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Chapter 1 

General Introduction 

Inflammation is an immune reaction of the body to the external stimuli 

such as toxins or pathogens, and is characterized by redness, swelling, pain, and 

heat, which are localized at the site of infection (Ruslan, 2010). The process of 
inflammation is regulated by several pro-inflammatory and antiinflammatory 

cytokines. Tumor necrosis factor-α (TNF-α) is a major pro-inflammatory 

cytokine involved in the inflammatory response. Besides inflammatory diseases 

like rheumatoid arthritis and inflammatory bowl disease, elevated TNF-α 
expression has been found to be associated with the development of diabetes, 

atherosclerosis, septic shock, and tumorigenesis. Thus inhibition of TNF-α at 

any step of inflammatory pathways provides an attractive treatment for 
inflammatory diseases as well as for series of other common diseases. TNF-α is 

secreted by macrophages, monocytes, neutrophils, T-cells, and NK-cells after 

their stimulation by lipopolysaccharides (LPS) (Paul et al., 2006). 

LPS, the major component of bacterial cell walls, is known as potent 

inducer of TNF-α production. It normally consists of three parts: Lipid A, a core 

oligosaccharide, and an O side chain (Raetz and Whitfield, 2002). The Lipid A 
portion is responsible for the biological activity of LPS, whilst recent evidence 

suggests that the polysaccharide tail determines the antigenic properties (Lien et 

al., 2000; Poltorak et al., 1998). Lipopolysaccharides are very potent molecules 
known to activate macrophages at concentration as low as 1 nM (Aderem, 

2000), and have been used as a stimulus for promoting inflammation in many 

studies (Old, 1985; Yuliana et al., 2011a). 

Currently several types of clinically approved drugs are available for 

inhibition of TNF-α production in different disease conditions.  These include 

Etnercept, Infliximab, and Adalimumab. Although these drugs are potentially 
beneficial to human health, unfortunately they also exert some devastating 

effects such as an increased chance of infections, heart failure, neurological 

changes and several problems related to autoimmunity (Palladino et al., 2003; 
Scheinfeld, 2004). Thus, it is essential to develop safer, less toxic, and 

beneficial TNF-α inhibitor drugs. 

Plants provide an alternative sources of medicines used traditionally by 

people worldwide since thousands of years ago. Around 80% of the World’s 

population relies upon plants for primary health care. Currently, about 25–30% 
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of all drugs available as therapeutics are derived from natural products (plants, 
microbes and animals) or are natural product derivatives (Calixto, 2005). About 

50,000 flowering plants are used as medicinal plants out of the total 422,000 

flowering plants reported from this world (Schippmann et al., 2002). It is very 
well documented that plants produce a vast and diverse nature of compounds, 

known as primary and secondary metabolites. Plants utilize secondary 

metabolites in its interaction with its environment as defense against attack by 
pathogens or herbivores, or to attract pollinators (Verpoorte, 1998). According 

to a rough estimate, around 30,000 metabolites are present in a single plant 

(Verpoorte et al., 2008). These metabolites have been classified into different 

classes such as flavonoids, phenolics, glucosinolates, terpenoids, and alkaloids. 
Plants create species specific compounds by sharing core biosynthetic pathways 

and then utilizing unique modification enzymes at the end of the pathway to 

generate novel chemical structures with significantly changed specific 
biological activities (Kliebenstein, 2011). Secondary metabolites display diverse 

pharmacological activities which include antiinflammatory, antiviral, 

antibacterial, antitumor, antihypertension, antidepressive, sedative and many 

more (Erlund, 2004; Lovkova et al., 2001; Shaheen et al., 2005).  

Finding a lead with particular activity as TNF-α inhibitors requires a 

reliable in-vitro assay as the preliminary step. Several human monocytic cell 
lines (U937, HL-60, THP-1, and Mono Mac 6) are available that are widely 

used as in-vitro model systems for monocytes and macrophages (Verhoeckx et 

al., 2004).  Among them, U937 cell lines have been used extensively as an in-
vitro   model in biomedical research (Lee et al., 2007; Yuliana et al., 2011a). U-

937 is a tumor cell line derived from the pleural effusions of a patient with 

histiocytic lymphoma. Phorbol 12-myristate 13-acetate (PMA), one of the most 

potent tumor promoting agents has been shown to induce monocytic 
differentiation. The PMA-stimulated cells acquired morphological, 

ultrastructural, and functional characteristics typical of cells of the 

monocyte/macrophage lineage. The PMA-treated U-937 cells became adherent, 
and are no longer able to proliferate. Furthermore, the cells become functionally 

similar to monocyte/macrophage-like cells that can perform phagocytosis, 

antibody dependent cellular cytotoxicity, antigen presentation and chemotaxis 
(Minta and Pambrun, 1985; Verhoeckx et al., 2004). 

In-vivo assay using animal model is the next step after a compound or 

an extract is determined “active” by an in-vitro assay. The zebrafish embryo 
(Danio rerio) has become an important vertebrate model for assessing drug 

effects. Zebrafish embryos exhibit unique characteristics, including ease of 

maintenance and drug administration, short reproductive cycle, and 
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transparency that permits visual assessment of developing cells and organs. 
Because of these advantages, zebrafish bioassays are cheaper and faster than 

mouse assays, and are suitable for large-scale drug screening (Parng et al., 

2002). There is strong conservation between zebrafish and humans when 
compared with other model organisms, such as the fruit fly Drosophila 

melanogaster and the worm Caenorhabditis elegans, which makes zebrafish an 

excellent model organism for studying complex biological processes, such as 
generation of the nervous system, kidney, heart, hematopoietic system, and 

notochord, as well as assessing angiogenesis, apoptosis, and toxicity response 

(Kari et al., 2007).  

An active plant extract (mixture of compounds) must contain individual 

active compounds or perhaps interaction/ synergisim among the compounds that 

contribute to the activity if compared to the non active plant extract. Further 
step is studying the mixture of compounds present in the extract / biological 

matrix by metabolomics. Metabolomics is an approach aimed for the 

monitoring of primary and secondary metabolism and can be defined as a 
metabolic snapshot of a living system. Several analytical techniques (GC, 

HPLC or UPLC combined with UV and/ or MS, and MR) have been used in 

metabolomics e.g., for metabolic fingerprinting of different plants. NMR 

spectroscopy is an effective technique for both metabolite fingerprinting and 
metabolite profiling applications in samples of plant origin. It has some unique 

advantages over chromatography and MS-based methods. Despite of its low 

sensitivity, the ease of NMR spectroscopy in identification of compounds make 
it a popular tool in the area of metabolome analysis.  The most prominent 

features of NMR are its non destructive nature, simple sample preparation, and 

the relative short measuring time.  Moreover, NMR-metabolomics data stand 

for ever, as long as the same extraction procedures and the same NMR-solvents 
are used. An NMR spectrum represents the physical characteristic of a 

compound and thus highly reproducible. NMR can be used to identify 

metabolites of biological origin of which no a-prior knowledge is available. 
Furthermore, structure elucidation of unknown compounds in a complex 

mixture can be performed using 2D NMR methods like J resolved, COSY, 

NOESY, HMBC and HSQC. In addition, one can easily get information 
regarding quantity and quality of metabolites as signal intensity of NMR 

spectrum is directly proportional to the molar concentration of the metabolites. 

The development of methods and algorithms for the multivariate 
statistical modeling have contributed much to metabolomics as they opened the 

way for handling the huge datasets of large-scale metabolic analyses.  NMR 

spectroscopy together with multivariate data analysis has been widely practiced 
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for metabolic profiling of various samples (Ali et al., 2011a; Choi et al., 2004a). 
Several studies have been published regarding correlation of metabolic profiles 

of plant extracts with its bioactivity profile (Ali et al., 2012). This approach has 

allowed the identification of the active compounds from crude extracts without 
extensive chromatographic steps and techniques. Application of this approach 

requires the consideration of important factors like extraction, identification and 

statistical methods. Thus, an untargeted metabolomic approach is important to 
find correlation between NMR data and the bioactivity profile of fractionated 

different types of extracts or extracts of different individual plant accessions. 

For application of this method, one requires an extraction method which can 

cover a broad range of metabolites present in the plants (polar to non polar). 
Solid phase extraction and comprehensive extraction methods have been used 

recently for such studies (Ali et al., 2012; Yuliana et al., 2011c). 

Multivariate data analysis algorithms are an essential component of any 

metabolomics study. These methods are used to reduce the dimensionality of a 

multivariate dataset and thus enable to recognize possible differences or 
similarities among the samples. Principal component analysis (PCA) is 

considered as a primary tool in metabolomics, helping to better understand 

possible differences between samples. It is an unsupervised method; hence the 

separation of samples is purely due to differences among the samples. In order 
to identify the metabolites responsible for activity, a supervised methods are 

applied e.g. partial least squares-discriminant analysis (PLS-DA), is used. In 

this case samples are, for example, classified in high and low active classes by 
creating dummy Y-variables. Projection to latent structures (PLS) is another 

supervised method in which instead of creating dummy Y-variables, the actual 

data from anti-TNF-α assay can be used as a Y-data set. The application of 

bidirectional orthogonal-PLS (O2PLS) resulted in much better distinction of the 
samples with different activities than the PLS model. One of the key aspects of 

a supervised regression algorithm is model validation. A permutation test is 

often used for validation of methods like PLS and PLS-DA. A permutation test 
is the calculation of goodness of fit and the predictive ability of the model, R2 

and Q2, respectively. 

Application of NMR spectroscopy together with multivariate data 

analysis makes identification of compounds responsible for activity easy and 

thus these compounds can be further identified and elucidated by means of 1D 

and 2D NMR techniques. 
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Aim of the thesis 

The aim of this study was to develop methods for the rapid 

identification of active compounds in plant extracts by correlating NMR 
metabolomics and bioassay results by means of multivariate data analysis. 

Various food plants were thus studied for antiinflammatory activity. Following 

objectives were addressed in this general aim. 

 Development of high throughput antiinflammatory bioassays 

for screening plant extracts 

 Development of rapid, fast and reliable extraction and 

fractionation methods for bioacticity based screening of plants 

 Development and validation of chemometrics methods for 

identification of compounds related to bioactivity  

Different extraction methods like comprehensive extraction method and 

solid phase extraction together with multivariate data analysis were used to 

detect the active compounds in different plant extracts. TNF-α bioassay and 
zebrafish bioassay were used to measure the bioactivity of plant extracts in-vitro 

and in-vivo. NMR spectroscopy was used to characterize the metabolic profile 

of different plant extracts. Several multivariate data analysis methods were used 
to determine the correlation between metabolic profile and bioactivity.  

Outline of the thesis 

The thesis begins with a comprehensive review discussing the 

phytochemicals as a potential source for TNF-α inhibitors. This review briefly 

summarizes the role of TNF-α in the, its receptors in the signaling cascades of 
the cellular immune response, and assess briefly various natural compounds 

which are known to inhibit TNF-α release (Chapter 2). Sixty six different plant 

extracts were screened out for their ability to inhibit TNF-α release in LPS 
stimulated U937 cell lines. The active extracts were further tested for their 

antiinflammatory activity in-vivo using transgenic (MPO) Zebrafish embryo as 

a model system (Chapter 3). Anti TNF-α inhibition of major cannabinoids 

isolated from Cannabis sativa using U937 cell lines was presented in Chapter 

4. Screening of different fruit berries against TNF-α production, NMR 

spectroscopy and multivariate data analysis-based study was described in 

Chapter 5. The use of solid phase extraction along with multivariate data 
analysis to predict anti-TNF-α activity in different grape cultivars, at different 

developmental stages is presented in Chapter 6. The inhibition potential of 
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different red wines from different vintages against TNF-α production is also 
assessed and presented in Chapter 7. NMR spectroscopy coupled with 

multivariate data analysis to measure antiinflammatory activities (in-vitro, in-

vivo) of Eugenia uniflora is presented in Chapter 8. Comprehensive extraction 
integrated with multivariate data analysis to identify set of compounds form 

Sempervivum pseudocalcareum responsible of antiinflammatory activities is 

presented in Chapter 9. Finally general discussion, conclusions and future 
prospects related to metabolic profiling and bioactivity screening of different 

plants are presented in Chapter 10. 
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Chapter 2 

 

Phytochemicals as a potential source for TNF-α inhibitors 
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Abstract 

Cytokines play an important role in the immune system. Any disorder in the 

regulation of cytokines can lead to the development of inflammatory diseases. 

Tumor necrosis factor- α (TNF-α) is one of the most important inflammatory 
cytokines that controls different types of cell functions. The overproduction of 

TNF-α is linked with the development of various diseases such as asthma, 

rheumatoid arthritis, psoriatic arthritis, inflammatory bowel disease, septic 

shock, diabetes and atherosclerosis. Plants are considered as excellent sources 
of pharmacologically active compounds. Currently, scientists are searching for 

natural products with anti-TNF-α properties for the treatment of various 

inflammatory disorders. At present, protein-based drugs are available for the 
inhibition of TNF-α, however these have some limitations. Plant might provide 

an alternative and cost-effective source of drugs that can regulate TNF-α level. 

This review briefly highlights the physiological and pathological roles of TNF-α 
along with a description of plant-derived compounds capable of interfering with 

TNF-α activity and production. 

 

 

Key words: Inflammatory disorders, medicines, natural products, plants, TNF-

α inhibitors 
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Definitions 

NF-κB: A protein complex which is found in all animal cells and is actively 

involved in regulating immune response to infection. 

T cells: They belong to a group of white blood cells known as lymphocytes, and 

play a central role in cell mediated immunity. 

NK cells: (Natural killer cells), these are lymphocytes and they are considered 

as a major component of the immune system. 

B cells: These are lymphocytes that play a large role in the humoral immune 
response. 

IL-1α and β: These are pro-inflammatory cytokines involved in immune 
defense against infection. 

IC50: Half maximal inhibitory concentration: is a measure of effectiveness of a 
compound in inhibiting a biological function. 

IFN-γ: Interferon-gamma; a soluble cytokine that is important for innate and 
adaptive immunity against viral and intracellular bacterial infections. 

TNF-α: (Tumor necrosis factor alpha) is a pro inflammatory cytokine involved 

in the process of inflammation. It is produced by several types of cells but 
especially macrophages. 
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Abbreviations: 

 

AKT A serine/threonine kinase 

AP-1 Activator protein-1 

COX-2 Cycloxygenase 2 

DD Death domain 

EGB-761 Extract of Ginkgo biloba 

ERK Extracellular signal-regulated kinases 

ICAM-1 Intercellular adhesion molecule-1 

IGF Insuline- like growth factor 

IKB Inhibitor of nuclear factor-Kappa B 

INOS Inducible nitric oxide 

IRA Insulin receptor activation  

LOX-2 Lipoxygenase-2 

LPS Lipopolysaccharides 

MAPK Mitogen activated protein kinase 

MCP-1 Monocyte chemoattractant protein 1 

MEKK1 Mitogen-activated protein kinase kinase 1 
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NF-κB Nuclear factor kappa B 

NIK Nuclear factor-kB-inducing kinase 

NO Nitric oxide 

PDE4 Phosphodiesterase 4 

PGE2 Prostaglandin E2 

PK Protein kinase 

RAW- 

264.7 

Rat leukemia monocyte macrophage cell line 

RBL-2H3 Rat basophilic leukemia mast cell line 

RIP Receptor activating protein 

TACE TNF-α converting enzyme 

TNF-α Tumor necrosis factor alpha 

VCAM-1 Vascular cell adhesion molecule-1 

VEGF Vascular endothelial growth factor 

ZZ-CWE Crude Water extract of Zingeber zerumbet 
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2.1. Introduction  

Tumor necrosis factor-α (TNF-α) is one of the most important 

regulatory proteins in the immune system of animal cells. It was discovered in 
1975 by Lloyd Old and his colleagues because of its anti-tumor activity 

(Bradley 2008; Tracey and Cerami 1994), although previous observations in the 

19th century had already shown that heat-killed bacteria could be used to induce 
tumor regression in cancer patients (Carswell et al. 1975). Presently TNF-α is 

also known to mediate tumor initiation, metastasis and inflammation.  

Extensive studies of cell signaling cascades have shown that 

dysregulation of TNF-α can result in a wide variety of inflammatory diseases 
including asthma, dermatitis, cystic fibrosis, rheumatoid arthritis, inflammatory 

bowel/Crohn’s disease, multiple sclerosis, psoriasis, systemic lupus 

erythematosus, diabetes type II, atherosclerosis, Alzheimer’s disease, 
osteoporosis and autoimmune deficiency disease (Bjo¨rnsdottir and Cypcar 

1999; Cohen et al. 1996; Medana et al. 1997; Murphy et al. 1998; Sekut and 

Connolly 1996). Those diseases can be initiated by several genetic factors, 
pathogenic bacterial or viral infections, as well as by lifestyle such as diet, 

smoking and alcohol consumption, which can promote metabolic or oxidative 

stress (Hu 2011), and aging (Hunt et al. 2010; Sarkar and Fisher 2006). The 

molecular mechanisms underlying these diseases are complex and many are still 
unknown, although it has been shown that proper regulation of TNF-α is 

necessary to keep the immune system in balance (homeostasis).  

It is evident that the suppression of TNF-α could be beneficial in 
different inflammatory diseases. Significant efforts have been made in 

developing drugs that interfere with TNF-α production (Cohan et al. 1996; 

Moreira et al. 1993). Currently, several types of clinically approved drugs are 

available for the inhibition of TNF-α production in different disease conditions. 
These include, Etnercept, Infliximab, and Adalimumab (Scheinfeld 2004). 

Although these drugs are potentially beneficial to human health, they can also 

exert some devastating effects such as an increased chance of infection, heart 
failure, neurological changes, and problems related to autoimmunity (Palladino 

et al. 2003; Scheinfeld 2004). Thus, it is essential to develop safer, less toxic, 

and more beneficial anti- TNF-α drugs.  
Plants are sources of medicines which are used since thousands of years 

in China or India, and the core of global medicine has its roots in plant products. 

Some 150,000 plant compounds are already known, and many more are 

expected to be discovered since only a small percentage of plants have been 
studied phytochemically and/or pharmacology. Together with the known 

compounds, plant compounds form a great source for screening for TNF-α 

inhibitors. By screening plant extracts one may find single active compounds or 
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mixtures that work in synergy. Hits from screening can be isolated and be 
further developed into new leads with improved activity and low toxicity.  

This review briefly summarizes the role of TNF-α and its receptors in 

the signaling cascades of the cellular immune response, and assess briefly 
various natural compounds which are known to inhibit TNF-α release. 

 

2.2. TNF-α, cell signaling pathways and pathology 

Tumor necrosis factor-α (a transmembrane protein of 26-kDa) is 

released in its active form (a 17-kDa protein) by macrophages and a wide 
variety of cells, particularly immune cells (e.g. mast cells, T cells, neutrophyls, 

NK cells and synovial cells) upon stress stimuli. This process is tightly 

regulated and involves an enzyme called TNF-α ctivating converting enzyme 
(TACE), a membrane bound disintegrin metalloprotease, which belongs to the 

family of mammalian adama-lysins (ADAMs), and can be a target for inhibition 

of TNF-α release (Black et al. 1997; Moss et al. 1997). 
There are two types of receptors that bind TNF-α with comparable 

binding activity and through which its effects are mediated; TNF receptor I 

(TNF-R1, also known as p60, p55 or CD120a), which is expressed in all cell 

types in the body, and TNF receptor II (TNFR2, also called p80, p75 or 
CD120b). The latter is only expressed on cells of the immune system and on 

endothelial cells (Aggarwal et al. 2006). 

 Several (downstream) pathways are activated whenTNF-α binds to 
TNF-R1. For example, it activates the pathway leading to apoptosis when the 

cytoplasmic ‘‘death domain’’ of TNF-R1 recruits proteins including ‘‘TNF-

receptor-associated death domain’’ (TRADD), ‘‘Fas-associated death domain’’ 
(FADD) and ‘‘FADD-like ICE’’ (FLICE, also called caspase-8) leading to 

activation of caspase-3, which is responsible for degradation of multiple 

proteins (Nagata and Golstein 1995).  

The signaling cascade leading to inflammation occurs when the ‘‘death 
domain’’ of TNF-R1 recruits TRADD, which subsequently recruits a protein 

called ‘‘TNF receptor-associated factor’’ (TRAF2). Mediated by ‘‘receptor-

interacting protein’’ (RIP), the complex activates IκBα kinase (IKK), which is 
needed for the activation of IκBα. Activated/phosphorylated IκBα is necessary 

to interact with and inhibit ‘‘nuclear factor kappa-light-chain-enhancer of 

activated B cells’’ (NFκB). Subsequently, ubiquitination and degradation of 

IκBα complex releases the free NF-κB. The latter translocates to the nucleus, 
binds to the promoter or enhancer regions of target genes to enhance 

transcription (Bonizzi and Karin 2004; Campbell et al. 2004; Luqman and 

Pezzuto 2010). There are many genes known to be regulated by NF-κB 
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including TNF-α itself and those that play roles in inflammation, such as 
cyclooxygenase-2 (COX-2), lipoxygenase-2 (LOX-2), cell-adhesion molecules 

(CAMs), inflammatory cytokines and inducible nitric oxide synthase (iNOS). 

Thus, the proinflammatory effects of TNF-α are mainly due of its ability to 
activate NF-κB (Aggarwal et al. 2006). This pathway is a particular therapeutic 

target for arthritis and other inflammatory diseases. Any agent that can block 

activation of this pathway that results in down regulation of NF-κB, TNF-α and 
other inflammatory enzymes and cytokines can be a drug candidate (Aggarwal 

et al. 2006; Khanna et al. 2007). Similar to that of IκBα, degradation of IκBβ 

releases NF-κB dimers and upregulates TNF-α, however, recently, Rao et al. 

(2010) reported that in vivo IκBβ served both to inhibit and facilitate the 
inflammatory response. The absence of IκBβ in IκBβ-/- mice resulted in a 

dramatic reduction in TNF-α levels in response to lipopolysaccharide (LPS) 

challenge even though activation of NF-κB was normal. The inhibition of the 
mRNA for TNF-α correlated with the absence of nuclear hyposphorylated-IκBβ 

bound to p65:c-Rel heterodimers at specific κB site on the TNF-α  promoter. 

Thus, blocking IκBβ might be a promising strategy for selective TNF-α 

inhibition at the chronic phase of TNF-α production during the inflammatory 
response.  

Aberrant regulation of NF-κB is found to occur in many types of cancer 

cells. Some studies showed that NF-κB could modulate the transcriptional 
activation of genes associated with cell proliferation, angiogenesis, metastasis, 

tumor promotion, suppression of apoptosis and drug resistance (Luqman and 

Pezzuto 2010), meaning that downregulation of NF-κB can also be a target for 
anticancer therapies (Karin et al. 2006; Luqman and Pezzuto 2010).  

Several other pathways can also be induced by TNF-α through the 

recruitment of TRAF2 leading to the activation of activator protein-1 (AP-1), c-

Jun amino terminal kinase (JNK), p38 mitogen activated protein kinase 
(p38MAPK), p44/p42MAPK (also called extracellular signal-regulated kinases 

1/2, ERK1/2), and AKT, which in turn can upregulate TNF-α  activation. The 

AP-1, JNK and p38MAPK pathways can contribute to stress responses and 
inflammation. For example, a reversible ATP-competitive inhibitor 

‘‘SP600125’’ inhibited the phosphorylation of c-Jun and the expression of the 

inflammatory genes COX-2, IL-2, IFN-c and TNF (Bennett et al. 2001). It also 
prevented the activation and differentiation of primary human CD4 cell 

cultures. Campbell et al. (2004) showed that p38MAPK regulated the TNF-α 

production relevant to inflammation suggesting that this kinase could be a 

therapeutic target in rheumatoid diseases. Some other pathways seem to provide 
negative feed-back in TNF-α- induced apoptosis. For example, TNF-induced 

ERK1/2 activation is necessary for cell proliferation and has a dominant 

protective effect over apoptotic signaling from the death receptors (Aggarwal et 
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al. 2006; Tran et al. 2001). In addition, the TNF-α induced AKT pathway is 
involved in cell growth, as it was shown that inhibition of AKT kinase resulted 

in suppression of cell growth and induction of apoptosis in human cancer cells 

(Yang et al. 2004). Thus, both the ERK1/2 and AKT pathways can be targets 
for developing anticancer drugs. 

The present day knowledge about the cell signaling cascade shows the 

importance of TNF-α as a regulatory factor in many cellular processes in the 
immune system and the complexity of the signaling network.  

It is clear that in pro-inflammatory state, TNF-α is upregulated in the inflamed 

organs/tissues together with some proinflammatory cytokines which are 

involved in the initiation of inflammation (e.g. IL1-β, IL-6 and IL-18), and also 
some anti-inflammatory cytokines (e.g. IL-10, IGF-β and IRA) which inhibit 

the production of inflammation (Choy and Panayi 2001). TNF-α is not the only 

cytokine involved in inflammation, at least 100 different types of cytokines and 
their receptors have been identified (Kim et al. 2004b). Upregulation of TNF-α 

(and some other cytokines) is part of the complex signaling mechanism that 

results in the production, activation, and recruitment of immune cells 

(leucocytes) to sites of infection in order to combat pathogens. For example, 
infection by pathogenic gram-negative bacteria can generate inflammation 

because the major component of bacteria cell wall, LPS, is potent inducer of 

TNF-α production.  
Lipopolysaccharide normally consists of three parts: Lipid A, a core 

oligosaccharide, and an O side chain (Raetz and Whitfield 2002). The Lipid A 

portion is responsible for the biological activity of LPS, whilst recent evidence 
suggests that the polysaccharide tail determines the antigenic properties (Lien et 

al. 2000; Poltorak et al. 2000). LPS are very potent molecules known to activate 

macrophages at concentration as low as 1 nM (Aderem 2000), and have been 

used as a stimulus for promoting inflammation in many studies (Old 1985; 
Yuliana et al. 2011a). 

 Lipopolysaccharides-stimulation of mammalian cells occurs through a 

series of interactions involving several proteins including the LPS-binding 
protein (LBP) in serum, followed by the binding of the LBP/ LPS complex to 

CD14. This subsequently activates the signal transduction pathways including 

the MAPK family, ERK1/2, JNK, p38MAPK, and the transcription factor NF-
κB, and induces gene expression of various pro-inflammatory cytokines (Fig. 1) 

(Guha et al. 2001; Kishore et al. 2004). Macrophages exposed to LPS produce 

the transmembrane 27 KDa TNF-α, that binds directly to TNF-R1 and TNF-R2 

receptors through cell-to-cell contact or the secreted 17 KDa TNF-α that can 
bind these receptors in its soluble form (Jones et al. 1989). Production of TNF-α 

by LPS stimulated macrophages is highly accelerated in the presence of 

interferon-γ (IFNγ), resulting in differentiation and activation of nitric oxide 
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synthase, which in turn induces the production of nitric oxide in large amounts. 

The latter ultimately enhances the killing of microorganisms. The absence of 

IFNγ causes the macrophages to produce an insulin like growth factor (Heller et 
al. 1990).  

 

Infection by pathogens is not the only method to cause inflammation. 

Although the mechanisms are not clear, some oxidative and metabolic stress 
associated with an ‘‘unhealthy’’ life style e.g. excessive consumption of 

palatable food, alcohol, and cigarettes/ smoking (Hu 2011), as well as aging 

(Hunt et al. 2010) may also generate an inflammatory state and trigger 
autoregulation/dysregulation of the immune system. Recent study has even 

shown that a life-style associated with sleep deprivation can lower insulin 

sensitivity, whilst disruption of the circadian rhythm (e.g. for persons working 
night-shift or frequently experiencing jetlag) decreases the production of insulin 

(Buxton et al. 2012).  

This suggests a coupling between how the biological clock orchestrates 

the metabolism and the light-cycle, where perturbation can result in 

Figure 1: TNF-α and signaling cascade. Binding of TNF-α to its receptor TNFR results in the recruitment

of TRADD, TRAF2 and RIP. This is followed by the activation of IKK, binding of IκBα to NFκB,

phosphorylation of IκBα, and releasing and transport of NFκB into nucleus; the latter binds to several

target (inflammatory) genes. Binding of LPS to LBP and subsequently to CD14 and TLR4 activates the

signaling pathways of JNK, p38MAPK and ERK1/2 for upregulation of TNF-α through activation of NFκB or

some other pathways. Recruitment of TRAF2 can also activate JNK, p-38MAPK, ERK1/2 and AKT

pathways for regulation of TNF-α.
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dysregulation and even destruction of the whole system/body. Thus, stress can 
cause the immune system response by upregulation of some inflammatory 

cytokines. A chronic dysregulation of TNF-α, due to improper activation of one 

or more TNF-induced pathway(s), can cause a wide variety of diseases. For 
example, obesity can promote inflammation. Once an inflammatory state is 

established and becomes uncontrolled, it can develop into several diseases such 

as metabolic syndrome, diabetes type II, atherosclerosis and cardio-vascular 
diseases. Adipose tissue can synthesize TNF-α and IL-6 (Yudkin et al. 1999). 

Increased TNF-α levels in the adipose tissues of obese people is probably also 

aimed to decrease insulin sensitivity for lowering the sugar influx to the cells. It 

is known that the ligand-receptor complex of TNF-α and soluble TNFR1 is 
linked to the secretion of insulin (Ferna´ndez-Real and Ricart 1999; Ferna´ndez-

Real et al. 1999), whereas TNF-α/TNFR2 is linked to the action of insulin 

(insulin sensitivity for glucose transport into the cell) (Ferna´ndez-Real et al. 
1998). Thus, obesity promotes inflammation and can lead to the emergence of 

diabetes type II (high production but low sensitivity to insulin), which can also 

develop further to diabetes type I due to the damage of the Islet cells of the 

pancreas. Ferna´ndez-Real et al. (2006) identified a biologically active form of 
plasma/soluble TNFR2 which is produced by differential splicing (called DS-

TNFR2) in ‘‘healthy’’ people, which can antagonize TNF-α biological activity. 

Higher plasma concentrations of DS-TNFR2 seem to have an anti-inflammatory 
role, which may be a target for the treatment of obesity and related metabolic 

disorders. 

Since obesity can promote inflammation, it can also increase the risk for 
atherosclerosis and further cardiovascular complications. In obese people, the 

atherogenic diet can cause disturbed vascular blood flow and abnormal shear 

stress near the arterial wall. This can reduce local production of NO (which acts 

as a vasodilator and antiinflammatory molecule) and initiate inflammation of 
the endothelial monolayer. The cells start to express vascular cell adhesion 

molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), which 

can mediate binding precisely to various classes of leucocytes (e.g. monocytes 
and T-lymphocyte). Proteins such as selectins and integrins mediate leukocyte 

interactions and firmer attachments with the inflamed luminal endothelium, and 

together with monocyte chemoattractant protein-1 (MCP-1) and other pro-
inflammatory cytokines cause penetration/ migration of the adhered 

macrophages into the intima. As the inflammation continues, many 

inflammatory leukocytes (macrophages) extravasate and since they express 

scavenger receptors for modified lipoproteins (which may derive from low 
density lipoprotein, LDL), ingest lipids and become foam cells. This can attract 

T cells and enhance the production of cytokines (e.g. γ-interferon, lymphotoxin/ 

TNF-β). The activated macrophages and vascular cells can subsequently release 
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fibrogenic mediators and growth factors, which promote replication of smooth 
muscle cells and the formation of a dense extracellular matrix to form a plague. 

The large number of activated macrophages in the atheroma release proteolytic 

enzymes that can degrade the collagen making up the plaque’s fibrous cap, 
which makes the latter susceptible to rupture. In addition, the macrophages also 

produce a procoagulant that can trigger thrombosis in the plaques. A physical 

disruption of the atherosclerotic plaque in the coronary artery is the most 
common cause of a fatal acute myocardial infarction. This shows the link 

between inflammation, atherosclerosis and cardiovascular complications (Libby 

et al. 2002). TNF-α induces the production of VCAM-1, ICAM-1, E-selectin, 

IFN-γ and some other cytokines in atherosclerotic lesion (Joyce et al. 2001). 
 The dysregulation of TNF-α (inflammation) in patients with rheumatoid 

arthritis and autoimmune diseases results in an increased chance to develop 

diabetes, atherosclerosis and cardiovascular diseases.Some studies have 
reported the possible effectiveness of statins not only for treatment of 

atherosclerosis and cardiovascular diseases, but also for treatment of other 

inflammatory diseases like metabolic syndrome and diabetes type II, which are 

associated with increased levels of C reactive protein (CRP), a sensitive 
inflammatory biomarker in blood plasma (Libby et al. 2002). Statins may also 

be considered for treatment of selected cases of rheumatic and autoimmune 

disorders (Kotyla 2010). This is because statins also have a potent anti-
inflammatory activity apart from their LDL-lowering effect. However, even 

though statins are labeled as safe, there are groups of people for whom statins 

cannot be prescribed because of adverse side effects such as muscle pain.  
Obviously, TNF-α is an important pleotropic cytokine which is central 

to the development of various inflammatory diseases. Any agent that can 

suppress the overproduction of TNF-α through inhibition at any step of the 

various inflammatory pathways, can be considered a potential drug candidate 
for inflammatory diseases. This review will discuss about natural products as 

novel TNF-α inhibitors. 

 

2.3. Natural compounds as a source of TNF-α inhibitors 

Plants produce a huge diversity of compounds belonging to different 

classes from which drugs can be developed. Many compounds are known to 

reduce TNF-α levels or disrupt the various pro-inflammatory mediators that are 

actively involved in TNF-α expression (Kuhnau 1976). These compounds may 
provide an alternative for treatment of inflammatory diseases. Here we will 

review these compounds according to their biosynthetic-chemical classification. 

For reasons of comparison in Tables 1, 2 and 3 we have summarized some 
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activity data of well known anti-inflammatory medicines that effect TNF-α.
  

2.3.1. Flavonoids 
 

Flavonoids (Fig. 2a, b) are among the most widespread secondary 

metabolites in the plant kingdom. The capacity of flavonoids to act as anti-

inflammatory agents has long been utilized in Chinese medicine and in the 
cosmetic industry in the form of crude plant extracts (Ratty and Das 1988). The 

Western diet is rich in flavonoids; the daily intake is about 1 g of flavonoids per 

day (Kuhnau 1976). Many in vitro and in vivo studies have proven the efficacy 

of phenolic compounds as anti-inflammatory agents and their ability to 
modulate pro-inflammatory cytokines. 

In studies, it has been observed that flavonoids such as flavones, 

flavonols, and chalcones can inhibit the production of TNF-α. For example, a 
study with LPSstimulated J774.1 cells (Herath et al. 2003) showed that various 

dietary flavonoids including luteolin (1), apigenin (2), kaempferol (3), quercetin 

(4), myricetin (5), naringenin (6), catechin (7), phloretin (8), butein (9), 

pelargonidin (10) and cyanidin (11) were potent inhibitors of TNF-α with IC50 
values ranging from 3 to 37 µM. (Xagorari et al. 2001) reported that 

pretreatment of RAW264.7 cells with luteolin, genistein (12) luteolin- 7-

glucoside (13), and quercetin, inhibited both LPSinduced TNF-α and -IL-6, 
whereas eriodictyol and hesperetin only inhibited TNF-α release. Among the 

tested compounds, luteolin and quercetin were the most potent inhibitors of 

TNF-α with an IC50 of 1 and 5 µM, respectively. 
Scutellaria baicalensis has been used traditionally in China for the 

treatment of various inflammatory diseases (Chung et al., 1995). This plant 

contains wogonin (5,7-dihydroxy-8-methoxyflavone) (14) which has been 

shown to inhibit NO production (by reducing iNOS) and PGE2 production (by 
down-regulating COX II expression) in LPS-induced RAW 264.7 macrophages. 

The IC50 values of wogonin were 31 and 0.3 μM for the inhibition of NO and 

PGE2 production, respectively (Kim et al., 2001). Wogonin has also been found 
to strongly inhibit TNF-α secretion by LPS-stimulated RAW264.7 cells (Dien et 

al., 2001). Morin (15), a flavonoid present in various fruits and Chinese herbs, 

has been reported to have many beneficial biological activities. The effect of 
morin and its sulphated/glucuronated derivatives on the production of NO and 

cytokines by LPS-stimulated macrophages were investigated; it was found that 

these compounds inhibited the release of TNF-α with IC50 values of 2.0 and 2.5 

μM by morin and morin sulphates/glucuronides, respectively (Fang et al., 
2003). It has also been observed that amoradicin (16), a flavanone isolated from 

Amorpha fruticosa extracts, significantly inhibits TNF-α production by LPS-

stimulated RAW264.7 cells, with an IC50 value of 28.5 μM (Cho et al., 2000b).  
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Four kaempferol glycosides were isolated from the leaves of 
Cinnamomum osmophloeum Kaneh, a Taiwan endemic tree; kaempferitrin (17), 

kaempferol-3-O-β-D-apiofuranosyl-(1→2)-α-L-arabinofuranosyl-7-O-α-L-

rhamnopyranoside (18), and kaempferol-3-O-β-D-apiofuranosy-(1→4)-α-L-
rhamnopyranosyl-7-O-α-L-rhamnopyranoside (19). These compounds inhibited 

LPS and IFN-γ-induced NO, TNF-α and IL-12 with IC50 values of 40, 15 and 20 

μM, respectively (Fang et al., 2005). Several polymethoxylated flavones were 
isolated and identified from Citrus depressa, which decreased the release of 

TNF-α with IC50 values ranging from 5 to 120 μM (Manthey et al., 1999). These 

include 5,6,7,4
/
-tetramethoxyflavone (tetra-O-methylscutellarein) (20), 

tangeretin (21), 3,5,6,7,8,3
/
,4

/
-heptamethoxyflavone (22), nobiletin (23), 

sinensetin (24), 5-hydroxy-6,7,8,3
/
,4

/
-pentamethoxyflavone (25), 5,7,8,3

/
,4

/
-

pentamethoxyflavone (26), 7-hydroxy-3,5,6,7,3
/
,4

/
 hexamethoxyflavone (27), 5-

hydroxy-3,6,7,8,3
/
,4

/
-hexamethoxyflavone (28), 5,6,7,3

/
,4

/
,5

/
-

hexamethoxyflavone (29), 5,6,3
/
,4

/
-tetramethoxyflavone hydroxyflavones, 3-O-

methylquercetin (30), quercetin,  apigenin, kaemferol, limocitrin (31), 

chrysoeriol (32), rhamnetin (33) and acacetin (34). Of all of these flavonoids, 

3,5,6,7,8,3
/
,4

/
-heptamethoxyflavon (HMF) shows inhibition of LPS-induced 

TNF-α with an IC50 of 5 μM (Manthey et al., 1999). In another study, velutin 

(35), isolated from the pulp of Euterpe oleracea commonly known as açaí fruit, 

was evaluated for its effects on reducing LPS-induced TNF-α in RAW 264.7 
peripheral macrophages and mice peritoneal macrophages. Velutin showed 

effective inhibition of TNF-α through the suppression of NF-κB activation and 

inhibited protein kinase p38 and JNK phosphorylation (Xie et al., 2012). 

Although various in-vitro studies have confirmed the effects of some 

flavonoids on gene expression of pro-inflammatory cytokines, there have been 

only a few investigations to prove the same effects of flavonoids in-vivo. 
Intraperitoneal administration of flavonoids such as quercetin to mice 

suppressed the lethal endotoxic shock induced by LPS, or LPS plus D-

galactosamine, whereas rutin inhibited the production of TNF-α (Takahashi et 
al., 2001). Wogonin was found to inhibit COX-II induction when it was applied 

topically to TPA-treated mouse skin. Intraperitoneal administration of wogonin 

also inhibited TNF-α production and lethal shock in mice induced by LPS and 
D-galactosamine (Dien et al., 2001; Park et al., 2001). Woganin also showed an 

antiinflammatory activity as did its analogues, baicalein and baicalin, when 

administered orally in several animal models of inflammation (Kubo et al., 

1984). Oral administration of luteolin in LPS-treated mice showed an inhibition 
of TNF-α production, whilst intraperitoneally administration of luteolin 

increased the survival rate and inhibited the expression of TNF-α and ICAM-1 

(Hiroshi Ueda et al., 2004; Kotanidou et al., 2002). Morikawa et al. (2003) 
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showed that the administration of quercetin in carrageenan-induced rats 
inhibited the release of TNF-α, RANTES (Regulated upon activation, normal T-

cell expressed, and secreted), MIP-2 (macrophage inflammatory protein 2) and 

the mRNA of COX-2. All of these investigations prove that several flavonoids 
including wogonin, luteolin, and quercetin inhibit the expression of pro-

inflammatory molecules in experimental animals suggesting that the modulation 

of pro-inflammatory gene expression is most probably the major mechanism of 
action of flavonoids which explains their antiinflammatory activity. (For a 

mechanism of action see Table 1). 
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Figure 2a: Structure of natural TNF-α inhibitors: Flavonoids (1-12)  

The structure-activity relationship of flavonoids have been discussed in 
some studies (Chen et al., 2006b; Comalada et al., 2006; Herath et al., 2003; 

Shanmugam et al., 2008; Xagorari et al., 2001). There are some key rules 

regarding the structure of a flavonoid that is regard to have an antiinflammatory 
activity (Herath et al., 2003); (a) flavonoid aglycone shows a stronger activity 

than its glycoside, (b) a double bond between carbon 3 and 4 with a ketone 

group at position 4 is necessary, and (c) four hydroxyl groups at positions 5, 7, 

3’ and 4’ are necessary for an optimal antiinflammatory effect. Many in-vitro 
and in-vivo studies have shown the efficacy of flavonoids as potential 
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candidates for treatment of different diseases, however, the bioavailability of 
flavonoids, is still a matter of debate. There is a large bioavailability of 

flavonoids, is still a matter of debate. There is a large difference between the 

amounts of flavonoids consumed in our food or administered as a herbal 
medicine with the actual absorption of flavonoids in the gastro-intestinal tract. 

The poor uptake and the rather high activity levels (> 1 μM range) of flavonoids 

is hampering their development as drug candidates (Scalbert and Williamson, 
2000). Biological activities of flavonoids depend on their bioavailability; which 

includes their GI-tract metabolism,  degree of  absorption (which takes place in 

small intestine), metabolism in the liver and body, and excretion. These factors 

vary considerably among the individual flavonoid subclasses. Bioavailabilty of 
flavanones seem to be more than other related flavonoids such as flavonols or 

flavan-3-ols. This can be associated with the fact that these compounds are 

found to be less degraded than other flavonoids by colonic microbiota and, 
therefore, are more available for absorption (Selma et al., 2009; Williamson and 

Clifford, 2010). It has also been observed that flavonoids undergo extensive 

metabolism and transformation in the colon by microbiota before absorption by 

the human body. This conversation is often essential and modulates the 
biological activity of these dietary agents (Crozier et al., 2010; Selma et al., 

2009). Flavonoid glycosides are first deglycosylated prior to intestinal uptake, 

subsequently the aglycones are transported to the liver and metabolized to form 
conjugates with glucoronide or sulphate, and may undergo various chemical 

conversions such as methylation and oxidation. It has been proposed that 

conjucated forms of flavonoids might be involved in the health promoting 
effects of flavonoids (Crozier et al., 2010; Miyake et al., 2000). Table 2.1 shows 

the possible mechanism underlying TNF-α inhibition by flavonoids. 
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Figure 2b: Structure of natural TNF-α inhibitors: Flavonoids (13-35)
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2.3.2. Lignans 

Lignans (Figure 3) form a class of plant secondary metabolites which is 

widely distributed throughout the plant kingdom. They are most commonly 
present as free form in roots, rhizomes, stems, leaves, seeds and fruits. Some are 

found as glycosides. Lignans have been reported to have interesting 

pharmacological activities including antitumor, anti-inflammatory, 
immunosuppressive, cardiovascular, antioxidant and antiviral activity (Saleem 

et al., 2005). 

Three different types of lignans were isolated from the flower buds of 
Magnolia fargesii. They were identified as eudesmin (36), magnolin (37), and 

lirioresinol-B dimethylether (38). These lignans were found to have inhibitory 

effects on TNF-α production by the LPS-stimulated murine macrophage cell 
line, RAW264.7 (Chae et al., 1998) when used at 12.5µg/ml. Eudesmin had 

strongest activity with an IC50 value of 51 μM. Two neolignans, magnosalin 

[1β, 2α, 3β, 4α-1,2-dimethyl-3,4-bis-(2,4,5-trimethoxyphenyl)-cyclobutane] 
(39) and andamanicin [1α, 2β, 3β, 4α-1,2-dimethyl-3,4-bis-(2,4,5-

trimethoxyphenyl)-cyclobutane] (40) were isolated and purified from the leaves 

of Perilla frutescens. These compounds were found to inhibit the induction of 

NO synthesis (IC50 of 5.9 μM and 53.5 μM, respectively), and TNF-α by LPS-
activated RAW 264.7 cells (Ryu et al., 2002). Savinin (41) and calocedrin (42), 

isolated from the heartwood of Pterocarpus santalinus, were able to inhibit the 

release of TNF-α by LPS stimulated RAW264.7 cells without any toxicity (IC50 
values of 31.9 μM and 150 μM respectively) (Cho et al., 2001b). The presence 

of a butyrolactone ring and its polar function at the C-9 position of 

dibenzylbutyrolactone–type lignans plays an important role in the inhibition of 
TNF-α. It was also reported that arctigenin (43), a dibenzyl butyrolactone 

lignan, inhibited TNF-α production by LPS-stimulated murine RAW264.7 

macrophages and by differentiated human U937 macrophages with IC50 values 

of 5.0 and 3.9 μM, respectively, without displaying any cytotoxicity (Cho, 
1999). 

Coptis japonica (Ranunculaceae) has a long history of use in traditional 
medicine for the treatment of various diseases. Alkaloids, phenolic compounds 

and lignans are the major constituents of this plant (Yahara et al., 1985). Five 

different woorenosides (I, II, III, IV, V) (44-48) were isolated and identified 
from C. japonica, and showed inhibition of LPS-induced TNF-α and -NO 

release from RAW264.7 cells in a dose-dependent manner, with IC50 values 

ranging from 15 to 65 μM (Cho et al., 2000a). In another study, isolariciresinol 

(49), lariciresinol glycoside (50), pinoresinol (51), pinoresinol glycoside (52) 
and syringaresinol glycoside (53) were isolated from the rhizomes of C. 
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japonica and tested for in-vitro antiinflammatory effects. All of the compounds 
significantly inhibited TNF-α production with IC50 values of 39.3 µM 

(pinoresinol), 54.1 µM (lariciresinol glycoside) and 123.8 µM (isolariciresinol) 

by LPS-stimulated RAW264.7 macrophages (Cho et al., 2001a).  

Magnolia officinalis (called “Houpu” in Chinese) is one of the most 

popular traditional Chinese medicinal herbs and is widely used for the treatment 
of various diseases which are classified in the oriental medicine as: stroke, cold 

damage, headache, cold and heat, and blood impediment. Honokiol (53) is 

considered one of the main bioactive components. The bark of this plant is a 

particularly rich source for honokiol (Wang et al., 2004). Honokiol is a dimer of 
two phenylpropanoids with a single C-C coupling, different from other lignans 

that usually are coupled via the C-3 side chains (Bai et al., 2003). Honokiol was 

found to inhibit the LPS- induced TNF-α release in activated macrophages (Son 
et al., 2000). Moreover, it has been shown to suppress TNF-induced NF-κB 

activation through inhibition of IKKs (Tse et al., 2005). In conclusion the 

lignans have some similarity to the flavonoids with activities in the μM range. 
Table 2.2 shows the possible mechanism underlying TNF-α inhibition by 

lignans and terpenoids. 

 
 
 
 
 
 
 
 
 
 
 
 



Phytochemicals as a potential source for TNF-α inhibitors  Chap.2 

 

29 

 

 
 

 

 

Eudesmin (36)

O

O

OMe

MeO

HH

OMe

OMe

Magnolin (37)

O

O

OMe

MeO

HH

OMe

OMe

MeO

 Lirioresinol-B-dimethylether (38)

O

O

OMe

MeO

HH

OMe

OMe

MeO

OMe

 Magnosalin (39)

Me
Me

MeO
OMe

OMe
MeO OMe

OMe

 Andamanicin (40)

Me
Me

MeO
OMe

OMe
MeO OMe

OMe

 Savinin R = H (41)
Calocedrin R = OH (42)

O

O
O

O

O
O

H R
H

Arctigenin (43)

O

O

H

OMe

OMe

MeO

OH

         R1      R2

(44): -H      Glc     Woorenoside 1

(45): -Ac     Glc     Woorenoside II

(46): -H       Glc6A Woorenoside III

(47): -Ac     Glc6A  WoorenosideIV

O

OR2

OMe

OMe

MeO

MeO

OR1

Woorenoside V(48)

O

OGlc6A

OMe

OMe

HO

OR1

Glc: B-D-glucopyranosyl

A:CO-C-CH2-CH2-OH

CH2

+ Isolariciresinol (49)

OH

OH

OH

OMe

MeO

HO

Lariciresinol glycoside (50)

O

HO

OMe

OH

OGlc

OMe

RI  = R2 = H ; Pinoresinol (51)
R1 = GIc, R2 = H ; Pinoresinol  glycoside (52)
RI  = Glc, R2 = OMe= ; Stringaresinol  glycoside (53)

O

O

HH

OMe

OR1

OMe

R2

HO

R2

Figure 3: Structure of natural TNF-α inhibitors: Lignans (36-53) 
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2.3.3. Terpenoids 

The terpenoids (Figure 4a-c), also known as terpenes, constitute the 

largest family of natural compounds and have been associated with all kinds of 
biological activities including antibiotic, antiparasitic, antitumor and 

antiinflammatory activities (Heras et al., 2003). Steroids play a particularly 

important role as endogenous signal compounds (hormones). The worldwide 
market for terpene-based pharmaceuticals was approximately around US $ 12 

billion (Wang et al., 2005a). 

Roots of Saussurea lappa (Compositae), a Chinese medicinal herb, 
have been traditionally used to treat asthma, inflammations and rheumatism 

(Gokhale et al., 2002). Dehydrocostus lactone (54) and costunolide (55), the 

active sesquiterpene lactones in the roots of Saussurea lappa, have been shown 
to inhibit TNF-α release by LPS-stimulated RAW264.7 macrophages with a 

dose range of 0.6-10 mM and 0.1-1 µM, respectively (Lee et al., 1999; Pae et 

al., 2007). Cynaropicrin (56), reynosin (57), and santamarine (58) were isolated 
from this plant and were shown to inhibit the production of TNF-α, IL-6 and 

NO production by LPS-activated RAW264.7 and U937 cells by suppressing the 

expression of inducible NO synthase (See Table 2). Cynaropicrin, reynosin, and 

santamarine show the highest activities with IC50 value of 8.24, 87.4, and 105 
μM, respectively (Cho et al., 1998). Tripterygium wilfordii (Celastraceae) is a 

Chinese medicinal plant (Duan et al., 2001); its alcoholic extract has been 

reported to be effective in the treatment of a variety of inflammatory and 
autoimmune diseases, like rheumatoid arthritis (Gu and Brandwein, 1998; 

Wenyan et al., 1985). Triptolide (59), known as PG490, is an oxygenated 

diterpene, which has been identified as the major component responsible for the 
immunosuppressive and antiinflammatory effects of T. wilfordii. This 

compound was evaluated for its ability to suppress various inflammatory 

cytokines and was reported to inhibit strongly LPS-induced NO, TNF-α and IL-

1β production by microglia cells in a dose-dependent manner ranging from (10
-

10
-10

-8
M) (Zhou et al., 2003). 

Abietic acid, a diterpene (60), is a major component of the resin fraction 
of the oleoresin produced by conifer species, such as the grand fir (Abies 

grandis) and the lodgepole pine (Pinus contorta) (Aranda and Villala  n, 1997). 

It has been shown to suppress the expression of genes involved in inflammation  

such as TNF-α and COX-II by activated macrophages at a 

concentration of 50 μM (Takahashi et al., 2003).  Zingiber zerumbet, a form of 

ginger commonly found in Southeast Asia, has been used as a traditional herbal 
medicine for a variety of diseases (Jang et al., 2004). The main bioactive 
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component in this ginger species is Zerumbone (61), a sesquiterpene which 
reduces NO synthase, COX-II activity, and the release of TNF-α by mouse 

macrophages (Table 2) (Murakami et al., 2002). Furthermore, the water extracts 

of Z. zerumbet (50 and 500 mg/ml) was reported to inhibit the release of TNF-α 
in a dose dependent manner in-vitro as well as in-vivo in response to LPS 

stimulation (Chaung et al., 2008). 

 

Acanthopanax koreanum is a Korean medicinal plant, used traditionally 

in the treatment of rheumatoid arthritis and diabetes (Kim et al., 2004d). 

Acanthoic acid, (-)-pimara-9(11),15-di-en-19-oic acid (62), is a diterpene 
isolated from the root bark of this plant. This compound has been reported to 

suppress the production of IL-1β and TNF-α up to 90% by human monocytes 

and macrophages stimulated with silica at concentrations of 19.88 μM (Kang et 
al., 1996). Five kaurane type diterpenoids, 16αH,17-isovaleryloxy-ent-kauran-

19-oic acid (63), 16α-hydroxy-17-isovaleryloxy-ent-kauran-19-oic acid (64), 

paniculoside (65), 16α-hydroxy-ent-kauran-19-oic acid (66), and ent-kaur-16-
en-19-oic acid (67) were isolated and tested for their ability to inhibit TNF-α 

secretion. All of them were able to inhibit TNF-α secretion, with 16αH, 17-

isovaleryloxy-ent-kauran-19-oic acid showing the highest inhibitory activity 

with an IC50 value of 16.2 μM (Cai et al., 2003). 
 

Figure 4a: Structure of natural TNF-α inhibitors: Terpenoids (54-64) 
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Figure 4b: Structure of natural TNF-α inhibitors: Terpenoids (65-70)  
 

The roots of Salvia miltiorrhiza, have been widely used in the treatment 
of various diseases including coronary artery diseases, angina pectoris, 

myocardial infarction, cerebrovascular diseases, various types of hepatitis, 

chronic renal failure, dysmenorrhea, and also to improve microcirculation in the 
human body (Jiang et al., 2005). Tanshinone II A (68), a diterpene isolated from 

the Salvia miltiorrhiza root, has been shown to inhibit the production of TNF-α, 

IL-1β and IL-6 by activated RAW264.7 cells in a dose-dependent manner (0.34 
– 34.0 μM) (Jang et al., 2003).  

Iridoids represent a large group of highly oxygenated monoterpenoids, 

structurally based on a cyclopentan-[C]-pyran skeleton, which usually consist of 
ten carbons, but forms containing nine-, or rarely eight carbon iridoids occur in 

nature (Sampaio-Santos and Kaplan, 2001). Patrinia saniculaefolia 

(Valerianaceae) is a Korean native plant. The roots of the genus Patrinia have 
been used in Korean and Chinese traditional medicine for treating 

inflammation, edema, appendicitis, and abscesses (Lee, 1980).  Nardostachin 

(69), an important constituent of Patrinia saniculaefolia, was reported to 
suppress the production of LPS-induced NO and TNF-α with IC50 values of 

12.3 μM and 16.2 μΜ, respectively. Moreover, it has been reported to reduce 

the COX-2 expression level and PGE2 production in LPS-stimulated 

macrophages (Ju et al., 2003). Aucubin (70), another iridoid glycoside, is a 
common constituent of many traditional oriental medicinal plants. The effect of 
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aucubin on TNF-α and IL-6 expression was studied in antigen-stimulated rat 

basophilic leukemia (RBL)-2H3 mast cells. This compound was found to inhibit 

antigen-induced TNF-α and IL-6 production with IC50s of 0.101 and 0.19 µg/ml, 
respectively. Maximum inhibition of TNF-α and IL-6 production was 73% ± 4.3 

and 88.8% ± 5, respectively. Aucubin also inhibited antigen-induced nuclear 

translocation of the p65 sub-unit of NF-κB and the degradation of IκB, which 

might explain its beneficial effect in the treatment of chronic allergic 
inflammatory diseases (Jeong et al., 2002; Salminen et al., 2008).  

Panax notoginseng, known as “sanchi” in the Chinese language, has a 
long history of use as medicine in China. It is mainly used for the treatment of 

cardiovascular diseases, inflammation, different body pains, trauma, and 

internal and external bleeding due to injury (Cicero et al., 2003; Dong et al., 
2003; Ma et al., 1999). The important components of Panax notoginseng are 

ginsenosides (Rb1, Re, Rg1, and Rh1) and notoginsenosides (R1) (Zhou et al., 

1991), see Fig. 4c. BT-201, n-Butanol fraction of P. notoginseng, was found to 

inhibit the release of TNF-α through inactivation of the NF-κB and MAPK 
pathways. BT-201 contains the ginsenosides Rb1, Re, and Rg1, and 

Figure 4c: Structure of natural TNF-α inhibitors: Terpenoids (71-76) 
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notoginsenosides R1, R2, Fa, and Fc. Among these, ginsenoside Rb1 (71) is a 
major component (24.1%) and the major active constituent of BT-201 

mediating the antiinflammatory effects of the extract (Chang et al., 2007). 

Furthermore, notoginsenoside R1 (72) from P. notoginseng has been reported to 
inhibit LPS-induced TNF-α production in-vitro   as well as in-vivo  in human 

whole blood cells (Zhang et al., 1997). The inhibitory activity of 

protopanaxadiol ginsenosides (PPDGs), such as Rb1, Rb2 and Rc (and their 
combined effect with a known (TNF)-α antagonists), against LPS-induced TNF-

α production has been studied in murine (RAW264.7) or human (U937) 

macrophages (Cho et al., 2001c). Rb1 and Rb2 (73) suppressed TNF-α 

production in RAW264.7 cells with an IC50 of 56.5 μM and 27.5 μM, 
respectively, and in differentiated U937 cells with an IC50 of 51.3 μM and 26.8 

μM, respectively (see also Table 3). 

Phytosterols which are also derived from terpenes, are structurally 

similar to cholesterol, but differ in their side chain configurations (Ling and 

Jones, 1995). Ergosterol peroxide (74) (Fig. 4c) is a major anti-tumor sterol 
present in edible and medicinal mushrooms; it has been shown to reduce LPS-

induced TNF-α secretion and IL-1α/β expression by RAW264.7 cells through 

inhibition of NF-κB and C/EBPb transcriptional activity and phosphorylation of 

MAPKs (Kobori et al., 2007). (See table 3). 

Commiphora mukul (guggul) is one of the most commonly used drugs 

in Ayurveda medicine for the treatment of several disorders such as gout, 
arthritis, rheumatism, obesity, hypercholesterol, and inflammation (Giridharan 

et al., 2002). The crude ethyl acetate extract and pure compound (guggulsterol) 

(75) isolated from C. mukul were investigated for antiinflammatory properties 
by evaluating the inhibitory effects on a variety of key mediators that regulate 

immune responses in-vitro. Both crude extracts (5-50 µg/ml) and the pure 

compound (< 30 µg/ml) were shown to downregulate the level of inflammatory 

mediators such as IFN-γ, IL-12, TNF-α, IL-1β and NO (Manjula et al., 2006).  

Retinoic acid (76) was evaluated for its effects on the expression of 

TNF-α and inducible nitric oxide synthase (iNOS) in microglia activated by β-
amyloid peptide (Aβ) and LPS. Retinoic acid inhibited TNF-α (29–97%) and 

iNOS (61–96%) mRNA expression in microglia exposed to either (Aβ) or LPS, 

in a dose-dependent manner (0.1–10.0 μM) (Dheen et al., 2005). 

 

 



Phytochemicals as a potential source for TNF-α inhibitors  Chap.2 

 

37 

 

2.3.4. Alkaloids 

Plant alkaloids (Fig. 5) comprise next to terpenoids the second largest 

classes of plant secondary metabolites with 16,000 representatives (Verpoorte et 
al., 2000). The term alkaloid generally refers to basic substances containing one 

or more nitrogens, usually as part of a cyclic system (Sato et al., 2001). Because 

of their basic character they are water soluble at low pH in the protonated from, 
but at high pH they are in the lipohilic neutral form. That makes them ideal 

drugs as they are water soluble compounds that can pass through membranes. In 

fact most medicines, both natural and synthetic do contain tertiary nitrogen 

(Barbosa-Filho et al., 2006; Cordell et al., 2001; Herraiz and Galisteo, 2003).  

Cigarette smoking not only plays an important role in the development 

of cancer but surprisingly can also exert some beneficial effects against chronic 
diseases such as Alzheimer disease and ulcerative colitis (Ernster, 1988; Harries 

et al., 1982; van Duijn and Hofman, 1991). It was observed that cigarette smoke 

contains a variety of compounds with different pharmacological activities. 
Nicotine (77) is a toxic substance with a LD50 value for rats of 50 mg/kg, for 

mice of 3 mg/kg and for adult humans of 40-50 mg/kg (Okamoto et al., 1994; 

Pullan et al., 1994). Nicotine was found to strongly inhibit TNF-α production in 

a dose dependent manner ranging from 10
-9

-10
-5
M (Madretsma et al., 1996) 

using a mechanism involving inhibition of NF-κB activation (Sugano et al., 

1998). This could be linked with smoker’s immunity for autoimmune diseases. 

The Amaryllidaceae alkaloids, lycorine (78) and lycoricidinol (79), 

were found to inhibit TNF-α production in murine macrophages stimulated with 

LPS at ID50 values of 696.11 nM and 6.50 nM, respectively (Yui et al., 2001). 

Furthermore, fangchinoline (80) and isotetrandrine (81) were evaluated 

for suppression of the pro-inflammatory cytokines IL-1 and TNF-α in human 

peripheral blood mononuclear cells infected with Staphylococcus aureus. It was 
observed that these two alkaloids inhibited cytokine production at 

concentrations of 4.6 and 4.3 μM respectively (Onai et al., 1995). Tetrandrine 

(82) at a concentration of 8.029 μM has been reported to inhibit the release of 
TNF-α and may be useful in the treatment of inflammatory diseases (Ferrante et 

al., 1990).  

Berberine (83), a common quarternary isoquinoline alkaloid produced 

in Coptis japonica, was found to suppress the expression and secretion of 

TNFα, monocyte chemoattractant protein-1 (MCP-1), and IL-6 (in-vitro  ) in 

macrophages stimulated by acetylated low-density lipoprotein (AcLDL) in a 
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dose-dependent manner, ranging from 5-10 µM  (Chen et al., 2008). For the 
mechanism, see Table 3. 

Piperine (84), a well known alkaloid produced by Piper nigrum, was 
shown to inhibit the production of LPS-induced TNF-α (in-vitro) in L929 cells 

at the concentration of 5 µg/ml. Balb/C mice were used to examine the in-vivo 

effects of piperine. The level of TNF-α was significantly reduced in the 
piperine-treated animals (105.8 pg/mL) compared to control animals (625.8 

pg/mL) (Pradeep and Kuttan, 2003).  

 

 

 

 

 

 

Figure 5: Structure of natural TNF-α inhibitors: Alkalods (77-84) 
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2.3.5. Cannabinoids 

Cannabinoids (Fig. 6) are terpenophenolic compounds chemically 

related to terpenoids since part of the structure is derived from geranyl 
diphosphate, a C10 terpenoid unit which is attached to a polyketide-derived 

aromatic ring. The cannabinoids are the active constituents in Cannabis sativa 

and are utilized in a number of cannabis-based medicines (Hazekamp and 
Grotenhermen 2010). Cannabinoids are present in the stalks, leaves, flowers and 

particularly in the resin secreted by female flowers (Ashton 2001).  

 

Tetrahydrocannabinol is the psychoactive constituent formed from the 

main component in the resin, the nonpsychoactive constituent D9-
tetrahydrocannabinoid acid (THCa). The cannabinoids have been utilized in a 

number of cannabis-based medicines (Mechoulam and Gaoni 1967). The 

immunomodulating activity of unheated C. sativa extracts were investigated; it 
was found that unheated cannabis extracts and THCa (85) could inhibit LPS-

induced TNF-α release in the supernatant of U937 macrophages at a dose of 4–

58 µg/ml (Verhoeckx et al. 2006). This activity is due to its main non-
psychoactive constituent D9- tetrahydrocannabinoid acid, the precursor of THC 

which is formed by decarboxylation upon heating. Another in vivo study 

revealed that a low dose of cannabidiol CBD (86), another non psychoactive 

constituent of C. sativa, decreases the TNF-α production in LPS-treated mice 
(Malfait et al. 2000). 
 

 
 

 

 

 

Figure 6: Structure of natural TNF-α  inhibitors: Cannabinoids (85-86) 
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2.3.6. Kawapyrones 

Piper methysticum (Piperaceae), popularly known as kawa, is an 

oceanic pepper plant widely used in the Pacific islands (Schmidt and Molnar, 
2002). A drink prepared from the root of this plant is very popular on the island 

of Fiji, and is thought to be responsible for the low incidence of cancer in the 

population of this island as compared to other Pacific islands. Different 
kawapyrones (Figure 7) were isolated from Piper methysticum and evaluated for 

their antiinflammatory activities. It was found that 5,6-dehydrokawain (87) and 

yangonin (88) suppress TNF-α release from BALB/3T3 cells treated with 

okadaic acid. The compounds have IC50 values of 17 µM and 40 µM, 
respectively (see Table 3). Dihydrokawain (89) was found to be the strongest 

inhibitor of TNF-α release in mice (Hashimoto et al., 2003).  

 

2.3.7. Fatty acids  

Fatty acids (Fig. 8) are also known to play an important role in 

immunomodulation (Calder 2007). The effects of linoleic acid (LA) (90), a-

linolenic acid (ALA) (91), and docosahexaenoic acid (DHA) (92) on 
inflammatory responses in human monocytic THP-1 cells were studied (Zhao et 

al. 2005); it was found that THP-1 cells treated with LA, ALA, and DHA 

inhibited the LPS-stimulated production of IL-6, IL-1β, and TNF-α in a dose–
response manner ranging from 0 to 100 µM. Furthermore, the inhibitory effects 

of these polyunsaturated fatty acids were associated with the inhibition of NF-

κB activation via activation of peroxisome proliferator-activated receptor-γ 
(PPARγ).  

 

Corn germ and rice bran are known to contain fatty acids, which 

include (±)-9-hydroxy-trans, -cis-10, 12-octadecadienoic acid (9-HOA from 
rice) (93), and (±)-13-hydroxy-10-oxo-trans-11-octadecenoic acid (13-HOA 

from corn) (94) (Hayashi et al. 1996, 1998). They have been reported to reduce 

the expression of pro-inflammatory genes in LPS-stimulated macrophages via a 
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Figure 7: Structure of natural TNF-α inhibitors: Kawapyrones (87-89) 
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blockage of the NF-κB and AP-1 pathways. At higher concentrations, 10-ODO, 
13-HOA and 9-HOA exhibited profound suppressive effects on the expression 

of iNOS, COX-II, IL-6, and TNF-α. Murakami et al. (2005) also observed that 

13-HOA strongly inhibits the expression of proinflammatory genes such as 
COX-II, iNOS, TNF-α, and IL-6 

 

 

 

 

2.4. Miscellaneous compounds from nature as source of TNF-α inhibitors 

Some other natural products known to inhibit TNF-α release are shown 
in Figure 9 (See table 3). 

2.4.1. Curcumin 

Curcuma longa has been used widely in India and Indonesia for the 

treatment of inflammation since ancient times. Curcumin (95) (Fig. 9) is a 

polyphenol which is present in the rhizome of the plant C. longa. It inhibits 
LPS-induced production of TNF-α and IL-1β in a dose-dependent manner 

(ranging from 0.5 to 5 µM) in the human monocytic macrophage cell line, 

MonoMac 6. Curcumin was also reported to inhibit LPS-induced activation of 
NF-κB and reduced the biological activity of TNF-α in a fibroblast lytic assay in 

L929 cells (see Table 3) (Chan 1995). 

 

 

Figure 8: Structure of natural TNF-α inhibitors: Fatty acids (90-94) 
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2.4.2. Capsaicin 

Capsaicin (96), the most important flavor component of hot peppers, 

has been reported to contain many anti-inflammatory properties (Caterina et al. 
1997; Han et al. 2001). It has been observed that capsaicin effectively inhibits 

the production of proinflammatory mediators through NF-κB inactivation in 

LPS-stimulated macrophages (see also Table 3). Capsaicin significantly inhibits 
the production of TNF-α following LPS treated of RAW264.7 cells in a dose-

dependent manner (ranging from 10 to 50 µM). The inhibitory action of 

capsaicin against TNF-α expression is mediated by peroxisome proliferator-

activated receptors (PPARγ) (Park et al. 2004). 

 

2.4.3. Coumarines 

Scoparone (6,7-dimethoxycoumarin) (97) is the major component of the 

shoots of Artemisia capillaries (Compositae), which has been used as 
antipyretic, anti-inflammatory, diuretic, and for the treatment of hepatitis and 

bilious disorder (Jamwal et al. 1972). Scoparone inhibits the production of 

TNF-α, NO, PGE2 and interleukins (IL-1β, IL-6) in either IFN-γ/ LPS- or LPS-

stimulated RAW264.7 cells in a dose dependent manner (ranging from 0 to 50 
µg/ml) (Jang et al. 2005). Another species of Artemisia (Artemisia feddei), has 

been used as a folk medicine in different countries for treatment of various 

inflammatory and digestive disorders (Kang et al. 1999). Scopoletin (6-
hydrooxy-7-methoxycoumarin) (98) was isolated as an active compound from 

an A. feddei aqueous extract. It has been reported that scopoletin strongly 

inhibits the release of LPS-stimulated TNF-α, IL-1β, IL-6, and PGE2 over a 
dose range of 5–260 µM in murine RAW264.7 macrophage (Kim et al. 2004a). 

 

2.4.4. Resveratrol 

Resveratrol (99), an antioxidant phytoalexin isolated from multiple 

sources including grapes, was investigated for its effect on the inhibition of 
TNF-α production by LPS-activated microglia. This compound inhibited the 

production of TNF-α in a dosedependent manner (ranging from 0-10 µg/ml). In 

addition to TNF-α inhibition, resveratrol has been found to suppress LPS-
induced degradation of IκBα, expression of iNOS, and phosphorylation of p38 

MAPKs in N9 microglial cells which could be the possible mechanism of its 

anti-inflammatory effects (Bi et al. 2005; Boscolo et al. 2003). 
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2.4.5. Thymoquinone 

Nigella sativa, a Middle East plant commonly known as black cumin, 

belongs to the family Ranunculaceae. Besides the use in food, seeds of this 
plant are of great importance because of their use in traditional medicine 

(Salomi et al. 1992). Thymoquinone (100), an important constituent of this 

plant, has been reported to lower the levels of TNF-α, IL-1β and COX II 
produced in a dose- and time-dependent manner (ranging from 25 to 75 µM) 

(Chehl et al. 2009; Haq et al. 1999). Furthermore, oral administration of 

thymoquinone resulted in a significant decrease in the level of several pro-

inflammatory cytokines such as TNF-α, IL-1β, IL-6, IFN-γ and PGE2 at a 
concentration of 5 mg/kg (Umar et al. 2012). 

 

2.4.6. Anthralin 
 

Anthralin (102) is a medically interesting compound found in rhubarb 

roots. Varieties of rhubarb (Rheum palmatum) have a long history as medicinal 
plants in traditional Chinese medicine (TCM) (Ashnagar et al. 2007). Anthralin 

has been reported to be a safe and efficient drug for treatment of various 

diseases like psoriasis although its mode of action is still unclear. The effect of 

anthralin on the secretion of cytokines from stimulated monocytes was 
investigated. The results showed a dose-dependent inhibition of IL-6, IL-8, and 

TNF-α release from with an IC50 value of 1–2.7 µM of anthralin (Mrowietz et 

al. 1997). 
 

2.4.7. Paeoniflorin, Paeonol and Pentagalloylglucose 

Moutan cortex, a root bark of Paeonia suffruticosa (Paeoniaceae), is 

commonly used as a TCM for treating various diseases. It has been reported to 

possess different types of biological activities (Chen et al. 2006a). Compounds 
purified from Moutan cortex were evaluated by measuring the expression of 

TNF- α in rat synoviocytes. It was found that paeoniflorin (102), paeonol (103) 

and pentagalloylglucose (104) inhibit the release of TNF-α and IL-6 production 
in a dose-dependent manner (ranging from 6.1 to 200 µM) in rat synoviocytes 

(Wu and Gu 2009). 

 

2.4.8. EGb 761 (Ginkgo biloba extract) 

An extract of Ginkgo biloba, called EGb 761, is commonly used in 
France and Germany for the treatment of a variety of diseases. This extract is 
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known to improve peripheral vascular, cardiovascular, and cerebrovascular 
blood flow, and for the treatment of acute mountain sickness. All of these 

diseases are known to be associated with oxidative stress (Le Bars et al. 1997; 

Philippe et al. 1996). Flavonoids, like rutin, the glycoside of quercetin, and 
terpenes (bilobalide and ginkgolides A, B and C) are the main components of 

EGb 761 (Satoh and Nishida 2004). It has been reported that EGB 761 (400 

µg/ml) inhibits the release of LPS-induced TNF-α in vitro (RAW264.7 cells) 
and in vivo (C56BL/6 mice) in a dose-dependent manner ranging from 20 to 

100 mg/kg. Furthermore, it was found that EGB 761 also inhibits (ERK1/2) 

phosphorylation and P38MAPK activity, which are very important in the post-

transcriptional regulation of TNF-α mRNA (Wadsworth et al. 2001). Table 2.3 
shows the possible mechanism underlying TNF-α inhibition by alakaloids, 

kawapyrones and other miscellaneous compounds. 

 
 

 

 

Figure 9: Structure of natural TNF-α inhibitors: Miscellaneous compounds (95-104) 
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2.5. Conclusions 

Studies have shown that dysregulation of a proinflammatory cytokine, 

like TNF-α, can lead to inflammation and the emergence of a wide variety of 
inflammatory diseases and cancer. Several clinically approved protein-based 

TNF-α inhibitors are capable of modulating TNF-α activity, but these are 

associated with unwanted side effects. Moreover, patients with rheumatoid 
arthritis also have an increased risk for diabetes, atherosclerosis and 

cardiovascular complications. The use of the microbial natural products derived 

statins have been proposed to treat several inflammatory diseases like metabolic 

syndrome, diabetes, rheumatic and autoimmune disorders. Even though statins 
are labeled as safe, these drugs cannot be applied to some patients because of 

adverse effects such as muscle pain.  

Low molecular weight compounds provide many advantages over 
protein-based drugs, particularly concerning production, stability and route of 

administration. Plants are considered a good source for the development of 

novel drugs and already many natural compounds, belonging to various 
chemical classes like flavonoids, terpenoids, alkaloids, cannabinoids, 

ginsenosides, and phytosterols, have been found to inhibit the upstream 

signaling molecules that are involved in TNF-α expression. The dose at which 

most of these compounds are active in the various in vitro tests is about 1–50 
µM, which is quite high in comparison with the presently used medicines like 

Etanercept, Infliximab, and Adalimumab. The compounds discussed in this 

review have been found either by random screening of plant or microorganism 
extracts or by studying traditionally used herbal medicines. So far no real leads 

have been reported from all the screening efforts of plants. The complexity of 

the inflammation might be a reason for not finding a novel drug on the basis of 

‘‘single target— single compound’’ paradigm for the present day approach to 
drug development. The use of a mixture of natural products or plant extracts for 

prevention or stopping the development of such diseases should be considered 

as an alternative approach. Particularly various traditional medicines may 
contain interesting leads for synergy in mixtures of compounds and also pro-

drugs, such as salix bark, which contains a salicylalcohol glucoside that is 

converted to salicylic acid in the G.I tract. However, using the classical bioassay 
guided fractionation, synergy will not be detected. Therefore, a novel systems 

biology approach is required in which a direct link is made between all 

compounds in an extract that correlate with activity (Verpoorte 2012; Verpoorte 

et al. 2005; Wang et al.2005b). Yuliana et al. (2011b) reported such an approach 
combining a comprehensive extraction, bioassays of the fractions and 

metabolomics to identify the compounds in the mixtures that are correlated to 

activity.  
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Pharmacologists are increasingly realizing that the concept of ‘‘one 
disease—one target—one drug’’ does not always provide the best cure, 

particularly for the treatment of chronic inflammatory diseases (Georgiou et al. 

2011). Thus, both finding novel potent drugs from nature and the development 
of mixtures of compounds/ medicinal plant extracts or health food for treatment 

and/or prevention of diseases is becoming a hot topic. One example is the 

development of an anti-inflammatory dietary mixture that modulates 
inflammation and oxidative and metabolic stress using a nutrigenomics 

approach (Bakker et al. 2010). In the case of TCM, standardization of raw plant 

materials, good manufacturing practise (GMP), good laboratory practise (GLP) 

and other requirements are amongst the most important issues before a TCM 
can be launched as a scientifically- based (legal) medicine in European- or other 

developed countries (Verpoorte 2012). A ‘‘systems biology’’ approach which 

involves metabolomics (or several ‘‘omics’’) as the tool(s) is now applied in 
order to gain more insight into the molecular mechanisms of some 

inflammatory diseases (Buriani et al. 2012; Pelkonen et al. 2012; van der Greef 

et al. 2006; van der Greef and McBurney 2005; Verpoorte et al. 2005; Wang et 

al. 2005b), including the possible effect of TCM in the treatment of these 
diseases (van der Greef 2011). The compounds in a plant extract, a herbal 

medicine/TCM or a nutraceutical may work based on several different 

mechanisms synergistically, resulting to moderate the immune system. 
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Abstract 

Inflammation plays a vital role in the pathogenesis of many diseases. Process of 
inflammation is modulated by several cytokines. Tumor necrosis factor-alpha 

(TNF-α) is a cytokine, which plays an important role in inflammation. In this 

study, 66 different plant extracts were screened for their ability to inhibit LPS-
stimulated TNF-α release in U937 cell lines. Tested plants were extracted with a 

mixture of methanol-water (80:20, v/v) and dried under vacuum. The dried 

extract was redissolved in DMSO for TNF-α assay. Out of 66 plants, extracts of 

Urtica dioica, Houttuynia cordata, Salvia officinalis, Adhatoda vasica, 
Sempervivum smaragd, Syzygium aromaticum, Pimenta officinalis, Myristica 

fragrans, Capsicum annuum, Alpinia galanga, Zingiber officinale, Kaempferia 

galanga, Bixa orellana, Pistacia lentiscus show significant inhibition without 
any toxicity while Origanum vulgare, Rosmarinus officinalis, Curcuma 

xanthorrhiza, Bosenbergia rotunda, Orthosiphon stamineus, Cannabis sativa, 

Psoralea corylifolia, Curcuma longa, and bark of Pistacia lentiscus show 

highly significant inhibition of TNF-α but also cytotoxicity toward the tested 
U937 cell lines. Plants which showed activity in-vitro were further tested using 

zebrafish larvae. We have found that extracts which were active in-vitro also 

shows activity in-vivo. In this study, we have successfully employed zebrafish 
as a model system for plant extracts screening. Furthermore it also shows that a 

diet rich in fruits, herbs and spices may contribute to the reduction of the 

inflammatory response and related diseases. 

Keywords:  Herbs, inflammation, screening, spices, TNF-α, zebrafish  
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3.1. Introduction 

Inflammation is an immune reaction of body to external stimuli such as 

toxins and pathogens, aiming at the production, activation, and recruitment of 
immune cells (leucocytes) to sites of infection in order to combat the 

stimuli/pathogens. