation with time step ∆tr = 5 × 10−4 yr.
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Figure 5.2: Test 1. The evolution of the ionisation front for the angular resolutions Nc = 8, 16, 32, 64

and 128, as indicated in the legend. The spatial resolution is fixed (NSPH = 643, Ñngb = 32). The
top panel shows the position of the ionisation front rI,num normalised by the Strömgren radius rs as a
function of time. The thick black solid curve shows a numerical reference solution obtained with a one-
dimensional, grid-based radiative transfer code (see text). The black dotted curve shows the analytic
reference solution, Eq. 5.41, which has been obtained by assuming χ ≡ 1 throughout the ionised region.
The results from the numerical simulations employing TRAPHIC closely match the numerical reference
solution. The bottom panel shows the position of the ionisation fronts of the top panel divided by the
analytic reference solution. Note that the analytic reference solution slightly differs from the numerical
reference solution, due to the simplifying assumptions inherent to the analytic approach (see also the
discussion of Eq. 5.43).

Figure 5.3: Test 1. Neutral and ionised
fractions obtained from Eq. 5.43 (dot-
ted black curves), which is the exact
equilibrium solution, and from simula-
tions with our reference code TT1D at
times t = 30 Myr (red dashed curves),
100 Myr (blue dot-dashed curves) and
500 Myr (green solid curves). The
simulations with TT1D yield results
that are identical to the exact equilib-
rium solution at all radii for which
photo-ionisation equilibrium has been
reached, i.e. for radii well inside the
ionised region. This excellent agree-
ment justifies the use of TT1D for
obtaining accurate reference solutions.
Note that, for the chosen parameters,
the equilibrium position of the ionisa-
tion front is at r = 1.05rs and thus at
a slightly larger radius than implied by
the commonly employed analytical ap-
proximation Eq. 5.41.
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Introducing the new variables ξ ≡ rI/rs and τ ≡ t/τs, where the Strömgren time scale τs =
1/(αBnH) is the recombination time in a fully ionised gas, we arrive at the differential equation

dξ

dτ
=

1 − ξ3

3ξ2
, (5.40)

the solution of which reads

rI(t) = rs(1 − e−t/τs)1/3. (5.41)

Hence, the ionisation front reaches the Strömgren sphere after a few Strömgren times τs and
stays static thereafter.

In reality the neutral fraction inside the ionised region is, however, not zero, but varies
smoothly with the distance to the ionising source. We therefore invoke the commonly em-
ployed definition of the ionisation front as the radius at which the neutral fraction equals 50
per cent, i.e. η = 0.5. The equilibrium neutral fraction ηeq(r) = limt→∞ η(r) can be obtained
from (e.g. Osterbrock 1989)

ηeq(r)nH

4πr2

∫

dν Ṅγ(ν)e−τνσν = χ2
eq(r)n

2
HαB, (5.42)

which can be rewritten to give the quadratic equation

η2
eq(r) −

(

∫

dν
Ṅγ(ν)e−τν

4πr2nHαB
σν + 2

)

ηeq(r) + 1 = 0, (5.43)

where the optical depth τν(r) is given by

τν(r) = nHσν

∫ r

0
dr′ ηeq(r

′). (5.44)

We refer to the neutral fraction ηeq(r) obtained by direct numerical integration of Eq. 5.43 as
the exact equilibrium neutral fraction profile and to χeq(r) = 1−ηeq(r) as the exact equilibrium
ionised fraction profile.

In the following we present a suite of radiative transfer simulations demonstrating that
TRAPHIC is able to accurately follow the evolution of the ionisation front around a single ionis-
ing point source. For the setup of the numerical simulations we closely follow the description of
Test 1 presented in Iliev et al. (2006b). The only differences are that we employ a different spa-
tial resolution and that we start from ionised fractions 11 χ = 0 instead of χ = 1.2 × 10−3. This
close matching of the setup allows us to directly compare our results to the results presented in
the code comparison project. In particular, we choose a number density nH = 10−3 cm−3 and
an ionising luminosity of Ṅγ = 5 × 1048 photons s−1. The gas is assumed to have a constant
temperature T = 104 K. With these values, rs = 5.4 kpc and τs = 122.4 Myr.

The exact equilibrium neutral and ionised fraction profiles computed using Eq. 5.43 are
shown as black dotted curves in Fig. 5.3. Note that for our choice of parameters, rI,eq = 1.05 rs.
The ionisation front obtained from the solution to Eq. 5.43 is thus at a slightly larger radius
than the equilibrium ionisation front obtained assuming the Strömgren sphere is fully ionised
(Eq. 5.41).

11Iliev et al. (2006b) motivated their choice of a nonzero initial ionised fraction with the presence of collisional
ionisations, which we do not consider here.
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Figure 5.4: Test 1. Slice through the simulation box at z = Lbox/2 showing the neutral fraction at the end
of the simulation (tr = 500 Myr) for simulations with (bottom row) and without (top row) resampling
of the density field. The angular resolution increases from Nc = 8 in the left-most to Nc = 128 in
the right-most column, as indicated in the panel titles. The spatial resolution is fixed to NSPH = 643,

Ñngb = 32 and is indicated by the cross of length 2〈h̃〉 in the upper left corner of each panel. Black
contours show neutral fractions of η = 0.9, 0.5, log η = −1,−1.5,−2,−2.5,−3,−3.5, going from the
outside in. The white dot-dashed circle indicates the Strömgren sphere, which should be, and is, just
inside to the η = 0.5 contour. The colour scale is logarithmic and has a lower cut-off of log η = −5 (see
Fig. 7.14 in Chapter 7 for a colour bar). Note that the resampling strongly suppresses the particle noise
seen in the top-row panels.

The last observation indicates that the analytic solution given by Eq. 5.41 generally fails to
provide an accurate reference solution that can be used to judge the validity of the numerical
results obtained with a new radiative transfer scheme like TRAPHIC, due to its simplification
of the problem. We therefore additionally employ the numerical solution obtained with our
spherically symmetric mesh-based radiative transfer code TT1D, that we have mentioned in
Sec. 5.4, in our comparisons below. In Fig. 5.3 we compare the neutral (ionised) fraction profiles
obtained in simulations with TT1D to the exact equilibrium solution. The spatial resolution and
the size of the time step employed in these simulations have been chosen such as to achieve
numerical convergence. At radii where photo-ionisation equilibrium has been reached, the
results obtained with TT1D are in excellent agreement with the exact equilibrium solution. At
t = 500 Myr, i.e. after about 4 recombination times, equilibrium has been reached for most of
(but not all of) the final ionised volume, as expected.

With accurate reference solutions at hand, we now turn to discuss the performance of
TRAPHIC in the present test problem. We have set up the initial conditions described above
in a simulation box of length Lbox = 13.2 kpc containing NSPH = 643 SPH particles12. The
ionising source is located in the centre. The box boundary is photon-transmissive. We assign

12We note that Iliev et al. (2006b) employed Ncell = 1283 cells, with the ionising source located in one of the
corners of the box.
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Figure 5.5: Test 1. Profiles of neutral and ionised fraction at the end of the simulation (tr = 500 Myr)
for simulations with (bottom row) and without (top row) resampling of the density field. The spatial

resolution is fixed to NSPH = 643, Ñngb = 32 and is indicated by the horizontal error bars in the upper
left corner of each panel. The angular resolution increases from Nc = 8 in the left-most to Nc = 128
in the right-most column, as indicated in the panel titles. The panels therefore directly correspond to
those shown in Fig. 5.4. The grey (light red) points show the neutral (ionised) fraction of each particle.
The solid black (red) curve shows the median neutral (ionised) fraction in spherical bins and the error
bars show the corresponding 68.3% confidence intervals. The dashed black (red) curves show the exact
solution, obtained with TT1D.

each SPH particle a mass m = nHmHL
3
box/NSPH. The positions of the SPH particles are cho-

sen to be glass-like (White 1996). Glass-like initial conditions yield a more regular distribution
of the particles within the box as compared to Monte Carlo sampling of the density field and
are thus more suitable for the simulation of the current problem (see also our discussion in
App. 5.D). The SPH smoothing kernel is computed and the SPH densities are found using the
SPH formalism implemented in GADGET-2, with Nngb = 48.

We perform 5 simulations, increasing the angular resolution by factors of two from Nc = 8
to Nc = 128. The number of neighbours employed for the transport of radiation is fixed to
Ñngb = 32. Hence all 5 simulations employ the same spatial resolution. The time step is set
to ∆tr = 10−2 Myr. In Fig. 5.2 we show the evolution of the ionisation front radius, which
we determined by taking the average over the positions of all particles that have a neutral
fraction 0.4 < η < 0.6. For all 5 simulations, the position of the ionisation front never deviates
more than 5 per cent from the analytic solution, Eq. 5.41, comparable to what has been found
with other codes as reported in the Cosmological Radiative Transfer Code Comparison Project
(Iliev et al. 2006b). Note that the deviations from the analytic solution can mainly be attributed
to the fact that the analytic approach provides only an approximate expression for the radius
of the ionisation front, because it erroneously assumes χ ≡ 1. In fact, all simulations nearly
perfectly follow the numerical reference solution and approach the proper asymptotic limit
rI,eq = 1.05 rs.

