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A successful response against invading pathogens results from a complex interplay between 
the many diverse cell types of the immune system. Following pathogen exposure a non-
specific innate immune response is orchestrated by neutrophils, macrophages, NK cells and 
eosinophils which act as the first line of defense against invading organisms [1]. Pattern 
recognition receptors (PRRs), such as Toll-like receptors (TLRs) and C-type lectin receptors 
(CLRs), which recognize pathogen-associated molecular patterns (PAMPs) play a key role at this 
stage [2]. Next an antigen-specific adaptive immune response, which may take days to develop, 
is mounted. Here antigen presenting cells (APCs) play an important role in linking innate and 
adaptive immune responses and direct the initiation and polarization of T and B cell activities. 
T cells differentiate into various effector cells depending on the type of infection, while B cells 
undergo differentiation and most will become antibody-producing plasma cells [1]. The Th1 
(IFN-γ producers) / Th2 (IL-4, IL-5 an IL-13 producers) paradigm of T helper subsets has recently 
been expanded to include the immunosuppressive IL-10/TGF-β-producing CD4+CD25+FOXP3+ 
T regulatory T cells (Tregs) and the pro-inflammatory IL-17-producing T cells (Th17) [3]. 
Interaction between B cells and T cells is also important for adaptive immunity; CD4+ T cells 
provide help to B cells [4] and new data has shown that B cells also act as modulators of T cell 
responses via their effector and regulatory functions [5].

The elucidation of the various interactions and activities between these different 
components is essential to fully understand the mechanisms during human schistosome 
infection which will then in turn provide better foundation for the design and implementation 
of strategies to manage, prevent and eradicate this disease. Knowledge gained here could also 
have important bearings on other helminth infections. 

In this thesis we have investigated cross-sectionally and longitudinally the effect of 
schistosomes on several aspects of the immune system, including innate, adaptive and 
regulatory responses, in a group of schoolchildren in an area in Gabon where S. haematobium 
is endemic.

Innate Immune Responses
In Chapters 2, 3 and 4 we have investigated innate immune responses directed against TLR 
and CLR ligands in S. haematobium-infected children and in uninfected controls by measuring 
cytokine responses against these ligands in either whole blood or PBMC cultures. We have 
found that while in PBMC cultures differences were observed to the TLR2/1 ligand Pam3, with 
higher levels of the pro-inflammatory cytokine TNF in S. haematobium infected children, this 
difference was no longer detectable when the same response was analyzed in whole blood 
cultures. The initial finding of an increased pro-inflammatory innate immune response in PBMC 
cultures to TLR stimulation (Chapter 3) was rather intriguing as schistosome infection has, 
for the most part, been characterized in terms of strong antigen-specific Th2 and regulatory 
responses resulting in immune hypo-responsiveness [6–8]. These findings challenged the 
predominant view of general immune suppression induced by the parasite and showed that 
hypo-responsiveness did not extend to innate immune responses in the context of single TLR 
ligation. However, when whole blood cultures were stimulated with the TLR ligands, we did not 
see a higher pro-inflammatory response in S. haematobium infected subjects (Chapters 2 and 
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4). The differences between whole blood and PBMC cultures may result from differences in cell 
composition. Whole blood assays reflect an environment in which the different cell types in 
their in vivo ratios are present and contain cells such as erythrocytes, and granulocytes as well as 
plasma which may influence or contribute to the cytokine response measured [9]. Neutrophils 
and eosinophils in particular are known to produce many Th1/Th2/pro-inflammatory cytokines 
which may alter the cytokine milieu resulting in differences between total cytokines measured 
in whole blood and PBMC cultures [10,11]. Moreover, in whole blood assays the number of 
cells cultured is not known nor is it controlled for, and thus changes in the number of cytokine 
producing cells may be responsible for the differences observed rather than the ability of 
cells to produce cytokines. In contrast, PBMC cultures use the same number of cells for each 
individual thereby giving a more controlled measure of the functionality of the studied cells. 
Importantly, as shown in Chapter 4, the presence or absence of co-infections such as malaria 
can contribute to innate immune responsiveness; this infection can change with the season or 
the specific area of a study and thereby influence responses measured. 

