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Abstract

In their natural context, cells are in contact with the extracellular ma-
trix (ECM) that provides cells with chemical and physical cues. The
physical properties of the ECM control cell survival, proliferation, and
differentiation, and its deregulation can contribute to pathologies such
as fibrosis and cancer. Transmembrane receptors of the integrin family
couple the ECM network to the intracellular cytoskeletal network. Inte-
grins sense and transmit biophysical cues in both directions, providing
mechanical homeostasis between cells and ECM. Here, we discuss recent
advances in our understanding of the integrin-associated mechanotrans-
duction complex within cell-matrix adhesions and how this, in concert
with chemosensory signaling pathways, controls cell fate.
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Cells are able to sense and respond to physical as well as chemi-
cal aspects of their surrounding extracellular matrix (ECM) to maintain
homeostasis with their environment. The physical aspect of this interac-
tion determines normal cell function, stem cell differentiation and tissue
homeostasis [1, 2], while deregulation can contribute to onset and pro-
gression of cancer [3]. Forces also play a crucial role in embryogenesis [4,
5] and cells in our body are constantly under force; e.g. cell-cell forces
in epithelial tissues, compression and tension due to muscle contraction,
shear forces in vasculature, lung epithelium and intestines. Therefore,
in addition to its importance in cancer research, manipulating the me-
chanical properties of the ECM has become a powerful tool in stem cell
research and tissue engineering.

1.1 Mechanics of mechanosensing

Several signal transducers have been implicated in the ability of cells to
sense and respond to extracellular forces, including ion channels, cell ma-
trix adhesion complexes and membrane-associated phospholipases [6, 7].
In any case, a force-transmitting cytoskeleton is essential for cells to sense
the mechanical properties of the environment. The microtubules (MT)
[8], actin cytoskeleton [9] and intermediate filaments (IF) [10] have all
been implicated in cellular mechanotransduction. Indeed, Rho GTPases,
the enzymes in control of cytoskeletal organization [11], play important
roles in cellular sensing of- and responding to force [12, 13].

1.2 The mechanical scaffolds: the cytoskeleton
and the ECM

Cytoskeletal networks, enable cells to maintain their shape and me-
chanical strength [14]. Of the three cytoskeletal systems; MTs, IFs and
actin cytoskeleton, the emphasis has been on actin cytoskeleton that is
responsible for traction force generation [15]. The actin cytoskeleton
forms a continuous network between the nucleus and, via the adhesion
complex, the ECM [16] (Figure 1.1). Cells, prominently on 2D sub-
strates, form long contractile actomyosin structures termed stress fibers
that apply traction forces via myosin molecular motors pulling on polar-
ized actin filaments [15]. Formation and organization of such stress fibers
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Figure 1.1
Mechanical cues from the environment dictate cell fate decisions. Cartoon
depicting force sensing, transmission, and translation into biological response through
cell matrix adhesions.
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are stiffness dependent [17, 18]; and the formation of adhesion complexes
is dependent on the actin cytoskeleton [19].

Purified networks of actin and intermediate filaments increase their
stiffness under the influence of force. In other words, these networks
strain-stiffen in response to mechanical shear or stretch [20–22]. This
phenomenon allows cells to actively stiffen their actin cytoskeleton on
hard substrates [18]. Moreover, strain-stiffening of IFs is thought to
prevent excess deformation of cells and epithelial tissues [21, 22].

Microtubules (MTs) are not so widely studied in the context of mecha-
notransduction but MTs also influence cell-matrix adhesions by regula-
ting traction forces via crosstalk with the actomyosin machinery and it
has been shown that both on 2D substrates [23, 24] and in 3D collagen
gels [25, 26], MT depolymerization causes increased traction forces and
thereby adhesion maturation [27].

ECM properties play an important role in mechanosensing. Cells
can sense the global (i.e. macroscopic) and local (e.g. fiber) matrix
stiffness, matrix topography [28], the porosity [29] and dimensionality as
well as actively change the physical properties of the ECM [30, 31]. In
fibrous collagen or fibrin networks, cells can sense to a length scale of
∼200 µm [32, 33], whereas on 2D flexible gels, this distance is reduced to a
few tens of microns [34, 35]. The organization of ECM network is tailored
to the function of each tissue, for instance collagen fibers are thick and
aligned in stiff tissues like tendon to ensure tensile strength, whereas
they are thin and organized in a meshwork in cornea to ensure optical
transparency. During disease progression and aging the physiological
organization of the ECM is subject to changes and ECM is increasingly
recognized as an active player and potential therapeutic target in diseases
such as fibrosis, atherosclerosis and cancer [36–40].