The top row of Fig. 5.4 shows the neutral fraction in a slice through the centre of the simula-
tion box at tr = 500 Myr, which marks the end of the simulation, for each of the 5 simulations.
As we already noted, the ionisation front is at the expected position. As is true for all other
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Figure 5.6: Test 1. Comparison to Iliev et al. (2006b). Spherically averaged neutral and ionised fractions
within the Strömgren sphere at tr = 500 Myr for different angular resolutions, as indicated in the legend.
The profiles in the left-hand (right-hand) panel correspond to simulations without (with) resampling

the density field. The spatial resolution is fixed (NSPH = 643, Ñngb = 32). The thick black solid curves
correspond to the exact profile obtained with our reference code TT1D. The vertical dotted line marks

the radius r = 2〈h̃〉, corresponding to the spatial resolution employed. In the right-hand panel, the
additional (right-most) vertical dotted line indicates the radius corresponding to the spatial resolution
2〈h〉 of the SPH simulations, which is the scale on which particle positions are randomly displaced
during the resampling. The grey bands show the range of neutral and ionised fractions found by other
codes as reported in Iliev et al. (2006b). There, the simulations were initialised with an ionised fraction
χ = 1.2 × 10−3, which explains the cut-off exhibited by the grey band at large distances r/rs & 1.2.

surfaces of constant neutral fraction shown, the ionisation front clearly exhibits the expected
spherically symmetric shape, although it is noisy in some of the simulations. The amount of
noise depends on the ratio of the angular and spatial resolutions employed. For Nc = 8 (left-
most panel in the top row), the average number of neighbours per emission or transmission
cone is high, Ñngb/Nc = 4 and, as a result, numerical noise arising from the representation of
the continuous density field with discrete SPH particles is suppressed. With increasing angu-
lar resolution the average number of neighbours per cone decreases and the contours become
more noisy. The noise level reaches a maximum for Nc = Ñngb (middle panel in the top row).
For higher angular resolutions, the probability of finding no neighbours inside an emission or
transmission cone becomes high and a large number of ViPs are created. The ratio of the num-
ber of ViPs to the number of SPH particles enclosed by the ionisation front for the simulation
with angular resolution Nc = 8, 16, 32, 64 and 128 is ≈ 0, 0.003, 0.06, 0.5 and 0.9, resp. The ViPs
placed in empty cones regularise the neutral fraction of the ionised density field by distributing
the photons they absorb amongst their Ñngb SPH neighbours using (photon-conserving) SPH
interpolation.

The panels in the top row of Fig. 5.5 show profiles of the neutral and ionised fraction around
the ionising source at t = 500 Myr. Each grey (light red) dot represents the neutral (ionised)
fraction of an individual particle, and the solid black (red) curves with error bars show the
median neutral (ionised) fraction in spherical bins. They are compared to the dashed black (red)
curves that indicate the exact results obtained with TT1D. The agreement between the results
obtained with TRAPHIC and the exact result is generally very good. We note that this good
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Figure 5.7: Test 1. Spherically averaged neutral and ionised fractions within the Strömgren sphere at tr =
500 Myr. The simulations all have the same angular resolution (Nc = 8) and employ the same number

of neighbours (Ñngb = 32), but use a different number of SPH particles, increasing from NSPH = 163 to
NSPH = 1283 in factors of 23. The black solid curves correspond to the exact profiles, obtained with our
reference code TT1D. The grey bands show the range of neutral and ionised fractions found by other
codes as reported in Iliev et al. (2006b). Left-hand panel: For each simulation the spatial resolution is

marked by a vertical line (in colour and line-style identical to the corresponding profile) at radius 2〈h̃〉.
The higher the spatial resolution, the more closely the exact profile is approached. Right-hand panel:
The profile corresponding to the lowest spatial resolution simulation (NSPH = 163, blue dot-dashed line)
is repeated from the left-hand panel. The profiles of all other simulations have been smoothed over the

spatial resolution element 2〈h̃〉 of the lowest spatial resolution simulation, corresponding to the radius
marked by the vertical line. The profiles become nearly identical after smoothing them to the same
resolution.

agreement also holds at earlier times, when the ionised sphere is still rapidly expanding, which
we explicitly demonstrate for the high angular resolution simulation (Nc = 128) in App. 5.C.
Small deviations from the exact result occur for the simulations with Nc = 16, 32 and 64 due to
the noise they exhibit that we have already discussed above. The panels shown here illustrate
this discussions in a more quantitative manner.

In the left-hand panel of Fig. 5.6 we plot the neutral and ionised fraction averaged in spher-
ical shells as a function of distance to the star, for all 5 simulations, to perform a comparison
with the results obtained with other radiative transfer codes as reported in the cosmological
radiative transfer code comparison project (Iliev et al. 2006b). The range of neutral and ionised
fraction found in the code comparison project simulations are indicated by the grey bands. Ex-
cept for the Nc = 32 run, for which the neutral contours were most noisy (see Fig. 5.4), all our
simulations agree very well with the results published in the comparison project. The devia-
tions of the results obtained with TRAPHIC from the exact neutral fraction profile obtained with
TT1D, that were also visible in the top row panels of Fig. 5.5, can be explained by the particle
noise seen in Fig. 5.4. Due to the fuzzy structure exhibited by the neutral fraction contours, a
range of neutral fractions can simultaneously be found within each spherical shell. The pro-
files obtained from the numerical simulation with TRAPHIC should therefore not be directly
compared to the exact profile, i.e. the solution of Eq. 5.43, but to the profile that results after
locally averaging the exact profile along the radial direction. The fact that the deviations from
the exact result exhibited by the results published in the comparison project are relatively large
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illustrates the computational difficulties in obtaining accurate three-dimensional solutions of
the radiative transfer equation even in a simple test problem like the one presented here.

To investigate the effect of particle noise on the neutral fraction profile we apply the resam-
pling technique introduced in Sec. 4.4.5, Chapter 4. We perform a series of 5 simulations that
are identical to the simulations presented above, except that every 10th radiative transfer time
step the particle positions are randomly perturbed within their SPH spheres of influence. The
densities are not recalculated after the positions have been changed due to the resampling, be-
cause this would generate fluctuations in the neutral hydrogen density which would increase
the recombination rate due to an increased gas clumping factor and lead to a smaller Strömgren
sphere. The resulting neutral fraction profiles are shown in the right-hand panel of Fig. 5.6. All
profiles are now in close agreement with each other and with the exact result. The panels in the
bottom row of Fig. 5.4 show the neutral fraction in a slice through the centre of the simulation
box from the simulations with resampling. Clearly, resampling strongly suppresses the particle
noise visible in the panels in the top row of Fig. 5.4, yielding nearly spherical neutral fraction
contours. This effect of resampling is further confirmed by the panels in the bottom row of
Fig. 5.5, which show the median neutral and ionised fractions in spherical bins as well as the
neutral and ionised fraction of each particle in the simulations that employed the resampling
recipe.

We now investigate the dependence of the equilibrium neutral and ionised fraction profile
on the spatial resolution by varying NSPH, the number of particles employed in the simulation.
Because TRAPHIC is explicitly photon-conserving, we expect that the radiative transfer in a ho-
mogeneous medium is essentially independent of the spatial resolution (see e.g. the discussion
in Mellema et al. 2006), except for a trivial smoothing. For each of the simulations with angular
resolution Nc = 8, 32 and 128 and Ñngb = 32 presented above, we performed three additional
simulations, at lower (NSPH = 163, 323) and higher (NSPH = 1283) spatial resolutions, but oth-
erwise identical to the fiducial (NSPH = 643) case. We will focus on the Nc = 8 runs13, but note
that the Nc = 32 and Nc = 128 series show a similar behaviour.

The equilibrium neutral and ionised fraction profiles are shown in the left-hand panel of
Fig. 5.7. For all spatial resolutions the ionisation front is at nearly the same radius. It can fur-
thermore be seen that when the spatial resolution is increased, the equilibrium neutral fraction
follows the exact result more closely. The simulation employing the fiducial spatial resolution
(NSPH = 643) is almost converged. The differences in the neutral fraction profiles between the
simulations using different numbers of particles are fully consistent with the corresponding
spatial resolutions, as is demonstrated in the right-hand panel of Fig. 5.7. There, we smooth
the neutral fraction profiles obtained in the simulations employing NSPH = 323, 643 and 1283

particles over the spatial resolution element of the lowest resolution simulation (NSPH = 163),
the size of which is indicated by the vertical line. The smoothed profiles match the neutral
fraction profile obtained in the low spatial resolution simulation almost exactly. This shows
that decreasing the spatial resolution does not introduce any artefacts. The solution obtained
by TRAPHIC is the converged solution smoothed over the adopted spatial resolution.

Finally, we show how the size of the time step ∆tr affects the outcome of our simulations.
We again concentrate on the simulation14 with angular resolution Nc = 8 (and NSPH = 643,
Ñngb = 32), noting that the simulations of higher angular resolution exhibit a similar behaviour.
In Fig. 5.8 we show the evolution of the ionisation front for four different choices for the size

13These runs have been performed with the version of TRAPHIC described in Pawlik & Schaye (2008). We have
not repeated them with the current code version, since this version only differs in the manner virtual particles are
treated. For the low angular resolution employed here, however, no virtual particles are created.

14See footnote 13
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Figure 5.8: Test 1. Effect of the size of
the time step. We show the evolution
of the ionisation fronts for four simula-
tions with Nc = 8, NSPH = 643, Ñngb =
32 and time steps ∆tr = 0.01, 0.1, 1 and
10 Myr, resp, as indicated in the legend.
After an initial phase, the evolution of
the ionisation fronts becomes indepen-
dent of the size of the radiative trans-
fer time step. The duration of this ini-
tial phase can be shortened by apply-
ing the causal correction explained in
the text, as we explicitly demonstrate
for the simulation with time step ∆tr =
10 Myr.

of the radiative transfer time step, ∆tr = 0.01, 0.1, 1 and 10 Myr. In order to keep the angular
sampling the same, at each radiative transfer step we split the emission of photons over 10,
100 and 1000 random orientations of the emission cone tessellation of the ionising source for
the simulations employing ∆tr = 0.1, 1 and 10 Myr, resp. Differently from what is done for all
other simulations described in this section, photon packets that are emitted by the source in a
certain orientation are transmitted further downstream and can propagate over multiple inter-
particle distances during a single time step. We follow each photon packet until it has either
been absorbed or left the simulation box, to properly solve the time-independent radiative
transfer equation for the large time steps under consideration.