In addition to TLR responses we also investigated two other classes of PRRs, the C-type 
lectin receptors (CLRs) (Chapters 2 and 4) and nucleotide-binding oligomerisation domain-like 
receptors (NLRs) (Chapter 2). Responses of these receptors cannot be studied on their own as 
most do not contain signaling domains and therefore do not lead to cytokine production. It 
has been proposed that innate immune responses can be fine-tuned via interaction between 
distinct PRRs [12,13]. An elegant way of studying their function is to look at the ability of these 
receptors to enhance or diminish TLR responses. While we found significant interactions between 
the different classes of PRRs, both synergistic and inhibitory, we did not find any differences in 
these responses between S. haematobium-infected and uninfected children. Nonetheless there 
is increasing evidence that schistosome antigen recognition by host C-type lectins plays an 
important role in shaping the immune response against infection [14]. Schistosomes express 
various carbohydrates containing glycoproteins on their surface and release glycan-rich E/S 
products that have been shown to bind to various CLRs, including DC-SIGN, MR, MGL [15] and 
Dectin-2 [16]. Furthermore, increased expression of DC-SIGN on DCs was recently shown to be 
required for Th17 cell differentiation in response to schistosome eggs and the development 
of immunopathology in a mouse model of S. mansoni infection [17]. It would be of interest to 
study responses to CLRs in PBMC cultures, or in well defined, specific cell subsets, incorporating 
flow cytometry to measure receptor expression on cells before and after stimulation. 

In Chapter 2 we compared responses between the different groups of schoolchildren 
from Gabon and an age-matched group of European children from the Netherlands to help 
us understand how the innate immune response can be affected by large geographical and 
environmental influences. We did not observe any differences in the interaction between the 
different classes of PRRs between these groups; however we did find a significant difference 
in TLR responsiveness. Gabonese children had a lower pro-inflammatory response to poly(I:C) 
(TLR3 ligand), but a higher pro-inflammatory response to FSL-1 (TLR2/6 ligand), Pam3 (TLR2/1 
ligand) and LPS (TLR4 ligand) compared to Dutch children. Anti-inflammatory responses to 
Pam3 were also higher in Gabonese children. Differences in these responses may result from 
differences in expression [18,19], signaling [20] or genetic polymorphisms [21] in TLRs or in 
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molecules involved downstream but it is also possible that environmental exposures shape 
the contrasting innate immune responses. Environmental exposures to viruses, bacteria and 
parasites may have played a role by resulting in an imprinted ‘memory’ which has recently 
been termed ‘trained innate immunity’ [22]. Differences between being born and raised in a 
high-income (Netherlands) versus a low-income (Gabon) country, dietary habits or vaccination 
schedules may have further played an important role. 

Adaptive Immune Responses
In Chapters 3 and 4 we investigated adaptive immune responses directed against schistosome 
soluble egg (SEA) and adult worm antigens (AWA) and in Chapter 5 we further extended this 
analysis to the vaccine-antigen Bacillus Calmette–Guérin (BCG). In Chapter 7 we carried out an 
extensive phenotypic investigation of the memory B cells subsets. 

