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introduCtion

Main objective of this thesis is to explore factors involved in especially the T-cell 

mediated anti-tumor immune response and to understand and control the force of 

the immune system to effectively search and destroy tumor cells.

ColoreCtAl CAnCer

Colorectal adenocarcinoma is the third most common cancer and accounts for a 

significant number of cancer deaths worldwide 1-3. Colorectal cancer has a lifetime 

risk of about 5-6% with a peak incidence in the 7th decade. Surgery is treatment of 

choice when the disease is only confined to the bowel wall. However, 30–40% of 

patients have loco-regionally advanced or metastatic disease on presentation which 

cannot be cured by surgery alone 4. Adjuvant radiation therapy, chemotherapy, or 

both are beneficial in selected patients 4-6. Despite intended curative therapy still a 

large proportion of the patients eventually die of their disease leaving room for new 

treatment modalities such as T-cell mediated immunotherapy 7.

CAnCer And the iMMune SySteM

Both spontaneous and therapeutic induced tumor specific immune responses require 

induction of cell-mediated immunity, to attack and eliminate tumor cells. This calls for 

close collaboration between cells of the innate immune system, in particular antigen 

presenting Dendritic Cells (DCs), and cells of the adaptive immune system, notably 

B-cells, CD4+ T-helper cells (TH) and CD8+ cytotoxic T cells (CTL). Despite scientific 

progress, the interaction between the immune system and cancer remains elusive. 

Growth of tumor cells that escaped the immune system may implicate selective pres-

sure of the immune system. These mechanisms include active down-regulation of 

immune responses by the tumor by producing immunosuppressive agents, altered 

expression of major histocompatibility complex (MHC) and/or tumor-associated 

antigens (TAAs) by tumor cells, altered expression of adhesion molecules by tumor 

and/or DCs, and the use of host immune responses to the advantage of the cancer. 

Better understanding of mechanisms of tumor immune evasion may improve immu-

notherapeutic strategies.
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tuMor inFiltrAted leukoCyteS rePreSent the PreSenCe oF An 
ongoing Anti-tuMor reSPonSe

Presence of both myeloid and lymphoid cells in different intra- and peri-tumoral 

compartments in colorectal cancer represents one of the most evident witnesses of an 

active involvement of the immune system in cancer growth and progression. Immuno-

histochemical techniques comprise one of the most frequent techniques used to study 

infiltration of leukocytes in colorectal tumors. These studies determined the clinical 

impact of many different leukocyte subpopulations such as dendritic cells, macrophages 

and different (sub-)populations of lymphocytes 8-23. However, there is still a lot unclear 

about the exact type and role of leukocytes that infiltrate into tumors. Only the infil-

tration of intra-tumoral or more precise intra-epithelial located CTLs is without doubt 

associated with good prognosis in colorectal cancer patients 8;10;12;16;18;19;23. In addition, 

several studies showed that intra-epithelial compared to stromal CD8+ T-cells express 

more molecules involved in target cell killing such as higher expression of Granzyme B 

and TIA-1 and showed higher proliferative activity, suggesting that intra-epithelial CD8+ 

T-cells are active effectors 8;12;24. Limitation of most immunohistochemical techniques is 

that in general per staining only one antigen is identified. Unfortunately most leuko-

cytes characterized with one antigen fulfill different and even opposing functions. This 

is one of the explanations why it is difficult to assess the clinical impact of leukocytes 

using immunohistochemical techniques. Studies using different techniques revealed 

that especially tumor-specific CD4+ TH1 cells are associated with a supportive cancer 

microenvironment that is beneficial to the prognosis of colorectal cancer patients 25-27. It 

has been well documented that CD4+ T-cells not only license the priming of CD8+ T-cells 

but are important to sustain their fitness 28, and also enhance CD8+ T-cell proliferation 

and cytolytic function 29. Expression of the IL-17-associated genes in colorectal cancer 

patients correlated with poor prognosis 30. The expression of TH2- and regulatory T cells 

has no or opposing effects on clinical outcome 30-33.

role oF huMAn leukoCyte Antigen ClASS i in ColoreCtAl CAnCer

Expression of MHC class I, for humans also called Human Leukocyte Antigen (HLA) 

class I, presenting TAAs on the tumor cell surface, is considered as a prerequisite for 

effective T-cell mediated immunity 34. As a consequence, tumor cells with down-

regulated HLA class I expression might escape this immune response, resulting in a 

selective outgrowth of these tumor cells. HLA class I molecules comprise the classi-

cal (class Ia) HLA-A, -B, and -C alleles, and the non-classical (class Ib) HLA-E, -F, and 

–G alleles. In this section we focus on the role of classical HLA class I molecules. 
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They form a trimolecular complex consisting of a highly polymorphic heavy chain, 

a peptide antigen, and the non-polymorphic ß2-microglobulin (ß2m) light chain 35. 