From Fig. 5.8 we see that the evolution of the ionisation front for the simulations with time
step ∆tr = 0.1, 1 and 10 Myr is delayed with respect to the evolution of the ionisation front for
the simulation with time step ∆tr = 0.01 Myr. This delay increases with the size of the time
step, being barely visible for the simulation using ∆tr = 0.1 Myr. The delay arises because the
neutral fraction is only updated at the end of each radiative transfer time step. Photons that
have been absorbed during the transport over a single time step but that have not been used to
advance the neutral fraction during the subsequent sub-cycling of the rate equation are there-
fore only re-inserted in the transport process at the beginning of the next time step and are thus
delayed. From Fig. 5.8 it can, however, be seen that after a few time steps, the ionisation front
catches up to agree with the ionisation front obtained in the simulation using ∆tr = 0.01 Myr.
We note that we have also tried to re-insert these photons immediately after they have been
absorbed, by integrating the rate equation already at the end of each transport cycle (without
updating the neutral fraction) to obtain the number of photons that have been erroneously
counted as being absorbed (because of the assumption of a constant neutral fraction). We re-
fer to this manner of transporting photons as causal, because of its similarity with the causal
transport employed in Mellema et al. (2006). The causal correction, i.e. the re-insertion of these
photons in the transport process within the same radiative transfer time step over which they
have been absorbed, indeed reduces the observed delay of the ionisation front (see the blue
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Figure 5.9: Test 2. Slice through the simulation box at z = Lbox/2 showing the ionisation front (red solid
line) at time tr = 80 Myr around an ionising source sitting in the centre of the simulation box. The black
dot-dashed circle shows the expected ionisation front position. The thick blue vertical line indicates an
obstacle opaque to ionising photons and the black solid lines trace out the boundaries of the shadow
this obstacle is expected to throw. The cross and the black dashed line indicate the spatial and angular

resolution, respectively, as described in the text. The spatial resolution is fixed toNSPH = 643, Ñngb = 32.
The angular resolution increases from Nc = 8 in the left-most panel to Nc = 128 in the right-most panel,
in factors of 2.

Figure 5.10: Test 2. Same as Fig. 5.9, but with the angular resolution fixed to Nc = 32 and the spatial

resolution decreasing, from NSPH = 643, Ñngb = 8 in the left-most panel to NSPH = 643, Ñngb = 128 in

the right-most panel, increasing the number of neighbours Ñngb in factors of 2.

thin solid line in Fig. 5.8).

In summary, in this section we showed that TRAPHIC is able to reproduce the expected equi-
librium neutral fraction around an ionising source embedded in a homogeneous medium, as
well as the dynamical evolution towards it. Because the radiative transfer is explicitly photon-
conserving, the spatial resolution only determines the scale over which the converged solution
is smoothed. We have furthermore seen that the performance of TRAPHIC is stable with respect
to variations in the size of the time step. Particle noise due to the discrete nature of SPH sim-
ulations is small except for the choice of parameters Nc ≈ Ñngb. The noise can be successfully
suppressed by applying a resampling technique that periodically perturbs the positions of the
SPH particles within their spatial resolution element.

5.4.3 Test 2: Ionisation front shadowing by an opaque obstacle

In the absence of scattering interactions, photons propagate along straight lines into the direc-
tion set at the time of their emission. Consequently, opaque obstacles throw sharply defined
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shadows. In this section we are mainly interested in studying the properties of the shadow
thrown by an opaque obstacle exposed to ionising radiation from a single point source, as ob-
tained with TRAPHIC. At the same time, we will extend the study of particle noise presented
in Sec. 5.4.2 to include other choices for the parameter Ñngb. All of the simulations presented
in this section have been performed with the original version of TRAPHIC presented in Pawlik
& Schaye 2008. We have verified for a few individual simulations that our current, improved
version, in which the distribution of photons absorbed by virtual particles amongst the neigh-
bouring SPH particles is done using a more self-consistent weighting scheme than the one that
was used in the original publication (see our discussion in Sec. 5.4), produces nearly identical
results.

The geometry of our test problem closely follows the description of the shadow test in
Mellema et al. (2006). We consider a source emitting Ṅγ = 1054 photons s−1, each of hydrogen-
ionising energy hpν = 13.6 eV, residing in an initially neutral, static hydrogen-only field of
constant number density nH = 1.87 × 10−4 cm−3 and temperature T = 104 K. The Strömgren
radius (Eq. 5.37) corresponding to this set of parameters is rs = 0.965 Mpc and the Strömgren
time is τs = 654.3 Myr. For the numerical simulation a star particle is placed in the centre of
a box of size Lbox = 1 Mpc. The boundaries of the box are photon-transmissive. The density
field is sampled using NSPH = 643 gas particles with mass m = nHmHL

3
box/NSPH at glass-

like positions. The particle densities are found using the SPH interpolation implemented in
GADGET-2, with Nngb = 48. We furthermore place an infinitely thin opaque disc perpendicular
to the x-axis at a distance of 0.08 Mpc along the x-axis from the star (thick blue vertical lines in
Figs. 5.9-5.13). The y and z coordinates of the disc centre are identical to those coordinates of
the star. Photons that cross the disc are removed.

We performed a series of radiative transfer simulations (with time step ∆tr = 104 yr), using
different choices for the parameters Ñngb, which sets the spatial resolution if the total number
of SPH particles is fixed, and Nc, which sets the angular resolution. The results are shown in
Figs. 5.9 - 5.13, displaying a slice through the simulation box at z = Lbox/2. In each panel, the
black dash-dotted circle shows the expected position of the ionisation front (Eq. 5.41) at time
tr = 80 Myr, which marks the end of the simulation. The black solid lines emerging from the
star at the centre of the slice show the boundaries of the shadow expected to be thrown by
the opaque disc (thick blue vertical line). In the top-left corner of each panel we indicate the
spatial resolution by a cross of length 2〈h̃〉 corresponding to the average diameter of the sphere
containing Ñngb neighbours. The angular resolution is indicated by the angle ω enclosed by
the black dashed line and the upper shadow boundary, where ω is determined using Eq. 4.9.
It indicates the maximum angle photons can theoretically diverge from the shadow boundary
into the shadow region, given the chosen angular resolution Nc.

The position of the ionisation front (the iso-surface for which the neutral fraction η = 0.5)
at time tr = 80 Myr as obtained with TRAPHIC is shown by the red solid line. In all panels,
that is for all spatial and angular resolutions, the ionisation front is found at the proper posi-
tion, in agreement with our findings of Sec. 5.4.2. The shadow thrown by the opaque disc is
always sharp. We now discuss the dependence of the results on the chosen spatial and angular
resolutions.

In Fig. 5.9 we show the ionisation front obtained in simulations employing a fixed spatial
resolution, Ñngb = 32, but varying angular resolution, ranging from Nc = 8 in the left-most to
Nc = 128 in the right-most panel. The most prominent difference between the results of the
different simulations is the noisiness of the contour tracing out the ionisation front. The angular
resolution study presented here is very similar to the one in the last section. For the lowest
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Figure 5.11: Test 2. Same as Fig. 5.9, but fixing the ratio between spatial and angular resolution to

Ñngb/Nc = 2 (NSPH = 643).

Figure 5.12: Test 2. Same as Fig. 5.9, but fixing the ratio between spatial and angular resolution to

Ñngb/Nc = 1/2 (NSPH = 643).

angular resolution, Nc = 8, the ionisation front is very smooth due to the large number of
neighbours within each emission and transmission cone. The noise increases with the angular
resolution until it reaches a maximum for Nc = Ñngb. For higher angular resolutions, particle
noise is efficiently suppressed due to the large number of ViPs that are placed in empty cones
and that distribute the photons they absorb amongst their Ñngb SPH neighbours using (photon-
conserving) SPH interpolation.

From Fig. 5.9 it can furthermore be seen how the sharpness of the shadow thrown by the
opaque disc depends on the angular resolution. For the lowest angular resolution, the shadow
is somewhat blurred, though not nearly as much as the angular resolution would imply. In-
creasing the angular resolution yields slightly sharper shadows. However, if the angular reso-
lution is increased beyond Nc = Ñngb, the shadows become slightly less sharp. This is because
the photons absorbed by ViPs are distributed amongst the neighbouring gas particles using
SPH interpolation and the interpolation procedure does not know about the shadow region.
The slight diffusion of photons across the shadow boundary is in this case consistent with the
spatial resolution.

In Fig. 5.10 we show the results of the simulations where we fixed the angular resolution
to Nc = 32, but varied the spatial resolution by changing Ñngb. The trends visible in Fig. 5.9
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Figure 5.13: Test 2. Left-hand panel:
Identical to the middle panels of
Figs. 5.9 and 5.10. Right-hand panel:
Same as left-hand panel, except for the
fact that in the simulation we peri-
odically re-sampled the density field,
resulting in a strong suppression of
the particle noise seen in the left-hand
panel. Note the (small amount of) dif-
fusion of photons across the shadow
boundary due to the motion of the
transmission cone apexes.

can also be observed here. The ionisation front is most noisy and the shadow is sharpest for
Nc = Ñngb. For Ñngb > Nc, noise due to the discreteness of the particles employed for the
transport of photons is suppressed by the large number of neighbours per cone, but the shadow
is slightly blurred. The shadow becomes sharper for a smaller number of neighbours, since
generally not all of the solid angle will be covered by the neighbours, an effect that becomes
more important for smaller numbers of neighbours. For Ñngb < Nc the ionisation front becomes
smoother due to the regularising effect of the SPH interpolation from ViPs, which also leads to
a small diffusion of photons across the shadow boundary, consistent with the spatial resolution.

In Figs. 5.11 and 5.12 we keep the ratio Ñngb/Nc fixed at Ñngb/Nc = 2 and Ñngb/Nc =
1/2, resp. In the first case there are on average 2 neighbours per cone, whereas in the second
case there is on average one neighbour in every second cone. From Fig. 5.11 it is clear that
the shadow does get sharper when the angular resolution is increased, although the effect is
small, since the shadow is always very sharp. Because we keep the ratio Ñngb/Nc fixed at 2,
the number of ViPs employed in the simulation stays low for all angular resolutions and the
shadows are not visibly diffused by the SPH interpolation of absorbed photons from the ViPs.
Furthermore, the noisiness of the ionisation front remains constant throughout the parameter
range. This is because the noise is primarily set by the ratio Ñngb/Nc if Ñngb > Nc. In Fig. 5.12,
on the other hand, there is a substantial probability for creating a ViP per cone. Since the
absolute number of ViPs present in the simulation increases with increasing angular resolution
Nc, the noise decreases with Nc.

In the last section (see bottom row of Fig. 5.4) we employed a resampling technique to
decrease the noise exhibited by the neutral fraction contours. Recall from Section 4.4.2 that
the apexes of the transmission cones are attached to the positions of the SPH particles. Hence,
resampling results in slight shifts in the position of each transmission cone apex, on the scale
of the spatial resolution employed in the SPH simulation. This shifting is expected to lead to
a small diffusion of photons across the expected shadow boundary. Such a diffusion due to
particle resp. apex motion will also occur in radiation-hydrodynamical simulations because
of the movement of the SPH particles. It is therefore interesting to study the properties of the
shadow thrown by an opaque obstacle in the case of resampling.