We found that S. haematobium-infected children had significantly higher levels of IL-10 in 
response to SEA, and IL-5, IL-10 and IL-2 in response to AWA compared to the uninfected controls. 
Interestingly, IL-10 levels were increased in infected children irrespective of whether this cytokine 
was measured in whole blood (Chapter 4) or in PBMC cultures (Chapter 3) demonstrating the 
reproducibility of the increase in this anti-inflammatory regulatory response. Higher IL-10 
levels are in line with previous studies in S. haematobium [23,24] and filarial infection [25]. Anti-
schistosome treatment with praziquantel resulted in the increase of the levels of SEA and AWA 
specific IL-5 and IL-10, SEA specific TNF, and AWA specific IL-2 (Chapter 4). In Chapter 5 we used 
Principle Component Analysis (PCA) to describe global changes in cytokine responses following 
schistosome treatment in response to not only SEA and AWA stimulation but also to a third-
party antigen BCG. PCA allows the reduction of large datasets into summary variables termed 
principal components with each principal component representing variables that share a high 
level of correlation [26]. In the current study we identified two distinct principal components: 
principle component 1 (PC1) which reflects regulatory and Th2-polarized cytokine responses 
due to its positive loading with IL-5, IL-10 and IL-13 responses; and principle component 2 
(PC2) which reflects pro-inflammatory and Th1-polarized cytokine responses due to its positive 
loading with IFN-γ, IL-17 and TNF. We saw a significant increase in both PC1 and PC2 following 
treatment compared to baseline values. These results are in line with a number of short-term 
(weeks) as well as long-term (months) treatment studies, which likewise show enhanced antigen 
specific responses following removal of infection [27–31]. An increase in all four types of immune 
responses i.e. Th1, Th2, regulatory and pro-inflammatory, suggests that treatment results in the 
removal of general schistosome-mediated immunosuppression of adaptive responses, but 
may also in part be due to the release of previously cryptic antigens from the dying parasites 
resulting in boosting of the recall response [28,32]. Indeed repeated anthelminthic treatment 
and therefore by extension repeated exposure to antigen has been shown to result in greater 
cytokine production than single treatment [33]. Nonetheless strategies which would further 
disentangle immunosuppression and regulatory responses, from enhanced responses due to 
antigen release are warranted. The role of regulatory responses in schistosomes-induced hypo-
responsiveness is discussed in detail in the next section.

B cells are key effector cells in the adaptive humoral immune response during schistosome 
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infection [34–36]. Multiple phenotypically distinct memory B cell (MBC) subsets have been 
characterized in humans [37–39]. The study presented in Chapter 7 of this thesis investigated the 
frequency of these subsets based on differential expression of CD27, CD21 and IgD. Frequencies 
of switched, double negative and activated MBCs, as well as a trend toward a higher percentage 
of atypical MBCs was observed in schistosome-infected children. A concomitant decrease of 
naïve B cells was also observed. These profiles were restored to those observed in uninfected 
children following treatment. It is of particular interest that double negative MBCs as well as 
the atypical MBCs were increased during infection as these two subsets have been linked to 
hypo-responsiveness and an exhausted phenotype in HIV- [39], in malaria-infected individuals 
[40,41], and in patients with systemic lupus erythematosus [42,43], a chronic autoimmune 
disease. Atypical MBCs have a decreased ability to differentiate into antibody secreting cells 
resulting in reduced pathogen-specific antibody responses in infected individuals. The capacity 
of these cells to produce schistosome-specific antibodies or the extent of their exhausted 
phenotype is currently not known. However, an increase in IgG+ double negative (CD27-IgD-) 
MBCs was observed in S. haematobium infected children which reflected the increase in total 
serum IgG4 levels. Following praziquantel treatment there was a concomitant decrease in the 
frequency of the DN MBCs and serum levels of IgG4, suggesting that the increase in IgG+ DN 
MBCs may be predominantly due to an increase in IgG4-expressing B cells during infection. As 
IgG4 is associated with susceptibility and IgE with resistance to schistosome infection, it would 
be of interest to study these isotypes on the different memory B cell populations in exposed 
but resistant individuals. 

