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1 Cervical Cancer

Aetiology

In 1842 Rigoni-Stern first mentioned that sexual intercourse and cervical cancer appeared 

to be related, because the disease was rare in nuns and common in prostitutes1,2. The idea 

that nuns, virgins and spinsters will not develop cervical cancer, despite being actively 

passed down through decades, was never scientifically well underpinned3. Nevertheless, 

epidemiological studies did show that cervical carcinoma was related to promiscuity and 

a young age of first sexual contact4-6. In 1976, Harald zur Hausen suggested that the 

development of cervical carcinoma was influenced by the sexually transmittable human 

papillomavirus (HPV), a virus until then only known to cause genital warts7. Several years 

later he first isolated, characterised and cloned HPV DNA from genital warts together with 

De Villiers and Gissman8,9. Since then, infection with human papillomavirus has been 

found to be the aetiological agent of cervical cancer10-13. The extensive HPV-mediated 

(cervical) carcinogenesis is elegantly investigated and summarised by Steenbergen14.

Cervical carcinogenesis is a multistep process in which HPV infection is a necessary 

and early event. Other important steps are genetic changes and a failing immune system, 

which will be discussed in more detail in the following paragraphs.

Clinicopathology

The cervix uteri consists of the ectocervix and the endocervix, anatomically divided in 

the visible part (ectocervix) and the non-visible part (endocervix) of the cervix. The 

ectocervix is mainly lined with non-keratinizing stratified squamous epithelium and the 

endocervix with mucus producing columnar epithelium. The squamocolumnar junction 

(SCJ) is defined as the border between the two epithelia. In premenstrual women the SCJ 

is often located in the cervical canal, in the fertile years the SCJ is mostly located on the 

ectocervix. A physiological process called squamous metaplasia occurs in the cervix and 

arises from the subcolumnar “reserve cells”. During this process columnar epithelium is 

gradually replaced by squamous cell epithelium. The SCJ shifts cephalad and in post-

menopausal women it is located in the endocervix again. The area where the squamous 

metaplasia has taken place, which is the area between the original and the new SCJ, is 

called the transformation zone (FIGURE 1). The cells in this transformation zone are less 

stable and therefore particularly susceptible to viral infections. It is in this area where 

cervical carcinogenesis usually occurs15-17.

A disturbed proliferation of squamous cells is called dysplasia or cervical intraepithelial 

neoplasia (CIN) and is the precursor of invasive carcinoma. The grading of CIN is based 

on the severity of the changes and especially on the proportion of the epithelial layer with 

neoplastic changes. In CIN I a third, in CIN II two third and in CIN III (almost) the total 

layer of epithelium contains atypical cells. Although CIN is a precursor lesion, the majority 
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of the untreated mild dysplasias persist or regress to normal cytology. The likelihood of 

progression of CIN I, CIN II and CIN III to invasive carcinoma ranges from 0.4 to 1%, 1.2 

to 5%, and 3.9 to greater than 12%, respectively18-20.

Different clinical (sub)stages of invasive cervical cancer are defined by the Fédération 

Internationale de Gynécologie et d’Obstétrique (FIGO) as summarised in TABLE 121,22.

Several biological types of primary cervical neoplasms exist. Squamous cell carcinoma 

accounts for almost 80%, adenocarcinomas and adenosquamous carcinomas for most of 

TABLE 1

FIGO stages, the different clinical (sub)stages of invasive cervical cancer as defined by the 

Fédération Internationale de Gynécologie et d’Obstétrique21,22

STAGE SUBSTAGE

FIGO I – Limited to the uterus

IA - diagnosed only by microscopy

•	 IA1 – stromal invasion < 3mm + ≤ 7mm spread

•	 IA2 – stromal invasion 3-5mm + ≤ 7 mm spread

IB - lesion with invasion > 5 mm or > 7mm spread

•	 IB1 – lesion ≤ 4cm in greatest dimension

•	 IB2 – lesion > 4 cm in greatest dimension

FIGO II – Invades beyond uterus
IIA – without parametrial invasion

IIB – with parametrial invasion

FIGO III – extends to pelvic wall/

lower 1/3 vagina

IIIA – involves lower 1/3 of vagina

IIIB – extends to pelvic wall and/or causes hydronephrosis 

or non-functioning kidney

FIGO IV

IVA – invades mucosa of bladder or rectum and/or extends 

beyond true pelvis

IVB – distant metastases

FIGURE 1

Squamocolumnar Junction and Transformation Zone

Adapted from155
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the remaining 20%. Very rare types of epithelial tumours of the cervix are, for instance, 

glassy cell carcinoma and small cell carcinoma23.

Treatment and Prognosis

The diagnoses CIN III or less depend on pathological findings. CIN III is treated by 

destruction or removal of the whole transformation zone. When the tumour is invasive the 

treatment of cervical carcinoma depends on its clinical (FIGO) stage. A uterus extirpation 

is usually the therapy of choice in case of micro invasive carcinoma (stage IA). When there 

is a wish for fertility in a woman with cervical cancer stage IA1 conisation is an option. 

In FIGO stage IB and IIA a radical uterus extirpation with (pelvic) lymphadenectomy 

or radiotherapy is performed. A more accurate staging of the tumour and estimation on 

prognosis is possible with surgical treatment. In addition, surgery permits the ovaries to 

be spared, which prevents fertile women from entering the menopause prematurely. A 

third advantage is the decrease in problems with sexual intercourse, possibly even less 

frequently arising if the radical surgery is nerve-sparing24,25. Postoperative radiotherapy 

is indicated with positive lymph nodes or positive surgical margins and parametrial 

involvement. In most clinics postoperative radiotherapy is also performed when other 

unfavourable prognostic factors are present, consisting of depth of tumour infiltration, 

lymphovascular space involvement or tumour volume. After randomised clinical trials 

the NCI now advises to treat the advanced stages (IIB-IV) and high-risk early stages with 

concomitant chemotherapy and radiotherapy26.

Early stage cervical carcinoma can be treated successfully in the majority of the cases, 

with a 5-year recurrence-free survival (RFS) rate of 70-100%26-28. Survival for the more 

advanced stages varies and is influenced by lymph node involvement. The 5-year RFS is 

50-70% for stages IB2, IIA and IIB, 30-50% for stage III and falls rapidly to 5-15% for stage 

IV26. Therapy for recurrent cervical cancer is generally disappointing and depends on 

previously performed radiotherapy. Less than 5% of these patients survive 5 years26.

The most significant prognostic factor on survival is the FIGO stage, but other signifi-

cant prognostic indicators exist as mentioned above27-31. In addition, a major prognostic 

factor is the level of development and poverty of the area in which the patient resides. 

The vast majority of the patients with cervical cancer cannot benefit from the advances of 

the last decades in treatment of this disease, because they live in impoverished countries 

with limited resources and no or inadequate screening programmes26.

Epidemiology

Cervical cancer is the second most common cancer among females worldwide. Over 

493,000 new cases are diagnosed yearly and it remains one of the leading causes of 

death from cancer among women32,33. The highest incidence rates are found in developing 

countries with age adjusted incidence rates up to 68.6 per 100,000 women32. In developed 
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countries the incidence rates have dropped to age standardised rates between 4.3 and 

13.532,34-36. In the Netherlands, an example of a low-risk country for cervical cancer, the age 

adjusted incidence and mortality rates per 100,000 women are 7.3 and 2.3, respectively32.

The past decades both the cervical carcinoma incidence as well as the occurrence of 

the advanced FIGO stages have decreased 30-60% in developed countries. Screening 

programmes in developed countries might account for the majority of this decline in cervi-

cal carcinoma incidence and mortality rates although the impact has never been studied 

in randomised trials35-37.

Prevention

Prevention of cervical cancer can be accomplished by implementing well organised, 

population-based screening programmes. The present screening programmes aim to trace 

cervical precursor lesions by cytologically analysing cervical smears. Several classification 

systems exist for recording cytological abnormalities, including the Bethesda System38 

and the Papanicolaou Classification39 (TABLE 2). In the Netherlands cervical cytological 

abnormalities are graded using the KOPAC system, the official Dutch microscopical cod-

ing system40,41. This system allows for simultaneously scoring of inflammatory and (pre)

neoplastic changes. A Pap score is given for communication with clinician and patient.

Nowadays, the developed countries all have effective screening programmes with 

a coverage and attendance of 50-80%36. In most of these countries a cervical smear is 

taken every three or five years and targets women aged between 30 and 55. Developing 

countries remain high-risk areas for cervical cancer. They account for 79% of the cervical 

cancer incidence worldwide and advanced FIGO stages are still of frequent occurrence 

in these countries35,36. Therefore, implementation of screening programmes in developing 

countries seems an appropriate measure to decrease the high incidence.

TABLE 2

Description, various classification systems and translation of codes for normal squamous epithelial 

cells and (pre)neoplastic changes

DESCRIPTION PAPANICOLAOU BETHESDA KOPAC P-Code

Normal Pap I Normal P1

Borderline Changes Pap II ASCUS P2-3

Mild Dysplasia Pap IIIA (L)SIL P4

Moderate Dysplasia Pap IIIA (H)SIL P5

Severe Dysplasia Pap IIIB (H)SIL P6

Carcinoma in Situ Pap IV (H)SIL P7

Micro invasive Carcinoma Pap V Carcinoma P8

Squamous Cell Carcinoma Pap V Carcinoma P9
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Cervical Cancer in Suriname

Suriname is a high-risk area for cervical carcinoma with an incidence of 27 per 100,000 

women32. A three- to sixfold higher percentage of the advanced FIGO stages (IIB-IV) is 

established compared to the Netherlands, a low-risk country for cervical cancer. There are 

various ethnicities living in Suriname, which have different cervical carcinoma incidence 

rates42. These ethnicities are the Creoles, the Hindustani, the Javanese, the Maroons, the 

Amerindians, the Chinese and all possible mixtures of these ethnicities. Hitherto, the 

high cervical cancer incidence in Suriname and other high-risk countries is attributed to 

absence of an organised screening programme, a presumed high(er) prevalence of the 

human papillomavirus (HPV), immunological factors and environmental or cultural based 

factors, but more research is still needed.

2 Human Papillomavirus (HPV)

Biological Aspects

(Human) Papillomavirus is a genus of the family Papovaviridae. The HPV virions are 

non-enveloped and icosahedral with a circular double stranded DNA (dsDNA) genome of 

almost eight kilo bases in length. The dsDNA consists of six open reading frames (ORF) 

encoding early (E) proteins, two ORFs encoding late (L) proteins, and a non-coding long 

FIGURE 2	

The HPV Virion
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control region (LCR) (FIGURE 2). Papillomaviruses are classified based on their degree of 

DNA homology in the nucleotide sequences of E6, E7 and L1 ORFs.

Cervical HPV infection occurs through microabrasion of the genital epithelium allowing 

access of the viral particles to target cells. For a lesion to persist, it is suggested that the 

virus has to infect an epithelial stem cell43-45. It is generally thought that expression of the 

viral E1 and E2 proteins maintains the HPV DNA as an episome and facilitates the correct 

segregation of genomes during cell division45-47. The major viral oncoproteins E6 and E7 

have been shown to play a vital role in viral episome persistence by interfering with 

the cell cycle48,49. They can stimulate cell cycle progression and associate with cell cycle 

regulators50-52. E6 binds to p53 and herewith inactivates p53-mediated growth suppression 

and apoptosis53, whereas E7 binds to pRb which inactivates this negative regulator of the 

cell cycle54.

To date, 118 papillomaviruses (PVs) comprising of 96 human and 22 animal papil-

lomavirus types have been completely described and several hundred putative new PVs 

types are partially characterised55-58. The HPV genotypes can be divided into a subgroup 

FIGURE 3

Phylogenetic Tree of Papillomaviruses

Adapted from156
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of mucosal HPV types, which is associated with anogenital lesions and a subgroup of 

cutaneous HPV types, which induce mostly benign skin lesions. The mucosal HPV types 

are further classified as (probable) oncogenic or high-risk types which are predominantly 

found in CIN III lesions and anogenital cancers, and low-risk HPV types which are mainly 

found in benign and CIN I-II lesions57-59(FIGURE 3). Forty types infecting the anogenital 

tract are found in anogenital cancer specimens56,60,61.

Occurrence

Most women undergo an HPV infection during life, but are able to clear it without ever 

having any clinical symptoms. HPV DNA is detectable in 2% to more than 20% of the 

global female population at any time33. In women with normal cytology or mild dysplasia 

the predominant HPV types are low-risk. With increasing severity of dysplasia the overall 

HPV prevalence also increases and the oncogenic HPV types become more prevalent. 

Finally, in invasive cervical carcinoma the oncogenic HPV prevalence is established to be 

almost 100% and thus HPV is accepted to be a necessary cause10-13,33,62-64.

The prevalence and distribution of HPV genotypes show considerable geographic and 

ethnical variation, especially for the less common types. In most areas the predominant 

HPV genotypes in cervical cancer are HPV 16 (30-50%) and HPV 18 (10-15%). In non-

western countries other types, like 45, 52 and 58, are also detected in a considerable 

proportion of the cervical cancers65,66.

It is possible to have an HPV infection with multiple HPV genotypes simultaneously.

Different studies report about multiple HPV infections in cervical samples with normal 

cytology or atypical squamous cells of undetermined significance (ASCUS) and mild to 

severe dysplasia67-72. It is generally thought that the cells infected with the most oncogenic 

type will eventually transform into the invasive tumour clone. In the majority of invasive 

carcinomas mainly single HPV infections were detected and until recently only occasion-

ally a multiple HPV infection was found. Because of newly developed techniques better 

suitable for detection of multiple HPV types, it is now possible to get an accurate indica-

tion of their prevalence in cervical carcinoma and its precursors.

Detection Techniques

The (human) papillomaviruses can only replicate in differentiating stratified squamous 

epithelium, which cannot be grown as a conventional cell culture. Serological tests for 

HPV have an estimated sensitivity of only 50% using detection of HPV DNA as a stan-

dard73. Therefore HPV infection and typing can only be accurately diagnosed by molecular 

methods73,74. Several HPV assays are described, but nowadays the polymerase chain reac-

tion (PCR) based techniques are the method of choice due to the greater sensitivity and 

technical facilities75. Since there is significant sequence variation between the genotypes, 

either a large number of type-specific PCRs or a single broad-spectrum PCR primer set, 
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can be used. Several general PCR primer sets have been developed, which aim at the most 

conserved sequences of the viral genome, permitting amplification of a broad spectrum 

of HPV genotypes70,73,76-78. After the HPV detection, the HPV genotyping is performed by 

sequence analysis, a reverse hybridisation assay71,79-81 or, more recently, micro arrays82,83.

3 Immunology and Cervical Carcinoma

Human Leukocyte Antigen (HLA)

Background

The immune system is the specific defence mechanism against the external world. It com-

prises the antibody mediated (humoral) system, for which B-cells are responsible, and the 

cellular system, predominantly mediated by cytotoxic T-lymphocytes (CTLs). Both systems 

are involved in the immunological management of a viral infection. The humoral immune 

system probably is important for prevention of viral infections, the cellular immune system 

for the elimination of a virus and virus induced lesions. Immunological surveillance in 

HPV associated lesions is thus performed by CTLs, which are activated when foreign 

(antigenic) proteins are presented to the CTL receptor by human leukocyte antigen (HLA) 

class I. HLA class I molecules are expressed on virtually all cells84.

HLA

The major histocompatibility complex (MHC) is located on the short arm of chromosome 

6 at 6p21.3 and comprises 240 different gene loci85, of which many encode for HLA 

molecules. The MHC can be subdivided into three closely linked multigene families, 

class II (HLA-DR, -DP and -DQ genes), class III (includes genes encoding complement 

and tumour necrosis factor (TNF)) and class I genes (the classical class IA genes, HLA-A, 

-B and -C, and the non-classical class IB genes, HLA-E, -H, -G and -F) (FIGURE 4). The 

MHC genes all encode for proteins that control the immune responses to pathogens, graft 

acceptance or rejection and tumour surveillance. The HLA class I and class II molecules 

are encoded by, respectively, class I and class II genes. On each chromosome 6 the genes 

in the class I-III regions compose a combination, called a haplotype. The two haplotypes 

on the chromosome 6 pair combined are called the HLA genotype. The HLA genotype is 

expressed as HLA class I and class II molecules on the cell surface and this is called the 

HLA phenotype.

HLA Class I Antigen Processing and Presentation

HLA class I molecules are expressed on nearly every somatic cell84 and on virally infected 

tumour cells. They consist of a polymorphic heavy α chain (HC), encoded by the HLA 

class I genes HLA-A, -B and -C on chromosome 6p21.3, in non-covalent association with 
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the light β chain, encoded by the β
2
-microglobulin (β

2
m) gene on chromosome 15q21. The 

association with β
2
m is important for the stability of the HLA class I molecule86.

The antigen processing and presenting by the HLA class I molecule or HC-β
2
m complex 

concerns mainly endogenous processed antigens (viral or tumour associated products, or 

waste products from the cell itself). Endogenous proteins are degraded in the cytosol into 

smaller fragments, called peptides. These peptides are subsequently transported by the 

transporter associated with antigen processing (TAP), which consists of two subunits TAP1 

and TAP2 that form a channel in the endoplasmatic reticulum (ER)-membrane87. In the ER, 

the assembly of the HLA class I heavy chain, the β
2
m light chain88 and the peptides89,90 is 

chaperoned by several proteins91-95. The newly formed complex is then transported via 

the Golgi network to the cell surface and is subsequently presented to circulating CTLs 

(FIGURE 5). In addition, TAP independent mechanisms have been described96-101.

FIGURE 4

The Major Histocompatibility Complex. 	 Provided by E.S. Jordanova
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Immune Evasion in Cervical Cancer

Loss of HLA class I cell surface expression, HLA class I downregulation, occurs in various 

solid tumours and tumour cell lines102,103 and is thought to result in escape from the cyto-

toxic CTL attack. It occurs frequently in cervical carcinoma and is predominantly caused 

by losses at chromosome 6p21.3, the region where the HLA genes are localised104-107. HLA 

class I expression was also tested in CIN-lesions with varying outcomes108-110, but in these 

lesions knowledge remains limited about altered HLA class I expression in association 

with the underlying mechanisms. HLA class I downregulation is frequently associated 

with impaired TAP expression111-114 and it has been correlated with TAP gene regulatory 

abnormalities and mutations in various tumour types115-120.

FIGURE 5

HLA Class I Antigen Processing and Presentation. 	 Provided by E.S. Jordanova
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Currently, research concerning prevention and treatment in cervical cancer focuses on 

HPV vaccines121-124. Therapeutic vaccines are based on the viral oncogenic proteins E6 

and E7 and aim to induce cell-mediated responses to eliminate the transformed tumour 

cells124. CTLs will only recognise viral peptides if HLA class I molecules present them on 

the surface of the infected cell. Therefore, HLA class I downregulation would compromise 

the effectiveness of an HPV vaccine.

Genetic Basis of Immune Evasion

During carcinogenesis multiple genetic events take place involving proto-oncogenes 

and tumour suppressor genes (TSGs), two classes of genes that are both involved in 

tumour progression and metastasis125-128. Vogelstein and Kinzler described the multistep 

nature of cancer125, which is distinctly illustrated by the multigenic model for colorectal 

tumorigenesis129. It was suggested that only a subset of genetic pathways can initiate the 

tumorigenic process in particular cell types and that mutation at some genes confers a 

selective growth advantage125. In cervical cancer the two HPV-encoded oncoproteins E6 

and E7 can independently induce chromosomal abnormalities, which causes genomic 

instability and ultimately facilitates carcinogenic progression130,131.