The ECM forms a scaffold for cells to adhere to and acts as a reservoir
for growth factors, cytokines and proteolytic enzymes. ECM structures
can be 2D (e.g. basement membrane) as well as 3D (connective tissue)
and cell matrix adhesion proteins regulate cell motility on both of these
ECM environments [41].
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Figure 1.2
Cell matrix adhesions as hotspots for bidirectional mechanotransduction.
Elements associated with cell matrix adhesions that act as force sensors; e.g. change
conformation/interactions in response to force are indicated in red. Elements that
are implicated in force transmission but have not (yet) been directly implicated as
force sensors are indicated in green. 1) When cytoskeletal contractility, through in-
tegrins, stretches fibronectin fibers; cryptic sites are exposed that cause enhanced
cross-linking; 2) intracellular or extracellular forces cause conformational changes in
the integrin head domain of some integrins driving strengthening of a catch bond
with ECM; 3) kinetics of filamin dimerization change under force, which affects its
actin and integrin binding; 4) stretching of flexible domains in talin exposes cryptic
vinculin (8)-binding sites; 5) stretching of the linker domain in p130Cas may expose
phosphorylation sites, which can trigger new protein-protein interactions; 6) force-
dependent unfolding of the zipper-like autoinhibitory domains in RPTPalpha may
underlie its role in rigidity sensing; 7) force-dependent breaking of an autoinhibitory
intramolecular interaction involving the FERM domain and/or stretching of its ad-
hesion targeting domain may trigger FAK activation and explain its role in force
transmission; 8) myosin contractility-dependent interaction of vinculin head and tail
domains is important for its role in mechanotransduction; 9-12) ILK, paxillin, alpha-
actinin and zyxin have been implicated in rigidity sensing but it is not known whether
they undergo conformational change in response to physiological force; 13) extracel-
lular forces, through cell matrix adhesions enhance actomyosin contractility thereby
balancing intra- and extracellular forces in the cell matrix adhesions and coupling
through physical linkage to the nuclear envelope.



1.3 Cell matrix adhesions at the heart of force sensing 7

1.3 Cell matrix adhesions at the heart of force
sensing

The regions where cells are in close physical contact with their environ-
ment and connect to the actin cytoskeleton - the "cell matrix adhesions" -
appear to be hotspots for mechanotransduction [42] (Figure 1.2). Within
cell matrix adhesions, clustered integrin transmembrane receptors bind
ECM components with their globular head domains and connect to the
actin cytoskeleton through their short cytoplasmic tails [43–45]. Cou-
pling to the cytoskeleton is indirect, involving a large, regulated protein
complex that connects the integrin tails to f-actin fibers [43]. Cell ma-
trix adhesions are mechanosensitive structures [46–48] that may also be
centers for protein synthesis through force dependent recruitment of ribo-
somes [49]. The activity of Rho GTPases is regulated by force responsive
signaling cascades in cell matrix adhesions [50]. In turn, Rho GTPase-
mediated alterations in cytoskeletal tension affect growth and turnover
of cell-matrix adhesions [51, 52].

Cell matrix adhesions have a well-preserved nanoarchitecture [53],
their size correlates with cell migration speed in 2D [54] and the presence
of cell matrix adhesions in 3D ECM environments has been established
[55–57]. The tight connection between force and cell matrix adhesions
has been studied using laser tweezers [58], traction force microscopy on
deformable gels [59], micropillar arrays [60, 61] and bead displacement
maps in 3D ECM networks [62].

Integrins recruit more than 150 different proteins to the cell-ECM
adhesion complex, many of which are Lin11, Isi-1, Mec-3 (LIM) domain
proteins that were recruited to the adhesion in a force responsive manner
[63]. Integrins as well as several integrin-associated proteins that reside
in cell matrix adhesions have also been shown to act as mechanotransduc-
ers [64]: they change conformation and/or expose new protein-binding
sites when stretched by force. This allows cell matrix adhesions to alter
intermolecular interactions that affect signaling pathways and connec-
tions to the actin cytoskeleton in response to force, thereby ensuring
a balance between extracellular (ECM) and intracellular (cytoskeletal)
forces. Indeed, the molecular architecture and size of cell matrix adhe-
sions depend on myosin-derived cellular contractility [65, 66]. Key force
sensors associated with cell matrix adhesions are described in Figure 1.2.
Notably, for several additional cell matrix adhesion-associated proteins,
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despite their important role in adhesion and migration, such as tensin,
parvins, kindlins; neither conformational changes in response to force
nor direct implication in force transmission has been demonstrated thus
far.