Regulatory Responses
Recent studies have emphasized the significant role of the regulatory networks in the immune 
suppression induced by parasitic infections [6]. The role of regulatory T cells (Tregs) in particular 
has shown the multifaceted nature of this immune response. Accumulating evidence has shown 
that parasitic helminths induce Treg expansion and/or activity. These cells produce down-
modulatory cytokines such as IL-10 and TGF-β that lead to a dampened immune response 
[44,45]. These are in line with studies in murine models where the abrogation of Treg activity 
leads to recovery from chronic parasite infection by restoring immune function [46–48] 

In Chapter 4, in addition to measuring cytokine responses to schistosome-specific antigens 
we concurrently evaluated the frequency of CD4+CD25+FOXP3+ T cells. We found that the 
frequency of CD4+CD25+FOXP3+ T cells was significantly increased in S. haematobium-infected 
schoolchildren and reduced to ‘normal’ levels after praziquantel treatment. The differences 
between infection groups in the frequency of CD4+CD25+FOXP3+ T and the change in these 
over time showed an inverse pattern to antigen-specific cytokine responses. Using a linear 
mixed-effects model to assess the longitudinal association between CD4+CD25+FOXP3+ 
T cell levels and cytokine responses to schistosomal antigens we showed that the decrease 
in the frequency of CD4+CD25+FOXP3+ T cells over time following treatment is inversely 
associated with an increase in IL-5 and IL-10 cytokine production. Alongside the decrease in 
CD4+CD25+FOXP3+ T cells and the increase in antigen-specific cytokine responses we also 
observed an increase in the effector memory (TEM) T cells in the infected children following 
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treatment suggesting that hypo-responsiveness may also in part be linked to the memory T 
cell pool. However, as we did not have sufficient data across all time points for TEM frequencies 
we were not able to assess the longitudinal association between TEM and cytokine levels 
and CD4+CD25+FOXP3+ T cell frequencies. To further assess the functional contribution of 
CD4+CD25+FOXP3+ T cells to in vitro immune responses, we performed magnetic depletion of 
CD25hi cells and analysed cytokine responses before and after CD4+CD25+FOXP3+ T cell depletion 
at both pre- and post-treatment in Chapter 5. As in Chapter 4 we found a significant decrease 
in CD4+CD25+FOXP3+ T cells following treatment. Similar to evaluating adaptive cytokine 
responses in Chapter 4, here we also evaluated the effect of CD4+CD25+FOXP3+ T cell depletion 
on principal component 1 (IL-5, IL-10 and IL-13) and principal component 2 (IFN-γ, IL-17 and 
TNF). We found CD4+CD25+FOXP3+ T cell depletion resulted in increased values of both PC1 
and PC2 in infected individuals. Although levels of CD4+CD25+FOXP3+ T cells were decreased 
following treatment their suppressive capacity was intact: the depletion of the regulatory T 
cells at post treatment also led to increase in PC1 and PC2. We also evaluated the effect of 
CD4+CD25+FOXP3+ T cell depletion on cell proliferation. Interestingly, while CD4+CD25+FOXP3+ 
T cell depletion resulted in similar increase in cytokine production at both pre- and post-
treatment, proliferative responses were for the most part only significantly affected by 
CD4+CD25+FOXP3+ T cell depletion in infected individuals at pre-treatment. Following removal 
of infection CD4+CD25+FOXP3+ T cell depletion no longer suppressed cell proliferation. This 
suggests that while a reduction in CD4+CD25+FOXP3+ T cell numbers is sufficient to abrogate 
the suppressive qualities of CD4+CD25+FOXP3+ T cells on proliferation, the functional changes 
induced in CD4+CD25+FOXP3+ T cells by schistosome infection still persist in terms of their 
ability to influence the production of effector cytokines 6 weeks after treatment. Interestingly, 
an IL-10 producing CD8+CD25+FOXP3+ T cell population has also been recently described [49–
51] and as CD25+ cell depletion will, in addition to depleting CD4+CD25+FOXP3+ T cells, also 
deplete the CD8+CD25+FOXP3+ T cell population, future studies are needed to re-assess the 
relative contributions of these subsets. Moreover as FOXP3 expression may be transiently up-
regulated on activated CD4+ T cells [52], future studies will need to include more extensive 
panels of markers associated with suppressive T cell functions. 