Alfred Knudson advanced his “two hit” model in 1971 as a necessary condition for 

certain cancers to develop132. All chromosomes exist in pairs and carry the genes, of 

which most have two similar copies. An alteration in each of two gene alleles inactivates a 

tumour suppressor gene, leading to tumour development and growth. One hit is an innate 

(germ line) mutation (occurs in hereditary cancer) or a somatic mutation (in sporadic 

cancer), the other hit an event that often leads to loss of heterozygosity (LOH)133-137. 

Such an event can be deletion, gene conversion, (mitotic) recombination, translocation, 

nondisjunction or chromosome loss, chromosome duplication and promoter methylation 

and could lead to haploinsufficiency128,137-139. LOH can be detected by polymorphic repeat 

markers flanking the locus of interest, or situated in the target gene. Those polymorphic 

markers are formed based on repeat sequences in the DNA, which are heterozygous for 

the two gene alleles in a large percentage of the population. The LOH analysis is used to 

indicate loci that may contain a TSG. However, accurately defining a common LOH region 

with a possible TSG can be confounded by deficient LOH detection, genetic instability and 

inter-/intratumour heterogeneity139.

LOH at chromosome 6p21.3, the region where the HLA genes are located, occurs at 

high frequencies in cervical cancer140-146. With most genes both alleles need to be switched 

off to inactivate the gene. HLA genes are co-dominant therefore switching off one gene 

allele could induce inactivation. Koopman et al. proved in a study on fresh tumour tissue 

that LOH at 6p21.3 represents an important and common mechanism by which HLA genes 

and their products are abolished107. LOH on 6p21.3 is also frequently detected in high 

grade CIN-lesions, indicating that it is an early event in the cervical carcinogenesis147,148. A 
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genetic basis was shown for most of the cervical tumours with an altered HLA phenotype. 

This involved, besides LOH, class I gene mutation (on chromosome 6p21.3) and β
2
m 

mutation (on chromosome 15q21) or a combination of these events107,149. Further investiga-

tions are yet needed of the unexplained HLA class I phenotype alterations to clarify the 

underlying mechanisms.

Other mechanisms causing HLA class I downregulation could be mutation(s) and LOH 

in the genes encoding for TAP I or II. A recent cervical carcinoma study reported possible 

mutations in these TAP encoding genes, but the method of detection was not conclusive. 

In fact, LOH and polymorphisms in TAP genes were studied and loss of TAP expression 

was not investigated150.

Vaccination

The close relationship between viral infection and cancer makes HPV an attractive target 

for prophylactic and therapeutic vaccine development. Prophylactic vaccines are developed 

to prevent infection by generation of antibodies to recombinant capsid proteins L1 (and 

L2) that neutralise viral infection121,122,124,151. Therapeutic vaccines generally target E6 and 

E7 which are critical for the immortalisation in (pre)malignant cells in order to induce 

regression of established infection and possibly control the HPV-associated lesion121,123,124,152. 

The vaccines can be delivered directly as protein, as DNA that encodes and expresses the 

requisite viral protein(s), or by heterologous viral vectors153. Various approaches are being 

taken in the development of prophylactic HPV vaccines, the most advanced and promising 

being the use of non-infectious recombinant virus-like particles assembling from pentamers 

of the L1 capsid protein and inducing high titres of virus-neutralising antibodies124. Encour-

aging results from animal and human vaccine trials have led to large scale efficacy trials 

concerning prophylactic and therapeutic vaccination121-124,151. Recent research on safety and 

efficacy of candidate prophylactic vaccines have shown a nearly 100% protection against 

the development of (high-grade) HPV 16 and 18 induced cervical lesions124,151,154. Several 

therapeutic vaccines have been developed and are currently under clinical evaluation124.

4 Scope of this Thesis

As discussed previously, cervical cancer is preceded by several stages of precursor le-

sions. Population-based screening programmes aim to trace these precursor lesions by 

cytologically analysing cervical smears. The premalignancies are mainly induced by HPV 

infection, which is very common in young women worldwide and influenced by endog-

enous and environmental factors. Behavioural factors like lifestyle and viral characteristics 

are important environmental factors. Most HPV infections are transient and are cleared 

within months as a result of an effective host immune response. Clearance of oncogenic 
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HPV infection is accompanied by cytological regression, which occurs in the majority of 

mild cervical abnormalities. The cellular immunity is an important effector mechanism 

for the clearance of established HPV infection and thus it is likely that the immunological 

surveillance by CTL responses plays a role in the protection against the development and 

progression of cervical lesions. CTL responses are generated when foreign (antigenic) 

proteins are presented to the CTL receptor by HLA class I molecules. TAP is physically 

associated with HLA class I molecules and is required for the transport and processing of 

the viral or tumour antigens degraded to peptides.

HLA or TAP aberrations might lead to a failing immunological surveillance, which 

allows for the oncogenic HPV infection to become persistent. Persistent infection with on-

cogenic HPV types is essential for the development and progression of cervical dysplasia 

and, finally, for the development to cervical cancer. It is accepted that HPV is present in 

all cervical carcinomas, which could be in episomal and integrated form. Viral integration 

of the HPV in the human genome appears to increase with progression to cervical cancer, 

but the biological significance is still debated. Occasionally cervical carcinoma is infected 

with multiple HPV types. Limited knowledge exists of multiple HPV infections in cervical 

cancer and it is complicated to investigate due to technical difficulties.

The past decades both the cervical carcinoma incidence as well as the occurrence of the 

advanced FIGO stages have decreased in developed countries. This is predominantly due 

to the implementation of well-organised screening programmes. The population based 

screening selects women at risk of developing cervical cancer and prevents it by treating 

women with moderate and severe dysplasia. In addition, it allows for downstaging of the 

disease by capturing cervical carcinoma patients in the presymptomatic stages. Unfor-

tunately, cervical carcinoma remains the major cause of cancer related mortality among 

women in developing countries. Implementation of screening programmes in developing 

countries therefore seems an appropriate measure to decrease the high incidence.

In CHAPTER 2 we analysed cervical smears of four different Surinamese ethnicities 

to determine the prevalence of cytological abnormalities of women attending the first 

organised screening programme in a high-risk area for cervical cancer. In addition, we 

investigated whether the differences in cervical cancer incidence existing between the 

studied ethnicities was reflected in the proportions of cytological abnormalities.

It is valuable to obtain insight in the relative influence of endogenous and environmen-

tal factors on differences in cervical carcinoma incidence rates between high- and low-risk 

areas. This could be achieved by comparing the cytological abnormality incidence rates 

of immigrants from a high-risk area for cervical cancer with those of the source popula-

tion. In CHAPTER 3 we therefore compared cervical cytological abnormality incidence 

rates in Surinamese women living in Suriname and the incidence rates in the Surinamese 

immigrants living in the Netherlands. This scenario factors out endogenous differences, as 

the same ethnic population has been studied in two areas.
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As previously discussed, immune surveillance for HPV associated lesions is performed 

by CTLs, which are activated by the antigen presentation of the human leukocyte anti-

gen (HLA) class I molecules. In cervical cancer HLA class I aberrations are common. To 

determine the timing, frequency and mechanism of HLA class I downregulation in cervi-

cal carcinogenesis, we performed immunohistochemistry, loss of heterozygosity (LOH) 

analysis and fluorescent in situ hybridisation (FISH) on cervical carcinoma specimens and 

adjacent cervical intraepithelial neoplasia (CIN) lesions (CHAPTER 4).

The frequently occurring HLA aberrations in cervical cancer are predominantly caused 

by extensive LOH at chromosome 6p21.3, partially in combination with mutations in β
2
m 

or HLA class I genes. The significance of disturbed transporter function in cases with 

loss of HLA class I expression that could not be explained, needs to be explored. Low 

transporter associated with antigen processing (TAP) expression has previously been re-

ported and associated with HLA class I downregulation in cervical carcinomas, but limited 

information exists about underlying mechanisms. In CHAPTER 5 we investigated loss of 

TAP and HLA class I expression in invasive cervical carcinoma and adjacent precursor le-

sions, to determine the occurrence of TAP downregulation and its relation with HLA class 

I in cervical carcinogenesis. In addition, we examined possible causative mechanisms of 

the TAP downregulation by performing LOH and gene mutation analysis.

Up until now, it was the common opinion that, although precursor lesions may have 

multiple human papillomavirus (HPV) infections, invasive cervical carcinoma is a clonal 

process and therefore infected with only one HPV genotype. Recently, a technique better 

suited for detection of multiple HPV infections was developed. This permitted us to inves-

tigate the prevalence of multiple HPV infections in cervical cancer for a low-risk (Dutch) 

and a high-risk (Surinamese) population. Additionally, we examined whether cervical 

carcinomas with a multiple HPV infection are derived from one malignant clone infected 

with multiple HPV types or alternatively, whether multiple malignant clones developed to 

invasive carcinoma (CHAPTER 6).

In CHAPTER 7 several of the topics that are dealt with in this thesis are highlighted 

in a general discussion. Finally, the findings described in the aforementioned studies are 

summarised in English and Dutch (CHAPTER 8 and 9).
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Abstract

We determined the prevalence of cytological abnormalities in cervical smears of women 

attending the first organised screening programme in Suriname and to compare the 

prevalences in four Surinamese ethnicities with different cervical carcinoma incidence. 

Cervical scrapes were taken from women with four different ethnicities, i.e. Maroons, 

Amerindians, Javanese and Hindustani. Papanicolaou staining and cytological screening 

were performed on 807 cervical smears. Cervical cytological abnormalities were seen in 

13.4%, of which 8.1% (62/764) with atypical changes, 2.6% (20/764) with mild and 2.6% 

(20/764) with moderate and severe dysplasia/CIS. The cytological abnormalities varied 

between the ethnicities, 42.1% (83/197) in the Maroons and 2.3% (4/176), 5.0% (9/183), 

and 3.0% (6/208) in the Javanese, Amerindians, and Hindustani, respectively. The high 

prevalence of moderate and severe dysplasia/CIS in all ethnicities correlates with the high 

cervical carcinoma incidence in Suriname. A significantly higher prevalence of mild ab-

normalities in the Maroons was observed, which did not reflect the relatively low cervical 

cancer incidence in this ethnicity. However, this can be explained by the possibility that 

these women have a different sexual lifestyle, leading to a higher prevalence of transient 

HPV infection.
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Introduction

Cervical carcinoma is the second most common female cancer throughout the world 

with considerable differences in incidence rates. Worldwide, over 470,000 new cases are 

diagnosed yearly and it remains one of the leading causes of death from cancer among 

women1-3. The highest incidence rates are found in developing countries with age adjusted 

incidence rates of more than 20 per 100,000 women in South America1-5.

The past decades both the cervical carcinoma incidence as well as the occurrence of 

the advanced FIGO stages6 have decreased in developed countries. Screening programme 

in developed countries account for the majority of this decline in cervical carcinoma 

incidence and mortality rates although the impact has never been studied in randomised 

trials5,7,8. Decades after the implementation of screening programme, the cervical cancer 

incidence in the developed countries has decreased 30-60% to age standardised rates be-

tween 5.0 and 12.11,3-5,8. Results of a recent case-control study indicated that the substantial 

decrease in cervical carcinoma incidence and mortality rates in Finland is mainly due to 

the organised mass screening9.

Unfortunately, developing countries remain high-risk areas for cervical cancer. They ac-

count for 79% of the cervical cancer incidence worldwide and advanced FIGO stages are 

still of frequent occurrence in these countries8. Implementation of screening programmes 

in developing countries therefore seems an appropriate measure to decrease the high 

incidence.

Suriname is a high risk area for cervical carcinoma with an incidence of at least 26.7 per 

100,000 women and a three- to six fold higher percentage of the advanced FIGO stages 

(IIB-IV)10. There are various ethnicities living in Suriname, which have a different cervical 

carcinoma incidence. We analysed cervical smears of four different Surinamese ethnicities 

to determine the prevalence of cytological abnormalities in cervical smears of Surinamese 

women attending the (preliminary) screening programme that started in 1997. In addition, 

we investigated whether the differences in cervical cancer incidence existing between the 

ethnicities was reflected in the proportions of cytological abnormalities.

Material and Methods

Study Population

The smears in this study were collected from Surinamese women attending the (pre-

liminary) screening programme that was part of the bilateral medical care programme 

between Suriname and the Netherlands. Cervical smears from women of four different 

ethnicities, i.e. Maroons, Javanese, Amerindians, and Hindustani, were analysed for this 

study. In former studies about Suriname10,11 Maroons were called “bush Negroes”. Recently 
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this ethnicity was renamed. The current name is used in this study. The smears were 

taken between April 1997 and December 2000 throughout the whole country. Two of our 

studied ethnicities (Javanese and Hindustani) reside predominantly in urban areas, i.e. 

Paramaribo, and two (Maroons and Amerindians) reside in the inlands of Suriname. The 

Maroons and the Hindustani have the lowest cervical carcinoma incidence, the Javanese 

and the Amerindians have the highest incidence in Suriname10.

Cervical Smearing

A highly experienced and trained physician (A.G.) supervised and coordinated the practi-

cal part of the cervical screening programme. Under his guidance well-trained physicians 

(assistants) took cervical smears of all the Surinamese women. The majority of the smears 

were taken in one of the mobile medical units or at a medical clinic in Paramaribo.

A smear sample was taken and spread on two glass slides, fixed and stored at room 

temperature until use. For every woman a new, disposable cervix brush was used. One 

glass slide was included in the Surinamese screening programme, the other was shipped 

to Leiden for review.

Cytological Diagnosis

After shipping the material to Leiden, the Netherlands, standard Papanicolaou staining 

was performed on all samples for diagnostic purposes. The smears were reviewed by 

qualified cytotechnologists and a cytopathologist for adequacy, presence of inflammation, 

pathogens and cytological atypia. Cervical cytological abnormalities were graded using 

the KOPAC system, the official Dutch microscopical coding system12,13. A Pap score was 

given for communication with clinician and patient. Furthermore, special attention was 

paid to signs of viral infection, as well as other cervical infections. The term “(cervical) 

cytological abnormalities” was merely used for atypical or dysplastic changes and not for 

changes caused by cervical infections.

Statistical Analysis

Odds ratios (OR) and age adjusted ORs with a 95% confidence interval (CI) of cytological 

findings were calculated for the different ethnicities by using logistic regression. The 

Hindustani was used as reference ethnicity, because their cervical carcinoma incidence is 

the average of all ethnicities in Suriname. Both the odds for squamous atypia and higher, 

and for mild dysplasia and higher were estimated. The reason for this is that smears with 

squamous atypia can neither be classified normal nor dysplastic. Recent studies show the 

broad variation of follow-up cytological and histological diagnoses after a first diagnosis of 

squamous atypia or ASCUS, underlining the necessity of this transition group14-17.
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Results

The age distribution of the four studied ethnic groups is shown in FIGURE 1. The median 

age of the ethnicities was 34 for the Hindustani (mean 35.1 years), the Amerindians (mean 

35.8 years), the Maroons (mean 38.1 years) and 34.5 for the Javanese (mean 36.4 years).

Cytopathological Diagnosis

TABLE 1 shows a comparison of four cytological classifications for cervical squamous 

cells that are frequently used in cytopathology. In the total group 5.3% (43/807) of the 

smears were unsuitable for cytological evaluation. Cervical cytological abnormalities were 

detected in 13.4% (102/764) of the assessable smears. Squamous atypia was seen in 8.1% 

(62/764), mild dysplasia in 2.6% (20/764) and moderate and severe dysplasia/CIS in 2.6% 

(20/764) of the smears. TABLE 2 shows the high prevalence of squamous atypia in the 

TABLE 1

Comparison of four cytological classifications for cervical squamous cells27

Classification Stage

Bethesda

2001
NILM

ASC-US

ASC-H
(L)SIL (H)SIL

Invasive 

carcinoma

CIN

Nomenclature
Negative

Squamous 

Atypia
CIN I CIN II CIN III

Invasive 

carcinoma

Dysplasia

Nomenclature
Negative

Squamous 

Atypia

Mild 

Dysplasia

Moderate 

Dysplasia

Severe 

Dysplasia/

CIS

Invasive 

carcinoma

Papanicolaou

Classification
Pap I Pap II Pap IIIA* Pap IIIB/IV Pap V

*Pap IIIA consists of both mild and moderate dysplasia

TABLE 2

Prevalence of the Cytological Diagnoses in the Assessable Smears per Ethnicity

Ethnicity No. 

Tested

Normal 

Cytology 

(%)

Squamous 

Atypia 

(%)

Mild 

Dysplasia 

(%)

Moderate 

Dysplasia 

(%)

Severe 

Dysplasia/

CIS (%)

Maroons 197 114 (58) 57 (29) 15 (7.6) 3 (1.5)   8 (4)

Javanese 176 172 (97.7)   1 (0.6)   3 (1.7) 0 (0)   0 (0)

Amerindians 183 174 (95)   2 (1)   0 (0) 2 (1)   5 (3)

Hindustani 208 202 (97)   2 (1)   2 (1) 2 (1)   0 (0)

All samples 764 662 (86.6) 62 (8.1) 20 (2.6) 7 (0.9) 13 (1.7)
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Maroons (29%) and the lower prevalence in the other ethnicities (1%). It also shows the 

significantly higher prevalence of mild dysplasia in the Maroons (7.6%) compared to the 

Hindustani, the Javanese and the Amerindians (1%, 1.7% and 0%). Moderate and severe 

dysplasia/CIS was observed in respectively 5.5%, 1%, 0% and 4% of the Maroons, the 

Hindustani, the Javanese and the Amerindians (TABLE 2).

The odds ratios and the age adjusted odds ratios of the cytological findings per ethnic-

ity are shown in TABLE 3. The odds ratios for squamous atypia and higher is shown in 

TABLE 3A. The highest age adjusted odds ratio of 26.0 (CI 10.7-62.8) was seen in the 

Maroons. The odds ratios for mild dysplasia and higher are shown in TABLE 3B. In the 

Maroons an age adjusted odds ratio of 8.8 (CI 2.9-26.4) was seen and in the Amerindians 

an age adjusted odds ratio of 2.13 (CI 0.6-7.4).

Cervical Infections

Virally induced changes, like koilocytosis, were seen in 7.6% of the assessable smears. 

These changes were present in 2.9% of the Hindustani, 1.7% of the Javanese, 2.2% of the 

Amerindians and 22.8% of the Maroons (data not shown). In 7.5% of the smears evidence 

of a Trichomonas infection was seen. In the Hindustani, the Javanese and the Amerindians 

in 1.4%, 0.6%, and 2.2%, respectively, in de Maroons in 24.9% of the assessable smears. In 

the Maroons 22.8% of the smears with squamous atypia were infected with Trichomonas 

(TABLE 4).

FIGURE 1 
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Discussion

A high prevalence of moderate and severe dysplasia/CIS was found in this study of 

a high-risk population for cervical carcinoma. Cervical cytological abnormalities were 

detected in 13.4% of the assessable smears, of which 2.6% was moderate and severe 

dysplasia/CIS. In the smears of the Maroons significantly more cytological abnormalities 

TABLE 3

Odds Ratios for Cytological Abnormalities in Assessable Smears per Ethnicity

3A. Odds Ratios for Squamous Atypia and Higher

Ethnicity No. 

