

Trigger factors and mechanisms in migraine Schoonman, G.G.

Citation

Schoonman, G. G. (2008, September 11). *Trigger factors and mechanisms in migraine*. Retrieved from https://hdl.handle.net/1887/13094

Version:	Corrected Publisher's Version						
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>						
Downloaded from:	https://hdl.handle.net/1887/13094						

Note: To cite this publication please use the final published version (if applicable).

CHAPTER 3

_regel 1 _regel 2 _regel 3

regel 4 regel 5 regel 6 regel 7

_ regel 8 _ regel 9

_regel 10 _regel 11

_regel 12 __regel 13 _regel 14 _regel 15 _regel 16 _regel 17 _regel 18 _regel 19 __regel 20 __regel 21 __regel 22 _regel 23 _regel 24 _ regel 25 _ regel 26 _regel 27 _ regel 28 _ regel 29 __regel 30 _regel 31 __regel 32 __regel 33 _regel 34 _regel 35 _regel 36

__ regel 37 __ regel 38 __ regel 39

NORMOBARIC HYPOXIA AND NITROGLYCERIN AS TRIGGER FACTORS FOR MIGRAINE

Cephalalgia 2006;26:816-9

Chapter 3

regel 1 regel 2

regel 3

regel 4

regel 5

regel 7

regel 8

regel 9 _

reael 10 ____

regel 11 ____

regel 12 _

regel 13 ____

regel 14 ____

regel 15 ____

regel 16 ____

regel 17 ____ regel 18 ____ regel 19 🗕 regel 20 🔜 regel 21 regel 22 ____ regel 23 🗕 regel 24 🔜 reael 25 ____ regel 26 🔜 regel 27 🗕 regel 28 🔔 regel 29 ____ regel 30 🗕 regel 31 🗕 reael 32 ____ regel 33 ____ regel 34 _ regel 35 🗕 reael 36 ____ regel 37 ____ regel 38 🗕 reael 39 ____

regel 6

Abstract

Migraine prevalence is increased in high-altitude populations and symptoms of acute mountain sickness mimic migraine symptoms. Here we tested whether normobaric hypoxia may trigger migraine attacks. As positive control we used nitrolgycerine (NTG), which has been shown to induce migraine attacks in up to 80% of migraineurs. Sixteen patients (12 females, mean age 28.9 ± 7.2 years) suffering from migraine with (n=8) and without aura (n=8) underwent 3 different provocations (normobaric hypoxia, NTG and placebo) in a randomized, cross-over, double dummy design. Each provocation was performed on a separate day. The primary outcome measure was the proportion of patients developing a migraine attack according to the criteria of the International Headache Society within 8 hours after provocation onset. Fourteen patients completed all three provocations. Migraine was provoked in 6 (42%) patients by hypoxia, 3 (21%) by NTG and 2 (14%) by placebo. The differences among groups were not significant (p=0.197). The median time to attacks was 5 hours. In conclusion, the (remarkably) low response rate to NTG is surprising in view of previous data. Further studies are required to fully establish the potency of hypoxia in triggering migraine attacks.