Although much research has focused on the role of regulatory T cells it is likely that other 
immune cells are also involved. While predominantly characterized as being involved in 
humoral immunity through the production of antibodies, B lymphocytes possess multiple 
additional functions, including production of cytokines, for example IL-10 and TGF-β, and the 
ability to function as APCs through the expression of MHC class II molecules which are involved 
in presentation of antigens to T cells [53–55]. In addition, these cells express a variety of PRRs, 
in particular TLRs, which might be involved in the amplification and possible polarization of 
the signals given to T cells that are being activated by B cells [56–59]. They have been shown 
to be involved in immune tolerance and suppression of disease including inflammatory bowel 
disease, rheumatoid arthritis, experimental autoimmune encephalomyelitis and multiple 
sclerosis [55]. More importantly they have also been shown to be involved in the induction 
of immune regulation during parasitic infections, such as Toxoplasma gondii, Heligmosomides 
polygrus [60] and schistosomiasis. For example, µMT mice die rapidly during the course of 
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Figure 1. A schematic representation of innate, adaptive and regulatory immune responses in 

human schistosomiasis in Gabon. 

S. haematobium infection induces increased frequencies of regulatory B (Breg) and T (Treg) cell subsets 

which are associated with increased levels of IL-10 and hypo-responsiveness, possibly in effector memory 

T cells (TEM). In addition, exhausted B cell are also increased. Praziquantel treatment results in the reduction 

of regulatory and exhausted subsets, an increase in effector T cells and alleviation of suppressed antigen 

immune responses.

S.mansoni infection compared to wild-type mice [61]. Furthermore a number of regulatory B 
cell subsets (Bregs) have been characterised in humans [62–64] and in Chapter 6 we assessed 
the frequency of these subsets. We found no differences in the levels of CD24hiCD38hi or 
CD24hiCD27+, but we did observe a significant increase in the frequency of CD1dhi(CD5+) Bregs 
in schistosome infected children. The increase in CD1dhi(CD5+) Bregs was accompanied by an 
increase in IL-10-producing B cells in the total B cell population. In particular CD1dhi B cells from 
infected children produced more IL-10 as compared to uninfected children. Both the frequency 
of CD1dhi(CD5+) Bregs and total IL-10 levels decreased following treatment to levels comparable 
to the uninfected children. Schistosome-specific IL-10 in CD1dhi(CD5+) Bregs however were 
not down-regulated following treatment suggesting that a small population of schistosomes-
specific B cells that more readily produces IL-10 in response to SEA persists in infected children.
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Immunosupression as a result of anergy
An alternative or perhaps a concurrent explanation for suppression of antigen-specific cytokine 
responses by regulatory cells during schistosome infection is an intrinsic unresponsive or 
hypo-responsive state of the T cells. T cell anergy has been described during chronic helminth 
infection in both mice and humans, where CD4+ Th2 cells develop an intrinsically unresponsive 
functional state [45]. The hypo-responsiveness in Th2 cells has been shown to be dependent 
on the up-regulation of the expression of the E3 ubiquitin ligase GRAIL (gene related to anergy 
in lymphocytes). Removal of Th2 cells from antigen exposure results in the down-regulation 
of GRAIL and a dramatic restoration of function [65]. Mouse studies have also shown a role for 
a number of inhibitory receptors, including PD-1 and TIM-1, and expression of PD-1 ligands 
PD-L1 and PD-L2 by macrophages that inhibit T cell immunity in S. mansoni infection [66–68]. 
Future studies are needed to address the role of these molecules in human infections.