Tested

Sq. Atypia < 

(%)

OR 95% CI OR
adj

a 95% CI
adj

a

Maroons 197 83 (42) 24.51 10.37-57.90 25.97 10.74-62.81

Javanese 176   4 (2.3)   0.78   0.23-2.82   0.74   0.21-2.67

Amerindians 183   9 (5)   1.74   0.61-4.99   1.77   0.62-5.10

Hindustani 208   6 (3)   1.00 reference   1.00 reference
aAdjusted for age groups

3B. Odds Ratios for Mild Dysplasia and Higher

Ethnicity No. 

Tested

Mild Dyspl. < 

(%)

OR 95% CI OR
adj

a 95% CI
adj

a

Maroons 197 26 (13.1) 7.75 2.65-22.66 8.80 2.94-26.38

Javanese 176   3 (1.7) 0.88 0.20-4.01 0.85 0.19-3.86

Amerindians 183   7 (4) 2.03 0.58-7.04 2.13 0.61-7.44

Hindustani 208   4 (2) 1.00 reference 1.00 reference
aAdjusted for age groups

TABLE 4

Prevalence of Trichomonas Infection in the Assessable Smears per Ethnicity and Cytological 

Diagnosis

Ethnicity No. 

Tested

Normal 

Cytology 

(%)

Squamous 

Atypia 

(%)

Mild 

Dysplasia 

(%)

Moder./severe 

Dysplasia/CIS 

(%)

Maroons 197 34/114 (29.8) 13/57 (22.8) 2/15 (13.3) 0 (0)

Javanese 176   1/172 (0.6) 0  (0) 0  (0) 0 (0)

Amerindians 183   4/174 (2.3) 0  (0) 0  (0) 0 (0)

Hindustani 208   3/202 (1.5) 0  (0) 0  (0) 0 (0)

All samples 764 42/662 (6.3) 13/62 (21.0) 2/20 (10.0) 0 (0)
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were detected. Remarkably, their cervical cancer incidence is among the lowest of the 

Surinamese ethnicities.

In the developed countries the cervical cancer incidence has decreased substantially 

decades after the implementation of screening programmes1-5. The programme in Finland 

is the model for organised programmes of screening by cervical cytology worldwide18. 

Between the implementation in 1963 and 1990 when the data was established, there has 

been an 80% decrease in age-adjusted incidence of, and mortality from, cervical cancer19. 

The detection rate of dysplasia in cervical smears in Finland was 0.7% in 199920. In the 

Netherlands, which is also a low-risk country with a well organised screening programme 

since decades, moderate and severe dysplasia/CIS was detected in 0.6% in 200121.

Since cervical carcinoma is the most common cancer among women in developing 

countries, the World Health Organization (WHO) recommends the implementation of 

organised screening programme for cervical cancer in all high-risk areas5. In Suriname a 

nation wide screening programme was initiated in 1998. A high prevalence of cytologi-

cally abnormal smears was expected and our study does indeed show a high prevalence 

of especially moderate and severe dysplasia/CIS. This correlates with the high cervical 

cancer incidence in Suriname10.

In Cameroon liquid-based and conventional cytology was compared. ASCUS/LSIL was 

detected in 10.1%, HSIL in 2.5% (liquid-based cytology)22. These prevalences are similar 

to the prevalences detected in our study. They are higher than the prevalences in the 

Netherlands20,21,23. They are also higher than the prevalences in Finland, another low-risk 

country, but the ASCUS prevalence is similar to that in Finland24. Women with dysplasia 

will be treated if histological analysis shows CIN and this prevents further carcinogenesis 

and therefore invasive carcinoma.

In the Maroons a much higher prevalence of squamous atypia and mild dysplasia was 

present, which could be caused by a possible higher HPV prevalence in this ethnicity. In-

deed, HPV-suggesting abnormalities (mainly koilocytosis) were significantly higher among 

the Maroons (22.6%). This is a strikingly high number when compared with for instance 

similar data reported from the mass screening in Finland (around 1%)25,26. Koilocytosis 

is associated with clinically active viral infections, the vast majority of which are caused 

by low-risk HPV types. Koilocytosis becomes progressively more rare among infections 

caused by high-risk HPV types, which induce a transforming infection with progressive 

cytological atypia. The productive HPV infections are normally rapidly regressing. Our 

findings are most feasibly explained by the likelihood of a more active sexual lifestyle 

among the Maroons. This is manifested as the higher Trichomonas infection rate and the 

extremely high koilocytosis incidence. The latter relates to a high prevalence of low-risk 

HPV infections, which results in a high prevalence of predominantly mild abnormalities. 

As these represent transitory events, they do not necessarily relate to the cervical cancer 

incidence. The prevalence of moderate and severe dysplasia of the Maroons approached 
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that of the other ethnicities, which is more in accordance with their relatively low cervical 

carcinoma incidence. Remaining inconsistencies could be influenced by the fact that our 

interpretation of abnormalities is limited to cytology alone.

The prevalence rates we found could be influenced by an incomplete attendance and 

coverage of the population screening in Suriname. The coverage in Suriname for the 

females in the target age was approximately 50%. Successful screening programmes in 

developed countries cover at least 60% of the female population at risk, which is screened 

at regular intervals8,20,21,23. There was no significant difference in coverage between the 

various ethnicities in Suriname.

In conclusion, the high prevalence of moderate and severe dysplasia/CIS in all eth-

nicities correlates with the high cervical carcinoma incidence in Suriname. The higher 

prevalence of mild cervical cytological abnormalities in Maroons does not reflect their 

relatively low cervical cancer incidence. This is, however, likely to be due to a higher 

transient HPV infection prevalence, most feasibly explained by the likelihood of a more 

active sexual lifestyle.
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Abstract

Incidence rates of cervical cancer and its precursors vary considerably, with the high-

est rates found in developing countries. Differences are influenced by endogenous and 

exogenous factors. Comparing cytological abnormality incidence rates from a high-risk 

population in the original high-risk area with those of women from this high-risk popula-

tion who have immigrated to a low-risk area could give insight in the significance of 

endogenous versus environmental factors. Smears collected from Surinamese women 

attending the Surinamese screening programme and smears collected from immigrant Su-

rinamese women attending the Dutch screening programme were cytologically analysed 

using the Dutch microscopical coding system KOPAC. Statistical analysis was performed 

by using logistic regression to calculate (age-adjusted) odds ratios. The age-adjusted odds 

ratios of having dysplasia were higher for Surinamese women living in Suriname versus 

Surinamese immigrant women and increased with increasing P-scores: 0.77 (0.31-1.91) for 

borderline changes, 1.62 (0.58-4.57) for mild dysplasia and 3.20 (1.55-6.60) for moderate 

to severe dysplasia/neoplasia. We conclude that fewer cases with dysplasia are present in 

a high-risk population that has immigrated to a low-risk area for cervical cancer than in 

the high-risk population continuously living in a high-risk area. This finding emphasises 

the importance of environmental factors.
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Introduction

Cervical carcinoma remains the second most common cancer among women worldwide, 

with over 470,000 new cases diagnosed yearly1. Incidence rates of cervical cancer and 

premalignant cervical lesions vary considerably and the highest incidence rates are found 

in developing countries1-3. The differences in incidence rates are influenced by exogenous 

and endogenous factors4. Important exogenous or environmental factors are human papil-

lomavirus (HPV, the unifying risk factor for cervical cancer5,6 and its precursors7), screening 

history and sexual lifestyle4,8. Endogenous factors consist of immunogenetic characteristics 

among others. Although these risk factors have been studied previously, the relative 

influence of endogenous and environmental factors on the differences in incidence rates 

between high- and low-risk areas remains unclear. It is possible to obtain insight in this 

matter by comparing the cytological abnormality incidence rates of immigrants from a 

high-risk area for cervical cancer with those of the source population.

Suriname is a high-risk area for cervical carcinoma with an incidence of at least 26.7 

per 100,000 women and a three- to sixfold higher percentage of the advanced FIGO stages 

(IIB-IV) than found in low-risk areas9. Almost half of the Surinamese population lives in 

the Netherlands, as a result of Suriname being a former Dutch colony. The demographics 

of the Surinamese immigrants in the Netherlands and the source population in Suriname 

are similar10,11, which provides us with a unique opportunity for research. The purpose of 

this study was to compare cervical cytological abnormality incidence rates in a high-risk 

population living in a high-risk area for cervical cancer and the incidence rates in members 

of the same high-risk population who have emigrated and are living in a low-risk area.

Material and Methods

Surinamese Study Population from the Surinamese Screening Programme

In Suriname the nationwide screening programme started as part of the bilateral medical 

care programme between Suriname and the Netherlands. It targets women aged between 

20 and 55. For most Surinamese women this is their first smear taken ever, as this is 

the first screening programme implemented in Suriname. All smears are analysed by 

the Cytology Department of the Lobi Foundation and by the Department of Pathology, 

Academic Hospital, Paramaribo, Suriname. The response rate of the targeted women of 

the Surinamese screening programme in this period was estimated at 50%. Between 1997 

and 2001 a random sample of the smears (n = 890, stratified by race) was also analysed by 

the Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands. 

For this study, the smears analysed in the Netherlands were used. Only smears from ethnic 
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groups who have immigrated to the Netherlands were included in the study population. 

The final number of smears from Suriname in this study was 686.

Surinamese Study Population from the Dutch Screening Programme

The regular Dutch screening programme targets women in the Netherlands between 30 

and 60 years of age. Among these women are Dutch citizens and legal immigrants. The 

smears of all women attending the screening programme in the Western region of the 

Netherlands between 1997 and 2001 were collected. From these smears, those of women 

born in Suriname were selected, and numbered 7613 in total. All immigrant Surinamese 

women in this study are, therefore, first-generation immigrants. The smears used in this 

study were the first smears taken of these women. The Surinamese immigrants are from all 

social levels of the Surinamese population10 and are comparable with the source popula-

tion in terms of socio-economic status and demographic characteristics11. The response 

rate of immigrant Surinamese women in this period was 58% (Dr M.E. Boon, SBBW, the 

Netherlands).

Cervical Smearing

The majority of the smears in Suriname were taken in one of the mobile medical units or at 

a medical clinic in Paramaribo. A smear sample was taken and spread on two glass slides, 

fixed and stored at room temperature until use. For every woman a new, disposable cervix 

brush was used. One glass slide was included in the Surinamese screening programme, 

the other was shipped to Leiden, the Netherlands for review. The smears in the Dutch 

screening programme were mostly taken at general physician practices throughout the 

western region of the Netherlands.

Cytological Diagnosis with KOPAC

The smears from Suriname were shipped from Suriname to Leiden. On all Surinamese 

smears, both from the Surinamese and the Dutch screening programme, standard Papani-

colaou staining was performed for diagnostic purposes. The smears were reviewed by 

different laboratories in the western part of the Netherlands using the same protocol for 

cytological analysis. Cytological findings were coded using the KOPAC system, since the 

1980s the official Dutch microscopical coding system for cytological analysis of cervical 

smears. Studies comparing different laboratories using the KOPAC system revealed no 

significant inter-laboratory differences in cytological scores (data not shown).

Smears are given a P-score for normal squamous epithelium (P1), borderline changes 

(P2-3) and (pre)neoplastic changes in the squamous epithelial cells, varying from P4 (mild 

dysplasia) to P9 (invasive squamous cell carcinoma) (TABLE 1). Inflammation is coded 

with “O” and consists of different codes for the variety of inflammation types. Koilocytosis, 

a cavity around the nucleus, was coded as “O1” for cells with and without abnormalities.
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Statistical Analysis

Odds ratios (OR) and age-adjusted ORs with 95% confidence intervals (CIs) of the (pre)

neoplasia P-scores were calculated for the Surinamese screening population from Suri-

name versus the immigrant Surinamese screening population from the Netherlands by 

using logistic regression. The smears scored P1 (normal squamous epithelial cells) were 

used as a reference group.

Results

The median age for Surinamese women attending the Surinamese screening programme 

(SuS) was 34 (mean 35.5) years and the range was 14 to 75. For immigrant Surinamese 

women attending the Dutch screening programme (SuN), the median age was 40 (mean 

41) years with a range of 30 to 63. This difference is due to the fact that the screening 

programme in Suriname starts at an earlier age (20) than does the programme in the 

Netherlands (30).

Smears were unsuitable for cytological analysis in 46/686 (6.7%) of the SuS and in 

73/7613 (1.0%) of the SuN. The observed prevalence of (pre)neoplastic changes in the SuS 

was higher for mild (P4) and moderate to severe dysplasia/neoplasia (P5-9) compared to 

the SuN (TABLE 2).

The age-adjusted odds ratios for SuS versus SuN increased with increasing P-scores up 

to OR = 3.2 (CI 1.55-6.60) for P5-9. The odds ratios and the age-adjusted odds ratios of the 

different (pre)neoplastic stages are shown in TABLE 2.

The abnormal smear prevalence (P≠1) per age group among the SuS was 7/196 (3.6%) 

for < 30, 12/248 (4.8%) for 30-39, 3/123 (2.4%) for 40-49 and 3/73 (4.1%) for ≥ 50 years. 

TABLE 1

KOPAC, the official Dutch microscopical coding system for cytological

analysis of cervical smears. Description and translation of codes for normal

squamous epithelial cells and (pre)neoplastic changes, the “P-codes”

KOPAC Code Description Bethesda

P1 Normal Normal

P2-3 Borderline Changes ASCUS

P4 Mild Dysplasia (L)SIL

P5 Moderate Dysplasia (H)SIL

P6 Severe Dysplasia (H)SIL

P7 Carcinoma in Situ (H)SIL

P8 Micro invasive Carcinoma Carcinoma

P9 Squamous Cell Carcinoma Carcinoma
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For the SuN it was 86/3011 (2.9%) for 30-39, 89/3155 (2.8%) for 40-49 and 25/1374 (1.8%) 

for ≥ 50 years.

Adjusting odds ratios after exclusion of the SuS aged < 30 did not alter our results.

Koilocytosis occurred over ten times more frequently in the SuS (18/640 = 2.8%) than 

in the SuN (18/7540 = 0.2%). Koilocytosis (O1) was only observed in a minority of both 

study groups, but a correlation between koilocytosis and (pre)neoplastic changes could 

nevertheless be found. In both populations, 17/18 cases of koilocytosis observed occurred 

in smears with borderline changes (P2-3) and (pre)neoplastic changes (P4-9) (TABLE 3). 

Smears negative for inflammatory changes were diagnosed in 5267/7540 (69.9%) and in 

224/640 (35.0%) individuals, respectively.

TABLE 2

P-Scores, odds ratios and age-adjusted odds ratios of (pre)neoplastic changes (P2-9) for 

Surinamese women living in Suriname

(Pre) 

neoplastic 

changes

SuS1

(n = 640)

N  (%)

SuN2

(n = 7540)

N  (%) OR3
crude

95% CI4
crude

OR
adj

5 95% CI
adj

5

P1 615 (96.1) 7340 (97.4) 1.00 reference 1.00 reference

P2-3 6  (0.9) 111 (1.5) 0.65 0.28-1.47 0.77 0.31-1.91

P4 9  (1.4) 40  (0.5) 2.69 1.30-5.56 1.62 0.58-4.57

P5-9 10 (1.6) 49  (0.6) 2.44 1.23-4.83 3.20 1.55-6.60

1Smears from Surinamese women living in Suriname
2Smears from Surinamese women living in the Netherlands
3Odds Ratio
4Confidence Interval
5Adjusted for age groups

TABLE 3

Correlation of normal squamous epithelial cells (P1) and (pre)neoplastic changes (P2-9) with 

koilocytosis (O1)

(Pre) neoplastic changes No. SuS1O1

N   (%)

No. SuN2O1

N   (%)

P1 1/615 (0.2) 1/7340 (0)

P2-3 2/6  (33.3) 13/111 (11.7)

P4 8/9  (88.9) 3/40  (7.5)

P5-9 7/10  (70.0) 1/49  (2.0)

All 18/640 (2.8) 18/7540 (0.2)

1SuS = Smears from Surinamese women living in Suriname
2SuN = Smears from Surinamese women living in the Netherlands
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Discussion

This study shows that fewer dysplasias are present in a high-risk population that has immi-

grated into a low-risk area for cervical cancer than in the high-risk population continuously 

living in the high-risk area. This emphasises the significance of environmental factors for 

differences in the geographical incidence of cervical cancer and its precursors.

Migrant populations are a non-random, self-selected sample of the population of their 

country of origin, which could give rise to a selection bias when comparing the two. The 

effect of selection bias is reduced if comparisons can be made between similar groups12. 

The Surinamese population in the Netherlands is demographically comparable with that 

in Suriname10,11. Furthermore, it is unlikely that cervical (pre)neoplastic changes would 

positively or negatively influence (Surinamese) women’s migration behaviour. The vast 

majority of the Surinamese immigrants lives in urban areas of the Netherlands, which is 

similar to the situation in Suriname where over 90% of the Surinamese population resides 

in greater Paramaribo.

We found that the age-adjusted odds for the SuS of developing mild (P4) and moderate 

to severe dysplasia/neoplasia (P5-9) are higher and increase with (pre)neoplasia grade 

compared to the SuN (TABLE 2). One of the possible causes could be that HPV infec-

tion, which precedes cervical dysplasia13,14, is more common in high-risk areas for cervi-

cal cancer3,15-17, including Suriname18. This could be associated with the sexual lifestyle 

encouraged by the Surinamese culture, as was established in several populations8,14,19. 

Furthermore, a higher viral load and different HPV type variants in HPV-positive women 

in a high-risk area could cause an increased risk of cervical cytological abnormalities, as 

suggested recently20-22.

In addition, the fact that the organised screening programme for cervical cancer has 

only recently started in Suriname could account for the higher outcome in the SuS22. This 

is supported by the fact that the majority of the decline in cervical carcinoma incidence 

rates in developed countries is attributed to the implementation of organised screening 

programmes2. The protective effect of previous screening, independent of HPV, has also 

been established8. One should keep in mind that, in both groups, the (pre)neoplastic 

changes were observed in low numbers which may unduly influence the odds ratios.

The prevalence of dysplasia in Dutch women is 0.4 % for both mild and moderate to 

severe dysplasia, which was established in the same region and time frame as the present 

study23. A recent study in which cervical smears of multiple immigrant populations in 

the Netherlands were investigated, revealed a somewhat higher relative risk for mild 

to severe dysplasia/neoplasia in the immigrant Surinamese smears compared to smears 

from the Dutch population24. Although the prevalence of dysplasia in Surinamese im-

migrant women in the Netherlands has decreased, it has not completely diminished to 

the level of the Dutch women in the Netherlands. This could indicate that they have not 
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yet completely adjusted their lifestyle to their new environment, especially given that all 

immigrant Surinamese women in this study are first-generation immigrants. However, we 

cannot exclude endogenous factors as a possible cause. When feasible, a similar study 

on the offspring of these immigrants (second generation) could investigate whether the 

prevalence of dysplasia has further decreased to that of the native Dutch population.

In our study we also found a positive correlation between cytological abnormalities 

(P2-9) and koilocytosis (O1), which is stronger for the SuS (TABLE 3). This confirms a 

recent study of cervical smears from the Dutch screening programme24 and is also sup-

ported by several studies on koilocytosis and cervical carcinogenesis25,26. Koilocytosis is 

considered to be virally induced and has been correlated with HPV27-29. The fact that koilo-

cytosis occurred over ten times more frequently in the SuS suggests a higher prevalence 

of HPV in this population, which is supported by a recent study18. It could furthermore 

be caused by higher viral load or different HPV type variants, as a result of the previously 

proposed differences in exposure between the high-risk and the low-risk area studied. 

Koilocytosis can be unequivocally detected in cervical smears and might be an effect of 

the active stage of HPV infection24. It has been positively correlated to promiscuity, which 

could explain why a greater number of active HPV infections were observed in the SuS30. 

