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1 Cervical Cancer

Aetiology

In 1842 Rigoni-Stern first mentioned that sexual intercourse and cervical cancer appeared 

to be related, because the disease was rare in nuns and common in prostitutes1,2. The idea 

that nuns, virgins and spinsters will not develop cervical cancer, despite being actively 

passed down through decades, was never scientifically well underpinned3. Nevertheless, 

epidemiological studies did show that cervical carcinoma was related to promiscuity and 

a young age of first sexual contact4-6. In 1976, Harald zur Hausen suggested that the 

development of cervical carcinoma was influenced by the sexually transmittable human 

papillomavirus (HPV), a virus until then only known to cause genital warts7. Several years 

later he first isolated, characterised and cloned HPV DNA from genital warts together with 

De Villiers and Gissman8,9. Since then, infection with human papillomavirus has been 

found to be the aetiological agent of cervical cancer10-13. The extensive HPV-mediated 

(cervical) carcinogenesis is elegantly investigated and summarised by Steenbergen14.

Cervical carcinogenesis is a multistep process in which HPV infection is a necessary 

and early event. Other important steps are genetic changes and a failing immune system, 

which will be discussed in more detail in the following paragraphs.

Clinicopathology

The cervix uteri consists of the ectocervix and the endocervix, anatomically divided in 

the visible part (ectocervix) and the non-visible part (endocervix) of the cervix. The 

ectocervix is mainly lined with non-keratinizing stratified squamous epithelium and the 

endocervix with mucus producing columnar epithelium. The squamocolumnar junction 

(SCJ) is defined as the border between the two epithelia. In premenstrual women the SCJ 

is often located in the cervical canal, in the fertile years the SCJ is mostly located on the 

ectocervix. A physiological process called squamous metaplasia occurs in the cervix and 

arises from the subcolumnar “reserve cells”. During this process columnar epithelium is 

gradually replaced by squamous cell epithelium. The SCJ shifts cephalad and in post-

menopausal women it is located in the endocervix again. The area where the squamous 

metaplasia has taken place, which is the area between the original and the new SCJ, is 

called the transformation zone (FIGURE 1). The cells in this transformation zone are less 

stable and therefore particularly susceptible to viral infections. It is in this area where 

cervical carcinogenesis usually occurs15-17.

A disturbed proliferation of squamous cells is called dysplasia or cervical intraepithelial 

neoplasia (CIN) and is the precursor of invasive carcinoma. The grading of CIN is based 

on the severity of the changes and especially on the proportion of the epithelial layer with 

neoplastic changes. In CIN I a third, in CIN II two third and in CIN III (almost) the total 

layer of epithelium contains atypical cells. Although CIN is a precursor lesion, the majority 
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of the untreated mild dysplasias persist or regress to normal cytology. The likelihood of 

progression of CIN I, CIN II and CIN III to invasive carcinoma ranges from 0.4 to 1%, 1.2 

to 5%, and 3.9 to greater than 12%, respectively18-20.

Different clinical (sub)stages of invasive cervical cancer are defined by the Fédération 

Internationale de Gynécologie et d’Obstétrique (FIGO) as summarised in TABLE 121,22.

Several biological types of primary cervical neoplasms exist. Squamous cell carcinoma 

accounts for almost 80%, adenocarcinomas and adenosquamous carcinomas for most of 

TABLE 1

FIGO stages, the different clinical (sub)stages of invasive cervical cancer as defined by the 

Fédération Internationale de Gynécologie et d’Obstétrique21,22

STAGE SUBSTAGE

FIGO I – Limited to the uterus

IA - diagnosed only by microscopy

• IA1 – stromal invasion < 3mm + ≤ 7mm spread

• IA2 – stromal invasion 3-5mm + ≤ 7 mm spread

IB - lesion with invasion > 5 mm or > 7mm spread

• IB1 – lesion ≤ 4cm in greatest dimension

• IB2 – lesion > 4 cm in greatest dimension

FIGO II – Invades beyond uterus
IIA – without parametrial invasion

IIB – with parametrial invasion

FIGO III – extends to pelvic wall/

lower 1/3 vagina

IIIA – involves lower 1/3 of vagina

IIIB – extends to pelvic wall and/or causes hydronephrosis 

or non-functioning kidney

FIGO IV

IVA – invades mucosa of bladder or rectum and/or extends 

beyond true pelvis

IVB – distant metastases

FIGURE 1

Squamocolumnar Junction and Transformation Zone

Adapted from155
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the remaining 20%. Very rare types of epithelial tumours of the cervix are, for instance, 

glassy cell carcinoma and small cell carcinoma23.

