

Role of integrin adhesions in cellular mechanotransduction Balcıoğlu, H.E.

Citation

Balcıoğlu, H. E. (2016, March 8). *Role of integrin adhesions in cellular mechanotransduction*. Retrieved from https://hdl.handle.net/1887/38405

Version:	Corrected Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/38405

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/38405</u> holds various files of this Leiden University dissertation

Author: Balcıoğlu, Hayri Emrah Title: Role of integrin adhesions in cellular mechanotransduction Issue Date: 2016-03-08

Role of Integrin Adhesions in Cellular Mechanotransduction

PROEFSCHRIFT

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus, prof. mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op 8 Maart 2016 klokke 13:45 uur

 door

Hayri Emrah Balcıoğlu

geboren te Şişli, Turkije in 1986

Promotiecommissie

Prof. dr. B. vd Water
Prof. dr. T. Schmidt
Dr. E.H.J. Danen
Prof. dr. P.H. vd Graaf
Prof. dr. M. Danhof
Prof. dr. A. Sonnenberg
Prof. dr. P. ten Dijke (LUMC, Leiden)
Prof. dr. G. Koenderink (AMOLF, Amsterdam)
Dr. ir. S.J.T. van Noort
Dr. C. Storm (TU Eindhoven)

©2016 Hayri Emrah Balcıoğlu. All rights reserved.

Cover: GE β 1 cell immunostained for paxillin (green) and f-actin (red) and a tumoroid in 3D collagen network imaged with reflection microscopy

ISBN 978-94-6295-460-1 An electronic version of this thesis can be found at https://openaccess.leidenuniv.nl Printed by: Proefschriftmaken.nl || Uitgeverij BOXPress

This research was conducted at the Division of Toxicology of the Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.

Het onderzoek beschreven in dit proefschrift is onderdeel van het wetenschappelijke programma van de Stichting voor Fundamenteel Onderzoek der Materie (FOM), die financieel wordt gesteund door de Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO). "will you *understand* what I'm going to tell you? ... No, you're not going to be able to understand it. ... That is because I don't understand it. Nobody does. ... while I am describing to you *how* Nature works, you won't understand *why* Nature works that way. But you see, nobody understands that. I can't explain why Nature behaves in this peculiar way."

Richard Feynman, QED: The Strange Theory of Light and Matter (1985)

Ailem için.

CONTENTS

1	Inti	oduct	ion: Cell Matrix Adhesions - Feeling The Force	1
	1.1	Mecha	anics of mechanosensing	3
	1.2	The n	nechanical scaffolds: the cytoskeleton and the ECM .	3
	1.3	Cell n	natrix adhesions at the heart of force sensing	7
	1.4	Cell n	natrix adhesions in cell fate decisions	12
	1.5	Concl	uding remarks	14
	1.6	Aim a	and outline of this thesis	16
2	Me	chanics	s of Angiogenesis	35
	2.1	Introd	luction	37
	2.2	Result	ts	38
		2.2.1	Tumor spheroids in 3D collagen induce the reori-	
			entation of surrounding collagen	38
		2.2.2	Remote tumor-induced collagen network reorien-	
			tation correlates with local cell migration capacity	
			and requires Rho kinase-myosin activity $\ . \ . \ .$.	38
		2.2.3	Endothelial spheroids orient in response to tumor-	
			oriented collagen network	42
		2.2.4	Endothelial response to oriented collagen network	
			requires physical coupling with tumor	47
	2.3	Discus	ssion	47
	2.4 Materials and methods		ials and methods	50
		2.4.1	Cell culture	50
		2.4.2	Automated sequential microprinting of tumor- and	
			endothelial cells in ECM scaffolds	51
		2.4.3	Collagen gel imaging	51
		2.4.4	Laser severing assay	52
		2.4.5	Image analysis	52

	2.5	Acknow	wledgements	54
	2.6	Supple	emental figures	55
3	Rol	e of In	tegrins in Mechanotransduction	65
Ŭ	3.1	Introd	uction	67
	3.2	Result	s	69
	0	3.2.1	Cells adhering through $\alpha \gamma \beta 3$ show more robust cv-	00
		0.2.1	toskeletal reorganization in response to cyclic stretch	
			as compared to cells using $\alpha 5\beta 1$	69
		3.2.2	Cells expressing $\alpha 5\beta 1$ or $\alpha \nu \beta 3$ each support cell	
			spreading in response to substrate stiffening	71
		3.2.3	Cells adhering through $\alpha v\beta 3$ form cell-matrix ad-	
			hesions at lower substrate stiffness compared to	
			cells adhering through $\alpha 5\beta 1$	72
		3.2.4	Cells adhering through $\alpha 5\beta 1$ or $\alpha v\beta 3$ each mediate	
			traction forces that are regulated in response to	
			altered substrate rigidity	75
		3.2.5	Cells adhering through $\alpha 5\beta 1$ preferentially support	
			centripetal force application and long actin fila-	
			ments in an actomyosin contractility-dependent man-	
			ner	76
	3.3	Discus	sion	79
	3.4	4 Materials and methods		
		3.4.1	Fluorescence-activated cell sorting (FACS) analysis	81
		3.4.2	Cell culture	81
		3.4.3	Cyclic cell stretching	82
		3.4.4	Characterization of stretcher strain field	83
		3.4.5	PAA substrates	83
		3.4.6	Analysis of stiffness of PAA gels by rheology	84
		3.4.7	PAA and PDMS adhesion assay	85
		3.4.8	Assays using PDMS micropillars	85
		3.4.9	Immunostaining	86
		3.4.10	Microscopy	86
		3.4.11	Image analysis	87
		3.4.12	Pillar deflection analysis	88
		3.4.13	Statistical analysis	88
	3.5	Acknowledgements		
	3.6	Supple	emental figures	90

4	Qua	antitat	ive dSTORM on Cell-Matrix Adhesions 101
	4.1	Introd	luction
	4.2	Result	ts
		4.2.1	dSTORM on cell matrix adhesion proteins 104
		4.2.2	Combination of dSTORM and cellular traction force
			measurements
		4.2.3	From dSTORM localizations to molecule counts . 106
		4.2.4	Relating the abundance of cell matrix adhesion
			proteins to traction forces
	4.3	Discu	ssion
	4.4	Mater	ials and methods
		4.4.1	Cell culture and transduction
		4.4.2	Micropillar preparation and cell seeding
		4.4.3	Fixation and immunostaining
		4.4.4	Imaging and analysis
		4.4.5	Statistic analysis
	4.5	Ackno	owledgements
	4.6	Suppl	emental materials
		4.6.1	Obtaining the cdf
		4.6.2	Relation between variance and squared mean \ldots . 121
		4.6.3	Simulation for a combined statistics with secondary
			antibody labeling
5	Mig	ration	and Traction Force 131
	5.1	Introd	luction
	5.2	Result	ts
		5.2.1	Larger adhesions and altered adhesion dynamics
			in response to knockdown of TPM1, PPP1R12B,
			RAC2 or HIPK3
		5.2.2	Knockdown of TPM1, PPP1R12B, RAC2 or HIPK3
			inhibits tumor cell migration
		5.2.3	Knockdown of PPP1R12B, RAC2 and HIPK3 re-
			sults in higher traction forces and slower force turnover 135
	5.3	Discu	ssion $\ldots \ldots 140$
	5.4	Mater	Tials and methods $\ldots \ldots 142$
		5.4.1	Cell culture
		5.4.2	Cell transfection with siRNA
		5.4.3	Automated microscopy
		5.4.4	Image analysis

		5.4.5	Random cell migration assay	14	4
		5.4.6	Traction force microscopy with silicon elastomeri	ic	
			micropillar post arrays	14	4
		5.4.7	Statistic analysis	14	6
	5.5	Ackno	wledgements	14	6
	5.6	Autho	rs' contribution	14	6
	5.7	Supple	emental figures	14	18
6	General Discussion 15				5
Su	mma	ary		16	7
Özet				17	'1
Samenvatting			17	5	
Li	List of Abbreviations			17	' 9
Pι	Publications				1
Curriculum Vitae			Vitae	18	3