Integrins are bi-directional transmembrane signaling receptors. In-
tracellular proteins bind to the tail region of integrins, thus causing
conformational changes in the head region that increases affinity for
its extracellular ligands (inside-out signaling) and ligand binding trig-
gers conformational changes that activate intracellular signaling cascades
(outside-in signaling). Integrins are heterodimers of an α and a β sub-
unit and so far 24 different heterodimers formed by combinations of 18
different α subunits and 8 β subunits have been identified [45]. Most
integrins recognize multiple ligands, for instance, integrin αvβ3 can bind
to vitronectin, fibronectin and fibrinogen through the RGD-binding mo-
tif [67]. Additionally, in 3D environments, integrins are required for the
fibrillogenesis of various ECM proteins [68, 69].

Integrins play a central role in environment sensing: integrin binding
to the ECM promotes integrin clustering and recruitment of additional
proteins into cell matrix adhesions [70], and through cytoplasmic linker
proteins integrins connect to the actin cytoskeleton, which in turn is
physically connected to the nucleus [71]. The spacing and pattern of
integrin ligands controls cell spreading and cell matrix adhesion matura-
tion [72]. It has been shown that clustering of integrins to form adhesion
complexes requires a certain minimum ligand density [72–76] and that
forces supported by individual integrin-RGD pair increases with reduced
ligand spacing [77]. In addition, integrins go through force dependent
binding/unbinding cycles, which regulate the activity of Rho GTPases,
cell matrix adhesion formation, and integrin turnover [78, 79].

Mechanical loading has been shown to influence the lifetime of some
integrin-ECM bonds. For instance αIIbβ3, exhibits slip-bond behavior
characterized by a decreased lifetime with increasing load [80], whereas
the integrin α5β1 heterodimer forms catch bonds with the ECM pro-
tein, fibronectin: the bonds are strengthened in response to external
(ECM-driven) or internal (cytoskeleton-derived) force application [81,
82]. This force-dependent strengthening of catch bonds between α5β1
and fibronectin is necessary to create downstream signaling cascades [83]
and theoretical modeling has shown that catch bond clusters can act as
autonomous mechanosensors [84, 85].
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Different integrin heterodimers that bind to the same ECM protein
have been shown to respond differently to applied force. Cells adhering
to fibronectin substrates through αvβ3 versus α5β1 integrins, for instance,
differ in traction force generation [86, 87], dynamics [88], and adhesion
[88, 89]. These integrins activate different intracellular signaling cascades
[87, 90] and interchanging the ligand binding domains reverses the sig-
naling phenotype [91, 92]. Similarly, expression of αvβ6 integrins in the
presence or absence of α5β1 changes traction force generation [84]. Dif-
ferent splice variants of α6β1 also give rise to different phenotypes due to
the two distinct cytoplasmic domains [93]. Thus cells can regulate their
mechanosensitivity by modifying the integrin expression profile.

ILK (integrin linked kinase) is a pseudokinase that is part of the
ILK-Pinch-Parvin (IPP) complex that plays critical roles in coupling
integrins to the f-actin cytoskeleton in cell matrix adhesions [94]. ILK is
directly recruited to integrin beta1 and beta3 cytoplasmic domains and is
crucial for actin rearrangement, cell polarization, spreading, migration,
proliferation, survival and tumor metastasis [95]. The ILK protein itself
has not been shown to directly respond to force but it is recruited to cell
matrix adhesions in a myosin II activity-dependent manner [96].