Treatment and Prognosis

The diagnoses CIN III or less depend on pathological findings. CIN III is treated by 

destruction or removal of the whole transformation zone. When the tumour is invasive the 

treatment of cervical carcinoma depends on its clinical (FIGO) stage. A uterus extirpation 

is usually the therapy of choice in case of micro invasive carcinoma (stage IA). When there 

is a wish for fertility in a woman with cervical cancer stage IA1 conisation is an option. 

In FIGO stage IB and IIA a radical uterus extirpation with (pelvic) lymphadenectomy 

or radiotherapy is performed. A more accurate staging of the tumour and estimation on 

prognosis is possible with surgical treatment. In addition, surgery permits the ovaries to 

be spared, which prevents fertile women from entering the menopause prematurely. A 

third advantage is the decrease in problems with sexual intercourse, possibly even less 

frequently arising if the radical surgery is nerve-sparing24,25. Postoperative radiotherapy 

is indicated with positive lymph nodes or positive surgical margins and parametrial 

involvement. In most clinics postoperative radiotherapy is also performed when other 

unfavourable prognostic factors are present, consisting of depth of tumour infiltration, 

lymphovascular space involvement or tumour volume. After randomised clinical trials 

the NCI now advises to treat the advanced stages (IIB-IV) and high-risk early stages with 

concomitant chemotherapy and radiotherapy26.

Early stage cervical carcinoma can be treated successfully in the majority of the cases, 

with a 5-year recurrence-free survival (RFS) rate of 70-100%26-28. Survival for the more 

advanced stages varies and is influenced by lymph node involvement. The 5-year RFS is 

50-70% for stages IB2, IIA and IIB, 30-50% for stage III and falls rapidly to 5-15% for stage 

IV26. Therapy for recurrent cervical cancer is generally disappointing and depends on 

previously performed radiotherapy. Less than 5% of these patients survive 5 years26.

The most significant prognostic factor on survival is the FIGO stage, but other signifi-

cant prognostic indicators exist as mentioned above27-31. In addition, a major prognostic 

factor is the level of development and poverty of the area in which the patient resides. 

The vast majority of the patients with cervical cancer cannot benefit from the advances of 

the last decades in treatment of this disease, because they live in impoverished countries 

with limited resources and no or inadequate screening programmes26.

Epidemiology

Cervical cancer is the second most common cancer among females worldwide. Over 

493,000 new cases are diagnosed yearly and it remains one of the leading causes of 

death from cancer among women32,33. The highest incidence rates are found in developing 

countries with age adjusted incidence rates up to 68.6 per 100,000 women32. In developed 
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countries the incidence rates have dropped to age standardised rates between 4.3 and 

13.532,34-36. In the Netherlands, an example of a low-risk country for cervical cancer, the age 

adjusted incidence and mortality rates per 100,000 women are 7.3 and 2.3, respectively32.

The past decades both the cervical carcinoma incidence as well as the occurrence of 

the advanced FIGO stages have decreased 30-60% in developed countries. Screening 

programmes in developed countries might account for the majority of this decline in cervi-

cal carcinoma incidence and mortality rates although the impact has never been studied 

in randomised trials35-37.

Prevention

Prevention of cervical cancer can be accomplished by implementing well organised, 

population-based screening programmes. The present screening programmes aim to trace 

cervical precursor lesions by cytologically analysing cervical smears. Several classification 

systems exist for recording cytological abnormalities, including the Bethesda System38 

and the Papanicolaou Classification39 (TABLE 2). In the Netherlands cervical cytological 

abnormalities are graded using the KOPAC system, the official Dutch microscopical cod-

ing system40,41. This system allows for simultaneously scoring of inflammatory and (pre)

neoplastic changes. A Pap score is given for communication with clinician and patient.