The heavy chain molecules are encoded by genes located within the HLA region on 

chromosome 6, whereas ß2m is encoded by a gene mapped on chromosome 15. 

HLA class I is constitutively expressed by many cells, although the intensity of expres-

sion varies between different tissue types. Peptides presented in the context of HLA 

class I molecules are generated from degraded proteins by the antigen processing 

machinery. After processing, the peptide is associated with the heavy chain and ß2m 

and expressed on the cell surface to present the antigen to CTL.

In addition to T cell-induced tumor cell killing, tumor cell lysis can also be induced by 

activated NK cells. NK cell activation is regulated by a balance between signals mediated 

through activating and inhibitory receptors 36. HLA class I is a ligand for inhibitory recep-

tors on NK cells. Loss or down-regulation of HLA class I is a possible strategy to escape T 

cell control 37, and is frequently found in colorectal cancer 38;39. Loss or down-regulation 

of HLA class I might however activate NK cells and induce tumor cell lysis 40. Defects 

in one of the processes that are involved in antigen presentation, will lead to loss of 

expression of HLA class I molecules on the cell surface. Complete loss of HLA class I is 

usually caused due to loss of ß2m expression or TAP deficiency 41;42. This is mostly found 

in microsatellite unstable (MSI-H) tumors when compared to microsatellite stable (MSS) 

tumors 41;42. Loss of one of the HLA heavy chains (A, B or C alleles) is usually caused by 

chromosomal aberrations of chromosome 6 43. Only limited studies have reported on 

the clinical impact of HLA class I expression in colorectal cancer using mixed cohorts of 

genetic instability and reporting contrasting results 44-47. None of these studies deter-

mined the prognostic inpact of HLA class I expression with regard to genetic instability.

leukoCyte trAFFiCking iS CoordinAted by CheMokineS

Chemokines are a superfamily of small secreted cytokines that were initially charac-

terized through their ability to coordinate trafficking of leukocytes 48. Chemokines 

bind to specific cell surface transmembrane receptors coupled with G proteins, 

whose activation leads to formation of intracellular signaling cascades that prompt 

migration toward the chemokine source. To date, studies have identified in humans, 

more than 50 chemokines and 20 chemokine receptors 48-50. Chemokines coordinate 

migration of all types of cells including tumor cells, influencing tumor development 

and organ selective metastases 51-53. The role of chemokines in gastrointestinal 

disorders and cancer has been extensively reviewed 49;54. As described, high T-cell 

infiltration in colorectal cancer is associated with good prognosis and might protect 

from tumor growth. Chemokines regulate trafficking of immune cells and might 
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therefore represent an important factor in coordinating an anti-tumor immune 

response. This concept that (over-)expression of specific chemokines causes tumor 

infiltration by distinct leukocyte subsets, resulting in tumor regression and tumor 

specific immunity has been described in several tumor models 55-61. However, under-

standing this complex network of factors involved in trafficking of leukocytes in the 

cancer microenvironment remains further exploration 62.

t-Cell MediAted iMMunotherAPy

In search for new treatment options to cure patients from colorectal cancer, much 

effort has been put in exploiting the immune system and evoking tumor-specific 

immune responses using T-cell-mediated immunotherapy. The unique advantage of 

this type of treatment is that theoretically the immune system is able to specifically 

target and destroy tumor cells. Despite great progress in the field of tumor immunol-

ogy, clinical application of T-cell-mediated immunotherapy yielded only limited success 
63. So far cellular immunotherapy is not part of the clinical routine to treat colorectal 

cancer patients. However, recent studies have revealed the dawn of a new era in 

which the activation of tumor-specific T-cells starts to make a difference. Sipuleucel-T 

is the first therapeutic cancer vaccine to demonstrate effectiveness in Phase III clini-