In the Dutch population only 4% of the smears with moderate to severe dysplasia also 

contain koilocytosis24, which may indicate that the HPV infection becomes less active 

in high-grade lesions. An even lower frequency was observed in the SuN (2%). This is 

not the case for the SuS where as many as 7/10 of the smears with moderate to severe 

dysplasia showed koilocytosis, possibly caused by (repeated) reinfection with HPV.

In summary, we have shown that fewer cervical cytological abnormalities are present in a 

high-risk population that has immigrated to a low-risk area for cervical cancer than in the high-

risk population continuously living in a high-risk area. This scenario factors out endogenous 

differences, as the same ethnic population has been studied in two areas. The findings in this 

study emphasise the significance of environmental factors, such as HPV exposure. In addi-

tion, the presence of an organised screening programme is important. However, endogenous 

factors and maintained sexual lifestyle should also be considered to be of influence, with the 

latter related to the fact that the immigrants in this study are first-generation immigrants. The 

higher frequency of koilocytosis in the women still living in Suriname deserves further study 

with regard to repeated reinfection with HPV as a cause of the more frequently observed 

active stage of the infection.
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Abstract

Loss at chromosome 6p21.3, the human leukocyte antigen (HLA) region, is the main cause 

of HLA downregulation, occurring in the majority of invasive cervical carcinomas. To iden-

tify the stage of tumour development at which HLA class I aberrations occur, we selected 

12 patients with cervical carcinoma and adjacent cervical intraepithelial neoplasia (CIN). 

We investigated HLA class I and β
2
-microglobulin expression by immunohistochemistry in 

tumour and adjacent CIN. Loss of heterozygosity (LOH) was studied using microsatellite 

markers covering the HLA region. Fluorescence in situ hybridisation (FISH) with HLA class 

I probes was performed to investigate the mechanism of HLA loss. Immunohistochemistry 

showed absent or weak HLA class I expression in 11/12 cases. In 10 of these 11 cases 

downregulation occurred in both tumour and CIN. Only in one case did the concomitant 

CIN lesion show normal expression. In 9/12 cases LOH was present for at least one 

marker in both tumour and CIN, one case showed only LOH in the CIN lesion and one 

case showed retention of heterozygosity (ROH) for all markers in both tumour and CIN. 

We conclude that HLA class I aberrations occur early and frequently in cervical carcino-

genesis. This might allow premalignant CIN lesions to escape immune surveillance and 

progress to invasive cancer.
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Introduction

Cervical carcinoma is the second most common female cancer worldwide1-3 and human 

papillomavirus (HPV) is its most important aetiological factor4-7. Immunological surveil-

lance of HPV-associated lesions is performed by T-cells, which are activated when foreign 

(antigenic) proteins are presented to the T-cell receptor by human leukocyte antigen 

(HLA) class I proteins. HLA class I molecules are expressed on the cell surface and consist 

of a polymorphic heavy α chain, encoded by the HLA class I genes HLA-A, -B and -C on 

chromosome 6p21.3, in non-covalent association with the light β chain, encoded by the 

β
2
-microglobulin (β

2
m) gene on chromosome 15q21. This association is a prerequisite for 

the stability of the HLA class I molecule8.

Loss of HLA surface expression occurs in various solid tumours and tumour cell lines9,10 

and might result in escape from cytotoxic T-cell attack. It occurs frequently in cervical 

carcinoma and is predominantly caused by genetic aberrations at chromosome 6p21.3. 

Koopman et al. showed that 50% of multiple HLA allele loss is caused by LOH in the HLA 

region11, which is frequently detected in cervical cancer12-16.

Invasive cervical carcinoma is preceded by three stages of cervical intraepithelial neo-

plasia (CIN). Several studies have shown that the majority of the untreated mild dysplasias 

regress to normal cytology and only a small proportion of the CIN lesions eventually 

progress to invasive carcinoma17-19. It is conceivable that the progressive CIN lesions have 

escaped immune surveillance. Several studies have recently investigated these precursor 

lesions for losses at 6p21.3, without distinguishing between progressing and regressing 

CIN lesions20,21.

We selected patients with cervical carcinoma and adjacent CIN lesions to investigate 

how early and frequently HLA aberrations occur in cervical carcinogenesis. By choosing 

adjacent CIN, we were able to come as close as possible to selecting only progressive CIN 

lesions. By including these precursor lesions, we could add to the current knowledge of 

HLA aberrations during the development of cervical carcinoma.

Material and Methods

Tissue Samples

Since 1989, Surinamese women with cervical carcinoma have come to the Leiden University 

Medical Centre (LUMC) at Leiden, the Netherlands, to have a Wertheim operation, which 

is a radical hysterectomy. All the resected tumour tissue is stored in the tissue archive 

of the Pathology Department of the LUMC. From this group we selected the cases with 

invasive cervical carcinoma and an adjacent high-grade CIN lesion (CIN III) by reviewing 

the haematoxylin-eosin-stained slides. We found 15 cases with cervical cancer and an 
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adjacent CIN lesion, operated between 1989 and 1999, of which 12 had sufficient tissue 

to investigate. From these 12, tissue blocks containing formalin-fixed paraffin-embedded 

normal tissue and tumour tissue with adjacent CIN lesion were selected. To study intra-

tumour heterogeneity we selected multiple tumour loci per case when possible. In nine 

cases two tumour sites and in one case three tumour sites were investigated.

All samples were positive for a high-risk HPV genotype, except for S70 which is HPV 

negative.

Immunohistochemistry

Immunohistochemistry was performed on freshly cut, 3-µm thick buffered, paraffin-

embedded tissue sections according to standard procedures22. Slides were incubated over-

night with mouse monoclonal antibodies (mAbs) suitable for paraffin sections: HCA2 and 

HC10 (Dr J. Neefjes, NKI, Amsterdam, the Netherlands) and the primary rabbit polyclonal 

anti-β
2
m (A 072; DAKO, Copenhagen, Denmark). HCA2 recognises a determinant ex-

pressed on β
2
m-free HLA-A (excluding HLA-A24), HLA-B7301 and HLA-G heavy chains23,24. 

The mAb HC10 recognises a determinant on all β
2
m-free HLA-B and HLA-C heavy chains, 

as well as on β
2
m-free HLA-A10, HLA-A28, HLA-A29, HLA-A30, HLA-A31, HLA-A32 and 

HLA-A33 heavy chains23,25. Immunodetection was performed as previously described10.

In each tumour, stromal cells including lymphocytes served as a positive control for 

HLA class I expression. Tumour cells were only scored negative if no staining was present 

as compared to a strong staining of internal control cells. If some staining was present but 

reactive cells stained much stronger, tumour cells were scored as weakly positive.

Microdissection, DNA Extraction and Quantification

DNA was extracted as previously described, with minor adjustments26. Paraffin-embedded 

(normal and tumour/CIN) tissues of the 12 cases were cut in 10 µm sections and stained 

with haematoxylin. Before the normal dehydration steps, the staining procedure was 

interrupted to use the slides for microdissection. CIN lesions were microdissected using 

a needle under direct light-microscopic visualisation. Areas containing over 70% tumour 

cells, as well as normal control tissue were obtained using the same procedure and all 

tissue was transferred to sterile microcentrifuge tubes and incubated for 12 hours in 186 µl 

of PK1 buffer (10 mM Tris pH 8.3, 50 mM KCl, 2.5 mM MgCl
2
, 0.45% NP40, 0.45% Tween 

20, 0.01% gelatine), 5% Chelex (Chelex 100; Bio-Rad Laboratories, Hercules, CA) and 10 

µl of a 10 µg/µl solution of proteinase K, at 56°C. This was followed by incubation at 

100°C for 5 minutes to inactivate the proteinase K. After 5 minutes of centrifugation at 

full speed (16,060 x g) the supernatant was transferred to new sterile microcentrifuge 

tubes. The DNA content was quantified using Picogreen double-stranded DNA (dsDNA) 

quantification reagent (Molecular Probes Europe BV, Leiden, the Netherlands), an ultra-

sensitive fluorescent nucleic acid stain for quantifying dsDNA in solution, according to the 
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manufacturer’s instructions. Instead of the prescribed 10 mM Tris (pH 7.6), 0.1 mM EDTA 

dilution buffer, PK1 buffer was used, in accordance with the DNA isolation method.

LOH Analysis

DNA from microdissected normal, CIN and tumour material from all 12 cervical carci-

noma cases was analysed for LOH on chromosome 6 by polymerase chain reaction (PCR) 

amplification using seven highly informative di-, tri- and tetranucleotide microsatellite 

markers27,28. These are listed in TABLE 1.

Standard PCR amplifications were performed according to a protocol previously 

described22,29, with some adjustments. To circumvent PCR artefacts30, 10 ng/µl purified 

template DNA was used in a 12 µl reaction volume containing 6 pmol of each primer, 2 

mM dNTPs, 0.1 mg/ml BSA, Taq polymerase buffer (10 mM Tris-HCl, 1.5 mM MgCl
2
, 50 mM 

KCl, 0.01% (w/v) gelatine, 0.1% Triton) and 1.0 unit AmpliTaq Gold polymerase (Perkin 

Elmer, Applied Biosystems Inc., Foster City, CA, USA). Either the forward or reverse PCR 

primer was fluorescently labelled with FAM or TET, respectively. Samples were denatured 

for 5 minutes at 96°C and amplified for 33 cycles consisting of 1 minute of denaturation 

at 94°C, 2 minutes of primer annealing at 55°C and 1 minute of elongation at 72°C, fol-

lowed by a final extension step of 6 minutes at 72°C. For each primer set, PCR products 

of tumour DNA and normal DNA were mixed 1:1 and red-coloured GENE-SCAN-500 ROX 

(Perkin Elmer Cetus, Norwalk, CT, USA) was added as an internal DNA size marker. After 

denaturation and electrophoresis the PCR products were visualised as peaks and analysed 

TABLE 1

Microsatellite markers, with primer sequence and locations 27,28

Locus Map Position Forward and Reverse Primer Sequences Forward

D6S89 6p22.3 CAAGGGAATAGGTTAAGATTGCCA

CATGAGAAGGCCCAGCTTGC

D6S105 6p22.1-6p21.3 GCCCTATAAAATCCTAATTAAC

GAAGGAGAATTGTAATTCCG

MOGc 6p21.3 GAAATGTAGAATAAAGGAGA

GATAAAGGGGAACTACTACA

D6S265 6p21.3 ACGTTCGTACCCATTAACCT

ATCGAGGTAAACAGCAGAAA

C143 6p21.3 AGCCTGGGTGACAGAACAAG

TGGATTAACCTGGAGACTCCTT

TNFa 6p21.3 GCCTCTAGATTTCATCCAGCCACA

CCTCTCTCCCCTGCAACACACA

D6S1666 6p21.3 CTGAGTTGGGCAGCATTTG

ACCCAGCATTTTGGAGTTG
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on an ABI 310 automatic sequencer. GeneScan Analysis Software (Perkin Elmer, Applied 

Biosystems Inc., Foster City, CA, USA) was used to quantify each peak in terms of size 

(base pairs), peak area and height. Each PCR was performed at least twice.

The thresholds for retention of heterozygosity (ROH), "grey area" (allelic imbalance) 

and LOH were applied as previously empirically determined31. These were 0.76-1.3 (ROH), 

0.58-0.75 & 1.31-1.69 (allelic imbalance) and 1.7< (LOH).

Interphase FISH analysis on Isolated Nuclei

To study the mechanism of HLA aberrations we performed interphase fluorescence in 

situ hybridisation (FISH) analysis with HLA-A and -B/C probes. In seven cases, nuclei 

were isolated from formalin-fixed, paraffin-embedded material as previously described32. 

The suspension was applied to microscope slides as described for interphase FISH on 

frozen material33. The slides were air-dried and used for hybridisation. All probes used 

were obtained and labelled as previously described10. The α-satellite centromeric 6-probe 

(D6Z1, Oncor, Gaithersburg, MD) was biotin-16-dUTP-labelled by nick translation (Roche, 

Basel, Switzerland). Cosmid c109K2118, derived from the ICRF flow-sorted chromosome 6 

library, was obtained from the Resource Centre/Primary Database of the German Human 

Genome Project (Berlin, Germany). PAC238M10 was isolated from the RCPI-1 Human 

PAC Library of the Roswell Park Cancer Institute (obtained by Dr J. den Dunnen, Genome 

Technology Centre, LUMC, Leiden, the Netherlands) using an HLA-C probe. Cosmid and 

PAC probes were digoxigenin-12-dUTP-labelled by nick translation. Hybridisation was 

performed as previously described10,33. Hybridisation mixture (5 µl) that contained 3 ng/µl 

of the centromere 6 probe combined with 3 ng/µl of the cosmid or PAC probe, 1.5 µg hu-

man Cot-1 DNA and 3 µl hybridisation mix (50% formamide, 10% dextran sulphate, 50 mM 

sodium phosphate (pH 7.0), 2 x sodium chloride/sodium citrate [SSC]) was applied to the 

slides. After denaturation for 8 minutes at 80°C, nuclei were hybridised overnight at 37°C 

in a moist chamber. Immunodetection was performed as previously described33. Slides 

were analysed with a Leica DM-RXA fluorescence microscope (Leica, Wetzlar, Germany). 

Tonsils of healthy individuals were used as controls. The cut-off level for homozygous and 

hemizygous deletions was set as described previously32.

Results

Loss of HLA class I expression detected in paraffin cervical tumour sections

Tissue sections with both tumour and CIN tissue were stained for β
2
m, HLA-A and HLA-

B/C expression (FIGURE 1). Using the available antibodies for use on paraffin sections, 

only the loss of both of the A- or B/C-alleles will result in a negative score. In S66 no 

expression of HLA-A, in S8 and S38 no expression of HLA-B/C and in S41 no expression 
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FIGURE 1

Analysed LOH data together with immunohistochemistry results. LOH results for seven markers on 

chromosome 6p for CIN (C) and tumour (T) are presented on the left side.  Retention of heterozygosity 

(ROH);  Non-informative;  Loss of heterozygosity (LOH). Immunohistochemistry results are presented 

on the right for the HLA proteins and for the β
2
m protein (encoded on chromosome 15).   Normal 

expression;   Weak expression;  Absent expression;  Heterogeneous: weak and normal expression;  

Heterogeneous: absent and normal expression. The cases are grouped with regard to the results obtained 

for the tumour samples studied. (A) No expression of one or both HLA class I molecules in combination 

with LOH on 6p21.3. (B) Downregulation of β
2
m combined with ROH at 6p21.3. (C) Weak expression of 

HLA-A and/or HLA-B/C. (D) Lack of HLA class I expression combined with ROH and normal β
2
m expression. 

(E) Normal HLA class I expression and LOH.
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of both HLA molecules was seen in the invasive tumour tissue and adjacent CIN. Hetero-

geneous loss of expression with the two HLA class I antibodies was seen in three cases 

(S38, S77, S61), of which one (S38) had similar results in tumour and CIN. In four other 

cases homogenous or heterogeneous loss of expression was seen in the CIN lesions with 

one or both HLA class I mAbs, but weak expression was seen in the adjacent tumour 

tissue. Absent or very low β
2
m expression provided an explanation for the absent or low 

expression of HLA-A and HLA-B/C in both tumour and CIN in two cases (S38, S77) and in 

the CIN lesion alone in one case (S71).

LOH Analysis in Tumour and Adjacent CIN Cases

We performed LOH analysis on 12 invasive cervical carcinomas with adjacent CIN III 

lesions using seven markers on chromosome 6p. Multiple tumour loci of the invasive 

tumour were studied, but in all patients except for one (S38) the results were similar. Only 

for this patient are the data from both tumour loci shown. An overview of the results is 

depicted in FIGURE 1.

In 9 of 12 cases at least one of the markers showed LOH in the invasive tumour and 

CIN lesion. In five of these nine cases, all markers showed LOH in both tumour and CIN 

lesion. In four of the nine cases, discrepancies between the results obtained for CIN lesion 

and tumour were seen (FIGURE 1). In S38, the LOH pattern of the accompanying CIN 

lesion differed only for D6S1666, a marker that showed ROH in the tumour. In S61, the 

tumour showed ROH for all markers, whereas the CIN lesion showed LOH for markers 

D6S89, D6S105, MOGc and D6S265. In S70, marker D6S265 showed ROH in the tumour 

and LOH in the CIN lesion. In S77, most markers showed ROH in the tumour and CIN, 

but at TNF-a LOH was detected only for CIN.

In S10, all markers showed LOH in both the tumour and CIN lesion, except for C143, 

located in the HLA-E – HLA-C region. This marker showed homozygosity in the normal 

sample, but two alleles of different molecular weights in both the tumour and CIN lesions. 

This phenomenon is termed elevated microsatellite instability at selected tetranucleotide 

repeats (EMAST) and has been described in other human cancers as a novel form of 

microsatellite instability (MSI)34-36.

Interphase FISH Results

Interphase FISH analysis was performed on nuclei isolated from paraffin-embedded mate-

rial of different tumour and CIN localisations from eight cases: S10, S16, S38, S41, S61 

(C+T), S70, S71 and S77. HLA class I-specific clones (HLA-A and HLA-B/C) in combination 

with a probe for centromere 6 were applied. No homozygous or heterozygous deletions 

were found. Most cases showed nuclei with three and nuclei with four copies of chromo-

some 6. In all cases, nuclei with three copies were detected. The highest percentages were 

found in S10 (28%), S16 (31%) and S41 (59%). In all but two cases (S16 and S71), nuclei 
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with four copies of chromosome 6 were seen, with the highest percentage in S38 (28%). In 

one case (S77) FISH revealed two centromeric signals and three signals for the whole HLA 

class I region in 16% of the nuclei, suggesting a possible duplication and translocation 

(FIGURE 2).

Combined Allelic Imbalance and Immunohistochemistry Results

The analysed immunohistochemistry results together with the LOH data are presented 

in FIGURE 1. The cases are grouped with regard to the results obtained for the tumour 

samples studied. Because the majority of the results obtained by the different techniques 

used were in concordance, only the results whose interpretation is more complicated are 

reported below.

In S38, where CIN and tumour site 1 (C1+T1) showed ROH but site 2 showed LOH, 

the immunohistochemistry data also differed somewhat: in site 1 the expression was 

heterogeneous with both alleles absent from some of the cells, whereas site 2 had weakly 

expressed HLA-A in both the tumour and CIN. β
2
m was weakly expressed in both tumour 

sites. In group D, lack of HLA class I expression in combination with ROH and normal 

β
2
m expression was found in S61 (T) and in S66 (C+T). Remarkably, S61, with ROH in the 

tumour and LOH in the CIN, displayed (heterogeneous) negative expression of the HLA 

molecules in the tumour and weak expression in the CIN. Only in S70 was normal HLA 

class I expression seen despite LOH (group E).

FIGURE 2

Examples of the FISH results. (A) In case S77, FISH showed two centromeric signals and three signals of the 

whole HLA class I region in 16% of the nuclei, suggesting a possible duplication and translocation.  

(B) Example of aneusomy 6, found in most of the cases.
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Discussion

To investigate the timing, frequency and mechanism of HLA class I downregulation in 

cervical carcinogenesis, we performed immunohistochemistry, LOH analysis and FISH on 

cervical carcinoma specimens and adjacent CIN lesions. Including the precursor lesions 

in our study permitted us to add to the current knowledge of HLA aberrations in invasive 

cervical carcinoma11. The present study demonstrates that HLA class I downregulation 

occurs frequently and early in cervical carcinogenesis.