Nowadays, the developed countries all have effective screening programmes with 

a coverage and attendance of 50-80%36. In most of these countries a cervical smear is 

taken every three or five years and targets women aged between 30 and 55. Developing 

countries remain high-risk areas for cervical cancer. They account for 79% of the cervical 

cancer incidence worldwide and advanced FIGO stages are still of frequent occurrence 

in these countries35,36. Therefore, implementation of screening programmes in developing 

countries seems an appropriate measure to decrease the high incidence.

TABLE 2

Description, various classification systems and translation of codes for normal squamous epithelial 

cells and (pre)neoplastic changes

DESCRIPTION PAPANICOLAOU BETHESDA KOPAC P-Code

Normal Pap I Normal P1

Borderline Changes Pap II ASCUS P2-3

Mild Dysplasia Pap IIIA (L)SIL P4

Moderate Dysplasia Pap IIIA (H)SIL P5

Severe Dysplasia Pap IIIB (H)SIL P6

Carcinoma in Situ Pap IV (H)SIL P7

Micro invasive Carcinoma Pap V Carcinoma P8

Squamous Cell Carcinoma Pap V Carcinoma P9
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Cervical Cancer in Suriname

Suriname is a high-risk area for cervical carcinoma with an incidence of 27 per 100,000 

women32. A three- to sixfold higher percentage of the advanced FIGO stages (IIB-IV) is 

established compared to the Netherlands, a low-risk country for cervical cancer. There are 

various ethnicities living in Suriname, which have different cervical carcinoma incidence 

rates42. These ethnicities are the Creoles, the Hindustani, the Javanese, the Maroons, the 

Amerindians, the Chinese and all possible mixtures of these ethnicities. Hitherto, the 

high cervical cancer incidence in Suriname and other high-risk countries is attributed to 

absence of an organised screening programme, a presumed high(er) prevalence of the 

human papillomavirus (HPV), immunological factors and environmental or cultural based 

factors, but more research is still needed.

2 Human Papillomavirus (HPV)

Biological Aspects

(Human) Papillomavirus is a genus of the family Papovaviridae. The HPV virions are 

non-enveloped and icosahedral with a circular double stranded DNA (dsDNA) genome of 

almost eight kilo bases in length. The dsDNA consists of six open reading frames (ORF) 

encoding early (E) proteins, two ORFs encoding late (L) proteins, and a non-coding long 

FIGURE 2 

The HPV Virion
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control region (LCR) (FIGURE 2). Papillomaviruses are classified based on their degree of 

DNA homology in the nucleotide sequences of E6, E7 and L1 ORFs.

Cervical HPV infection occurs through microabrasion of the genital epithelium allowing 

access of the viral particles to target cells. For a lesion to persist, it is suggested that the 

virus has to infect an epithelial stem cell43-45. It is generally thought that expression of the 

viral E1 and E2 proteins maintains the HPV DNA as an episome and facilitates the correct 

segregation of genomes during cell division45-47. The major viral oncoproteins E6 and E7 

have been shown to play a vital role in viral episome persistence by interfering with 

the cell cycle48,49. They can stimulate cell cycle progression and associate with cell cycle 

regulators50-52. E6 binds to p53 and herewith inactivates p53-mediated growth suppression 

and apoptosis53, whereas E7 binds to pRb which inactivates this negative regulator of the 

cell cycle54.

To date, 118 papillomaviruses (PVs) comprising of 96 human and 22 animal papil-

lomavirus types have been completely described and several hundred putative new PVs 

types are partially characterised55-58. The HPV genotypes can be divided into a subgroup 

FIGURE 3

Phylogenetic Tree of Papillomaviruses

Adapted from156
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of mucosal HPV types, which is associated with anogenital lesions and a subgroup of 

cutaneous HPV types, which induce mostly benign skin lesions. The mucosal HPV types 

are further classified as (probable) oncogenic or high-risk types which are predominantly 

found in CIN III lesions and anogenital cancers, and low-risk HPV types which are mainly 

found in benign and CIN I-II lesions57-59(FIGURE 3). Forty types infecting the anogenital 

tract are found in anogenital cancer specimens56,60,61.