Talin and vinculin are adaptor proteins located in the cell ma-
trix adhesions that have a mechanosensitive interaction. The talin head
domain activates integrin through binding to its beta tail causing disso-
ciation of the alpha and beta cytoplasmic domains [97]. Talin also di-
rectly connects integrins to the actin cytoskeleton. Talin is important for
force-induced adhesion strengthening through interactions with integrin
alphavbeta3 [88]. Vinculin is recruited to cell matrix adhesions in a force
dependent manner [66, 98] and mediates cell matrix adhesion growth
through binding to talin and f-actin [99]. Vinculin is required for force-
induced cell matrix adhesion stabilization [100] and overall cell responses
to environment stiffness [101, 102] possibly through Src-mediated phos-
phorylation at residues Y100 and Y1065 [103]. Despite enhancing cellular
traction forces, vinculin is not required for force transmission at cell ma-
trix adhesions but myosin contractility-dependent interaction of the vin-
culin head and tail domains is important for cellular mechanotransduc-
tion [102, 104]. Experiments with isolated talin and vinculin molecules
showed that application of physiological forces to talin molecules leads to
exposure of cryptic vinculin-binding sites [105]. This unfolding of talin
has also been observed in isolated cells [106]. Possibly through this in-
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teraction, vinculin stabilizes talin in an unfolded conformation and its
localization shifts from integrin proximal to actin proximal region with
increasing force [107]. Notably, vinculin interacts with several other cell
matrix adhesion proteins and can be recruited to cell matrix adhesions
upon force application in a talin-independent manner as well (see paxillin
section).

Filamin and alpha-actinin are f-actin crosslinking proteins that
can also directly bind integrin to actin filaments [108]. The filamin A-
integrin interaction requires force [109], can stimulate activation of Rho
GTPases in a force dependent manner [110], and is necessary for cells to
induce collagen gel contraction [111]. Filamin A can unfold and change
actin-binding dynamics under force [112]. Filamin A and talin bind to
the same region in the integrin cytoplasmic tail, which might suggest a
competition between filamin A and talin for integrin binding [113]. How-
ever knockdown of filamin A causes, in addition to an increased number
of force-induced apoptotic cells, a reduction in force-induced beta1 in-
tegrin activation and a reduction in recruitment of talin and vinculin
molecules to the adhesion [114]. Alpha-actinin, competes with talin for
integrin beta3 tail binding but cooperates with talin when binding the
integrin beta1 tail [115]. Alpha-actinin is not required for cell matrix ad-
hesion force generation but it controls cell matrix adhesion maturation
through its role in generating an actin network [9] and in connecting this
network to the integrin mediated adhesions [115].

Zyxin recruits actin polymerizing proteins to integrin-mediated ad-
hesions [116]. It changes binding kinetics and induces actin polymeriza-
tion at cell matrix adhesions under force [117, 118]. Zyxin is also known
to mobilize from cell matrix adhesions to actin fibers upon stretch [119]
in a force-dependent manner [120]. Upon force-dependent relocalization
to actin fibers, zyxin, together with alpha-actinin plays a role in actin
stress fiber maintenance [121, 122].

p130Cas is a member of the Cas (Crk-associated substrate) family
of proteins that is localized to cell matrix adhesions. p130Cas plays a
role in migration, cell cycle control, apoptosis, differentiation and cancer
development [123, 124]. Stretching the p130Cas protein in vitro increases
its tyrosine phosphorylation, which is known to influence adhesion for-
mation and actin dynamics [125, 126]. p130Cas phosphorylation is also
important in cellular reorientation upon cyclic stretch [127] and coupling
of the cytoskeleton to the adhesion during migration [128]. Studies of
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vinculin knockout cells and vinculin mutants unable to bind to p130Cas,
have shown that vinculin is necessary for p130Cas to respond to changes
in substrate rigidity [129].

FAK (Focal Adhesion Kinase) is a protein-tyrosine kinase that is
present in cell matrix adhesions. FAK regulates the activity of Rho GT-
Pases and its kinase activity increases in response to extracellular forces
[130]. Modification of an autoinhibitory intramolecular interaction in-
volving the FAK four-point-one, ezrin, radixin, moesin (FERM) domain
may be involved in this regulatory mode [7]. Direct evidence from in
vitro studies demonstrating that FAK is a mechanoresponsive protein is
not available but computer simulations have predicted that the cell ma-
trix adhesion targeting (FAT) domain of FAK protein will extend under
physiological force and this might regulate its interaction with paxillin
[131]. There is evidence that FAK can be activated in a tension de-
pendent or independent manner through its interaction with different
integrins [132]. Indeed, FAK is recruited to cell matrix adhesions in a
myosin contractility-dependent manner [66].

Paxillin is a multidomain adaptor protein that is essential for cell
matrix adhesion formation, plays an important role for cell migration in
2D and 3D [131, 133] and mediates force induced Rho GTPase activity
[134]. Paxillin phosphorylation, but not its localization to cell matrix
adhesions, depends on myosin II activity [66]. This force dependent
phosphorylation of paxillin is regulated by FAK activity, which in turn
regulates vinculin recruitment to cell matrix adhesions, adhesion assem-
bly and turnover, and cellular response to changes in ECM stiffness [135,
136].

RPTP-alpha (receptor-like protein tyrosine kinase alpha) is a trans-
membrane protein that co-localizes with alphav integrins at the leading
edge of migrating cells and takes part in force-dependent formation and
strengthening of cell matrix adhesions [137, 138]. RPTP-alpha might be
able to respond directly to mechanical stimuli through force-dependent
unfolding of its zipper-like autoinhibitory domains [139]. RPTP-alpha-
dependent rigidity sensing influences neuronal migration [140] and is re-
quired for cells to exert forces on the ECM [61].

ECM proteins, similar to intracellular cell matrix adhesion pro-
teins discussed above, can be stretched when force is applied and expose
cryptic binding sites or growth factors [141]. The fibronectin matrix
is an example of an ECM that is modified as force is applied to it. Fi-
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bronectin is a globular ECM protein that is highly abundant in plasma
and produced by cells during active processes such as tissue regenera-
tion, angiogenesis and tumor invasion. Fibronectin is assembled into a
fibrillar network via interactions with integrins and syndecan receptors
[69]. Rho GTPase activity is required to generate the contractile force
for fibronectin fibrilogenesis and assembly of a fibronectin matrix. The
fibronectin fibrillar network stiffens with applied force [142]. This stiffen-
ing is probably due to cryptic binding sites for intramolecular interactions
within the network that become exposed under force [143, 144].

Taken together, integrins and several associated cell matrix adhe-
sion proteins undergo conformational changes in response to force. This
leads to new protein-protein interactions within cell matrix adhesions,
strengthened interaction with the cytoskeleton, and cytoskeletal network
stiffening when extracellular force is applied. Vice versa, enhanced cy-
toskeletal tension - likely through the same complex of proteins - exerts
forces on ECM proteins (such as fibronectin), which induces ECM reor-
ganization through enhanced protein unfolding and protein-protein in-
teractions, causing ECM stiffening. Thus, integrin-containing cell matrix
adhesions act as key protein complexes that mediate bidirectional force
transduction across the plasma membrane to ensure physical homeostasis
between cells and ECM.

1.4 Cell matrix adhesions in cell fate decisions

Cell survival and proliferation is supported by ECM attachment in
a manner that requires an intact actomyosin network and the ability
of cells to spread [145, 146]. Crucial determinants of cell cycle pro-
gression, including mitogen-activated protein(MAP) kinase activity, cy-
clin D expression, and cyclin-dependent kinase (cdk) inhibitor levels are
not properly regulated when cells attach to soft, rather than stiff col-
lagen matrices leading these cells into quiescence [147]. Integrin signal-
ing through FAK is one mechanosensitive mechanism involved: on rigid
but not soft ECM substrates FAK is activated causing Rac-mediated
cyclin D1 gene induction, cyclin D1-dependent phosphorylation of the
retinoblastoma(Rb) protein, and passage through the restriction point
into synthesis(S) phase [148]. ECM stiffness also controls endothelial cell
proliferation during angiogenesis in vitro and in vivo: in this case Rho-
dependent regulation of the balance between two mutually antagonistic
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transcription factors that influence expression of the vascular endothelial
growth factor receptor (VEGFR) is the mechanoresponsive switch [149].

Stem cell differentiation is one of the processes where mecha-
notransduction has been shown to have a major impact [150]. Cellu-
lar mechanosensing drives mesenchymal stem cell differentiation, with
soft substrates promoting neuronal- and stiff substrates promoting os-
teoblast lineage specification [1]. Traction forces and integrin signaling
regulate cell stemness [151]. On the one hand sensing of global rigidity
was hypothesized to be involved [1]. On the other hand, the underly-
ing mechanism was reported to involve differences in ligand anchoring
density: stiffer hydrogels provide a denser network of ECM protein an-
chorage points and the resulting larger resistance to integrin-mediated
cellular pulling force is sensed by the cells and controls cell fate de-
cisions [152]. Similarly, in 3D environments, the cell-mediated degrada-
tion of the ECM resulted in larger traction forces and higher osteogenesis
[153]. The spacing and patterning of integrin ligands, through its regula-
tion of cytoarchitecture, controls mechanical properties of mesenchymal
stem cells that would be expected to affect differentiation [72, 154]. In
embryonic stem cells, substrate stretching has provided somewhat con-
fusing results with evidence for stretch supporting either differentiation
or stemness [155–157]. In agreement with a need to balance cellular
and extracellular forces, the ability to stimulate actomyosin contractil-
ity through RhoA signaling is important for in vivo differentiation of
lung epithelium [158]. Given the importance for these findings to the
field of tissue engineering and stem cell therapeutics, cell culture tech-
niques have been developed where substrate rigidity can be fine-tuned
to control the balance between pluripotency, differentiation, and lineage
specification. This includes patterned substrates [159], 2D and 3D sub-
strates with different rigidities [160–162], or substrates with dynamically
controlled rigidity [163].

Tumor progression is another aspect in which integrin-mediated
mechanotransduction plays a critical role [164]. Tumor malignancy is
affected by ECM stiffness with increasing ECM rigidity promoting inva-
sive growth through force-induced integrin- [39], FAK- [165, 166], Rho-
and extracellular signal-regulated kinases(ERK)-signaling [40] and acto-
myosin contractility [167]. RPTP-alpha-dependent rigidity sensing also
supports cancer cell invasion [168]. Integrin antagonists, which would
disrupt the ability of cell matrix adhesion to act as mechanotransduc-
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ing units, are considered to be promising anticancer therapeutics [169].
Interfering with integrin-mediated adhesions can reduce the ability of
metastatic tumor cells to proteolytically degrade ECM during invasion
[170] and it can increase tumor cell sensitivity to radiotherapy [171].
However, the role of integrins in different cancer types / oncogenic back-
grounds is complex [172] and blocking integrin adhesions have been
shown to both induce [173–175] and block [176] cancer progression.

Other biological processes - In the zebrafish, mutations in ILK
interfere with the ability of cardiomyocytes to sense mechanical stretch
and respond to it by upregulating crucial factors that regulate calcium
waves [177]. Silencing beta-parvin phenocopied the ILK mutation, to-
gether providing genetic evidence that the integrin-IPP complex is im-
portant in heart function. This interaction is also important in the
development and functionality of the mammalian heart [178] and has
been implicated in cardiomyopathy in humans [179]. Integrin-mediated
mechanosensing also plays an important role in normal vascular physiol-
ogy and atherosclerosis. Changes in fluid shear stress affect endothelial
cell biology in developing and adult bloodvessels. It has been proposed
that the glycocalyx, receptors, and ion channels at the luminal surface all
participate in shear stress sensing and the resulting tension is transmit-
ted (i.e. via the cytoskeleton) to integrin-mediated cell-matrix adhesions
at the basal cell surface. These adhesions subsequently act as mechan-
otransducers and activate signaling pathways to adapt to the altered
blood flow [180].

1.5 Concluding remarks

It has become evident over the past years that mechanical cues from
the ECM control physiology and pathology in a wide range of biological
settings. It is clear that integrin-mediated adhesion sites are important
mediators of bidirectional force transmission that connect the ECM and
cytoskeleton. The force-regulated conformations and associations within
cell matrix adhesions are partly resolved and many more molecular inter-
actions that are subject to force modulation are expected to be discov-
ered. Another aspect that is only partially understood is how mechanical
signaling in cell matrix adhesions is coupled to cell fate decisions. The
cytoskeleton connects integrins to LINC (linker of nucleoskeleton and cy-
toskeleton) complexes in the nuclear envelope. There, nesprin proteins
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in the outer membrane connect to microtubules, actin fibers, and inter-
mediate filaments while Sad1 and UNC84 (SUN) domain proteins in the
inner membrane bind the nuclear lamina [181]. Since chromatin-binding
proteins and DNA are attached to the nuclear lamina, extracellular me-
chanical stress may be propagated into the chromatin and affect gene
expression through conformational regulation of DNA and associated
proteins. However, although extracellular forces, through integrins are
mechanically linked to changes in nuclear orientation and shape [71],
direct evidence for such purely mechanical coupling between ECM and
gene expression is lacking.