In cervical cancer LOH at chromosome 6p21.3, which occurs at high frequencies12-16, 

represents an important and common mechanism by which HLA genes and their products 

are abolished11. This remains unclear in cervical precursor lesions. By choosing CIN III 

lesions that are adjacent to invasive cervical carcinoma, we were able to come as close 

as possible to selecting only CIN lesions that were progressing to invasive carcinoma. 

Nonetheless, we cannot exclude the possibility that multiple CIN lesions are present in 

the same patient. Thus, the CIN lesion adjacent to the invasive carcinoma could originate 

from a clonal process different from that of the invasive carcinoma.

The absence of HLA class I expression was explained by β
2
m loss in two samples. This 

did not apply, however, to all HLA class I downregulation observed. Complex genetic 

changes involving various loci could be an alternative explanation. The weak but not 

absent expression of HLA class I that was observed in several samples suggests a genetic 

aberration in only one HLA allele, at 6p21.3. In most patients, CIN and invasive tumour 

samples provided similar results, supporting the hypothesis that both are from the same 

clonal process and demonstrating that HLA loss is an early event in cervical carcinogenesis. 

The specificity of antibodies available for immunohistochemistry on paraffin-embedded 

tissue is limited23-25,37 and this might have led to an understatement of HLA downregulation 

in the present study.

Bontkes et al. reported loss of HLA class I expression in CIN lesions progressing from 

low to high grade, supporting the results in our study38. Several studies performed on 

solitary CIN lesions whose connection with invasive carcinoma was unknown did not find 

any HLA class I downregulation39,40. Other studies detected LOH at chromosome 6p21.3 

in 25-75% of low and high grade CIN lesions20,21. We found even more LOH in our group, 

which could reflect the fact that it consisted of progressing CIN lesions.

Tumour heterogeneity occurs in cervical carcinoma11 and can obviously be represented 

in different stages of carcinogenesis, explaining the rare differences observed between the 

results from tumour and adjacent CIN in the present study. When feasible, we selected 

multiple tumour loci per case (results not shown) to account for possible allelic imbalance 

variation caused by different tumour fractions, that is, diploid and aneuploid fractions. 

In one case, different tumour loci from the same cervical carcinoma had different LOH 

results and another case showed ROH for all markers in the tumour, but LOH in the CIN 
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lesion. This could implicate different clonal origins. In addition, in three of our cases some 

markers showed LOH in the CIN lesion but not in the invasive cancer. This could be due 

to the fact that the tumour tissue is frequently surrounded and infiltrated by lymphocytes 

that can contaminate the sample, whereas the CIN lesions are better separated from the 

stroma. Another possibility is that only HLA negative CIN lesions survived T-cell attack 

activated by the tumour’s presence.

Several explanations exist for the multiple HLA aberrations we found in most of the 

tumour samples and the adjacent CIN lesions. The failure to express HLA class I could 

result from LOH at 6p21.3 in combination with a locus-restricted event in this area. Such 

an event might be a point mutation, small deletion, methylation, chromosome loss or large 

deletion. We found no homozygous or heterozygous deletions with FISH using cosmid 

and BAC probes covering the HLA-A and HLA-B/C region. We did find aneusomy 6 in 

most cases, which is in concordance with the study by Koopman et al.11. In one case we 

found a possible duplication and translocation of the HLA class I region (FIGURE 2A). 

Such a triplication should lead to LOH, but ROH was detected even in sorted cells and 

was probably caused by tumour heterogeneity.

We conclude that HLA class I aberrations occur not only frequently11, but also early 

in cervical carcinogenesis. This phenomenon might allow the premalignant CIN lesion to 

escape immune surveillance and progress to invasive cancer.
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Abstract

Transporter associated with antigen processing (TAP) loss causes human leukocyte anti-

gen (HLA) class I downregulation which is frequently found in cervical carcinomas and 

their precursors. HLA class I molecules activate T-cells by antigen presentation and are 

therefore essential for immunological surveillance. To add to the hitherto limited know

ledge of molecular mechanisms underlying TAP loss we investigated TAP expression, loss 

of heterozygosity (LOH) and possible TAP mutations. Twenty-three cervical carcinomas 

and adjacent precursor lesions were stained with HLA-A-, HLA-B/C-, β
2
-microglobulin-, 

TAP1- and TAP2- antibodies.

In order to separate tumour and non-tumour cells, cervical carcinoma samples were 

sorted by flow-cytometry and were subsequently analysed for LOH with 3 markers in the 

TAP region on chromosome 6p21.3. Mutation analysis of the complete TAP1 gene was 

performed. Aberrant TAP1 expression was detected in 10/23 cervical carcinoma lesions 

and in 5/10 adjacent cervical intraepithelial neoplasia (CIN) lesions. All the lesions with 

low TAP expression also had reduced HLA class I expression. LOH was found in 7 out 

of 10 lesions with TAP loss. Mutation analysis detected no aberrations, but identified a 

polymorphism in the 5’-untranslated region (UTR) of the TAP1 gene in two lesions. This 

study shows that defective TAP expression in cervical carcinoma is often associated with 

LOH in the TAP region but not with mutations in the TAP1 gene.
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Introduction

Immunological surveillance of tumour cells and virally infected cells is performed by 

cytotoxic T-lymphocytes (CTLs), which recognise aberrant peptides presented by human 

leukocyte antigen (HLA) class I molecules. HLA class I downregulation is caused by dif-

ferent molecular mechanisms and results in escape from CTL attack1. Antigen presentation 

by the HLA molecules to circulating CTLs requires the transporter associated with antigen 

processing (TAP). Endogenous proteins (viral or tumour associated products, or waste 

products from the cell itself) are degraded in the cytosol into smaller peptides. These 

peptides are subsequently transported by TAP. The latter consists of the subunits TAP1 

and TAP2 that form a channel in the endoplasmatic reticulum (ER)-membrane2. In the ER, 

the assembly of the HLA class I heavy chain, the β
2
-microglobulin (β

2
m) light chain3 and 

the peptides4 is chaperoned by several proteins5-8. The newly formed complex is then 

transported via the Golgi network to the cell surface.

HLA class I downregulation is frequently associated with impaired TAP expression in 

various tumour types9-12. Limited knowledge is at hand concerning the molecular mecha-

nisms underlying TAP loss. Deletion in the TAP1 gene has been described that leads to 

rapid degradation of its mRNA in a melanoma cell line13,14 and recently mutations in the 

TAP1 and TAP2 genes have been found in colorectal carcinomas15. It has been suggested 

that in renal cell carcinoma TAP defects are caused by regulatory abnormalities16. Using 

real-time PCR it has been shown that in bladder cancer there is a coordinated transcrip-

tional downregulation of the HLA class I antigen processing machinery, including TAP, 

which causes loss of HLA class I expression17.

HLA phenotype alterations occur frequently in cervical cancer and its precursor le-

sions18-23. Koopman et al. described that this is caused by extensive loss of heterozygosity 

(LOH) at chromosome 6p21.3, partly in combination with mutations in the β
2
m or HLA 

class I genes22. The TAP expression data from previous studies are inconsistent, with loss 

of TAP1 being reported in 0–50% of cases24-27. Moreover, limited information exists about 

the genetic mechanisms leading to loss of expression. A recent study of cervical carcinoma 

lesions has reported possible mutations in the TAP genes, but no sequence analysis was 

done and the loss of TAP expression was not studied28.

These limited and contradictory results prompted us to investigate the loss of TAP 

in relation to HLA class I expression in invasive cervical carcinoma and adjacent cervi-

cal intraepithelial neoplasia (CIN) lesions. Furthermore, we examined possible causative 

mechanisms of altered TAP expression by performing LOH and gene mutation analysis 

on flow-sorted pure tumour and normal cell fractions from paraffin embedded cervical 

cancer tissue.
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Material and Methods

Tissue Samples

Since 1989, Surinamese women with cervical carcinoma have been coming to the Leiden 

University Medical Centre (LUMC) at Leiden, the Netherlands, to have a radical hysterec-

tomy (Wertheim operation). All the resected tumour tissue is stored in the tissue archive 

of the Pathology Department of the LUMC. All patients had a FIGO stage IB or IIa, which 

qualified them for the radical hysterectomy. Surinamese cervical cancer samples were 

selected for this study, because of the frequent loss at chromosome 6p that was previ-

ously observed29. In addition, cervical carcinomas of Surinamese women are usually of 

substantial size, which provided us with sufficient residual material for the extensive TAP1 

gene sequence analysis.

From the group of Surinamese cervical cancer patients that were treated between 

1989 and 2004, we selected the cases with invasive cervical carcinoma and an adjacent 

high-grade cervical intraepithelial neoplasia (CIN III) by reviewing the haematoxylin-

eosin-stained slides. Precursor lesions connected to the cervical tumours were required 

to investigate the timing in addition to occurrence of TAP aberrations. We found 23 cases 

of cervical cancer, which were operated on between 1989 and 2004 that had an adjacent 

CIN lesion with sufficient tissue to investigate. From these 23, tissue blocks containing 

formalin-fixed, paraffin-embedded normal tissue and tumour tissue with an adjacent CIN 

lesion were selected.

Immunohistochemistry

Immunohistochemistry was performed on freshly cut, 3-µm thick, formalin-fixed, paraffin-

embedded sections according to standard procedures30. Slides were incubated overnight 

with mouse monoclonal antibodies (mAbs) that are suitable for staining paraffin sections, 

the TAP1-specific mAb NOB-1 (S. Ferrone). This mAb is secreted by a hybridoma derived 

from the fusion of murine myeloma cells P3-X63-Ag8.653 with splenocytes from a BALB/c 

mouse immunised with partial length TAP1 recombinant protein (aa 434-735) and a key-

hole limpet hemocyanin (KLH)-conjugated TAP1 peptide (aa 717-735). The specificity 

of the mAb was assessed by its reactivity with the corresponding antigen when tested 

in Western blotting with a lysate of lymphoid cells which express TAP1 and by the lack 

of reactivity with a lysate of the T2 cell line, which does not express these molecules5,11 

and anti-TAP2 (clone TAP2.17, Becton Dickinson Biosciences Pharmingen, San Jose, CA, 

USA). Furthermore, the mouse mAbs HCA2 and HC10 (Dr J. Neefjes, NKI, Amsterdam, 

the Netherlands) and the primary rabbit polyclonal anti-β
2
m (A 072; DAKO, Copenhagen, 

Denmark) were used. The mAb HCA2 recognises a determinant expressed on β
2
m-free 

HLA-A (excluding HLA-A24), HLA-B7301 and HLA-G heavy chains31,32. The mAb HC10 

recognises a determinant expressed on all β
2
m-free HLA-B and HLA-C heavy chains, 
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as well as on β
2
m-free HLA-A10, HLA-A28, HLA-A29, HLA-A30, HLA-A31, HLA-A32 and 

HLA-A33 heavy chains31,33.

Staining was scored semi-quantitatively by the quality control system proposed by 

Ruiter et al34. The intensity and percentage of positive tumour cells were determined. The 

intensity of staining was scored as 0, 1, 2 or 3, for absent, weak, clear or strong expression, 

respectively. The percentage of positive cells was scored as 0 for 0%; 1 for 1–5%; 2 for 

5–25%; 3 for 25–50%; 4 for 50–75% and 5 for 75–100%. The sum of both scores was used 

to identify three categories of expression: normal expression (total score 7–8), partial loss 

(3–6), and total loss (0–2). In each tumour, stromal cells including lymphocytes served as 

a positive control for HLA class I and TAP expression.

Staining, Flow Cytometry and Sorting

Staining, flow cytometry and sorting of all formalin-fixed, paraffin embedded samples was 

performed as described previously with minor adjustments35. Multiple 0.6 mm punches 

from representative tumour areas of the paraffin blocks were treated with a combined 

mechanical/enzymatic method to obtain single cells. Cells were subsequently stained 

with a mAb mixture directed against keratin and vimentin, containing clones MNF116 

(anti-keratin; DAKOCytomation, Glostrup, Denmark), AE1/AE3 (anti-keratin; Chemicon 

International Inc, Temecula, CA, USA) and V9-2b (anti-vimentin; Department of Pathol-

ogy, LUMC)36 or 3B4 (anti-vimentin; DAKOCytomation). Propidium iodide (PI) was used 

as a DNA stain.

Tumour and normal cell subpopulations were flow-sorted based on keratin and vimen-

tin expression, respectively, combined with a gate on DNA content using a FACSVantage 

flow sorter (BD Biosciences). Flow-sorted cells (yields ranging from 2x105 to 1x106 cells) 

were collected in 5.0 ml FalconTM tubes and centrifuged at 1000g for 10 min before DNA 

extraction37.

LOH Analysis

DNA was extracted from sorted tumour cell subpopulations (keratin positive, vimentin 

negative) for LOH analysis. The microsatellite markers D6S2444 (UniSTS: 239054); TAP1 

(3’-GGACAATATTTTGCTCCTGAGG-5’ (F); 3’- GCTTTGATCTCCCCCCTC-5’ (R)) and M2426 

(3’- TTGTGGTTTCAGCTACTCAGG-5’ (F); 3’-GTTTCTTTTCTTTCATTTGGCCTCTACTG-5’ 

(R)) located in the TAP region on chromosome 6p21.3 were used. DNA extracted from the 

keratin negative, vimentin positive cell fractions was used as a normal DNA reference.

Standard PCR amplifications were performed as described38. All reactions were per-

formed at least in duplo. The thresholds for retention of heterozygosity (ROH), “grey area” 

(allelic imbalance) and LOH were applied as previously empirically determined37. These 

were 0.76 – 1.3 (ROH), 0.58 – 0.75 or 1.31 – 1.69 (allelic imbalance) and 0.57 ≥ or 1.7 ≤ 

(LOH).
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Sequence Analysis of the TAP Gene

The 11 TAP1 exons, including the exon-intron boundaries were amplified using the prim-

ers shown in TABLE 1. All primer positions were derived from the genomic sequence of 

the gene (Ensembl accession number: ENSG00000168394).

The only available DNA isolates were obtained from flow-sorted, paraffin-embedded 

material; we thus used several different primer sets for some exons in order to acquire easily 

amplifiable products. Sequencing was performed by the LGTC (Leiden Genome Technology 

Centre, the Netherlands). The obtained sequences were compared with DNA sequences 

of sorted autologous normal material (vimentin positive, keratin negative) and with the 

corresponding allele sequences from the Genome Database (http:/www.gdb.org).

TABLE 1

Primers used for sequence analysis of flow-cytometry sorted, paraffin-embedded tumour samples for 

mutations in the 11 exons of the TAP1 gene

Forward Primer Reverse Primer

Exon 1-1 ctggtgcaagtggaaaggca ctggcgagaagctcagcca

1-2 gccgctttcgatttcgcttt gggcctgaagctccgggta

1-3 ccgccagtaggggaggact ggcgagaagtagcagtactgtcc

1-4 caatggctagctctaggtgt cacggcccagcggctca

1-5 cccggagcttctctcgcat cagctaatggcttcaaagcag

1-6 cgctgggccgtgctctg cagtgcagtagcctggtgctatc

1-7 gttccgagagctgatctcatgg agcctagaagccgacgcaca

1-8 ggtcagggcggctctggaa ttgccctgcgttccccttac

Exon 2 tctgactggaactgacctacttag aacttccaactccctcatttg

Exon 3 aacacaccctgatcccctt gaacagtacatggcgtataatg

Exon 4-1 gaacctgtctgattcacctcac ccagagcatgatccccaa

4-2 gtacctggtgcgaggcctat gggagatgagggtctgtgtag

Exon 5-1 tgccaacccgtgtgacatct ttccctaaacttctgggcttcg

5-2 gaagctttgccaacgagga gggaatgggtattcatcttca

Exon 6 ttgtggtctctttatagatttcag cactggggagtgaaggtg

Exon 7-1 cctcactttcactattcttacct aagggagtcaacagaccact

7-2 tttgagtacctggaccgcac gccagtggaatacagggagtg

Exon 8 gtgtgcttctctggcctcta caagccacctgcttccata

Exon 9 ccttgttctatgactcttcatcat ggctgggtggtgagatga

Exon 10 ggctataccgttctcatcttgg ccattaagaagatgactgcctca

Exon 11-1 cggctctgacggtccgatg tgcaccatggcccagtagca

11-2 tctggaaggaggcgctatc gaggagcttggaaaggaggt

11-3 agctgcctccaggatgagtt gctgatcatctttccgtaca

11-4 ggtgtggccagcactctgaa gtttggtgtgccggaaacat
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Results

Loss of HLA Class I and TAP Expression in Cervical Carcinoma and CIN

Tissue sections with both tumour and adjacent CIN tissue were stained for HLA-A (HCA2), 

HLA-B/C (HC10), β
2
m, TAP1, and TAP2 expression. The data are displayed in FIGURE 

1, grouped based on the TAP1 expression of the samples: absent, weak and positive. 

Complex combinations of expression patterns for the different molecules studied were 

observed in the majority of cases. Only one case (S87) showed complete loss of TAP1 

expression and resulting HLA-A and HLA-B/C loss of expression. In this case, β
2
m was 

expressed and TAP2 was weakly expressed underlining the importance of TAP1 expres-

sion for stability of the HLA/β
2
m/antigenic peptide complex and eventual HLA surface 

expression. In 9 additional tumour samples, TAP1 expression was weak. In one of these 

cases (S85) the adjacent CIN lesion was negative, in 3 cases (S84, S31, S04) the CIN 

followed the expression pattern of the tumour sample, while in 4 other cases (S86, S61, 

S08, S10) the CIN lesions were positive. In S71, the adjacent CIN showed weak TAP1 

expression while the tumour was positive. In 5 of the 9 cervical carcinoma lesions with 

TAP1 downregulation, TAP2 was also weakly expressed (S85, S84, S31, S04, S86). Total 

FIGURE 1

Expression patterns of HLA-A (HCA2), HLA-B/C (HC10), β2m, TAP1 and TAP2, grouped with regard to 

TAP expression. (T) Tumour; (C) CIN lesion. White squares represent loss of expression; grey squares- low 

expression; black squares- normal expression. (-) No data.

Figuur niet aanwezig
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HLA class I expression was downregulated in 8 of the 9 cases with TAP1 defects (only 

case S04 showed positive expression for HLA-A). In 4 of those 9 cases β
2
m expression 

was altered as well (S85, S84, S86, S38), which points towards cumulative negative effects 

of alterations in TAP and β
2
m on HLA expression. In 12 (of the 23) cases, TAP expression 

was not affected. In only 1 case (S90), total HLA class I loss could be explained by total 

β
2
m absence. Two tumours (S77, S82) showed weak total HLA expression in concordance 

with the weak β
2
m expression observed, while in sample S81 weak β

2
m expression was 

probably accompanied by a second hit at the HLA class I region on chromosome 6p21, as 

this case was negative for HLA expression. In cases S35 and S91, low expression of both 

HLA-A and HLA-B/C, and solely HLA-A, respectively, was found, indicative of possible 

genetic aberrations in these genes such as mutations or LOH. Tumour S83 was solely 

negative for HCA2 implying a specific mutation in the HLA-A gene. Two samples (S88 

and S89) were positive for expression of all molecules studied. Expression of all studied 

molecules was not always concordant between tumour and adjacent CIN. In the majority 

of cases, the tumour sample showed weaker or absent expression as compared to the 

tumour-associated CIN (i.e. S86, S61, S08, S10 for TAP1 expression). In FIGURE 2, a 

representative case is shown stained with the 5 antibodies used.