Occurrence

Most women undergo an HPV infection during life, but are able to clear it without ever 

having any clinical symptoms. HPV DNA is detectable in 2% to more than 20% of the 

global female population at any time33. In women with normal cytology or mild dysplasia 

the predominant HPV types are low-risk. With increasing severity of dysplasia the overall 

HPV prevalence also increases and the oncogenic HPV types become more prevalent. 

Finally, in invasive cervical carcinoma the oncogenic HPV prevalence is established to be 

almost 100% and thus HPV is accepted to be a necessary cause10-13,33,62-64.

The prevalence and distribution of HPV genotypes show considerable geographic and 

ethnical variation, especially for the less common types. In most areas the predominant 

HPV genotypes in cervical cancer are HPV 16 (30-50%) and HPV 18 (10-15%). In non-

western countries other types, like 45, 52 and 58, are also detected in a considerable 

proportion of the cervical cancers65,66.

It is possible to have an HPV infection with multiple HPV genotypes simultaneously.

Different studies report about multiple HPV infections in cervical samples with normal 

cytology or atypical squamous cells of undetermined significance (ASCUS) and mild to 

severe dysplasia67-72. It is generally thought that the cells infected with the most oncogenic 

type will eventually transform into the invasive tumour clone. In the majority of invasive 

carcinomas mainly single HPV infections were detected and until recently only occasion-

ally a multiple HPV infection was found. Because of newly developed techniques better 

suitable for detection of multiple HPV types, it is now possible to get an accurate indica-

tion of their prevalence in cervical carcinoma and its precursors.

Detection Techniques

The (human) papillomaviruses can only replicate in differentiating stratified squamous 

epithelium, which cannot be grown as a conventional cell culture. Serological tests for 

HPV have an estimated sensitivity of only 50% using detection of HPV DNA as a stan-

dard73. Therefore HPV infection and typing can only be accurately diagnosed by molecular 

methods73,74. Several HPV assays are described, but nowadays the polymerase chain reac-

tion (PCR) based techniques are the method of choice due to the greater sensitivity and 

technical facilities75. Since there is significant sequence variation between the genotypes, 

either a large number of type-specific PCRs or a single broad-spectrum PCR primer set, 
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can be used. Several general PCR primer sets have been developed, which aim at the most 

conserved sequences of the viral genome, permitting amplification of a broad spectrum 

of HPV genotypes70,73,76-78. After the HPV detection, the HPV genotyping is performed by 

sequence analysis, a reverse hybridisation assay71,79-81 or, more recently, micro arrays82,83.

3 Immunology and Cervical Carcinoma

Human Leukocyte Antigen (HLA)

Background

The immune system is the specific defence mechanism against the external world. It com-

prises the antibody mediated (humoral) system, for which B-cells are responsible, and the 

cellular system, predominantly mediated by cytotoxic T-lymphocytes (CTLs). Both systems 

are involved in the immunological management of a viral infection. The humoral immune 

system probably is important for prevention of viral infections, the cellular immune system 

for the elimination of a virus and virus induced lesions. Immunological surveillance in 

HPV associated lesions is thus performed by CTLs, which are activated when foreign 

(antigenic) proteins are presented to the CTL receptor by human leukocyte antigen (HLA) 

class I. HLA class I molecules are expressed on virtually all cells84.

HLA

The major histocompatibility complex (MHC) is located on the short arm of chromosome 

6 at 6p21.3 and comprises 240 different gene loci85, of which many encode for HLA 

molecules. The MHC can be subdivided into three closely linked multigene families, 

class II (HLA-DR, -DP and -DQ genes), class III (includes genes encoding complement 

and tumour necrosis factor (TNF)) and class I genes (the classical class IA genes, HLA-A, 

-B and -C, and the non-classical class IB genes, HLA-E, -H, -G and -F) (FIGURE 4). The 

MHC genes all encode for proteins that control the immune responses to pathogens, graft 

acceptance or rejection and tumour surveillance. The HLA class I and class II molecules 

are encoded by, respectively, class I and class II genes. On each chromosome 6 the genes 

in the class I-III regions compose a combination, called a haplotype. The two haplotypes 

on the chromosome 6 pair combined are called the HLA genotype. The HLA genotype is 

expressed as HLA class I and class II molecules on the cell surface and this is called the 

HLA phenotype.