cal trials by prolonging the life of advanced or late stage metastatic, asymptomatic 

hormone refractory prostate cancer patients (HRPC) 64;65. The vaccine was approved 

by the U.S. Food and Drug Administration to treat patients with HRPC 66. Treatment 

with Ipilimumab, a monoclonal antibody that targets the immune regulatory mol-

ecule CTLA-4 represents the first modality that had a significant impact on the overall 

survival of patients with metastatic melanoma 67. These results are the first positive 

demonstration that blockade of a T-cell activity inhibitory pathway can be an effective 

cancer treatment. Also adoptive T-cell therapy (ACT) has been found to be effective in 

the treatment for metastatic melanoma patients 68-70. Last but not least, vaccination 

with a synthetic long-peptide (SLP) vaccine against the HPV-16 oncoproteins E6 and 

E7 resulted in the complete regression of human papillomavirus-16-positive, grade 

3 vulvar intraepithelial neoplasias in 47% of the patients 71. Complete responses in 

this study were correlated with the strength of HPV-16-specific immunity 71. These 

encouraging results in patients with different types of carcinomas positively stimulate 

research on immunotherapy of colorectal cancer patients.
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FrAMeShiFt-MutAted gene ProduCt-derived PePtideS, A ClASS oF 
tuMor-SPeCiFiC AntigenS

Despite many years of work, the number of antigens recognized by tumor infiltrated 

lymphocytes (TILs) of colorectal cancer identified is limited 40;72-74. Consequently, 

vaccines so far have been developed on the basis of proteins that are selectively 

expressed by tumor cells. A possible unique group of TAAs comprises MSI-H tumors 

that, due to numerous of frameshift mutations in microsatellites express neo-anti-

gens (Figure 1). MSI-H is a molecular feature of tumors associated with the familial 

Lynch syndrome also known as hereditary non-polyposis colorectal cancer (HNPCC) 

syndrome, accounting for approximately 5% of all colorectal cancer cases 75-77 and 

for approximately 15% of all sporadic colorectal, gastric and endometrial cancers, as 

well as at lower frequencies for various other sporadic cancers 78-82. MSI-H colorectal 

tumors are predominantly localized in the proximal colon, comprising 50% of all 

proximal colon tumors 83;84. Since frameshift-mutated products (FSPs) are foreign 

to the immune system, they represent a unique group of tumor-specific antigens. 

As no tolerance and consequently strong T-cell responses are expected against the 

non-self-segment encoded by sequences downstream of the mutation, they are 

considered promising candidates for prophylactic vaccination of subjects with Lynch 

syndrome or HNPCC, or as adjuvant therapy in combination with surgery for patients 

…tgc.att.atg.aag.gaa.aaa.aaa.aag.cct.ggt.gag.act.ttc… 
… C   I   M   K   E   K   K   K   P   G   E   T   F … 

…tgc.att.atg.aag.gaa.aaa.aaa.agc.ctg.gtg.aga.ctt.tct… 
… C   I   M   K   E   K   K   S   L   V   R   L   S …(34aa) 

…tgc.att.atg.aag.gaa.aaa.aaa.gcc.tgg.tga.gac.ttt.ctt… 
… C   I   M   K   E   K   K   A   W   * 

wt. 

-1 

-2 

-1 

A10-repeat 

Normal encoded part New foreign encoded part 

Frameshift encoded protein 
Wild-type protein 

Figure 1. insertion or deletion of mutations in microsatellites result in frameshift mutations 
and if ‘translated’ in proteins with a ‘foreign’ part.
A part of the TGFβR2 gene and corresponding amino-acid translation is depicted of the wild-
type (wt.), and containing a -1 or -2 deletion in the microsatellite (red). As shown a -1 deletion 
in the microsatellite results in a new foreign encoded part after the frameshift mutation and a 
new stop after 34 amino acids (aa), while a -2 deletion results in a frameshift mutation and a 
new stop 2 amino acids after the microsatellite.
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with (sporadic) MSI-H tumors. Unfortunately, relatively little is known on the immu-

nogenic behavior of most of the FSPs 40.

vACCineS tArgeting P53-overexPreSSing ColoreCtAl tuMorS

Defined antigens to be used as vaccine candidates should ideally be overexpressed in 

the context of HLA at the cell surface of tumor cells and not (or at very low) levels by 

other cells of the human body. FSPs are a unique example of tumor specific antigens. 