In Fig. 5.13 we show the results of a simulation which employs the same parameters as used
for the simulation presented in the middle panels of Fig. 5.9 and 5.10, but with an additional
resampling of the hydrogen density field every 10th radiative transfer time step. As in the last
section, the resampling is performed without changing the hydrogen density, since this would
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lead to an enhanced recombination rate. Numerical noise is successfully suppressed by the
random perturbations given to the positions of the SPH particles. Consequently, the ionisation
front appears significantly smoother. The degree of photon diffusion into the shadow region is
small and does not significantly degrade the angular resolution of the radiative transfer. This
is because the diffusion scale is set by the spatial resolution employed in the SPH simulation.
Therefore, well-defined shadows will be thrown as long as the obstacle is spatially resolved.
The effect of resampling on the properties of shadows will be further discussed in Sec. 5.4.5.

In summary, in this section we showed that TRAPHIC is able to produce a well-defined
shadow behind an opaque obstacle, with the shadow sharpness in full agreement with the
chosen spatial and angular resolutions. In fact, the shadows are much sharper than implied
by the formal angular resolution, thanks to the angular adaptivity inherent to TRAPHIC. For a
fixed angular resolution, the shadows are sharpest for Nc = Ñngb. They are slightly broadened
by photon diffusion for both Nc < Ñngb and Nc > Ñngb, due to the increased coverage of the
solid angles traced out by the transmission cones with SPH particles for an increasing number
of neighbours Ñngb and the SPH interpolation of the photons absorbed by ViPs, resp. We
confirmed our finding of the last section that unless Ñngb = Nc, noise due to the discreteness
of the particles on which the transport of photons takes place is small, since it is suppressed
by either the large number of neighbours per cone (if Nc < Ñngb) or the large number of ViPs
employed (if Nc > Ñngb). The resampling technique that we have already used in Sec. 5.4.2
is confirmed to be very effective at suppressing particle noise. We have seen that resampling
the density field does not severely degrade the angular resolution, even though it leads to a
small shift of the cone apexes. As long as the opaque obstacle is spatially resolved by the SPH
simulation, a well-defined shadow will still be thrown.

The ability to produce sharp shadows is one of the main requirements a radiative transfer
code has to pass. The results of this section, together with the results of Test 1, which showed
that TRAPHIC is able to reproduce the expected neutral fraction within a spherically symmetric
HII region, indicate that TRAPHIC can be used to perform the transport of ionising photons
in arbitrarily complex geometries. This will be the subject of Test 4 presented below. Before
that, however, we will discuss the performance of TRAPHIC in the important problem of the
spherically symmetric expansion of an HII-region in a centrally peaked density field.

5.4.4 Test 3: HII region expansion in a centrally peaked density field

The spherically averaged gas density profile in the dense central regions of star-forming galax-
ies can often be described by a simple power-law relation between gas density and distance
from the galaxy centre. For example, the central parts of galaxies embedded in a Navarro,
Frenk, & White (1997) dark matter halo will obey a spherically averaged gas density profile
that is inversely proportional to the distance from the halo centre (assuming that the gas distri-
bution follows that of the dark matter). Dark matter simulations (e.g., Springel et al. 2008) and
first-principle considerations (He 2009) suggest that the Navarro, Frenk, & White (1997) profile
provides a universal description of the distribution of matter in galaxy halos. It is thus impor-
tant to verify that our radiative transfer scheme is able to accurately compute the propagation
of ionisation fronts in such a centrally peaked density field. In this section we therefore study
the propagation of an ionisation front in the singular density profile

nH(r) = n0
r0
r
, (5.45)

where n0 is the density at radius r = r0.
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An analytic solution to the ionisation front evolution in such a density profile was derived
by Mellema et al. (2006), as follows. Assuming a fully ionised sphere, the position of the ion-
isation front driven by a source with constant ionising luminosity Ṅγ is given by Eq. (5.38).
Making use of the density profile Eq. 5.45, this equation reads

drI
dt

=
Ṅγ

4πn0r0
r−1
I − n0r0αB(T ). (5.46)

Substituting u ≡ r−1
I , the last equation transforms into

du

dt
= u2

(

−
Ṅγ

4πn0r0
u+ n0r0αB(T )

)

. (5.47)

Introducing the notation

ũ ≡
Ṅγ

4πn2
0r

2
0αB

u (5.48)

t̃ ≡
4πn3

0r
3
0α

2
B

Ṅγ

t, (5.49)

the ionisation front evolution is described by

dũ

dt̃
= ũ2(1 − ũ). (5.50)

The solution to Eq. (5.50) can be expressed in terms of Lambert’s W function (e.g., Corless et al.
1996),

ũ(t̃) =
1

1 +W
(

zez−t̃
) (5.51)

z =
1

ũ(0)
− 1. (5.52)

Imposing the initial condition rI(0) = 0 and transforming back to the original variables,

rI(t) = rs

{

1 +W

[

− exp

(

−
r0
rsτs

t− 1

)]}

(5.53)

(5.54)

Hereby, rs = Ṅγ/(4πn
2
0r

2
0αB) is the (generalised) Strömgren radius and τs = (n0αB)−1 is the

(generalised) Strömgren time, i.e. the characteristic time on which equilibrium is approached.
We will employ Eq. 5.54 as a reference solution and refer to it as an analytic approximation.

In Sec. 5.4.2 we have, however, seen that the assumption of a fully ionised sphere may not yield
a sufficiently accurate expression for the evolution of the ionisation front. As in Sec. 5.4.2, we
will therefore additionally compare the results of our simulations obtained with TRAPHIC to the
solution derived numerically using our spherically symmetric radiative transfer code TT1D, to
which we refer as the exact solution.

We set up the density profile Eq. 5.45 around an ionising source located at the centre of
a simulation box with side length 7.5 kpc. We use the parameters n0 = 0.015 cm−3, r0 =
5 kpc which are identical to those used in the corresponding test problem by Mellema et al.
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Figure 5.14: Test 3. Top row: Profiles of the neutral and ionised fraction at t = 10 Myr. The angular
resolution increases from Nc = 8 in the left-most panel and Nc = 32 in the middle panel to Nc = 128 in
the right-most panel. The grey (light red) points show the neutral (ionised) fraction of each particle. The
solid black (red) curve shows the median neutral (ionised) fraction in spherical bins, the error bars the
corresponding 68.3% confidence intervals. The dashed black (red) curves show the exact solution and
the vertical dot-dashed black line indicates the ionisation front position from Eq. 5.54. The dashed red
curve and the black dot-dashed curve are nearly on top of each other. Bottom row: neutral fraction in a
slice through the simulation box at z = Lbox/2, corresponding to the panels shown in the top row. Black
contours show neutral fractions of η = 0.9, 0.5, log η = −1,−1.5,−2,−2.5,−3,−3.5,−4, going from the
outside in. The white dot-dashed circle indicates the ionisation front position from Eq. 5.54. The colour
scale is logarithmic and has a lower cut-off of log η = −5 (see Fig. 7.14 in Chapter 7 for a colour bar). See
text for discussion.

(2006). The central source has a luminosity of Lγ = 1051 s−1 hydrogen-ionising photons. Our
parameter choices imply a Strömgren radius rs ∼ 1.86 kpc and a Strömgren time τs ∼ 8.16 Myr.

The density profile is obtained by applying a coordinate transformation to particles that
are initially uniformly distributed (at glass-like positions), which is described in App. 5.D. In
short, particles are moved radially away from their original (glass-like) positions to stretch the
local mean particle distance such that the SPH volume the particles occupy becomes propor-
tional to their distance from the source. After the particles have been placed, their densities are
calculated using the SPH formalism of GADGET-2, with Nngb = 48. All simulations presented
in this section are initialised with 323 particles at glass-like positions, which results in ≈ 10000
(≈ 2000) SPH particles within the central sphere of radius 3 kpc (2 kpc). We employ this rela-
tively small number of particles (and hence a correspondingly low spatial resolution) in order
to more closely resemble simulated halos in cosmological simulations. We note that (for the
angular resolution Nc = 8) we have performed simulations of both lower and higher spatial
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resolution to convince ourself that these simulations show the expected behaviour.

The boundaries of the simulation box are assumed to be transmissive, i.e. photons leav-
ing the box are lost from the computational domain. We use Ñngb = 32 radiative transfer
neighbours. In Secs. 5.4.2 and 5.4.3 we have seen that the resampling procedure introduced in
Chapter 4 strongly reduces artefacts caused by the particular realization of particle positions.
In all the simulations presented here we therefore resample the density field every 10th time
step. The radiative transfer time step is set to ∆tr = 10−3 Myr. We furthermore split, during
each radiative transfer time step, the emission of photons by the source over 32 random ori-
entations of its emission cone tessellation. We found that this increase in angular sampling is
required in order to to obtain sufficiently accurate results (see also the discussion on the related
effect of angular resolution below). We have made no attempt to optimise this number.

In Fig. 5.14 we show profiles of the neutral fraction η and ionised fraction χ and images
of the neutral fraction η in a slice through the box centre at t = 10 Myr for three simulations
that have increasing angular resolutions: Nc = 8 (left-most panel), Nc = 32 (middle panel) and
Nc = 128 (right-most panel). For all three simulations the median neutral (ionised) fraction,
as indicated by the solid black (red) curve with error bars (which are the 68.3% confidence
intervals) in the top panels of Fig. 5.14, closely agrees with the exact solution. Inside the ionised
region, away from the ionisation front, the agreement is best for the simulation with the highest
angular resolution. This is because a higher angular resolution implies a larger number of
cones into which the source simultaneously emits photon packets, which implies an increased
angular sampling.

At low angular resolutions, fewer SPH particles receive radiation during a time step. These
particles then only recombine. As a result, their neutral fraction temporarily drifts away from
its expected value, introducing scatter. Such a behaviour is commonly encountered in Monte
Carlo radiative transfer schemes (for discussions see, e.g., Maselli, Ciardi, & Kanekar 2009; Al-
tay, Croft, & Pelupessy 2008). It illustrates the Monte Carlo aspect of TRAPHIC. For the angular
resolution Nc = 128, the median neutral fraction inside the ionisation front is nearly indistin-
guishable from the exact solution15. The remaining difference with respect to the exact solution
as well as the small deviation of the median from the exact solution close to the ionisation front
is due to the employed low spatial resolution, which implies an effective smoothing of the ex-
act solution (which corresponds to infinitely high spatial resolution), as we already discussed
in Sec. 5.4.2.