HLA Class I Antigen Processing and Presentation

HLA class I molecules are expressed on nearly every somatic cell84 and on virally infected 

tumour cells. They consist of a polymorphic heavy α chain (HC), encoded by the HLA 

class I genes HLA-A, -B and -C on chromosome 6p21.3, in non-covalent association with 
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the light β chain, encoded by the β
2
-microglobulin (β

2
m) gene on chromosome 15q21. The 

association with β
2
m is important for the stability of the HLA class I molecule86.

The antigen processing and presenting by the HLA class I molecule or HC-β
2
m complex 

concerns mainly endogenous processed antigens (viral or tumour associated products, or 

waste products from the cell itself). Endogenous proteins are degraded in the cytosol into 

smaller fragments, called peptides. These peptides are subsequently transported by the 

transporter associated with antigen processing (TAP), which consists of two subunits TAP1 

and TAP2 that form a channel in the endoplasmatic reticulum (ER)-membrane87. In the ER, 

the assembly of the HLA class I heavy chain, the β
2
m light chain88 and the peptides89,90 is 

chaperoned by several proteins91-95. The newly formed complex is then transported via 

the Golgi network to the cell surface and is subsequently presented to circulating CTLs 

(FIGURE 5). In addition, TAP independent mechanisms have been described96-101.

FIGURE 4

The Major Histocompatibility Complex.  Provided by E.S. Jordanova



Chapter 1

20

Immune Evasion in Cervical Cancer

Loss of HLA class I cell surface expression, HLA class I downregulation, occurs in various 

solid tumours and tumour cell lines102,103 and is thought to result in escape from the cyto-

toxic CTL attack. It occurs frequently in cervical carcinoma and is predominantly caused 

by losses at chromosome 6p21.3, the region where the HLA genes are localised104-107. HLA 

class I expression was also tested in CIN-lesions with varying outcomes108-110, but in these 

lesions knowledge remains limited about altered HLA class I expression in association 

with the underlying mechanisms. HLA class I downregulation is frequently associated 

with impaired TAP expression111-114 and it has been correlated with TAP gene regulatory 

abnormalities and mutations in various tumour types115-120.

FIGURE 5

HLA Class I Antigen Processing and Presentation.  Provided by E.S. Jordanova
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Currently, research concerning prevention and treatment in cervical cancer focuses on 

HPV vaccines121-124. Therapeutic vaccines are based on the viral oncogenic proteins E6 

and E7 and aim to induce cell-mediated responses to eliminate the transformed tumour 

cells124. CTLs will only recognise viral peptides if HLA class I molecules present them on 

the surface of the infected cell. Therefore, HLA class I downregulation would compromise 

the effectiveness of an HPV vaccine.

Genetic Basis of Immune Evasion

During carcinogenesis multiple genetic events take place involving proto-oncogenes 

and tumour suppressor genes (TSGs), two classes of genes that are both involved in 

tumour progression and metastasis125-128. Vogelstein and Kinzler described the multistep 

nature of cancer125, which is distinctly illustrated by the multigenic model for colorectal 

tumorigenesis129. It was suggested that only a subset of genetic pathways can initiate the 

tumorigenic process in particular cell types and that mutation at some genes confers a 

selective growth advantage125. In cervical cancer the two HPV-encoded oncoproteins E6 

and E7 can independently induce chromosomal abnormalities, which causes genomic 

instability and ultimately facilitates carcinogenic progression130,131.

Alfred Knudson advanced his “two hit” model in 1971 as a necessary condition for 

certain cancers to develop132. All chromosomes exist in pairs and carry the genes, of 

which most have two similar copies. An alteration in each of two gene alleles inactivates a 

tumour suppressor gene, leading to tumour development and growth. One hit is an innate 

(germ line) mutation (occurs in hereditary cancer) or a somatic mutation (in sporadic 

cancer), the other hit an event that often leads to loss of heterozygosity (LOH)133-137. 

Such an event can be deletion, gene conversion, (mitotic) recombination, translocation, 

nondisjunction or chromosome loss, chromosome duplication and promoter methylation 

and could lead to haploinsufficiency128,137-139. LOH can be detected by polymorphic repeat 

markers flanking the locus of interest, or situated in the target gene. Those polymorphic 

markers are formed based on repeat sequences in the DNA, which are heterozygous for 

the two gene alleles in a large percentage of the population. The LOH analysis is used to 

indicate loci that may contain a TSG. However, accurately defining a common LOH region 

with a possible TSG can be confounded by deficient LOH detection, genetic instability and 

inter-/intratumour heterogeneity139.