Unfortunately only a minority of the colorectal tumors comprises MSI-H tumors 

that express these FSPs. The majority of the colorectal cancers are chromosomal 

unstable (CIN). CIN tumors lack tumor specific antigens to be used in vaccination 

trials. Antigens used in vaccination studies for colorectal cancer comprise TAA and 

consequently are likely to be expressed by normal cells 85-87. Different TAA such as: 

p53, CEA, MUC1, Sialyl-Tn, 5T4, SART3, MAGE have been applied in clinical trials to 

vaccinate colorectal cancer patients 85-89. The use of antigens potentially expressed 

by normal cells bears the risk of immune tolerance. Indeed, tolerance too many TAA 

such as p53, CEA and MUC1 has been found 90-96. These results indicate that toler-

ance forms a potential hurdle for immunotherapies of cancer when using TAA.

One of the TAA frequently used in cancer vaccination trials and much studied 

in the Leiden University Medical Center comprises p53. Due to a mutation, p53 is 

overexpressed, while wildtype (wt) p53 in normal cells is not or in very low levels 

expressed 97-100. The most common way to disrupt the p53 pathway is through a 

point mutation that inactivates its capacity to bind specifically to its cognate recogni-

tion sequence, and often results in overexpression of p53 101. The aberrant expres-

sion of the p53 protein in tumor cells versus the low expression in non-tumor cells 

provides an immunological window for the use of p53 as a tumor antigen for immu-

notherapeutic intervention against cancer 102. P53 is mutated and overexpressed in 

approximately 34-45% of all colorectal cancers 103.

The presence of humoral and proliferative immunity against p53 in the blood of 

humans has been described for a long time. Both IgM and IgG type antibodies against 

p53 have frequently been detected in the sera of cancer patients, including patients 

with colorectal cancer 104;105. Because p53 is not expressed at the cell surface, only 

p53-specific T-cell mediated immunity is likely to exert therapeutic antitumor effects. 

T-helper responses have been described in humans especially in cancer patients 25;106-

108. However, there are strong indications that the p53-specific CD8+ T-cell repertoire 

is severely restricted by self-tolerance 90;91;109, as high-avidity self-reactive T cells 

are suspected to be deleted in the thymus 110. Most of the described human p53-

specific CTLs have been generated after in vitro culture 111-115. Although vaccination 
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against p53 might mainly induce p53-specific CD4+ T cells, these are important in 

cancer immunotherapy because IFNγ secreting CD4+ TH1-cells play an important role 

in orchestrating and sustaining the local immune attack by CD8+ CTL and innate 

immune effector cells 116-118.

Several different antigen delivery systems have been tested to immunize patients 

against p53. In previous studies adenoviral vector encoding wt.p53 119, recombinant 

canarypox virus encoding wt.p53 108;120, and adenoviral vector encoding wt.p53 

transfected DCs 121 were used. These modalities were safe and capable of stimulating 

p53-specific T-cell responses in some of the vaccinated patients. Unfortunately, pres-

ence and enhancement of anti-vector immunity were found in almost all patients, 

which may have hampered the induction of a truly effective p53-specific T-cell 

response. In addition, DC pulsed with known p53 HLA-A2.1 binding peptides have 

been used and this resulted in safe induction of specific T-cell responses against p53 

peptides in some of the treated patients 122. This concept but has the disadvantage 

that patients with other HLA types cannot be treated 109.

Synthetic long peptides (SLP®) can also be used as vaccines 28;123. When injected, 

these SLP® are predominantly taken up by DC resulting in the presentation of both 

helper T-cell epitopes and CTL epitopes that are present in the SLP® 124;125. A SLP® 

vaccine for the induction of p53-specific T-cell immunity was developed. Injection 

of p53-SLP® resulted in a strong p53-specific CD4+ T-cell response to three different 

epitopes in mice 91. This p53-SLP® vaccine is to be tested for its safety and immuno-

genicity cancer patients.