In conclusion, we have shown that TRAPHIC is able to accurately reproduce the expected
growth of ionised regions in centrally peaked density fields. This is important since such den-
sity fields are typical for the first sites of star formation in the cosmological simulations we wish
to employ TRAPHIC. The results also illustrated the Monte-Carlo aspect of TRAPHIC: although
the spherically symmetric problem is formally independent of angular resolution, we found
that the agreement with the exact solution increases with angular resolution. This is because of
the increased number of cones into which photon packets are simultaneously emitted, which
increases the angular sampling of the computational domain. The same result can, however,
be obtained by distributing the photons to be emitted during a given time step over an in-
creased number of random orientations of the emission cone tessellation (or, alternatively, by
decreasing the time step).

15Note, however, that there are still a few particles (around r ≈ 0.2rs) that due to a lack of angular sampling are
not sufficiently frequently updated with ionising radiation and therefore have a neutral fraction that is too high.
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5.4.5 Test 4: Expansion of multiple HII regions in a cosmological density field

Until now we have considered highly idealised test problems. We studied the performance
of TRAPHIC in simulations of the growth of spherically symmetric ionised regions in a uni-
form medium and a centrally peaked density profile, and we analysed its capability to produce
shadows behind opaque obstacles. In this section we will consider a more complex test that
combines all the difficulties posed by the problems discussed so far: we test the propagation of
ionisation fronts around multiple sources in a static cosmological density field. The test is de-
signed to resemble important aspects of state-of-the-art simulations of the epoch of reionisation.
Its parameters are taken from Test 4 of the Cosmological Radiative Transfer Code Comparison
Project (Iliev et al. 2006b). The simulations presented there were limited to solving the time-
independent radiative transfer equation. To allow an accurate comparison, we will therefore
focus on solving the time-independent radiative transfer equation, but we will briefly discuss
the differences to a corresponding time-dependent simulation.

The initial conditions are provided by a snapshot (at redshift z ≈ 8.85) from a cosmologi-
cal N-body and gas-dynamical simulation performed using the cosmological (uniform-mesh)
PM+TVD code of Ryu et al. (1993). The simulation box is Lbox = 0.5 h−1 comoving Mpc on a
side, uniformly divided into Ncell = 1283 cells. The initial temperature is fixed at T = 100 K
everywhere. The halos in the simulation box were found using a friends-of-friends halo finder
with a linking length of 0.25. The ionising sources are chosen to correspond to the 16 most
massive halos in the box. We assume that these have a black-body spectrum Bν(ν, T ) with
temperature T = 105 K. The ionising photon production rate is assumed to be constant and
assigned assuming that each source lives for ts = 3 Myr and emits fγ = 250 photons per atom
during its lifetime. Hence, the number of ionising photons emitted per unit time is

Ṅγ = fγ
MΩb

Ω0mHts
, (5.55)

where M is the total halo mass, Ω0 = 0.27, Ωb = 0.043 and h = 0.7. For simplicity, all sources
are assumed to switch on at the same time. The boundary conditions are photon-transmissive.
Outputs are produced at t = 0.05, 0.1, 0.2, 0.3 and 0.4 Myr.

With respect to the original test setup described above, we require three changes. First,
since our code does not yet solve for the temperature of the gas, we assume a constant tem-
perature of T = 104 K for the ionised gas. Second, since our code currently treats only a single
frequency (bin), we treat the multi-frequency problem in the grey approximation, assuming
the grey photo-ionisation cross-section Eq. 5.27. The third change concerns the input density
field. Since our code works directly on the set of particles used in SPH simulations, we have
to Monte Carlo sample the original input density field in order to place particles in the box.
We replace every grid cell i by N i

SPH = Mi/m SPH particles (randomly distributed within the
volume of the grid cell), where Mi = ρiL

3
box/Ncell is the mass of the cell and m is the mass of

an SPH particle. If N i
SPH is not an integer, we draw a random number from a uniform distri-

bution on the interval (0,1) and place an additional particle if this number is smaller than the
difference between N i

SPH and the nearest lower integer. We use NSPH = Ncell = 1283. Since the
Monte Carlo sampling only results in the approximate equality

∑

iN
i
SPH ≈ NSPH, we adjust

the particle masses a posteriori to conserve mass, i.e. m → m × NSPH/
∑

iN
i
SPH. After the

particles have been placed, we calculate their densities using the SPH formalism of GADGET-2,
with Nngb = 48.

Note that Monte Carlo sampling the density field with NSPH ≃ Ncell particles yields a
smaller effective resolution than that of the grid input field in low density regions (many grid
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Figure 5.15: Test 4: Top row: neutral fraction in a slice through z = Lbox/2 at times t =
0.05, 0.1, 0.2, 0.3, 0.4 Myr (from left to right). Contours show neutral fractions η = 0.9, 0.5, log η = −1,−3
and −5, from the outside in. The colour scale is logarithmic and has a lower cut-off of η = 10−7. It is
identical to the colour scale used and shown in Fig. 7.19 of the corresponding test 7 in Chapter 7. Bot-
tom row: Density field in the slices shown in the top panels. Contours show ionisation fronts (neutral

fraction of η = 0.5). Red contours show the results of our fiducial (Nc = 32, Ñngb = 32) simulation. For
comparison, we show the results of C2-RAY (green) and CRASH (blue), as reported in Iliev et al. (2006b).
The agreement is excellent. See Fig. 3 in the appendix at the end of this thesis for a coloured version.

Figure 5.16: Test 4: Effect of angular resolution. The same slice as shown in Fig. 5.15, bottom row.
Contours show ionisation fronts (neutral fraction η = 0.5) at times t = 0.05, 0.1, 0.2, 0.3 and 0.4 Myr
(from left to right). Green, red and blue lines correspond to the low (Nc = 8), fiducial (Nc = 32)
and high (Nc = 128) angular resolution simulations, respectively. The fiducial simulation is already
converged, even though its angular resolution Nc = 32 corresponds to a relatively large cone opening
angle of ω ≈ 41 degrees.

cells will be left empty of particles), and to a spurious higher resolution in high density regions
(cells are sampled with many particles, even though there is no substructure on the scale of a
single cell in the input field). Note also that because the initial conditions were specified on
a uniform grid, we do not benefit from the intrinsic spatial adaptivity of TRAPHIC, effectively
wasting computational resources.

We performed a set of three radiative transfer simulations with angular resolutions Nc =
8, 32 and 128, which we refer to as the low angular resolution, fiducial and high angular reso-
lution simulations, resp. Every simulation used Ñngb = 32 neighbours. The time step was set
to ∆tr = 10−4 Myr.
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Figure 5.17: Test 4: Effect of resampling. The same slice as shown in Fig. 5.15, bottom row. Contours
show ionisation fronts (neutral fraction η = 0.5) at times t = 0.05, 0.1, 0.2, 0.3 and 0.4 Myr (from left to
right). The red contours correspond to the fiducial angular resolution simulation. The blue contours
correspond to a simulation identical to the simulation employing the fiducial angular resolution, except
for the fact that in this simulation we periodically (every 10th radiative transfer time step) re-sampled
the density field to suppress the particle noise. Note that resampling does not visibly decrease the
effective angular resolution.

In Fig. 5.15 we show the result of our fiducial simulation at times t = 0.05, 0.1, 0.2, 0.3 and
0.4 Myr (from left to right). The panels in the top row show images of the neutral fraction
in a slice through the centre of the simulation box. Contours of neutral fraction η = 0.9, 0.5,
log10 η = −1,−3 and −5 have be superimposed. The panels in the bottom row repeat the η =
0.5 contour, i.e. the ionisation front, showing it on top of the input density field. It can be clearly
seen that the ionisation front is delayed by the dense filaments, leading to the characteristic
”butterfly” shapes of the ionised regions.

For comparison, we also show the results obtained with two other codes, the ray-tracing
scheme C2-RAY (Mellema et al. 2006; green contours) and the Monte Carlo code CRASH (Maselli,
Ferrara, & Ciardi 2003; Ciardi et al. 2001; blue contours), as published in the cosmological radia-
tive transfer code comparison project (Iliev et al. 2006b)16. Both C2-RAY and CRASH are mesh
codes, working directly on the uniform mesh input density field provided by the PM+TVD
code of Ryu et al. (1993).

The agreement between the results of TRAPHIC and C2-RAY resp. CRASH is very good.
We have explicitly verified that this good agreement is also true for contours of lower neutral
fraction (see Pawlik & Schaye 2008 and the result of Test 7 in Chapter 7). The contours from
TRAPHIC are slightly noisier than those from C2-RAY, which is expected since in addition to the
particle noise affecting the radiative transfer, the Monte-Carlo sampling noise imprinted on the
density field affects our simulations, particularly in the under-sampled low density regions, as
already noted earlier. The noise level is, however, substantially lower than one would antici-
pate based on the tests presented in Secs. 5.4.2 and 5.4.3. The most likely explanation for this
welcome surprise is that the presence of multiple ionising sources leads to a regularisation in
the distribution of the neutral fraction (a fact that has been noted also by other authors, e.g. Trac
& Cen 2007). Numerical noise arising from the representation of the continuous density field
by a discrete set of particles is therefore reduced.

Differences between our results and those of C2-RAY resp. CRASH also arise through the
different treatment of the photon spectrum. Since the photo-ionisation cross-section depends

16The performance of two more codes was reported in Iliev et al. (2006b): FTTE (Razoumov & Cardall 2005) and
SIMPLEX (Ritzerveld & Icke 2006). For clarity and since they are very similar to the results obtained with C

2-RAY

and CRASH, we do not show the results obtained with FTTE (but see Test 7 in Chapter 7). We do not include the
results of SIMPLEX in our comparison, since they differ considerably from those obtained with all other codes.
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Figure 5.18: Test 4: The volume- and
mass-weighted mean ionised fractions,
χV and χm, resp., averaged over the
whole simulation box as a function of
time, for the low, fiducial and high
angular resolution simulation, as indi-
cated in the legend. All results fall
nearly on top of each other. Differences
in χm/χV are only noticeable when
χV is small. For comparison, we also
show the results obtained with C2-RAY

and CRASH as reported in Iliev et al.
(2006b).

on frequency (Eq. 5.2), the thickness of finite ionisation fronts (e.g. defined as 0.9 < η < 0.1)
and hence the position of the particular contour η = 0.5 will in part be determined by the
details of the numerical implementation of the multi-frequency transport. Finally, while both
C2-RAY and CRASH follow the thermal evolution of the gas, our simulations assume a fixed gas
temperature, which provides another source for the observed differences.