Spill-over suppression
The strong immunoregulatory network that induces immunosuppression during the course 
of schistosomiasis, and also during other helminth infections, can be both detrimental as well 
as beneficial. Spill-over suppression to third-party antigens may lead to impaired responses 
to infections, cancers or vaccines. Helminth infections induce a Th2 bias, while a strong Th1 
response is desirable during vaccination. Impaired Th1 responses to Bacille Calmette- Guérin 
(BCG), to tetanus toxoid, and to influenza virus have been seen in helminth infected individuals 
[69–71]. Another detrimental effect to be considered is that helminth infections may exert a 
negative role on cancer incidence or progression [72]. It is thought that a ‘healthy’ immune 
system can naturally control spontaneously arising tumours, and it has been shown that 
immune deficiencies can predispose to carcinogenesis [73], therefore an immunosuppressive 
environment induced by helminth infection may prevent the host from mounting an effective 
response against cancers or impair responses to anti-cancer therapeutics. The negative effects 
of helminths may also extend to responses to concurrent infections [74–76]. Protective immune 
responses against P. falciparum are associated with a Th1 response which leads to production 
of protective IgG1 and IgG3 antibodies [77,78]; Th1 responses can be down-regulated during 
chronic schistosome infection where responses are skewed towards Th2 [79]. With respect to 
clinical outcome of malaria, which is thought to result from strong pro-inflammatory response, 
there are studies that have shown a protective effect of helminths on malaria [80,81]. This is 
thought to be as a result of the ability of helminths to induce regulatory T cells which by down-
regulating strong inflammatory responses could prevent the incidence of clinical malaria.

On the other hand spill-over suppression to third party antigens might be beneficial 
against excessive inflammatory responses observed in allergies, asthma, autoimmune diseases 
and even cardiovascular diseases or metabolic disorders. A large number of epidemiological 
studies on the prevalence of allergies in helminth infected individuals have shown a negative 
association between helminth infections and allergies (in particular skin reactivity to allergens) 
[82,83]. Various helminth species have also been shown to limit inflammatory activity in a 
variety of diseases including inflammatory bowel disease (IBD), multiple sclerosis (MS), type 
1 diabetes, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and cardiovascular 
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disease (CVD) [84,85] .The protective role during helminth infections has for the most part been 
linked with the induction of the regulatory network [86]. A number of clinical trials with either 
Trichuris suis (the pig whipworm) eggs or Necator americanus (human hookworm) live worms 
have been conducted and several are currently underway investigating the effects on MS, IBD, 
allergic rhinitis, celiac disease and even autism [86]. Ideally however, specific helminth-derived 
molecules would be needed for therapeutic application to remove the negative aspects of 
helminth infections in these treatment strategies.

Concluding remarks and future perspectives
The studies described in this thesis have demonstrated the interconnectedness between 
the various arms of the immune response mounted against and induced by S. haematobium 
infection. By showing that regulatory T cells are linked to effector responses in schistosomiasis 
and that schistosomes can induce regulatory B cells, the scene is set for future studies to 
determine antigen specificity of these cells as well as ways to control their activity.

 As regulatory responses have been shown to be not only important in chronic infectious 
disease, but also in chronic inflammatory diseases the knowledge gained here may be of 
substantial value to the health of those living in both low- to middle-income countries as well 
as high-income countries. Specifically, a number of important issues need to be considered: 

	 - Regulatory responses induced by helminth infections can affect immune responses 
to vaccines. Therefore helminth status should be an important consideration for vaccination 
programs and trials; deworming is needed for optimal vaccine efficacy.

	 - Targeted drug therapy and population-based treatment programs are currently 
advocated by multiple agencies, including the WHO, as major components of schistosomiasis 
control strategies. Mass drug administration programs are also in place to treat other 
helminth infections. However, as deworming might be positively associated with allergy and 
inflammatory diseases it is imperative that follow-up studies on immunological parameters in 
individuals from endemic settings are conducted to monitor the effects on the development of 
inflammatory conditions. 

	 - Extensive characterisation of immune response during infection will furthermore 
pave the way for more successful vaccine development against schistosomiasis which is 
sorely needed as re-infection rates are extremely high in endemic settings and repeated drug 
treatment may lead to drug-resistant schistosomiasis.

The use of novel high-dimensional technologies such as trancriptomics, metabolomics 
and microbiomics will further improve our understanding and give a more complete picture of 
the effect that S. haematobium has on the human host and how this can be exploited.
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