LOH at chromosome 6p21.3, the region where the HLA genes are located, occurs at 

high frequencies in cervical cancer140-146. With most genes both alleles need to be switched 

off to inactivate the gene. HLA genes are co-dominant therefore switching off one gene 

allele could induce inactivation. Koopman et al. proved in a study on fresh tumour tissue 

that LOH at 6p21.3 represents an important and common mechanism by which HLA genes 

and their products are abolished107. LOH on 6p21.3 is also frequently detected in high 

grade CIN-lesions, indicating that it is an early event in the cervical carcinogenesis147,148. A 
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genetic basis was shown for most of the cervical tumours with an altered HLA phenotype. 

This involved, besides LOH, class I gene mutation (on chromosome 6p21.3) and β
2
m 

mutation (on chromosome 15q21) or a combination of these events107,149. Further investiga-

tions are yet needed of the unexplained HLA class I phenotype alterations to clarify the 

underlying mechanisms.

Other mechanisms causing HLA class I downregulation could be mutation(s) and LOH 

in the genes encoding for TAP I or II. A recent cervical carcinoma study reported possible 

mutations in these TAP encoding genes, but the method of detection was not conclusive. 

In fact, LOH and polymorphisms in TAP genes were studied and loss of TAP expression 

was not investigated150.

Vaccination

The close relationship between viral infection and cancer makes HPV an attractive target 

for prophylactic and therapeutic vaccine development. Prophylactic vaccines are developed 

to prevent infection by generation of antibodies to recombinant capsid proteins L1 (and 

L2) that neutralise viral infection121,122,124,151. Therapeutic vaccines generally target E6 and 

E7 which are critical for the immortalisation in (pre)malignant cells in order to induce 

regression of established infection and possibly control the HPV-associated lesion121,123,124,152. 

The vaccines can be delivered directly as protein, as DNA that encodes and expresses the 

requisite viral protein(s), or by heterologous viral vectors153. Various approaches are being 

taken in the development of prophylactic HPV vaccines, the most advanced and promising 

being the use of non-infectious recombinant virus-like particles assembling from pentamers 

of the L1 capsid protein and inducing high titres of virus-neutralising antibodies124. Encour-

aging results from animal and human vaccine trials have led to large scale efficacy trials 

concerning prophylactic and therapeutic vaccination121-124,151. Recent research on safety and 

efficacy of candidate prophylactic vaccines have shown a nearly 100% protection against 

the development of (high-grade) HPV 16 and 18 induced cervical lesions124,151,154. Several 

therapeutic vaccines have been developed and are currently under clinical evaluation124.

4 Scope of this Thesis

As discussed previously, cervical cancer is preceded by several stages of precursor le-

sions. Population-based screening programmes aim to trace these precursor lesions by 

cytologically analysing cervical smears. The premalignancies are mainly induced by HPV 

infection, which is very common in young women worldwide and influenced by endog-

enous and environmental factors. Behavioural factors like lifestyle and viral characteristics 

are important environmental factors. Most HPV infections are transient and are cleared 

within months as a result of an effective host immune response. Clearance of oncogenic 
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HPV infection is accompanied by cytological regression, which occurs in the majority of 

mild cervical abnormalities. The cellular immunity is an important effector mechanism 

for the clearance of established HPV infection and thus it is likely that the immunological 

surveillance by CTL responses plays a role in the protection against the development and 

progression of cervical lesions. CTL responses are generated when foreign (antigenic) 

proteins are presented to the CTL receptor by HLA class I molecules. TAP is physically 

associated with HLA class I molecules and is required for the transport and processing of 

the viral or tumour antigens degraded to peptides.