LOH on Flow-Sorted Tumour Cells

The 23 tumour samples were all flow-sorted to obtain pure tumour cell fractions (keratin 

positive), assuring the precision and reliability of the LOH results (FIGURE 3A). Stromal 

cells and infiltrating lymphocytes are responsible for masking true LOH. These cells (vi-

mentin positive) were also sorted and used as a normal control in all experiments. We 

performed LOH analysis only on the tumour cell fractions and not on the adjacent CIN 

cells as we were not able to obtain sufficient amounts of flow-sorted CIN material. Three 

markers that cover the TAP region on chromosome 6p21.3 were applied. A representative 

example of LOH for the TAP1 marker is shown in FIGURE 3B. In 4 cases none of the 

markers was informative and other 4 showed retention of heterozygosity for all markers 

(FIGURE 3C). LOH for at least 1 marker was found in 9 of the cases. The TAP1 marker, 

which is located in the TAP1 gene, was lost in 6 cases (S87, S04, S86, S61, S41, S91). The 

TAP2 gene is located in between the TAP1 marker and the D6S2444 marker but the latter is 

situated at approximately 100 kb from the TAP2 gene. This marker showed LOH in 5 cases 

(S04, S86, S61, S08, S10) but was also often non-informative (13 cases). When linking TAP 

protein expression to LOH, 2 cases with LOH had retained TAP expression. However, in 

7 cases with LOH with at least 1 marker in the TAP region, TAP loss or weak expression 

was observed (S87, S04, S86, S61, S08, S38, S10) (FIGURE 3C).
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Mutation Analysis

The 7 cases with loss of TAP expression and LOH with at least 1 marker located in the 

TAP region were selected for mutation analysis of the complete TAP1 gene (11 exons). 

To assure that no mutations could be missed as a result of contaminating normal cells 

present in the samples, sequencing was performed on the flow-sorted pure tumour cell 

fractions. Two cervical carcinomas carried a polymorphism located in the 5’-untranslate 

region (UTR) preceding exon 1 (Ensemble SNP annotation: rs3216794). A 1-nucleotide 

“C” deletion was observed in both the normal and tumour sorted cell fractions (data not 

shown). No mutations or other polymorphisms were found.

FIGURE 2

Immunohistochemical staining of a cervical carcinoma lesion (sample S87). Detail (400x magnification) 

of the same group of tumour cells, stained with TAP1 (negative) (A); TAP2 (positive) (B); HLA-A (C) and 

HLA-B/C (D) (weak cytoplasm, negative membrane); β2M (positive cytoplasm) (E).
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Discussion

In the present study, we determined the association between loss of TAP expression and 

loss of HLA class I in cervical carcinogenesis and examined possible causative molecular 

mechanisms to add to the hitherto limited knowledge of TAP aberrations in cervical 

cancer.

Even though loss of TAP expression has previously been reported and found to be 

associated with HLA class I downregulation in cervical carcinoma lesions, the reported 

FIGURE 3

LOH analysis results. (A) A representative example of flow-sorting data of a cervical cancer sample (S41). 

The keratin positive (tumour, FITC-labelled) cells and the vimentin positive (normal, PE-labelled)) cells were 

flow-sorted and used in further analyses. (B) LOH results (S87) at marker TAP1 for tumour (pink, one peak) 

and normal (green, two peaks) sorted cell fractions (S87). A size marker is depicted in red. (C) The complete 

LOH data of the three microsatellite markers used per tumour sample, represented as ROH (black squares); 

LOH (white squares) and not informative (grey squares). The same order of samples is used as in FIGURE 1.
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results are contradictory with 0-50% of the cases being negative24-27. Discrepancies are 

probably due to the frequently divergent scoring methods. In the majority of studies, cases 

containing less than 25% positive tumour cells are scored as negative11,12,15,16. Here, we 

applied the semi-quantitative scoring system as proposed by Ruiter et al.34, which in our 

opinion gives a more accurate estimation of expression. Using this method downregula-

tion of TAP1 expression was observed in 10/23 cases. In 6 of these 10 cases TAP2 expres-

sion was also low. None of the samples had loss of TAP expression throughout the whole 

tumour area with scattered nests of positive tumour cells. Although the group of patients 

described here is quite small, we were interested in determining TAP expression in cervi-

cal tumours with adjacent CIN lesions and these are scarce. Only some of the adjacent CIN 

lesions displayed low TAP expression, indicating that the moment of occurrence of these 

aberrations varies between cervical tumours. In several cases the altered TAP expression 

was more extensive in CIN than in the invasive tumour tissue. This could imply that the 

CIN and the tumour have a different clonal origin. In addition, probably only TAP negative 

CIN lesions could survive T-cell attack activated by the tumour’s presence.

In cervical cancer loss of HLA class I cell surface expression is predominantly caused by 

extensive LOH at chromosome 6p21.3, where the HLA class I genes encoding the heavy 

chains of the HLA molecules are located22,23. Additional mutations in these genes have 

also been described22. The genes encoding the TAP1 and TAP2 molecules are located in 

the same region of chromosome 6p2139. Several studies have investigated the presence of 

mutations as well as regulatory and transcriptional abnormalities affecting the TAP genes 

in various tumour types13-17,40. A recent study on alterations of the TAP genes in cervical 

carcinoma was performed using single strand polymorphism PCR on blood and tumour 

samples28. The authors proposed that the major cause of TAP loss is the presence of 

TAP gene mutations. However, neither direct sequencing analysis nor expression analysis 

was performed to determine whether the loss of specific TAP alleles in fact leads to TAP 

protein loss.

To unravel the molecular mechanisms leading to loss of TAP expression in cervical can-

cer, we performed LOH analysis on flow-sorted tumour keratinocytes (keratin-positive) 

isolated from 23 paraffin-embedded cervical carcinoma samples using concurrently sorted, 

vimentin-positive normal cells as an autologous control. In cervical cancer, some of the 

tumour cells might express both keratin and vimentin, which would lead to a biased selec-

tion for the solely keratin-positive population using the flow-sorting method. Although 

such double positive cells were shown to have a higher proliferation rates and invasive 

potential in breast cancer41, this does not seem to be the case in cervical tumours (manu-

script in preparation). In addition, in the present group of patients the keratin-positive/

vimentin-negative tumour cells represented the major subpopulation in the samples.

Seven of the tumours with downregulation of TAP expression were shown to have LOH 

using markers specific for the TAP genes. It is plausible to suggest that when one allele of 
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either one or both of the TAP genes is absent as a result of LOH, this will lead to aberrant 

TAP protein expression.

In addition, thorough sequence analysis of the TAP1 gene was also performed on flow-

sorted pure tumour cell fractions from the 7 cervical carcinoma samples with altered TAP 

expression and LOH. Although the studied cases had heterogeneous low TAP expression, 

which might obscure the detection of mutations, previously colon tumours with similar 

TAP staining patterns were shown to carry mutations15. However in the present study no 

mutations were detected in any of the cases.

In summary, we detected altered TAP expression in a substantial number of cervical 

carcinoma to be associated with LOH of 6p21.3 where the TAP genes are located and 

not with mutations in TAP1. The applied flow-sorting procedure allowed us to perform 

precise molecular analysis of the tumours, without admixture of stromal cells, infiltrating 

lymphocytes and other normal cells, which are known to affect LOH analysis and to 

obscure mutation detection42,43. Currently, we are studying the presence of TAP polymor-

phisms in cervical carcinoma to determine whether LOH is associated with the retention 

of specific TAP alleles.
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Abstract

Multiple HPV infections have been detected in cervical cancer. To investigate the signifi-

cance of multiple HPV infections we studied their prevalence in cervical cancer samples 

from a low-risk (Dutch) and a high-risk (Surinamese) population and the correlation of 

HPV infection with tumour cell aneuploidy. SPF
10
 LiPA was used for HPV detection in 

96 Dutch and 95 Surinamese formalin-fixed cervical carcinoma samples. Samples with 

combined HPV 16/18 infections were sorted by flow cytometry and fluorescence in situ 

hybridisation was performed on the diploid and aneuploid subpopulations to detect 

HPV 16 and 18 genotypes simultaneously. Multiple HPV infections were present in 11/80 

(13.8%) Dutch and 17/77 (22.1%) Surinamese carcinomas. Three cases had an HPV 16 and 

HPV 18 co-infection: in two cases, integrated HPV copies of HPV 16 or 18 were detected 

in the aneuploid fraction and in one case both HPV 16 and 18 were present solely as 

episomes. Based on our findings multiple HPV infections are present in cervical cancer 

samples from both high- and low-risk populations. Furthermore, multiple HPV types can 

be present in an episomal state in both diploid and aneuploid tumour cells, but integrated 

HPV genomes are detectable only in the aneuploid tumour cell subpopulations.
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Introduction

Human papillomavirus (HPV) infection is a prerequisite for the development of cervical 

cancer (reviewed in1). Although HPV infections are common, the majority are transient 

and are cleared by the immune system2. When high-risk (HR-)HPV is persistently present, 

low grade cervical intraepithelial lesions (CIN) eventually progress to invasive cervical car-

cinoma3. HPV infects the basal epithelial cells and is frequently found in an episomal state 

in low- and high-grade CIN. It is generally thought that viral integration into the human 

genome occurs during cervical carcinogenesis2,4. Upon integration, the viral E2 repressor is 

disrupted, leading to continued expression of the E6 and E7 oncoproteins. They inactivate 

the p53 and pRb tumour suppressor proteins, leading to uncontrolled cell proliferation 

and ultimately to cancer5. Viral integration frequency was shown to increase with disease 

severity4,6,7. The two most common HR-HPV types found in cervical carcinoma are HPV 

16 and HPV 18. While both HPV 16 episomes and HPV 16 integrated copies are able to 

transform normal keratinocytes, HPV 18 has been reported to be present mainly in the 

integrated form6,8.

Fluorescence in situ hybridisation (FISH) has recently been used to investigate the 

physical state of HPV (episomal or integrated) in cells from cervical (pre)invasive lesions9,10. 

Several studies suggest that a diffuse nuclear signal is indicative of the presence of epi-

somal HPV, while a punctate signal in the nucleus is characteristic of integrated HPV11-13. 

It was shown that the diffuse signal can be excluded by harsh pre-treatment protocols, 

allowing the clear detection of integrated HPV copies10.

In addition to the physical state of HPV, abnormal cellular DNA content or numerical 

chromosome aberrations were suggested to be associated with the progression of CIN to 

cervical carcinoma14,15. Despite studies into whether HPV integration or DNA instability 

and aneuploidisation is the first step in malignant transformation, the sequence of events 

is still under debate16,17. Data on malignant transformation and progression as a result of 

multiple HPV infections are even more limited. Such multiple HPV infections are frequent 

in premalignant stages and have recently been detected in invasive cervical cancer18-20.

In this study, we investigated the prevalence of multiple HPV infections in cervical 

cancer for a low-risk (Dutch) and a high-risk (Surinamese) population. The cases carrying 

a double HPV 16 and HPV 18 infection were analysed by performing FISH on flow-sorted 

pure tumour cell subpopulations to determine the integration status of the multiple HPV 

types in relation to tumour cell aneuploidy.
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Material and Methods

Patient Samples

A total of 189 patients with invasive cervical carcinoma, FIGO stage IB or IIA, were in-

cluded in this study. Patients were living in the Netherlands (n = 98), a low incidence area 

for cervical cancer, or Suriname (n = 99), a high incidence area for cervical cancer. Patients 

were diagnosed with cervical carcinoma between 1989 and 1995. All Dutch patients were 

treated in the Leiden University Medical Centre (LUMC), Leiden, the Netherlands and 

the tumour tissue was stored in the Pathology Department’s archive. Of the Surinamese 

patients, 45 were treated in the LUMC and their tumour tissue was also kept in the 

LUMC laboratory. The other 49 patients were treated in Suriname and tissue samples were 

stored in the laboratory of the Pathology Department, Academic Hospital, Paramaribo, 

Suriname.

HPV Detection and Genotyping by SPF10
 LiPA

DNA was isolated from formalin-fixed, paraffin-embedded biopsy samples as previously 

described21. Care was taken to prevent cross-contamination during preparation of the 

sections from the paraffin blocks. Beta-globin PCR was performed using primers RS40 and 

RS4221 to determine whether the isolated DNA was suitable for amplification. The DNA 

was subjected to a short PCR fragment assay using the SPF
10
 primer set that amplifies a 

65 base pair fragment in the L1 according to the manufacturer’s instructions (Innogenet-

ics, Gent, Belgium). Each experiment was performed with separate positive and several 

negative controls.

The presence of HPV was established using a microtitre plate-based hybridisation as-

say, and SPF
10
-PCR products from HPV-DNA positive cases were directly genotyped by a 

reverse hybridisation line probe assay (LiPA (Innogenetics)). In this assay, 25 individual 

HPV genotypes (HPV 6, 11, 16, 18, 31, 33, 34, 35, 39, 40, 42, 43, 44, 45, 51, 52, 53, 54, 56, 

58, 59, 66, 68, 70, and 74) can be identified simultaneously.

On the HPV 16- and 18-positive specimens HPV-type 16 and 18 specific PCRs were 

performed as described previously22.

Flow Cytometry and Sorting

Flow cytometry sorting of formalin-fixed, paraffin-embedded samples positive for multiple 

HPV types was performed as described previously23. Briefly, paraffin-embedded 60 µm 

sections were treated with a combined mechanical/enzymatic method to obtain single 

cells. Cells were then stained with a mix of monoclonal antibodies directed against kera-

tin- and vimentin-containing clones MNF116 (anti-keratin; DAKO, Glostrup, Denmark), 

AE1/AE3 (anti-keratin; Chemicon International Inc., Temecula, CA, USA), and V9-2b (anti-

vimentin; Department of Pathology, LUMC). A standard FACSCalibur (BD Biosciences, 
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San Jose, CA, USA) was used for flow cytometric analysis. Subsequently, flow sorting 

was performed using a FACSVantage flow-sorter (BD Biosciences). Tumour cells were 

sorted based on keratin and vimentin expression, combined with a gate on DNA content. 

Diploid and aneuploid tumour fractions and normal cell fractions were collected for DNA 

isolation; in addition, cell fractions were directly sorted separately onto glass slides for 

FISH processing.

Interphase FISH Analysis

FISH was modified to detect multiple HPV genotypes simultaneously. Interphase FISH 

analysis was performed on flow cytometry-sorted cell fractions using an adapted protocol 

for FISH on formalin-fixed, paraffin-embedded tissue24. Approximately 400 cells were 

sorted by flow cytometry directly onto glass slides that had been cleaned by rinsing in 96% 

ethanol. After spotting, the slides were dried overnight at room temperature to ensure cell 

adhesion. If needed, the slides were incubated in a 0.1M solution of Na
2
B

4
O

7
 to permit 

swelling of the nuclei. Afterwards, the slides were rinsed in phosphate buffered saline and 

sterile water. The HPV 16 probe was labelled with digoxigenin and the HPV 18 probe was 

labelled with biotin (both purchased from PanPath, Science Park Amsterdam, Amsterdam, 

the Netherlands). Hybridisation and immunodetection were performed as described previ-

ously for nuclei isolated from paraffin-embedded material24.

In each experiment, negative control slides spotted with sorted vimentin-positive nuclei 

not infected with HPV were stained simultaneously. Positive control slides of paraffin-

embedded and sorted CasKi (HPV 16-positive), SiHa (HPV 16-positive), and HeLa (HPV 

18-positive) cells were also included in all experiments. Centromere 1 (pUC1.77) and 

centromere 6 (p308) probes were used to ensure sufficient quality of the flow-sorted 

paraffin samples.

Results

HPV Detection and Genotyping

Beta-globin PCR was used as a control to ensure the quality of DNA in all samples. DNA in 

2/98 (2.0%) of the Dutch samples and 4/99 (4.0%) of the Surinamese samples was found to 

be unsuitable for PCR and therefore excluded. Using SP10-LiPa PCR, similar HPV-positivity 

was found in both the low- and high-risk populations (TABLE 1). Among the Dutch 

HPV-positive samples, 11 different HPV types were detected, all of which were HR-HPV 

types. The Surinamese HPV-positive samples contained 17 different HPV types, of which 

two were low-risk HPV types. These low-risk HPV types were found in combination with 

(at least) one HR-HPV type.
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Multiple HPV infections were more prevalent in the Surinamese cervical carcinoma 

samples, but this difference was not significant (OR 1.61, 95% CI 0.71 – 3.65) (TABLES 

1 and 2). All but 2 samples were infected with at least 2 HR-HPV types. Occurrence and 

combinations of multiple infections are presented in TABLE 2. In 2 cases HPV 16 and HPV 

18 double infection was detected and in 1 additional case next to HPV 16 and HPV 18 a 

co-infection with HPV 52 was present.

Integrated HPV in Flow-Sorted Aneuploid Cancer Cells

The 3 cervical tumours that were positive for both HPV 16 and HPV 18 (TABLE 2) accord-

ing to LiPA genotyping were flow-sorted based on keratin expression and DNA content. 

Diploid and aneuploid tumour cell fractions were typed separately by HPV-specific PCR. 

The results are shown in TABLE 3.

In case 1, both HPV 16 and 18 were detected by LiPA in DNA extracted from the 

unsorted sample. Only HPV 16 was found after sorting in the diploid and aneuploid cell 

fractions, indicating that HPV 18 was not involved in malignant transformation in this 

TABLE 1

HPV Prevalence in Dutch and Surinamese Cervical Carcinoma Samples

HPV Surinamese

n (%)

Dutch

n (%)

Total

n (%)

Positive 77 (81.1) 80 (83.3) 157 (82.2)

Single 60 (77.9) 69 (86.2) 129 (85.3)

Multiple 17 (22.1) 11 (13.8) 28 (14.7)

TABLE 2

HPV type combinations detected in Dutch and Surinamese Cervical Carcinoma Samples

HPV type Surinamese

n (%)

Dutch

n (%)

Total

n (%)

16+18 1 (5.9)* 1 (9.1)* 2 (7.1)

16+33 1 (5.9) - 1 (3.6)

16+52 2 (11.8) - 2 (7.1)

18+31 - 2 (18.2) 2 (7.1)

18+33 - 2 (18.2) 2 (7.1)

18+52 1 (5.9) 2 (18.2) 3 (10.7)

16+18+52 1 (5.9)* - 1 (3.6)

16+33+52 1 (5.9) - 1 (3.6)

18+33+52 2 (11.8) - 2 (7.1)

Other 8 (47.1) 4 (36.4) 12 (42.9)

Total 17 (100) 11 (100) 28 (100)

*, cases used in further analyses
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tumour. FISH was positive for HPV 16 exclusively in the aneuploid tumour cell fraction 

(FIGURE 1A and 1B). The punctate signal pattern observed is indicative of integrated 

HPV 16 DNA (FIGURE 1B).

Case 2 also consisted of diploid and aneuploid tumour cell fractions. While in the 

diploid fraction both HPV 16 and HPV 18 were detected by HPV-specific PCR typing, the 

aneuploid fraction was exclusively HPV 18-positive. FISH showed integration of HPV 18 in 

the aneuploid fraction, and no integration of either HPV 16 or HPV 18 DNA in the diploid 

fraction (FIGURE 1D and 1E).

Case 3 was found to contain only an aneuploid tumour cell population. Both HPV 16 

and HPV 18 were detected by HPV-specific PCR in the sorted tumour cells. However, FISH 

did not show integration of either of the two HPV types (FIGURE 1G).