oPtiMizAtion oF vACCinAtion StudieS reSultS in CliniCAl SuCCeSS

The most recent vaccine developments suggest that some of the current vaccine strate-

gies do harbor the capacity to induce immune responses in cancer patients even to 

self-antigens. However, lack of clinical results in phase I/II trials in colorectal cancer 

patients suggests that the vaccine-induced T-cell responses against these antigens 

are at this point not robust enough or of sufficient quality to confidently progress 

to efficacy trials. A stronger focus should be put on how to induce the strongest and 

best qualified leukocyte population by vaccination. A clear positive relation between 

survival of colorectal cancer patients and high expression of a type 1 response has 

been established 30. The presence of tumor-specific CD4+ T cells in the cancer micro-

environment is a prerequisite for support, proliferation, recruitment and cytolytic 

function of tumor-specific CD8+ T cells 29;126. This unique function of the tumor-specific 

CD4+ T cells is greatly accelerated by production of IFN-γ and IL-2 25;29. For example, 

patients with metastatic colorectal cancer receiving chemotherapy and vaccinations 
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against the tumor antigen 5T4 were found to have more clinical benefits when 

5T4-specific IFN-γ ELIspot responses were induced. 127. Altogether, these data suggest 

that clinical responses after vaccination not only depend on the induction of vaccine-

specific responses, but merely require the induction of a strong and broad type 1 T-cell 

response. Therefore, in order to benefit from the local effect of tumor-specific T cells, 

vaccines should be combined with immune modulating adjuvants that specifically 

induce polarization of the induced immune response into a type 1 response.

A possible candidate adjuvant might be Interferon-alpha (IFN-α) as it plays a 

major part in the differentiation of the Th1 subset, as well as in the generation 

of CTL and the promotion of the in vivo proliferation and survival of T cells 128. 

Moreover, several studies have shown that type I IFNs promote the differentiation 

of monocytes into DC in vitro and can markedly enhance DC activities 129-134. Only 

one study in humans has combined IFN-α injections with peptide vaccination 135. This 

study showed that the concomitant combination of a peptide-based vaccine with 

IFN-α was safe, resulted in a consistent enhancement of vaccine-specific CD8+ T cells 

and yielded a general increase of the percentage of blood circulating DC precursors/

CD14+ monocytes 135. It would be interesting to study if addition of IFN-α to the 

p53-SLP® vaccine not only induced a stronger p53-specific but also a better polarized 

Th1 response.

theSiS outline

The studies described in this thesis aim to increase the knowledge on the interac-

tion between the immune system and colorectal tumor cells, with final purpose, the 

design of effective T-cell mediated immunotherapy. As there are strong indications 

that presence of intra-tumoral CD8+ T cells is associated with prognosis of colorectal 

cancer patients and most tumor associated antigens comprise intracellular proteins 

and might therefore not be accessible for antibodies, this thesis primarily focuses on 

T-cell mediated anti-tumor immunity.

Conflicting results have been described for the association between expression 

of HLA class I and prognosis in colorectal cancer patients, possibly due to the use 

of cohorts with mixed types of genetic instability 44-47. Therefore in chapter 2 we 

evaluated the association between HLA class I expression and prognosis in patients 

curatively operated for rectal cancer consisting of mainly MSS cancers. The infiltra-

tion of diverse types of NK and T-cells in the different types of tumor compartments is 

carefully assessed and stratified, especially in relation to HLA class I down-regulation 

in chapter 3.
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Interaction of chemokines with their cognate receptors allows attraction of 

immune cells into a tumor, but also influences migration of disseminated tumor cells. 

In chapter 4, a specific chemokine, CXCL5 that in rats was found to be associated 

with aggressive growth, was studied for its association to survival and T-cell infiltra-

tion in rats and humans.

MSI-H tumors are characterized by mutations in microsatellites that result in the 

expression of frameshift-mutated proteins. In chapter 5 the use of an expression 

system to systematically analyze the characteristics and immunogenic properties of 

proteins encoded by frameshift mutated genes that are commonly found in MSI-H 

cancers is described.

In chapter 6 the results of a phase I trial are presented, studying both safety and 

immunogenicity of a vaccine consisting of a pool of synthetic long p53 peptides in 

patients treated for metastasized colorectal cancer. Chapter 7 describes the results 

from a phase I trial that studied if addition of IFN-α to the p53-SLP® vaccine enables 

polarization of the induced p53 CD4+ T-cell response into a strong Th1 response.

Finally, chapter 8 provides a summary and discussion of this thesis.
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