Normobaric hypoxia and nitroglycerin as trigger factors for migraine

___ regel 1 ___ regel 2

____ regel 3

_ regel 4

____ regel 5

_____ regel 6

____ regel 7

___ regel 8

____ regel 9

_____ regel 10

____regel 11

___ regel 12

_____ regel 13

____ regel 14

_____ regel 16 _____ regel 17 _____ regel 18

> ____ regel 19 ____ regel 20

____regel 21

____regel 22

__ regel 23

____ regel 24

____ regel 25

___ regel 26

___ regel 27

____ regel 28

___ regel 29

___ regel 30

____ regel 31

____ regel 33

__ regel 34

____ regel 35

____ reael 36

___ regel 37 ___ regel 38 ___ regel 39

_regel 15

INTRODUCTION

Migraine is a common neurovascular disorder that affects 15 to 20 % of the population¹¹. Several substances are known to induce migraine attacks in susceptible patients. Nitroglycerin (NTG) is the most frequently studied trigger factor and has been shown to induce migraine attacks in 60 to 80% of migraineurs within 5 to 6 hours ^{55,56,78}. Hypoxia may also be a trigger factor for migraine. Firstly, acute exposure to high altitude may induce acute mountain sickness (AMS), which is characterized by headache, insomnia, dizziness, lassitude, fatigue and gastrointestinal symptoms such as anorexia, nausea, or vomiting in an unacclimatized person who has recently reached an altitude above 2500 m ⁹⁷. Up to one third of subjects with acute AMS also fulfill the criteria for migraine ^{3,98,99}. Secondly, chronic exposure to high altitude is associated with an increased migraine prevalence ^{100,101} and thirdly, sumatriptan is an established drug for the acute treatment of migraine ⁷⁵, and was also shown to be effective in some studies in AMS ^{102,103}. In the present study we tested whether normobaric hypoxia may trigger migraine attacks in migraine patients under experimental conditions. We used NTG as a positive control.

METHODS

Patients

Patients with a history of migraine with (MA) or without (MO) aura, aged 18-65 years, with a baseline attack frequency of 1 to 9 per 3 months in the last six months were recruited from the outpatient clinic, among hospital staff and university students. Exclusion criteria were headache on more than 10 days per month, pregnancy, lactation, psychiatric disorders including substance and drug abuse, neurological diseases other than migraine, and a medical disease that could, according to the judgment of the investigators, interfere with the study. Before each provocation it was made sure that no migraine attack had occurred within the previous 3 days, no pain or migraine medications were taken the previous 24 hours, and that the patient did not suffer from sinusitis or coryza. The study was approved by the local ethical committee.

Experimental Design

Patients were subjected to three different provocations (normobaric hypoxia, NTG and placebo) in a randomized, double-dummy controlled fashion using a cross-over design. The NTG and placebo part were double blind, and the hypoxia part was single blind, because arterial oxygen saturation (SaO₂) had to be monitored continuously.

Chapter 3

regel 1

regel 2 _

regel 3 _

regel 4

regel 5 _

regel 6 _

regel 7 _

regel 8 _

regel 9 _

reael 10 ____

regel 11 ____

regel 12 _

regel 13

regel 14 ____

regel 15 ____

regel 17 ____

regel 18 ____

regel 19 ____

regel 20 🔜

regel 21

regel 22 ____

regel 23 _

regel 24 🔜

regel 25

regel 26 ____

regel 28 ____

reael 29 ____

regel 30 _____

reael 32 ____

regel 33

regel 34 🗕

reael 35 ____

reael 36 ____

regel 37 ____

regel 38 ____

Each of the three provocations was performed on a different day. At the beginning of each provocation, the supine patient obtained a well fitting facial mask, which was connected with a tube for the administration of air with reduced or normal (placebo) oxygen content. Then an antecubital vein was cannulated for the infusion of NTG or saline (placebo). As soon as the patients stated that they became familiar with the facial mask and the attached tube, the provocation was started. An independent physician carried out randomization.

Exposure to normobaric hypoxia: An investigator progressively increased the concentration of nitrogen (N_2) in the inspired air to obtain SaO₂ values of 75 to 80% within 20 minutes. During exposure to normobaric hypoxia, intravenous (IV) saline was administered. The NTG provocation consisted of IV administration of 0.5 microgram / kg body weight NTG within 20 minutes using a free infusion set (Codan, the Netherlands), while the patient was breathing normal air. Placebo provocation: The participants breathed normal air during the whole provocation, whereas only IV saline was administered during the first 20 minutes of the provocation.

Headache Response to the Different Provocations

Migraine symptoms according to the criteria of the International Headache Society (IHS)³ and headache severity on a visual analogue scale (VAS) ranging from 0 to 100 were assessed every 30 minutes. Each provocation was terminated after 5 hours, or earlier, if headache symptoms fulfilled the IHS criteria for migraine, or the experiment was not tolerated by the patient. The presence of headache symptoms was re-assessed 8 hours after the beginning of each provocation, because the time-course of migraine attacks induced by hypoxia might differ from those induced by NTG. After termination of every provocation the patient was asked which provocation they thought they were exposed to.

SaO₂ measurements

SaO₂ was measured using a fingertip pulse oximeter (Datex-Ohmeda, Helsinki, Finland).