In Fig. 5.16 we show the ionisation fronts at times t = 0.05, 0.1, 0.2, 0.3 and 0.4 Myr (from
left to right) for the low (green contours) and the high (blue contours) angular resolution simu-
lations. For comparison, the contours obtained in the fiducial simulation are also shown (red).
We note that the high angular resolution simulation yields neutral fraction contours that are al-
most identical to those obtained in our fiducial simulation, indicating numerical convergence.
The low angular resolution simulation, although still in good agreement with the high angular
resolution simulation, fails to properly reproduce the expected neutral fraction contours when
scrutinised in detail. In the low angular resolution simulation we noticed that neutral fraction
contours are sometimes slightly advanced instead of delayed by the dense filaments. The ef-
fect is small, but it becomes apparent when the contours are compared to the corresponding
contours of the high angular resolution simulation (although it is barely visible in the images
presented here).

Our observation agrees with the discussion of anisotropies in particle-to-neighbour trans-
port schemes presented in Chapter 4 (see in particular its App. 4.A). There we demonstrated
that when photons are transported from a given particle to its neighbours, the net transport
direction is generally strongly correlated with the direction towards the centre of mass of the
neighbouring particles. As a result, the transport is partly governed by the spatial distribution
of the SPH particles. For cosmological simulations this implies that photons are preferentially
transported along dense filaments. TRAPHIC propagates photons in cones to overcome this
problem. The cones confine the photons to the solid angles they were emitted into, ensuring
a correct transport of radiation on the scale of the chosen angular resolution. If the angular
resolution is chosen too low to properly resolve the structures in the SPH density field, the
transport is no longer independent of the geometry of the SPH simulation and artefacts may
occur. In the present case, even with an angular resolution as low as Nc = 8, the artefacts
are small. Nevertheless, it is clear that in order to properly solve the radiative transfer equa-
tion, the angular resolution must be chosen high enough to establish numerical convergence.
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Figure 5.19: Test 4: Slice through the density field at z = Lbox/2. Contours show a neutral fraction of
η = 0.5 at times t = 0.05, 0.1, 0.2, 0.3and 0.4 Myr (from left to right). Red contours show the results of our

fiducial (Nc = 32, Ñngb = 32) simulation (and are thus identical to the red contours shown in Fig. 5.15).

Blue contours show the result of a simulation employing the same resolution (Nc = 32, Ñngb = 32),
but using the clock of the photon packets to solve the time-dependent radiative transfer equation. Note
that in the simulation solving the time-independent radiative transfer equation the ionised regions are
too large, since in this simulation the ionisation fronts are initially propagating at speeds larger than the
speed of light. The fact that the ionisation fronts are more noisy in the simulation that employed the
clocks than in the one which did not is due to the fact that the former simulation was performed with
the original (slightly noisier, see App. 5.C) version of TRAPHIC, while the latter (as all other simulations
presented in this section) made use of our current version.

Fig. 5.16 shows that an angular resolution of Nc = 32, which corresponds to a relatively large
opening angle of ω ≈ 41 degrees (Eq. 4.9 in Chapter 4), is already converged. The reason why
a relatively poor formal angular resolution suffices, is, as already noted in the discussion of the
sharpness of shadows thrown by opaque obstacles in Sec. 5.4.3, that the photon transport with
TRAPHIC is intrinsically adaptive in angle.

In Fig. 5.17 we present results for a simulation that used the resampling technique presented
in Sec. 5.3.4, but which was otherwise identical to the fiducial simulation presented above.
The neutral hydrogen densities of the SPH particles were not re-calculated according to the
perturbed positions resulting from the resampling, but kept constant to avoid additional scatter
in the density. The resampling leads to a reduction in the particle noise. The improvement is
not dramatic since the noise is already very low, as noted above. Observe that the resampling
does not noticeable degrade the angular resolution - shadows remain sharp.

In Fig. 5.18 we show the evolution of the mean (over all particles i) ionised fraction, both
volume-weighted, i.e. χV =

∑

i h
3
iχi/

∑

i h
3
i , where hi is the radius of the SPH kernel of particle

i, and mass-weighted, i.e. χm =
∑

imiχi/
∑

imi. Again, the results obtained with TRAPHIC

are in excellent agreement with the results obtained with C2-RAY and CRASH. For the latter
two we obtained the mean ionised fraction by averaging the ionised fraction reported in the
cosmological radiative transfer code comparison project (Iliev et al. 2006b) over all grid cells i,
i.e. χV =

∑

i χi/
∑

i 1 and χm =
∑

i ρiχi/
∑

i ρi.

The ratio of mass-weighted and volume-weighted mean ionised fractions is at early times
slightly larger for the low angular resolution simulation than for the high angular resolution
simulation, as can be seen in the bottom panel of Fig. 5.18. This is another manifestation of
the fact that particle-to-neighbour transport is generally not independent of the geometry of
the SPH simulation, resulting in photons being preferentially transported into high (particle)
density regions. It once more underlines the importance of the concept of emission and trans-
mission cones (with sufficiently small solid angles) which TRAPHIC uses to accomplish the
transport of radiation independently of the spatial distribution of the SPH particles.

Finally, we show that for the present radiative transfer problem, simulations solving the



TRAPHIC in GADGET - implementation and tests 123

time-dependent radiative transfer equation give a significantly different result than the simu-
lations solving the time-independent radiative transfer equation discussed above. We carried
out a simulation using Nc = 32, Ñngb = 32 and additionally employed the photon packet
clocks to limit the distance over which photon packets can propagate during each time step.
The size of the radiative transfer time step was set to ∆tr = 10−3 Myr. This time step is a
factor 10 larger than the time step used for solving the time-independent radiative transfer
equation in the simulations presented above, which required a smaller time step because of
our particular treatment of the time-independent radiative transfer equation (see Sec. 5.3.3).
The locations of the ionisation fronts (i.e. η = 0.5) obtained in this simulation are shown in
Fig. 5.19 (blue curves), together with those obtained in the corresponding simulation solving
the time-independent radiative transfer equation (red curves, which are identical to those in
Fig. 5.15), at times t = 0.05, 0.1, 0.2, 0.3 and 0.4 Myr.

It is clear from Fig. 5.19 that the simulation solving the time-independent radiative transfer
equation produces ionised spheres that are unphysically large. This is due to the well-known
fact (see, e.g., the discussion in Abel, Norman, & Madau 1999) that ionisation fronts may propa-
gate at speeds larger than the speed of light, if the time-independent radiative transfer equation
is solved. The difference between the two simulations is larger at early times than at late times,
which is expected, since in equilibrium, i.e. tr → ∞, the results of both simulations must agree.

In summary, in this section we studied the propagation of ionisation fronts around multiple
sources in a static cosmological density field. We demonstrated the importance of the concept
of cones which underlies the photon transport in TRAPHIC. Without the confinement by trans-
mission cones of sufficiently small solid angle, particle-to-neighbour transport is governed in
part by the spatial distribution of the particles, resulting in the preferential transport of photons
into high (particle) density regions. Thanks to the fact that TRAPHIC is adaptive in angle, a rel-
atively modest formal angular resolution of Nc = 32 is already sufficient to obtain a converged
solution. Since the setup of our simulations followed the description of the corresponding test
in the cosmological radiative transfer code comparison project (Iliev et al. 2006b), we were able
to benchmark our radiative transfer scheme by comparing with the results obtained by the
ray-tracing scheme C2-RAY (Mellema et al. 2006) and the Monte Carlo code CRASH (Maselli,
Ferrara, & Ciardi 2003; Ciardi et al. 2001). We found excellent agreement in the positions of
neutral fraction contours as well as the mass and volume-weighted mean ionised fractions.

We have furthermore seen that for the test problem presented in this section, simulations
solving the time-independent radiative transfer equation lead to ionised regions that are un-
physically large during their early evolution. This illustrates the importance of correctly ac-
counting for the finite speed of light when performing radiative transfer simulations to study
the morphology of ionised regions that are strongly out of equilibrium.

5.5 CONCLUSIONS

We have presented an implementation of our radiative transfer scheme TRAPHIC, that we have
described in Chapter 4, in the smoothed particle hydrodynamics code GADGET-2 to accom-
plish the transport of (mono-chromatic) hydrogen-ionising radiation in hydrodynamical simu-
lations.

As part of this implementation we have introduced a numerical method that allows us to
accurately compute the evolution of the ionised fraction of a gas parcel exposed to ionising
radiation, independently of the size of the radiative transfer time step ∆tr employed. This
decoupling of the radiative transfer time step from the time scales that govern the evolution of
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the neutral fraction, i.e. from the photo-ionisation time scale τion and the recombination time
scale τrec, is an important pre-requisite for performing efficient radiative transfer simulations.
The alternative, a radiative transfer time step limited by the values for the photo-ionisation
or recombination time scales, would generally be computationally infeasible, since these time
scales may become very small. The method consists of sub-cycling the evolution of the neutral
fraction over the radiative transfer time step in an explicitly photon-conserving manner. We
have verified it by comparing results of numerical simulations of an optically thin gas parcel
ionising up and recombining with the analytical solution to this problem.

We have then ran several radiative transfer simulations on static density fields and solved
the radiative transfer equation, in both its time-independent and time-dependent form, in prob-
lems of increasing complexity. Throughout we have employed both analytical and numerical
reference solutions to quantify TRAPHIC’s performance in these problems. For the latter we
have developed a spherically symmetric mesh-based radiative transfer code (TT1D). We also
employed results reported in the literature (Mellema et al. 2006; Iliev et al. 2006b) that have
been obtained by other radiative transfer codes in identical test problems for our comparison.

We first showed that TRAPHIC is able to accurately reproduce the expected growth of the
ionised sphere around a single point source in a homogeneous medium. There we found that
in addition to the number of cones Nc and the number of SPH neighbours Ñngb, it is the ratio
Nc/Ñngb that directly influences the performance of TRAPHIC. It controls the amount of noise
introduced by the representation of the underlying continuum physics with a discrete set of
particles. This particle noise is small for both Nc < Ñngb and Nc > Ñngb due to the large num-
ber of neighbours per cone and the large number of ViPs, resp. For the choice of parameters
Nc = Ñngb the particle noise can be substantial. It can, however, be efficiently suppressed by
employing the density field resampling strategy that we have suggested in Chapter 4.