Simultaneous FISH control experiments were performed using centromere 1 and cen-

tromere 6 probes to ensure sufficient quality of the sorted nuclei and were always positive 

for both diploid and aneuploid sorted tumour cell fractions (FIGURE 1C, 1F and 1H). In 

addition, positive control cervical carcinoma cell lines containing integrated HPV 16 and 

HPV 18 copies were always positive (FIGURE 2).

Discussion

HPV is the causative agent of cervical carcinoma and approximately 80% of cervical cancer 

deaths occur in developing countries. The incidence is highest in Latin America, the 

Caribbean, Sub-Saharan Africa, and South Asia and considerably lower in North America 

and Western Europe1. It is known that the prevalence of HPV infection is tightly linked 

to cervical cancer incidence1, and we have previously shown that Suriname is a high-risk 

TABLE 3

Combined results of the various molecular methods performed for detection of HPV 16 and HPV 

18 in cases with multiple infections

Cases LiPA Type-Specific PCR FISH

Total sample Sorted

Diploid

tumour cells

Sorted 

Aneuploid 

tumour cells

Sorted

Diploid

tumour cells

Sorted 

Aneuploid 

tumour cells

1 HPV16 +

HPV18 +

HPV16 + HPV16 + HPV - HPV16 +

2 HPV16 +

HPV18 +

HPV16 +

HPV18 + HPV18 +

HPV -

HPV18 +

3 HPV16 +

HPV18 +

X HPV16 +

HPV18 +

X HPV -

 X: no diploid subpopulation present.
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country for HPV infection25. The prevalence of multiple HPV infections in our study 

group was 13.8% in Dutch and 22.1% in Surinamese cervical cancer samples, which 

confirms recent studies showing rates between 9% and 32%, depending on ethnicity18-20. 

Multiple infections were often seen in high-risk population studies, but high- and low-risk 

populations have not been compared. In our study, no significant difference was observed 

between the low-risk (Dutch) and high-risk (Surinamese) cases, although the odds of 

FIGURE 1

Interphase FISH on flow-sorted cervical carcinoma cells of the HPV 16/18 positive cases. Case 1 (A): the 

diploid cells are negative for HPV; (B) The aneuploid tumour cells show punctate signals for HPV 16 (green); 

(C) Control centromere 1 (red) and centromere 6 (green) signals. Case 2 (D): the diploid tumour cell fraction 

is negative for HPV; (E) The aneuploid tumour cells show punctate signals for HPV 18 (red); (F) Control 

centromere 1 (red) and centromere 6 (green) signals. Case 3 (G): the aneuploid tumour cell fraction is 

negative for HPV; (H) Control centromere 1 (red) and centromere 6 (green) signals.
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having multiple HPV infections was higher for the high-risk population (OR 1.61, 95% CI 

0.71 – 3.65).

During HPV integration, HPV oncogenes E1 and/or E2 are frequently disrupted, while 

E6 and E7 are mostly preserved4,5,26. Some studies have used PCR techniques that compare 

expression of E2 and E6 to determine the integration prevalence. Other studies, however, 

have used other viral oncogenes for integration determination27-29. It remains difficult to 

accurately determine the incidence of HPV integration using PCR methods, due to the 

variability of disrupted and preserved viral oncogenes.

Here, we studied HPV integration using a FISH method that was modified to detect 2 

different HPV types simultaneously. Previously, it was shown that harsh pre-treatment of 

samples washes away episomal forms of HPV DNA, leaving only the integrated HPV DNA 

to be detected by FISH10. This method appears very sensitive, but a detection threshold 

could account for missing single copy HPV infections. However the paraffin-embedded 

cell line SiHa (containing just 1-2 integrated copies of HPV 1630) was positive in all our 

experiments, showing that the technique can detect a single copy of integrated HPV 

DNA.

We investigated cervical carcinomas infected with both HPV 16 and HPV 18 more 

thoroughly. It was previously established that HPV 16 is present exclusively in episomal 

form in 30-70% of cervical cancers6,8,31, while HPV 18 has been reported to be mainly 

integrated6,32,33, indicating that these HPV types might have different biological character-

istics. Badaracco et al. observed a remarkable increase from 20 to 54% in the prevalence 

of exclusively episomal forms of HPV 16 when coinfection with HPV 18 existed, but the 

physical status of HPV 18 was not investigated8. In the cases described in the current 

study, integration of either one of the HPV types was seen in 2 of 3 HPV 16- and HPV 

18-positive tumours. In the third HPV 16- and HPV 18-infected tumour, no integration of 

either type was observed.

FIGURE 2

Interphase FISH on flow-sorted cervical cancer cell lines. (A) SiHa: 2 copies of HPV 16 are visible in green; (B) 

CaSki: multiple copies of HPV 16 are visible in green; (C) HeLa: multiple copies of HPV 18 are visible in red.
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In addition to the variation in integration status of the HPV 16- and HPV 18-coinfected 

cervical carcinomas in our study, we also observed differences in DNA ploidy of the 

tumour cells. All three tumours had an aneuploid fraction, in all cases positive for HPV 

using HPV-specific PCR. The only case in which the aneuploid tumour cells tested positive 

for both HPV 16 and 18 using HPV-specific PCR was the case in which the HPV genome 

was not integrated, as indicated by the absence of a punctate FISH signal. In the other two 

cases, aneuploidy was associated with integrated HPV, either type 16 or 18.

Melsheimer et al. concluded that aneuploidisation precedes HPV integration in cervi-

cal carcinogenesis, as their study found that 19/20 lesions with integrated HPV were 

aneuploid17. Malignant progression of cervical neoplasia is associated with the expression 

of the HPV oncoproteins E6 and E7, and expression of these genes does not require HPV 

integration34. E6 and E7 deregulate cell cycle control mechanisms, create genomic instabil-

ity, and can eventually cause aneuploidy14,16. However, near-diploid cervical carcinoma 

tissue with integrated HPV was observed previously. In two HPV integration studies using 

COBRA-FISH, evidence was found supporting both integration preceding aneuploidisation 

and vice versa35,36. COBRA-FISH is a method that is able to investigate tumour ploidy and 

HPV integration sites most elegantly and accurately. In one of these studies, Koopman et 

al. observed one aneuploid cell line with an episomal HPV pattern, but also a diploid cell 

line with HPV integration35. In the other study, Brink et al. studied fresh cervical carcinoma 

tissue and showed HPV integration in one diploid, two near-diploid, and one aneuploid 

cervical tumour sample36. These divergent results suggest that HPV integration can either 

precede or follow aneuploidisation.

In conclusion, cervical carcinomas that are infected with multiple HPV types are present 

in populations from both high- and low-risk areas for development of cervical cancer. The 

previously established association between HPV integration and aneuploidy is supported 

by our study; however, the succession of events seems to be flexible. Although a small 

number of samples were studied, this work shows that the use of archival, flow-sorted 

tumour subpopulations may contribute to our understanding of the variety of possible 

mechanisms leading to invasive cervical cancer.
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Cervical carcinoma remains one of the leading causes of death from cancer among women 

worldwide1. Organised screening programmes aim to trace precursor lesions in order to 

reduce cervical cancer incidence. Human papillomavirus (HPV) is a necessary cause for 

cervical carcinogenesis. Most HPV infections are cleared and mild cervical abnormalities 

regress because of an efficient cellular immunity. A failing immunological surveillance 

eventually results in the development of cervical cancer.

This thesis describes and discusses the above mentioned aspects in cervical carcino-

genesis. Several topics that are touched in the chapters are highlighted at this point in a 

general discussion.

1 Surinamese Environment and Cervical Cancer

Developing countries are high-risk areas for cervical cancer of which the incidence rates 

differ worldwide1-5. Suriname is such a high-risk area6. Both endogenous and exogenous 

factors can influence development of cervical (pre)malignancies and differences in in-

cidence rates between geographical areas7. Important exogenous or environmental fac-

tors are HPV, screening history and sexual lifestyle7-9. HPV infection is more common 

in high-risk areas for cervical cancer10-15, including Suriname16. A higher prevalence and 

viral load and different (more virulent) HPV type variants in a high-risk area might cause 

an increased risk of cervical cytological abnormalities, as suggested recently17,18. High 

HPV exposure could be associated with a sexual lifestyle encouraged by the Surinamese 

culture, as was established in several other populations9,19-21. Possible promiscuity of males 

or females clearly increases the risk of acquiring an HPV infection and it is suggested 

that the relatively young age at first intercourse could intensify the susceptibility to HPV 

persistence.

The high cervical carcinoma incidence in Suriname is reflected in the high preva-

lence of moderate and severe dysplasia which was observed in cervical smears from 

the first organised cervical screening programme in SurinameChapter 2. The significance of 

environmental factors for differences in the geographical incidence of cervical cancer 

and its precursors was emphasised by a decreased prevalence of dysplasia in Surinamese 

immigrants in the Netherlands, a low-risk area for cervical cancerChapter 3. This significance 

is also supported by studies comparing risk factors in areas with different cervical cancer 

incidences18,22.

The majority of the decline in cervical carcinoma incidence rates in developed countries 

is attributed to the implementation of organised screening programmes5,23,24. The protec-

tive effect of previous screening operates independently from HPV9,22. An absent or an 

only recently started organised screening programme for cervical cancer could therefore 

explain a high prevalence of cervical lesions in an area, in this case Suriname.
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In addition to the stated risk factors, several cofactors for progression of cervical HPV 

induced lesions have been reported. These include smoking, oral contraceptives, parity7,8,20 

and exposure to carcinogens in the household environment9.

Along with the above mentioned environmental factors, endogenous aspects that 

mainly consist of immunological and genetic characteristics strongly influence the course 

of cervical carcinogenesis.

2 Significance of Multiple HPV Infections in Cervical Cancer

As said, premalignancies are mainly induced by HPV infection and persistence of onco-

genic HPV is imperative for progression to cervical carcinoma. HPV persistence allows 

for expression of the HPV oncogenes E6 and E7, which is associated with the malignant 

progression of cervical neoplasia. The oncoproteins E6 and E7 deregulate cell cycle con-

trol mechanisms, create genomic instability, and can eventually cause aneuploidy25,26.

In the multi-step cervical carcinogenesis with environmental, immunological and ge-

netic factors, the role of multiple HPV infections is not immediately obvious. Until recently 

it was thought that multiple HPV infections were only present in premalignant cervical 

lesions, but now we know that invasive cervical tumours can also be infected by multiple 

HPV types. There appears to be no significant difference between high- and low-risk areas 

for cervical cancer, although the odds of having multiple HPV infections are higher in a 

high-risk populationChapter 6.

The significance of multiple HPV infections in cervical carcinoma can be viewed in 

combination with viral integration and aneuploidy status. HPV integration is an important 

step in cervical carcinogenesis, but is not always necessary for the expression of E6 and E727. 

It does, however, secure viral persistence, which is a prerequisite for expressing the viral 

oncogenes. Previously, HPV integration was investigated with PCR-based techniques, esti-

mating integration by comparing the copy numbers of an often deleted (E1/E2) and a mostly 

preserved (E6/E7) viral oncogene. Recently several studies concerning HPV integration have 

been published that utilised fluorescence in situ hybridisation (FISH), which has the advan-

tage of imaging episomal as well as integrated HPV. Most cervical carcinomas seem to have 

HPV present in the integrated form, occasionally accompanied by HPV episomes28,29.

As stated above, the ultimate result of the deregulation of cell cycle mechanisms by the 

HPV oncoproteins is aneuploidy. It could be hypothesised that aneuploidisation occurs 

after viral persistence, making the tumour clone unstable and herewith facilitating HPV 

integration. This is suggested by Melsheimer et al. who showed that 19 out of 20 aneu-

ploid lesions had integrated HPV30. However, one could also argue that viral integration 

increases genomic instability inducing aneuploidy. Evidence for both mechanisms was 

observed previously31,32.
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What role do multiple HPV infections have in cervical carcinogenesis? Apparently it is 

favourable for some cervical tumours to be infected with multiple HPV genotypes. An ad-

ditional HPV type might result in sufficient oncogenicity even without viral integration in 

some tumours. In two out of three HPV 16/18 co-infected cervical carcinomas, we found 

viral integration of one type in the aneuploid fraction, but the third case showed presence 

of both types without HPV integrationChapter 6.

To summarise, expression of the viral E6/E7 oncogenes does not require HPV integra-

tion 27, which is probably one of the main reasons that the timing of HPV integration in 

cervical carcinogenesis can vary. The presence of multiple, possibly synergistic, high 

risk-HPV genotypes could lead to extensive expression of the viral E6/E7 oncogenes. 

Aneuploidy weakens the genome and therefore enhances oncogenicity of a tumour in 

general as well as the integration of HPV. The main conclusion seems to be that there are 

multiple paths which can lead to progression of a cervical tumour, probably depending 

on individual immunogenetic and available environmental factors.

3 Immunogenetic Heterogeneity in Cervical Cancer

The cellular immune system is able to eliminate viruses and virus induced lesions. HPV 

induced cervical lesions are associated with a failing immunological surveillance which is 

performed by cytotoxic T-lymphocytes (CTLs), activated when human leukocyte antigen 

(HLA) class I antigen presents aberrant peptides. In addition, tumour progression ap-

pears to be facilitated by altered expression of cytokines among which are interferon and 

several interleukins, leading to decreased local cellular immunity33-35.

Loss of HLA surface expression occurs frequently in cervical (pre)neoplasia36-40. The 

nature and frequency of HLA class I antigen loss mechanisms were elegantly studied in 

a group of freshly sorted cervical cancer samples and it was established that altered HLA 

class I expression was frequent, diverse, mainly caused by genetic changes and combined 

with widespread tumour heterogeneity40. The diversity and heterogeneity of HLA class I 

aberrations are illustrated by the expression patterns observed in cervical tumours and 

adjacent cervical intraepithelial neoplasia (CIN) lesionsChapter 5. Strong, weak and absent 

expression of HLA class I was observed in the samples, often varying within the cases. 

In most patients, CIN and invasive tumour samples provided similar results, supporting 

the hypothesis that both are from the same clonal process and demonstrating that HLA 

class I loss is an early event in cervical carcinogenesis. The failure to express HLA class 

I could result from loss of heterozygosity (LOH) at 6p21.3 in combination with a locus-

restricted event in this area. Mutations in the HLA class I genes and in β
2
m were described 

previously40. Larger deletions in the HLA class I area were not observed using FISHChapter 5. 

It is likely that the HLA class I aberrations allow the premalignant CIN lesion to escape 
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immune surveillance and progress to invasive cancer.

Not all cases with loss of HLA class I expression can be explained by genetic defects 

in the HLA class I or β
2
m genes. Low transporter associated with antigen processing (TAP) 

expression has previously been reported and was found to be associated with loss of 

HLA class I expression in cervical carcinomas41-43, but until recently information about the 

underlying mechanisms was limited. Previously reported TAP mutations in the majority of 

cervical carcinoma samples emerged to be polymorphisms and LOH44. In our study altered 

TAP expression was observed in more than 40% of the cases, in two cases accompanied 

by a 1 bp deletion in the 5’-UTRChapter 6. Only some of the adjacent precursor lesions 

displayed loss of TAP expression, indicating that the timing of TAP downregulation varies 

between cervical tumours. In several cases the loss of TAP expression was more extensive 

in CIN than in the invasive tumour tissue. This could implicate different clonal origins or 

the fact that only TAP negative CIN lesions survived T-cell attack activated by the tumour’s 

presence. All samples with altered TAP expression displayed a heterogeneous staining 

pattern of scattered nests of TAP positive among TAP negative tumour cells, even in the 

cases with the 5’-untranslated region (UTR) somatic mutation and LOH. This type of pat-

tern probably results from aberrations in regulation rather than from clonal expansion of 

TAP negative and positive tumour cell populations. Most TAP and associated HLA class I 

aberrations can be upregulated through interferon stimulation45,46, although structural TAP 

alterations in tumour cells have been established recently47-49. TAP defects can diminish 

the HLA class I cell surface expression, but there is increasing evidence that an effective 

antiviral defence can occur via TAP independent mechanisms as well50-54.

4 Conclusions

In the present thesis we focused on multiple aspects of cervical carcinogenesis in devel-

oped and developing countries. Several conclusions can be made based on the studies 

presented. The high cervical carcinoma incidence in Suriname is reflected in the high 

prevalence of moderate and severe dysplasia which was observed in a sample of cervical 

smears from the first organised cervical screening programme in Suriname. This can be 

attributed to the absence of an organised screening programme for cervical cancer until 

recently, which is associated with high prevalence of cervical lesions in an area. In addi-

tion, the decreased prevalence of dysplasia in first-generation Surinamese immigrants in 

the Netherlands illustrates the significance of environmental factors for differences in the 

geographical incidence of cervical cancer and its precursors.

Looking at endogenous aspects of cervical carcinogenesis it is important to realise 

that the timing of HPV integration in cervical carcinogenesis can vary, but the viral onco-

genes always need to be expressed. The cellular immune system recognises HPV infected 
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lesions. Selective pressure results in HLA defective tumour cells and a failing immune 

surveillance increases cervical tumour progression. The frequent HLA class I aberrations 

occurring in cervical carcinoma are diverse and heterogeneous and partly associated with 

TAP alterations.

Hitherto, the largest decrease in cervical cancer incidence has been accomplished by 

organised cervical screening programmes. The success of organised screening programmes 

is conditional upon a high response rate and regular screening intervals, which unfortu-

nately remains very difficult to realise in developing countries where cervical cancer is 

the leading cancer among women. In addition, the effect of successfully implemented 

screening programmes can first be observed after some time (decades). The large number 

of HPV vaccination studies illustrates the current focus in cervical cancer research. Pro-

phylactic HPV vaccines show a protection of 70% against the high-grade cervical lesions. 

A prophylactic HPV vaccine seems a promising solution in the near future for developing 

countries in establishing a substantial decrease in cervical carcinoma incidence. However, 

the frequently aberrated immune system in women with cervical cancer suggests a diffi-

culty in establishing an effective immunisation by therapeutic HPV vaccines, which should 

be taken into account in further research concerning these vaccines.
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In CHAPTER 1 an introduction to several aspects of cervical cancer, HPV and their rela-

tion with immunology is given. It took almost one-and-a-half centuries from the first 

mention of a possible relationship between sexual intercourse and cervical cancer and 

the epidemiological evidence that the sexually transmittable HPV is the unifying risk 

factor of cervical cancer. The tumour process starts in the cervical transformation zone 

and develops through several stages to cervical carcinoma. Treatment of premalignant 

and early stages is often successful, but advanced stages are more difficult to cure. By 

introducing organised, population-based screening programmes developed countries 

have effectively reduced cervical carcinoma incidence and mortality rates. Developing 

countries remain areas where high incidences and prevalence of advanced stages are 

observed. Approximately 80% of the women worldwide are estimated to experience an 

HPV infection at least once, but the vast majority is able to clear the infection. HPV and 

HPV induced lesions are eliminated by the cellular immune system when successfully 

presented on HLA molecules. Genetically caused HLA aberrations can obviously disturb 

this process and this is thought to be of great significance in cervical carcinogenesis. This 

complicates the development of preventive and therapeutic HPV vaccines, the focus of 

much research. In the mean time a great deal of effort is put into implementing organised 

screening programmes in less economically developed (high-risk) countries. 

The outline of this thesis is presented, which addresses epidemiological, immunoge-

netic and viral aspects in premalignant and invasive cervical lesions.