HLA or TAP aberrations might lead to a failing immunological surveillance, which 

allows for the oncogenic HPV infection to become persistent. Persistent infection with on-

cogenic HPV types is essential for the development and progression of cervical dysplasia 

and, finally, for the development to cervical cancer. It is accepted that HPV is present in 

all cervical carcinomas, which could be in episomal and integrated form. Viral integration 

of the HPV in the human genome appears to increase with progression to cervical cancer, 

but the biological significance is still debated. Occasionally cervical carcinoma is infected 

with multiple HPV types. Limited knowledge exists of multiple HPV infections in cervical 

cancer and it is complicated to investigate due to technical difficulties.

The past decades both the cervical carcinoma incidence as well as the occurrence of the 

advanced FIGO stages have decreased in developed countries. This is predominantly due 

to the implementation of well-organised screening programmes. The population based 

screening selects women at risk of developing cervical cancer and prevents it by treating 

women with moderate and severe dysplasia. In addition, it allows for downstaging of the 

disease by capturing cervical carcinoma patients in the presymptomatic stages. Unfor-

tunately, cervical carcinoma remains the major cause of cancer related mortality among 

women in developing countries. Implementation of screening programmes in developing 

countries therefore seems an appropriate measure to decrease the high incidence.

In CHAPTER 2 we analysed cervical smears of four different Surinamese ethnicities 

to determine the prevalence of cytological abnormalities of women attending the first 

organised screening programme in a high-risk area for cervical cancer. In addition, we 

investigated whether the differences in cervical cancer incidence existing between the 

studied ethnicities was reflected in the proportions of cytological abnormalities.

It is valuable to obtain insight in the relative influence of endogenous and environmen-

tal factors on differences in cervical carcinoma incidence rates between high- and low-risk 

areas. This could be achieved by comparing the cytological abnormality incidence rates 

of immigrants from a high-risk area for cervical cancer with those of the source popula-

tion. In CHAPTER 3 we therefore compared cervical cytological abnormality incidence 

rates in Surinamese women living in Suriname and the incidence rates in the Surinamese 

immigrants living in the Netherlands. This scenario factors out endogenous differences, as 

the same ethnic population has been studied in two areas.
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As previously discussed, immune surveillance for HPV associated lesions is performed 

by CTLs, which are activated by the antigen presentation of the human leukocyte anti-

gen (HLA) class I molecules. In cervical cancer HLA class I aberrations are common. To 

determine the timing, frequency and mechanism of HLA class I downregulation in cervi-

cal carcinogenesis, we performed immunohistochemistry, loss of heterozygosity (LOH) 

analysis and fluorescent in situ hybridisation (FISH) on cervical carcinoma specimens and 

adjacent cervical intraepithelial neoplasia (CIN) lesions (CHAPTER 4).

The frequently occurring HLA aberrations in cervical cancer are predominantly caused 

by extensive LOH at chromosome 6p21.3, partially in combination with mutations in β
2
m 

or HLA class I genes. The significance of disturbed transporter function in cases with 

loss of HLA class I expression that could not be explained, needs to be explored. Low 

transporter associated with antigen processing (TAP) expression has previously been re-

ported and associated with HLA class I downregulation in cervical carcinomas, but limited 

information exists about underlying mechanisms. In CHAPTER 5 we investigated loss of 

TAP and HLA class I expression in invasive cervical carcinoma and adjacent precursor le-

sions, to determine the occurrence of TAP downregulation and its relation with HLA class 

I in cervical carcinogenesis. In addition, we examined possible causative mechanisms of 

the TAP downregulation by performing LOH and gene mutation analysis.

Up until now, it was the common opinion that, although precursor lesions may have 

multiple human papillomavirus (HPV) infections, invasive cervical carcinoma is a clonal 

process and therefore infected with only one HPV genotype. Recently, a technique better 

suited for detection of multiple HPV infections was developed. This permitted us to inves-

tigate the prevalence of multiple HPV infections in cervical cancer for a low-risk (Dutch) 

and a high-risk (Surinamese) population. Additionally, we examined whether cervical 

carcinomas with a multiple HPV infection are derived from one malignant clone infected 

with multiple HPV types or alternatively, whether multiple malignant clones developed to 

invasive carcinoma (CHAPTER 6).

In CHAPTER 7 several of the topics that are dealt with in this thesis are highlighted 

in a general discussion. Finally, the findings described in the aforementioned studies are 

summarised in English and Dutch (CHAPTER 8 and 9).
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