We have furthermore verified that TRAPHIC is able to cast sharp shadows behind opaque
obstacles, which is a main requirement for radiative transfer schemes to pass. We have shown
that the sharpness of the shadows is controlled by and in agreement with the formal angular
resolutions employed. In fact, we found that the shadows are much sharper than implied by
that formal angular resolution. We have demonstrated that transmission cone apex motions
implied by a moving set of SPH particles do not noticeably degrade the effective angular reso-
lution and hence TRAPHIC’s shadowing characteristics. TRAPHIC can therefore also be applied
in dynamical simulations, in step with the hydrodynamical evolution of the SPH particles, and
we will present such dynamical simulations in Chapter 6.

We also computed the growth of an ionised region in a centrally peaked density profile.
The setup of this problem is characteristic for star-forming regions in cosmological structure
formation simulations. This test problem clearly revealed the Monte-Carlo aspect of TRAPHIC.
The numerical results obtained in simulations of this problem converged towards the exact
solution with increasing number of cones Nc used, which can be explained by noting that the
number of cones determines the number of directions that are simultaneously sampled.

Finally, we tested our scheme in a scaled-down version of a typical epoch-of-reionisation
simulation: we studied the growth of ionised regions around multiple point sources in a cos-
mological density field at high redshift. Comparisons to the results obtained by other radiative
transfer codes showed excellent agreement. These codes were limited to solving the time-
independent radiative transfer problem. Thanks to the use of photon packet clocks, TRAPHIC

may also be used to solve the time-dependent radiative transfer problem. We have repeated
the simulation and performed such a time-dependent computation. We have confirmed the
well-known fact that time-independent radiative transfer simulations, because they assume an
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infinite speed of light, may predict too fast a growth of the ionised regions.
The fact that the results of all tests performed in this chapter are in excellent agreement with

both analytically and numerically computed reference solutions confirms the validity of the
concepts underlying our radiative transfer scheme TRAPHIC. The radiative transfer test prob-
lems performed in this chapter have been set up in a somewhat idealised manner to facilitate
the evaluation of their results and the comparison with reference solutions. Their simplified
design is, unfortunately, not suited to demonstrate the advantages of TRAPHIC over conven-
tional radiative transfer schemes - that it is spatially adaptive, that it is implemented for use in
parallel on distributed memory machines and that its computation time is independent of the
number of radiation sources. TRAPHIC will unfold its true strength only in the large hydrody-
namical simulations it has been developed for. We will perform such simulations in the next
chapter, Chapter 6.
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5.A CONSTRAINTS ON THE INTEGRATION STEP SIZE IN THE EULER

DISCRETIZATION

In this section we show that when advancing the neutral fraction over a single time step ∆tr
according to Eq. 5.21, that is using the Euler discretization, this time step has to satisfy 0 ≤
∆tr ≤ fτeq in order for the neutral fraction to obey its physical bounds. Hereby, τeq is the time
scale on which photo-ionisation equilibrium is approached (Sec. 5.2, Eq. 5.7) and f < 1 is a
dimensionless parameter that will be defined below.

In the Euler discretization, the new neutral fraction η(t+∆tr) is related to the current neutral
fraction η(t) via

η(t+ ∆tr) = η(t) + βne(1 − η(t))∆tr − Γη(t)∆tr (5.56)

= η(t)

(

1 −
∆tr
τeq

)

+
∆tr
τrec

. (5.57)

In the following we understand all quantities to be evaluated at time t and hence will not
explicitly indicate the time dependence.
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By definition the neutral fraction must satisfy 0 ≤ η ≤ 1. Satisfying the lower bound means

η

(

1 −
∆tr
τeq

)

+
∆tr
τrec

≥ 0, (5.58)

which poses the conditions

∆tr ≤
−η

τ−1
rec − ητ−1

eq
for τ−1

rec − ητ−1
eq < 0 (5.59)

and

∆tr ≥
−η

τ−1
rec − ητ−1

eq
for τ−1

rec − ητ−1
eq > 0 (5.60)

on the size of the time step ∆tr. Satisfying the upper bound means, on the other hand,

η

(

1 −
∆tr
τeq

)

+
∆tr
τrec

≤ 1, (5.61)

which poses the conditions

∆tr ≥
1 − η

τ−1
rec − ητ−1

eq
for τ−1

rec − ητ−1
eq < 0, (5.62)

and

∆tr ≤
1 − η

τ−1
rec − ητ−1

eq
for τ−1

rec − ητ−1
eq > 0 (5.63)

on the size of the time step ∆tr. Let us consider the two limiting cases of fully neutral and fully
ionised gas, since these are the ionisation states for which a violation of the physical bound
0 ≤ η ≤ 1 due to an inaccurate integration is most likely. For the former, we find from Eq. 5.59
(using τeq → τion for τrec → ∞)

0 ≤ ∆tr ≤ τion, (5.64)

while for the latter we find from Eq. 5.63

0 ≤ ∆tr ≤ τrec. (5.65)

In order for the neutral fraction to satisfy 0 ≤ η ≤ 1, the time step ∆tr must be chosen such
that it simultaneously satisfies the bounds Eqs. 5.64 and 5.65. Since τeq → τion for τion ≪ τrec
whereas τeq → τrec for τrec ≪ τion we may conveniently summarise the derived bounds by
writing

0 ≤ ∆tr ≤ fτeq, (5.66)

where f ≤ 1 is a dimensionless factor.

Finally, we note that the case of photo-ionisation equilibrium, i.e. ηeq = τion/(τion + τrec,eq),
is formally excluded from our analysis, since then τ−1

rec − ητ−1
eq = 0 and Eqs. 5.59-5.62 become

undefined. This simply means that in photo-ionisation equilibrium the time step can be chosen
arbitrarily large17.

17This statement only applies to considerations of discretization accuracy. As explained in Sec. 5.3.2, the numeri-
cally stable explicit integration of stiff equations like the photo-ionization rate equation puts an additional constraint
on the size of the integration time step.
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5.B CONES

5.B.1 Cone tessellation

In this section we describe the numerical implementation of the cones employed for the emis-
sion and reception of photon packets in TRAPHIC. For the emission (Sec. 4.4.2 in Chapter 4),
each source particle divides its neighbourhood using a set of tessellating emission cones. The
same tessellation is also employed for the reception of photon packets by gas particles (Sec. 4.4.2
in Chapter 4). In the following, we employ spherical coordinates (r, φ, θ), which are related to
the Cartesian components (rx, ry, rz) of an arbitrary vector r through

rx = r cosφ sin θ (5.67)

ry = r sinφ sin θ (5.68)

rz = r cos θ. (5.69)

In our implementation, the emission (reception) cones sample the volume around each particle
isotropically. Since the surface element of the unit sphere is given by ds = d(cos θ)dφ, this is
achieved by distributing the cone boundaries18 uniformly (i.e. on a regular lattice with indices
i, j) in (cos θ, φ). Thus, the boundaries of cone (i, j) are described by the four arcs of constant

φij
1 = i

2π

Nφ
, 0 ≤ i < Nφ, (5.70)

φij
2 = (i+ 1)

2π

Nφ
, 0 ≤ i < Nφ, (5.71)

θij
1 = arccos(1 − 2

j

Nθ
), 0 ≤ j < Nθ, (5.72)

θij
2 = arccos(1 − 2

j + 1

Nθ
), 0 ≤ j < Nθ. (5.73)

Correspondingly, we define the emission (reception) cone axes by

φij =
φij

1 + φij
2

2
, (5.74)

θij =
θij
1 + θij

2

2
, (5.75)

Note that each of the Nc = Nφ × Nθ emission (reception) cones has the same solid angle Ω =
4π/Nc, as can be seen from integrating over the surface element of the unit sphere within the
boundaries (Eqs. 5.70-5.73). We also implemented the tessellation used in Abel, Norman, &
Madau (1999), which leads to cones that are more similar in shape. We could not find any
systematic differences in the test problems described in Secs. 5.4.2 - 5.4.5 using either of the
two types of tessellations. This is not surprising because any artefacts due to the shape of the
cones will be suppressed by the random rotations of the emission (reception) cones we perform
before each emission (reception). Our implementation of these rotations is described in the next
section.

18Strictly speaking, one should distribute the cone axes uniformly in (cos θ, φ), but this implies asymmetric cones.
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5.B.2 Random rotations

Recall from Sections 4.4.2 and 4.4.2 (Chapter 4) that we apply a random rotation to each cone
tessellation. Consequently, each cone tessellation has a random orientation. The primary moti-
vation for randomly rotating cones is to increase the angular sampling. Furthermore, randomly
rotating the emission and reception cones leads to a reduction of artefacts arising from the par-
ticular definition we employ to construct the cone tessellation, as noted in the last section. Here
we describe our numerical implementation of the random rotations.

We can think of the set of cones that comprises a particular cone tessellation as a rigid
body, to which we can attach a local Cartesian coordinate system with axes {e′x, e

′
y, e

′
z}. The

orientation of this coordinate system with respect to the canonical Cartesian coordinate system,
e.g. the simulation box axes {ex, ey, ez}, is fully described by three variables, the Eulerian angles
(e.g. Goldstein 1980).

Eulerian angles are defined as the three successive angles of rotations that map the axes
{ex, ey, ez} onto the axes {e′x, e

′
y, e

′
z}. There exist several conventions. In the zxz convention

we employ here, the initial system of axes {ex, ey, ez} is first rotated counter-clockwise by an
angle φ around the z-axis, with the resulting coordinate system labelled {eξ, eη , eζ}. Second,
the coordinate system {eξ , eη , eζ} is rotated by an angle θ counter-clockwise about the ξ-axis,
leaving the new coordinate system {e′ξ , e

′
η, e

′

ζ}. The third and last rotation is carried out counter-
clockwise by an angle ψ around the ζ ′-axis, giving the desired {e′x, e

′
y, e

′
z} coordinate system.