In CHAPTER 2 we determined the prevalence of cytological abnormalities in cervical 

smears of women attending the first organised screening programme in Suriname and 

compared the prevalences in four Surinamese ethnicities with different cervical carci-

noma incidence. Papanicolaou staining and cytological screening were performed on 

807 cervical smears taken from Maroons, Amerindians, Javanese and Hindustani. Cervi-

cal cytological abnormalities were detected in 13.4% of the assessable smears, of which 

2.6% were moderate and severe dysplasia. The cytological abnormalities varied between 

the ethnicities. In the smears of the Maroons significantly more cytological abnormalities 

were detected. We observed a high prevalence of moderate and severe dysplasia in all 

ethnicities, which correlates with the high cervical carcinoma incidence in Suriname. A 

significantly higher prevalence of mild abnormalities in the Maroons was seen, which did 

not reflect the relatively low cervical cancer incidence in this ethnicity. However, this can 

feasibly be explained by the possibility that these women have a different sexual lifestyle, 

leading to a higher prevalence of transient HPV infection.

Incidence rates of cervical cancer and its precursors vary considerably and are influenced 

by endogenous and exogenous factors. In CHAPTER 3 we compared cytological abnor-

mality incidence rates from a high-risk population in the original high-risk area with those 
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of women from this high-risk population who have immigrated to a low-risk area to give 

insight in the significance of these factors. Smears collected from Surinamese women 

attending the Surinamese screening programme and smears collected from immigrant Su-

rinamese women attending the Dutch screening programme were cytologically analysed 

using the Dutch microscopical coding system KOPAC. The age-adjusted odds of having 

dysplasia were higher for Surinamese women living in Suriname versus Surinamese im-

migrant women and increased with increasing stage of atypical changes. We concluded 

that fewer cases with dysplasia are present in a high-risk population that has immigrated 

to a low-risk area for cervical cancer than in the high-risk population continuously living 

in a high-risk area. This finding emphasises the importance of environmental factors.

Loss at chromosome 6p21.3, the human leukocyte antigen (HLA) region, is the main 

cause of HLA downregulation, occurring in the majority of invasive cervical carcinomas. 

In CHAPTER 4 we investigated timing, frequency and mechanism of HLA class I down-

regulation in cervical carcinogenesis. To identify the stage of tumour development at 

which HLA class I aberrations occur, we selected 12 patients with cervical carcinoma and 

adjacent cervical intraepithelial neoplasia (CIN). Including the precursor lesions in our 

study permitted us to add to the current knowledge of HLA aberrations in invasive cervical 

carcinoma. We investigated HLA class I and β
2
-microglobulin expression by immunohis-

tochemistry in tumour and adjacent CIN. Loss of heterozygosity (LOH) was studied using 

microsatellite markers covering the HLA region. Fluorescence in situ hybridisation (FISH) 

with HLA class I probes was performed to investigate the mechanism of HLA loss. Immu-

nohistochemistry showed absent or weak HLA class I expression in 11/12 cases. In 10 of 

these 11 cases downregulation occurred in both tumour and CIN. In 9/12 cases LOH was 

present for at least one marker in both tumour and CIN, 1 case showed only LOH in the 

CIN lesion and 1 case showed retention of heterozygosity (ROH) for all markers in both 

tumour and CIN. We concluded that HLA class I aberrations occur early and frequently 

in cervical carcinogenesis. This might allow premalignant CIN lesions to escape immune 

surveillance and progress to invasive cancer.

Loss of expression of the transporter associated with antigen processing (TAP) can influ-

ence HLA membrane expression which is frequently down-regulated in cervical cancer 

and its precursors. HLA class I molecules activate T-cells by antigen presentation and 

are therefore important for immunological surveillance. To add to the hitherto limited 

knowledge of molecular mechanisms underlying TAP loss in cervical cancer we investi-

gated TAP expression, LOH and possible TAP mutations in CHAPTER 5. To identify the 

timing of changes in TAP expression 23 cervical carcinomas and adjacent precursor lesions 

were stained with HLA-A-, HLA-B/C-, β
2
-microglobulin-, TAP1- and TAP2-specific MoAbs. 

TAP1 was not detectable in 10 out of 23 cervical carcinomas and 5 out of 10 adjacent CIN 
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lesions. All the lesions with low TAP expression also had altered HLA class I expression. 

To be able to separate tumour and non-tumour cells, cervical carcinoma samples were 

sorted by flow-cytometry and were subsequently analysed for LOH with markers in the 

TAP region on chromosome 6p21.3. LOH was found in 6 of the 10 lesions with TAP 

loss. Mutation analysis was then performed on these cases. In two cases we detected a 

polymorphism in the 5’-untranslated region (UTR) of the TAP1 gene. No mutations were 

detected. This study shows that there is altered TAP expression in a substantial number 

of cervical carcinomas. The underlying mechanism seems to be LOH in the TAP region, 

which is not accompanied by a mutation. In all cases with low TAP expression HLA class I 

loss was concomitantly detected, which supports previous reports on a strong association 

between TAP aberrations and loss of HLA class I expression.

Human papillomavirus (HPV) is a prerequisite for the development of cervical cancer. It 

has been established that multiple HPV infections are common in premalignant stages. 

Recently, multiple HPV infection in invasive cervical cancer has also been determined. 

In CHAPTER 6 we investigated the significance of multiple HPV infections by studying 

their prevalence in cervical cancer samples from a low-risk (Dutch) and a high-risk (Su-

rinamese) population and the correlation of HPV infection with tumour cell aneuploidy. 

SPF
10
 LiPA was used for HPV detection and typing in 96 Dutch and 95 Surinamese cervical 

carcinomas. Subsequently, samples with combined HPV 16/18 infections were sorted by 

flow cytometry and both diploid and aneuploid tumour cell fractions were HPV-typed by 

HPV 16- and HPV 18-specific PCR. HPV integration was investigated on the sorted cervical 

carcinoma cells. Fluorescent in situ hybridisation (FISH) on paraffin embedded tissue 

was modified to detect HPV 16 and 18 genotypes simultaneously and was performed 

on the sorted samples. Multiple HPV infections were present in 13.8% Dutch and 22.1% 

Surinamese HPV positive cervical carcinoma lesions. Three cases carried an HPV 16 and 

HPV 18 co-infection: in two cases, integrated HPV copies of either HPV 16 or 18 were 

detected in the aneuploid fraction, and in the third case both HPV 16 and 18 were present 

solely as episomes. These results show that multiple HPV infections are present in cervical 

cancer samples from both high- and low-risk populations. Multiple HPV types can be 

present in an episomal state in both diploid and aneuploid tumour cells, but integrated 

HPV genomes were detected only in the aneuploid tumour cell subpopulations.

Conclusions that were drawn and hypotheses that were developed are put into perspec-

tive in CHAPTER 7.
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In CHAPTER 1 wordt een introductie gegeven in verschillende aspecten van cervix carci-

noom, HPV en hun relatie met immunologie. De tijd tussen de vermelding van een mogelijk 

verband tussen seksueel verkeer en baarmoederhalskanker en het epidemiologisch bewijs 

dat het seksueel overdraagbare HPV de centrale risico factor voor cervix carcinoom is, 

beslaat bijna anderhalve eeuw. Het tumorproces begint in de cervicale transformatiezone 

en ontwikkelt zich via verschillende stadia tot cervix carcinoom. Behandeling van patiën-

ten met premaligne en vroege stadia is vaak succesvol, maar patiënten met gevorderde 

stadia zijn moeilijker te genezen. Door het introduceren van georganiseerde bevolkings-

onderzoeken hebben ontwikkelde landen de cervix carcinoom incidentie en mortaliteit 

effectief gereduceerd. Ontwikkelingslanden blijven gebieden met een hoge incidentie en 

prevalentie van cervix carcinoom patiënten met gevorderde stadia. Geschat wordt dat 

ongeveer 80% van alle vrouwen minimaal eenmaal een HPV infectie doormaakt, van wie 

de overgrote meerderheid in staat is het virus te klaren. HPV en HPV-geïnduceerde laesies 

worden door het cellulaire immuunsysteem geëlimineerd als ze tenminste correct worden 

gepresenteerd op HLA moleculen. HLA defecten van genetische oorsprong kunnen dit 

proces verstoren. 

Vervolgens wordt de opzet van dit proefschrift gepresenteerd, dat epidemiologische, 

immunogenetische en virale aspecten van cervix carcinoom en zijn voorstadia bespreekt.

In CHAPTER 2 beschreven we de prevalentie van cytologische afwijkingen in cervix uit-

strijkjes, afkomstig van vrouwen die deel hebben genomen aan het eerste georganiseerde 

bevolkingsonderzoek in Suriname en vergeleken we de prevalenties van vier Surinaamse 

etniciteiten met een verschillende cervix carcinoom incidentie. Papanicolaou kleuring en 

cytologische screening worden uitgevoerd op 807 cervix uitstrijkjes afgenomen bij Mar-

rons, Amerindianen, Javanen en Hindustanen. Cervicale cytologische afwijkingen werden 

vastgesteld in 13.4% van de beoordeelbare smears. Hiervan was 2.6% matige tot ernstige 

dysplasia. De prevalentie van cytologische afwijkingen varieerde tussen de etniciteiten. 

In de uitstrijkjes van de Marrons worden significant meer cytologische afwijkingen aan-

getoond. We stelden een hoge prevalentie van matige en ernstige dysplasie vast in alle 

etniciteiten, hetgeen correleert met de hoge cervix carcinoom incidentie in Suriname. Bij 

de Marrons werd een significant hogere prevalentie van milde afwijkingen gezien, hetgeen 

niet correspondeert met de relatief lage cervix carcinoom incidentie bij deze etniciteit. Dit 

zou wel kunnen passen bij een mogelijke andere seksuele levensstijl van deze vrouwen, 

hetgeen zou kunnen leiden tot een hogere prevalentie van voorbijgaande HPV infecties.

Incidentiecijfers van (voorstadia van) cervix carcinoom variëren aanzienlijk. Dit wordt 

beïnvloed door endogene en exogene factoren. In CHAPTER 3 vergeleken we inciden-

ties van cytologische afwijkingen van een hoog-risico populatie in het oorspronkelijke 

gebied met die van vrouwen van deze hoog-risico populatie die zijn geïmmigreerd naar 
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een laag-risico gebied om inzicht in het belang van deze factoren te krijgen. Uitstrijkjes 

afkomstig van Surinaamse vrouwen die deelnamen aan het Surinaamse bevolkingson-

derzoek en uitstrijkjes afkomstig van vrouwelijke Surinaamse immigranten in Nederland 

werden cytologisch geanalyseerd, gebruikmakend van het Nederlandse microscopische 

coderingssysteem KOPAC. De leeftijdsspecifieke odds op het hebben van dysplasie waren 

hoger voor Surinaamse vrouwen die in Suriname wonen dan voor de naar Nederlands 

geïmmigreerde Surinaamse vrouwen en stegen met hogere stadia van atypie. Wij conclu-

deerden dat er minder gevallen met dysplasie vóórkomen in een hoog-risico populatie die 

is geïmmigreerd naar een laag-risico gebied voor cervix carcinoom dan in een hoog-risico 

populatie die is blijven wonen in het hoog-risico gebied. Dit benadrukt het belang van 

omgevingsfactoren.

Verlies op chromosoom 6p21.3, het gebied van het humane leukocyten antigeen (HLA), 

is de hoofdoorzaak van HLA downregulatie, hetgeen bij het merendeel van de cervix car-

cinomen vóórkomt. In CHAPTER 4 onderzochten we timing, frequentie en mechanisme 

van HLA klasse I downregulatie in de cervicale carcinogenese. Om het tumorstadium 

waarin de HLA klasse I aberraties optreden te identificeren, selecteerden we 12 patiënten 

met cervix carcinoom en aangrenzende cervicale intraepitheliale neoplasie (CIN). Het 

includeren van voorstadia in onze studie gaf ons de mogelijkheid om iets toe te voegen 

aan de actuele kennis van HLA aberraties in invasieve cervix carcinoom. Gebruik makend 

van immuunhistochemie onderzochten we HLA klasse I en β
2
-microglobuline expressie in 

tumor en aangrenzende CIN. Verlies van heterozygositeit (LOH) werd onderzocht met mi-

crosatellite markers die het HLA gebied besloegen. Fluorescent in situ hybridisatie (FISH) 

met HLA klasse I probes werd uitgevoerd om het mechanisme achter het HLA verlies te 

ontrafelen. In 11 van de 12 gevallen liet immuunhistochemie afwezige of zwakke HLA 

klasse I expressie zien. In 10 van deze 11 gevallen kwam downregulatie in tumor en 

aangrenzende CIN voor. In 9 van de 12 gevallen werd LOH gezien met tenminste één 

marker in tumor en CIN, in één geval werd alleen LOH in de CIN laesie gedetecteerd 

en in één geval werd retentie van heterozygositeit voor alle markers in zowel tumor als 

CIN gezien. We concludeerden dat HLA klasse I aberraties vroeg en vaak in de cervicale 

carcinogenese optreden. Dit zou premaligne CIN laesies een mogelijkheid kunnen geven 

om aan immuunsurveillance te ontsnappen en te ontwikkelen tot cervix carcinoom.

Verlies van expressie van de “transporter associated with antigen processing” (TAP) kan 

de HLA membraan expressie beïnvloeden, die frequent is down gereguleerd in (de voor-

stadia van) cervix carcinoom. HLA klasse I moleculen activeren T-cellen door antigeen 

presentatie en zijn derhalve van belang voor de immunologische surveillance. Om bij te 

dragen aan de tot nog toe beperkte kennis over de onderliggende moleculaire mechanis-

men van TAP verlies in cervix carcinoom hebben we TAP expressie, LOH en mogelijke 
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TAP mutaties onderzocht (CHAPTER 5). Om de timing van TAP expressieverandering te 

kunnen bepalen werden 23 cervix carcinomen en naastliggende premaligne laesies ge-

kleurd met HLA-A-, HLA-B/C-, β
2
-microglobuline-, TAP1- en TAP2-specifieke monoclonale 

antilichamen. TAP1 werd niet gedetecteerd in 10 van de 23 cervix carcinomen en 5 van de 

10 naastliggende CIN laesies. Alle laesies met lage TAP expressie hadden ook veranderde 

HLA klasse I expressie. Om tumor- en normale cellen te kunnen onderscheiden werden 

de cervix carcinoom samples gesorteerd door middel van “flow-cytometry” en vervolgens 

geanalyseerd voor LOH met markers in het TAP gebied op chromosoom 6p21.3. LOH 

werd gevonden in 6 van de 10 laesies met TAP verlies. Aansluitend werd een mutatie-

analyse op deze monsters uitgevoerd. In 2 gevallen detecteerden we een polymorfisme 

in de “5’-untranslated region” van het TAP1 gen. Er werden geen mutaties aangetoond. 

Dit onderzoek laat zien dat er veranderde TAP expressie is in een aanzienlijk deel van de 

cervix carcinomen. Het onderliggende mechanisme lijkt LOH in het TAP gebied te zijn, 

hetgeen niet gepaard gaat met een mutatie. In alle gevallen met lage TAP expressie werd 

ook HLA klasse I verlies geconstateerd, een bevinding die eerdere rapporten over een 

sterke associatie tussen TAP aberraties en verlies van HLA klasse I onderschrijft.

Humaan papillomavirus (HPV) is een voorwaarde voor de ontwikkeling van cervix carci-

noom. Het is gebleken dat multipele HPV infecties vaak vóórkomen in premaligne stadia. 

Recent werden ook in invasieve cervix tumoren multipele HPV infecties vastgesteld. Der-

halve onderzochten we de significantie van multipele HPV infecties door het bestuderen 

van de prevalenties van deze in cervix carcinoom in een laag-risico (Nederlandse) en 

een hoog-risico (Surinaamse) populatie en de correlatie van HPV infectie met tumorcel 

aneuploïdie (CHAPTER 6). SPF
10
 LiPA werd gebruikt voor HPV detectie en typering in 

96 Nederlandse en 95 Surinaamse cervix carcinomen. Vervolgens werden laesies met 

gecombineerde HPV 16/18 infecties met behulp van flow cytometry gescheiden in de 

diploïde en aneuploïde tumorcel fracties. Deze fracties werden HPV getypeerd door HPV 

16- en HPV 18-specifieke PCRs. HPV integratie werd onderzocht op deze gesorteerde 

cervix carcinoomcellen. Fluorescent in situ hybridisatie (FISH) op paraffine materiaal werd 

gebruikt voor gelijktijdige detectie van HPV 16 en 18 genotypen en uitgevoerd op de 

gesorteerde samples.

Multipele HPV infecties waren aanwezig in 13.8% Nederlandse en 22.1% Surinaamse HPV 

positieve cervix carcinomen. Drie tumoren hadden een HPV 16 en HPV 18 co-infectie: in 

twee tumoren werden de geïntegreerde HPV copieën van óf HPV 16 óf HPV 18 gedetec-

teerd in de aneuploïde fractie. In de derde tumor waren zowel HPV 16 als HPV 18 alleen 

episomaal aanwezig. Deze resultaten tonen aan dat multipele HPV infecties vóórkomen in 

cervix carcinomen van zowel hoog- als laag-risico populaties. Meerdere HPV typen kunnen 

in episomale vorm voorkomen in zowel de diploïde als de aneuploïde tumorcellen, maar 

geïntegreerd HPV DNA werd alleen in aneuploïde tumorcel subpopulaties gedetecteerd.
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Conclusies die werden getrokken en hypothesen die werden geformuleerd zijn in CHAP-

TER 7 in het perspectief van recente literatuur geplaatst.
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Chapter 4, FIGURE 2

Examples of the FISH results. (A) In case S77, FISH showed two centromeric signals and three signals of the 

whole HLA class I region in 16% of the nuclei, suggesting a possible duplication and translocation.  

(B) Example of aneusomy 6, found in most of the cases.

Chapter 5, FIGURE 3

LOH analysis results. (A) A representative example of flow-sorting data of a cervical cancer sample (S41). 

The keratin positive (tumour, FITC-labelled) cells and the vimentin positive (normal, PE-labelled)) cells were 

flow-sorted and used in further analyses. (B) LOH results (S87) at marker TAP1 for tumour (pink, one peak) 

and normal (green, two peaks) sorted cell fractions (S87). A size marker is depicted in red. (C) The complete 

LOH data of the three microsatellite markers used per tumour sample, represented as ROH (black squares); 

LOH (white squares) and not informative (grey squares). The same order of samples is used as in FIGURE 1.
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Chapter 5, FIGURE 2

Immunohistochemical staining of a cervical carcinoma lesion (sample S87). Detail (400x magnification) 

of the same group of tumour cells, stained with TAP1 (negative) (A); TAP2 (positive) (B); HLA-A (C) and 

HLA-B/C (D) (weak cytoplasm, negative membrane); β2M (positive cytoplasm) (E).



Colour section

131

Chapter 6, FIGURE 1

Interphase FISH on flow-sorted cervical carcinoma cells of the HPV 16/18 positive cases. Case 1 (A): the 

diploid cells are negative for HPV; (B) The aneuploid tumour cells show punctate signals for HPV 16 (green); 

(C) Control centromere 1 (red) and centromere 6 (green) signals. Case 2 (D): the diploid tumour cell fraction 

is negative for HPV; (E) The aneuploid tumour cells show punctate signals for HPV 18 (red); (F) Control 

centromere 1 (red) and centromere 6 (green) signals. Case 3 (G): the aneuploid tumour cell fraction is 

negative for HPV; (H) Control centromere 1 (red) and centromere 6 (green) signals.
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Chapter 6, FIGURE 2

Interphase FISH on flow-sorted cervical cancer cell lines. (A) SiHa: 2 copies of HPV 16 are visible in green; (B) 

CaSki: multiple copies of HPV 16 are visible in green; (C) HeLa: multiple copies of HPV 18 are visible in red.