Mechanical perturbations are translated into biochemical signaling
in cell matrix adhesions. Therefore the molecular composition of the ad-
hesion is important for cellular mechanosensing. Studies relating myosin
activity to protein localization and turnover rates have shown that the
adhesion structure itself is force dependent [66, 117, 118]. Additionally,
super resolution microscopy has also allowed the study of force depen-
dent nanoscale architecture of adhesion protein vinculin [107]. However
force-molecular recruitment relation in cell-matrix adhesions is unknown.
This relation can be unraveled through a reliable method that addresses
the abundance of adhesion molecules. Cell-matrix adhesions that are
coupled to the ECM via different integrins have differential mechanore-
sponse [88]. Cellular expression profile of integrins also dictate activated
signaling pathways and regulate cellular force application [86, 87]. How-
ever how different integrins regulate cellular response to mechanical cues
remains to be addressed.

Integrin expression profile and role of mechanical cues have also been
addressed in relation to cancer [39, 40]. ECM-tumor cell interaction as
well as the ECM itself is deregulated in cancer and such changes af-
fect cancer progression [3]. Understanding the altered mechanoresponse
in cancer may help develop new therapeutic interventions. Extensive
crosstalk with various other signaling pathways further complicates the
concerted effect of physical and chemical stimuli. Therefore it is nec-
essary to isolate the effect of mechanosensing that is cell type and pro-
tein expression independent to understand how the physical tumor-ECM
communication might affect hallmarks of cancer such as activation of in-
vasion, metastasis and angiogenesis.
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1.6 Aim and outline of this thesis

With the studies described in this thesis, I aimed to further the under-
standing of the mechanism and importance of cellular mechanotrans-
duction. The focus was on integrin mediated adhesions and their roles
in inside-out and outside-in mechanosensing. In chapter 2, the role of
physical signaling in tumor progression is studied. Using automated se-
quential microprinting of tumor and endothelial cells in 3D collagen gels
in combination with reflection microscopy it is shown that; i) tumor ex-
pansion and tumor induced collagen organization are highly correlated,
ii) this relation is dependent on cellular force generation but is resistant
to depletion of collagen-binding integrins, iii) the remote organization of
collagen induced by the tumor steers directional migration of endothelial
cells, iv) this directional migration is impaired upon severing the phys-
ical connection between the tumor and endothelial cells. The physical
signaling by the tumor is thus shown to influence tumor expansion and
angiogenesis. Chapter 3 focusses on fibronectin binding integrins α5β1
and αvβ3 and describes their differential role in outside-in and inside-out
cellular mechanosensing. It shows that cells expressing either of these
integrins are able to reorganize their cytoskeleton upon cyclic stretch
and induce ECM stiffness driven cellular spreading with similar efficien-
cies. Likewise, these integrins are shown to support similar magnitudes
of cellular traction force generation and stiffness dependent regulation
of cellular traction forces. However, cells that express αvβ3 are iden-
tified to form adhesions on softer substrates and to be able to better
organize their actin cytoskeleton upon cyclic stretch and maintain this
organization at higher strain rates. In contrast, cells that express α5β1
are shown to support more centripetally oriented traction forces in a
ROCK/myosin activity dependent manner that also supports generation
of longer actin fibers. Therefore it is shown that differential expression
of fibronectin binding integrins regulate cellular plasticity by fine tun-
ing sensing-force application capacities through differential regulation of
ROCK/myosin signaling and actin cytoskeleton. In chapter 4 the rela-
tion between molecular composition of the adhesion, the force generation
and environment stiffness is shown. Using a new approach to quantify
the number of molecules in a cellular structure, the recruitment of adhe-
sion proteins talin, paxillin, vinculin and FAK is studied in relation to
force application and environment stiffness. Chapter 5 studies the cellu-
lar mechanotransduction in context of cancer cell migration and adhesion
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structure. Genes that are identified as regulators of cell-matrix adhesion
and cancer cell migration are shown to regulate cellular traction force
generation mechanisms. Formation of larger adhesions, reduced cellular
migration, higher traction force generation and slow force turnover rates
are identified to be interrelated. Lastly, in chapter 6 the overall conclu-
sions of the studies in this thesis and future perspectives are described.
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