To obtain random Eulerian angles, we note that the invariant measure µ (the “volume ele-
ment”) on SO(3), the group of proper rotations in R

3, in the zxz Eulerian angle parametrisation
reads (e.g. Miles 1965),

µ(φ, θ, ψ)dφdθdψ =
1

8π
sin θdφdθdψ. (5.76)

Random Eulerian angles are therefore obtained by drawing random variables u1, u2, u3 from a
uniform distribution on the interval [0, 1] and applying the usual transformation (cp. Press et
al. 1992),

φ = 2πu1 (5.77)

θ = arccos(1 − 2u2) (5.78)

ψ = 2πu3. (5.79)

We implement random rotations using rotation matrices, which are obtained from the random
Eulerian angles. The matrix elements of a matrix R representing a rotation r

′ = Rr associated
with a given set of Eulerian angles can be readily calculated (e.g. Goldstein 1980):

R =





cosψ cosφ− cos θ sinφ sinψ cosψ sinφ+ cos θ cosφ sinψ sinψ sin θ
− sinψ cosφ− cos θ sinφ cosψ − sinψ sinφ+ cos θ cosφ cosψ cosψ sin θ

sin θ sinφ − sin θ cosφ cos θ



 . (5.80)

In principle, random rotation matrices can be obtained directly, without drawing random
Eulerian angles (e.g. Stewart 1980). We find, however, that it is faster to generate random
Eulerian angles, and then calculate the corresponding rotation matrices. Moreover, storing the
three Eulerian angles instead of the nine rotation matrix elements reduces the memory cost.
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5.C A NEW TREATMENT OF ABSORPTIONS BY VIRTUAL PARTICLES

In this appendix we show that the treatment of virtual particles (ViPs) in the implementation of
TRAPHIC that we have used to perform the simulations published in Pawlik & Schaye (2008),
and that we will refer to as the old implementation, results in a temporary underestimate of
the neutral fraction just behind evolving ionisation fronts in simulations that use a high angu-
lar resolution. We will show that this underestimate is absent in simulations that employ our
current implementation of TRAPHIC. Moreover, in simulations that employ this new imple-
mentation, the numerical scatter in the neutral fraction is significantly reduced.

The difference between the treatments of ViPs in the old and current implementations of
TRAPHIC has already been explained in Sec. 5.4. The old and current implementation only
differ in the manner in which photons that have been absorbed by ViPs are distributed amongst
their neighboring SPH particles. We remind the reader that this distribution of absorptions is
necessary, because ViPs are temporary constructs that are just invoked to transport photons
inside cones that do not contain SPH particles (see Chapter 4). Permanent information is only
stored at the SPH particles in the simulation.

The number of ionising photons a ViP absorbs depends on its neutral density. As explained
in Chapter 4, the computation of this number is performed in exactly the same manner as for
SPH particles. The only difference between the treatment of photons absorbed by SPH particles
and ViPs is that the latter distribute the absorbed photons amongst their SPH neighbors. For
this distribution of absorptions one must specify the fraction of the total that is given to each
of the SPH neighbors. In the old implementation of TRAPHIC this fraction was taken to be
proportional to the value of the SPH kernel of the distributing ViP at the position of the SPH
neighbor. In the new version this fraction is taken to be proportional to the neutral mass with
which the SPH neighbor contributed to the SPH estimate of the ViP’s neutral density.

The old treatment of ViPs results in an underestimate in the simulated non-equilibrium
neutral fractions. Fig. 5.20 serves to demonstrate this. Its panels show the neutral and ionised
fractions around a single ionising source in a homogeneous hydrogen-only medium at times
t = 30, 100 and 500 Myr (from left to right) obtained with the old (first and third rows) and cur-
rent (second and fourth rows) implementation. The setup and parameters for the simulations
presented here are identical to the setup and parameters used for the NSPH = 643, Nc = 128
simulation presented in Test 1 in Sec. 5.4.2. In addition to the neutral (grey dots) and ionised
(light red dots) fractions of each particle, Fig. 5.20 shows the median neutral (black solid curves)
and ionised (red solid curves) fractions in spherical bins, which are compared to the exact so-
lution obtained with TT1D (dashed curves of the corresponding color). The error bars indicate
the 68.3% confidence intervals in each bin. For each implementation we have performed sim-
ulations both with and without resampling the density field, as indicated by the presence or
absence of the letter ’R’ in the panel titles. Note that the right-most panels in the second and
fourth row are identical (except for the bin size) to the right-most panels in the top and bottom
row of Fig. 5.5 in Sec. 5.4.2.

In the simulations employing the old implementation of TRAPHIC the neutral fraction at
times t = 30 and 100 Myr is underestimated at radii slightly smaller than the radius of the ion-
isation front. In the simulations that employ the current implementation this underestimate,
thanks to the new manner in which the ViPs’ absorptions are distributed, is no longer present.
At t = 500 Myr, i.e. when the ionised region has (nearly) reached its equilibrium size, the un-
derestimate is also absent in the simulations that employ the old implementation. However, at
this time these simulations still exhibit an increased scatter around the median when compared
to the corresponding snapshots from the simulations that employ the current implementation.
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The underestimate of the neutral fraction just behind evolving ionisation fronts in simu-
lations employing the old implementation is caused by the fact that in this implementation
the distribution of the photons absorbed by ViPs does not respect the spatial distribution of
the neutral gas in their surroundings. It mainly affects the neutral fraction of particles close
to evolving ionisation fronts, because the number of photons absorbed and subsequently dis-
tributed by ViPs near the ionisation front is significantly larger than the number of photons that
are absorbed by the SPH particles behind the ionisation front that have already reached photo-
ionisation equilibrium and because the ViPs distribute the absorbed photons irrespective of
the neutral mass with which the corresponding SPH particles contributed to the computation
of its neutral density. The absorptions that SPH particles behind evolving ionisation fronts re-
ceive from ViPs in addition to the number of photons they have already absorbed according
to their own optical depth therefore results in an overestimate of the photo-ionisation rate and
hence an underestimate of the neutral fraction. Once the ionisation front becomes stationary
the underestimate of the neutral fraction practically disappears, because the number of photons
absorbed and distributed by ViPs in the ionisation front is consistent with the expectations from
photo-ionisation equilibrium.

We did not notice the described temporary underestimate of the neutral fraction just behind
non-equilibrium ionisation fronts in the simulations that we have presented in our original
publication, i.e. in Pawlik & Schaye (2008), since there we only discussed profiles of the neutral
fraction at t = 500 Myr. The reason why we limited ourselves to discussion of equilibrium
results in that publication was mainly that we were at that time still lacking accurate non-
equilibrium reference solutions: our one-dimensional reference radiative transfer code TT1D

was still under development. The discovery of the underestimate of the neutral fraction was
triggered by scatter plots of the neutral and ionised fractions like those presented in Fig. 5.20
that we have performed more recently.

5.D POWER-LAW INITIAL CONDITIONS FOR SMOOTHED PARTICLE

HYDRODYNAMICS SIMULATIONS

In this appendix we describe the procedure that was used to generate the centrally peaked
density field with spherically averaged profile ρ(r) ∝ r−1 employed in Test 3 in Sec. 5.4.4. We
will explain more generally how to generate power-law density profiles

ρ̂(r) ∝ r−n, (5.81)

and then consider the special case n = 1.

The gas density at a given position is proportional to the probability of finding a gas par-
ticle at this position (assuming that the particle mass is the same for all gas particles). Arbi-
trary Smoothed Particle Hydrodynamics (SPH) density fields can therefore be generated using
Monte Carlo methods. We have employed such a method in Sec. 5.4.5. Monte Carlo methods
yield, however, particle distributions that are subject to Poisson noise. Alternative methods of
generating density fields that avoid this noise are therefore often more desirable.

The uniform density fields used to initialise cosmological SPH simulations, for example, are
obtained by placing particles at glass-like instead of Monte Carlo positions. Glass-like positions
may be considered as regularised Monte Carlo positions. They are produced by first placing
particles randomly in the simulation box and thereafter letting them freely evolve under the
influence of a reversed-sign (i.e. repelling) gravitational force until they settle down into an
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Figure 5.20: Test 1. Neutral and ionised fractions obtained in simulations with the old (first and third
row) (Pawlik & Schaye 2008) and current (second and fourth row) implementations of TRAPHIC. Shown
are profiles of neutral and ionised fraction at times t = 30 (left-hand panel), 100 (middle panel) and
500 Myr (right-hand panel), for simulations with (second and fourth row) and without (first and third

row) resampling of the density field. The spatial resolution is fixed to NSPH = 643, Ñngb = 32 and is
indicated by the horizontal error bar in the upper left corner of each panel. The angular resolution is
Nc = 128. The grey (light red) points show the neutral (ionised) fraction of each SPH particle. The
solid black (red) curve shows the median neutral (ionised) fraction in spherical bins and the error bars
show the corresponding 68.3% confidence intervals. The dashed black (red) curves show the exact
solution, obtained with our reference code TT1D. The non-equilibrium underestimate of the neutral
fraction exhibited in simulations with the old implementation of TRAPHIC is absent in the simulations
that employ our current implementation, thanks to a new self-consistent manner of distributing photons
absorbed by ViPs. The new implementation also reduces the scatter in the ionisation balance.
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equilibrium configuration (see White 1996). This regularisation leads to a significant reduction
of small-scale fluctuations in the (random) inter-particle distances.

These glass-like density fields can also be used to set up centrally peaked power-law den-
sity fields of the desired form, Eq. 5.81 (Volker Springel, Claudio Dalla Vecchia, private com-
munication). The idea is to deform the (unstructured) grid traced out by the set of uniformly
distributed particles at glass-like positions such as to locally stretch the mean inter-particle
distance in the radial direction. Assume that the uniform, glass-like particle distribution has
density ρ0 and express this stretching by a coordinate transformation in spherical coordinates,
(r, θ, φ) → (r̂, θ, φ). Mass conservation requires the new particle positions to satisfy

ρ̂(r̂)r̂2 sin θdr̂dθdφ = ρ0r
2 sin θdrdθdφ, (5.82)

Substituting the desired density profile Eq. 5.81, the coordinate transformation reads

r̂2−ndr̂ ∝ r2dr, (5.83)

which can be easily integrated,

r̂ ∝ r3/(3−n). (5.84)

To set up the density field used in Test 3 in Sec. 5.4.3 we are interested in producing a
centrally peaked density field with power-law index n = 1. In this case, the last expression
gives r̂ ∝ r3/2.
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