Statistical analysis

The primary outcome measure was the migraine response, defined as the proportion of patients developing a migraine attack fulfilling the IHS criteria ³ for migraine within 8 hours after the start of the experiment. Differences in response between groups were tested using Friedman's test. Patients who did not complete all provocations were analyzed on a worst-case scenario basis (meaning an attack after placebo and no attack after provocation). Fourteen patients were required to detect a difference in migraine

response of 40% between hypoxia and placebo (alpha 0.05, beta 90%). The secondary outcome measure was the difference in headache response categorized as (1) absent, (2) mild, (3) moderate or severe headache not fulfilling the criteria for migraine or (4) migraine fulfilling the IHS criteria.

Results

A total of 16 patients (12 females, mean age 29 ± 7 years) were included in the study. The mean baseline attack frequency was 1.2 attacks per month (SD 0.76). Fourteen patients completed all three provocations, and two patients completed only two (Table 1).

Table 1 Patient characteristics (demographic and migraine)

Subject	Sex	Age	Migraine (IHS)	Migraine attacks per month	Attack positive provo- cations	Migraine characterics of provoked attacks								
						HS	UH	AH	PH	Ν	V	PT	PN	VAS
1	F	25	MO	0.33	Нурохіа	2	-	-	yes	yes	-	yes	-	59
2	Μ	26	MA	0.33										
3	Μ	36	MA	0.33	Placebo	2	-	yes	yes	yes	-	yes	yes	43
4	F	23	MO	3	Нурохіа	3	yes	yes	yes	yes	yes	yes	-	60
5	F	25	MO	1	Нурохіа	3	-	yes	yes	yes	-	yes	-	65
6	Μ	24	MO	2										
7	F	23	MO	1	Нурохіа	2	-	yes	yes	yes	-	-	-	49
					NTG	2	-	yes	yes	yes	-	-	-	31
8	F	28	MO	1	NTG	2	-	yes	yes	yes	-	-	-	61
9*	F	42	MO	1	NTG	2	yes	yes	yes	yes	-	yes	yes	38
10	F	33	MA	1	Нурохіа	2	yes	yes	yes	yes	-	-	-	70
11*	F	44	MA	2										
12	Μ	36	MA	2	Нурохіа	2	yes	yes	yes	yes	-	yes	yes	28
					NTG	3	yes	-	yes	yes	yes	yes	yes	29
13	М	23	MO	1										
14	F	29	MA	1										
15	F	22	MA	0.5										
16	F	22	MA	2	Нурохіа	2	yes	yes	yes	-	-	yes	yes	51
					Placebo	3	yes	yes	yes	-	-	yes	yes	61

F denotes female, M male, MA migraine with aura, MO migraine without aura, NTG nitroglycerine, HS headache severity (2=moderate, 3 =severe), UH unilateral headache, AH aggravation of headache during physical activity, PH pulsating headache, N nausea, V vomiting, PT photophobia and PN phonophobia

_____ regel 36

___ regel 1

____ regel 2

____ regel 3

_____ regel 4 _____ regel 5 _____ regel 6

> ____ regel 7 ____ regel 8

____ regel 9

____ regel 10

____ regel 11 ____ regel 12

_____ regel 13 ____ regel 14 _regel 15 _____ regel 16 _____ regel 17 _regel 18 ____ regel 19 ____ regel 20 ____ regel 21 ____regel 22 ___ regel 23 ____ regel 24 ____ regel 25 ___ regel 26 ___ regel 27 _____ regel 28 ____ regel 29 ___ regel 30 ___regel 31 _____ reael 32 ____ regel 33 ___regel 34 ____ regel 35 Chapter 3

regel 1

regel 2

reael 3

regel 4

regel 5

regel 6

regel 7

regel 8

regel 9

reael 10

regel 11 _

regel 12 _

regel 13

regel 14 ____

regel 15 _

regel 16 ____

regel 17 ____

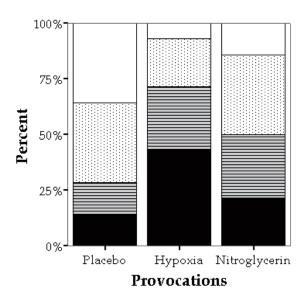
regel 18 ____ regel 19 ____ regel 20 ____

regel 21 ____ regel 22 ____ regel 23 ____

regel 24 ____

regel 26 ____ regel 27 ____ regel 28 ____

regel 29 ____ regel 30 ____ regel 31 ____


reael 32 ____

regel 33 _

regel 34 _

reael 36 ____

regel 37 ____ regel 38 ____ regel 39 ____ Out of the 14 patients who underwent all three provocations, six patients (43%; 95%) confidence interval (CI) 27% to 69%) developed a MO attack during exposure to normobaric hypoxia, three patients (21%; 95%CI 0% to 42%) after the administration of NTG, and two patients (14%; 95%CI -4% to 32%) after the administration of placebo. The frequency of migraine attacks did not differ among groups (p= 0.197). Both patients with incomplete provocations developed a MO attack, one after exposure to normobaric hypoxia and the other after administration of NTG. The inclusion of the two patients who underwent just two provocations did not change the study results (p=0.150). The median time to migraine attacks was five hours (4 hours for placebo, 4.5 hours for hypoxia and 6 hours for NTG). Headache responses (Figure 1) did not differ between groups (p=0.094). Both in the hypoxia and NTG group there were 4 patients who developed moderate to severe headache, but did not fulfull IHS criteria for migraine (no accompanying symptoms such as nausea, phonophobia or photophobia). The subjects' rating of whether they had been exposed to hypoxia, NTG or placebo was no better than by chance. Four patients guessed all three provocations correct, five guessed all three provocations and four were correct in one provocation (2 placebo and 2 hypoxia). Ratings were missing in one patient.

Figure 1 Headache and migraine response to placebo, normobaric hypoxia and nitroglycerin. Black bars represent migraine response, dark gray is moderate or severe headache not fulfilling migraine criteria, light gray is mild headache and white bars is no headache.

Normobaric hypoxia and nitroglycerin as trigger factors for migraine

DISCUSSION

The first remarkable finding in this study is the low migraine response of 21% after NTG. This is in line with a recent study in English subjects where the migraine response rate after NTG was only 20% ¹²³. However in most other studies NTG provoked migraine attacks in 60% to 80% of subjects 55,78,123,125. The low response in our study could have been due to either differences in methodology or in study population. Although we administered the same NTG dose and used the same infusion systems (PVC free) as was done in previous studies 78, the experimental design of our study was entirely different 55,78 . Due to the double dummy design, the patients had to breathe through a facial mask during the whole duration of all experimental conditions, which was considered rather stressful, but tolerable by most participants. The stress could have prevented the occurrence of migraine attack ^{25,26}. Alternatively, our study population could have been less susceptible to NTG. We had 50% of MA patients in our study and such patients may have a lower migraine response to NTG than MO patients ^{55,56,162}. Why MA patients would be less susceptible to NTG is not known. A third explanation could be the clinical scoring system. In our study four patients in both the hypoxia and the NTG group had moderate to severe headache but did not fulfill the criteria for migraine.

Normobaric hypoxia provoked a migraine attack in 6 out of 14 patients as compare to only two after placebo and three after NTG. Although this difference between groups was not significant, the relatively high migraine response after hypoxia is remarkably and seems compatible with the results of a large study in mountaineers at high altitude. Of 1213 mountaineers 589 developed headache within 2 to 6 hours after arrival at 4559 m of altitude ⁹⁹. In 112 (19%) subjects the symptoms fulfilled the criteria for migraine whereas only 78 (13%) subjects had a history of migraine at sea level. We conclude that the migraine response to NTG was remarkably low in view of previous data , and normobaric hypoxia might be a trigger factor for migraine, but this requires further research.

___ regel 2 ____ regel 3 __regel 4 ____ regel 5 _____ regel 6 ____ regel 7 ____regel 8 ____ regel 9 _____ reael 10 ____regel 11 ___ regel 12 _____ regel 13 ____ regel 14 _regel 15 _____ regel 16 _____ regel 17 __regel 18 ____ regel 19 ____regel 20 ___ reael 21 ____ regel 22 __ regel 23 ____regel 24 ____ reael 25 ___ regel 26 ___ regel 27 ____ regel 28 ___reael 29 __ regel 30 ___regel 31 ____ reael 32 ___ regel 33 _ regel 34 ____ regel 35 ____ reael 36 ___regel 37 ___ regel 38 ___ regel 39

__regel 1

|___ ____ ____| ____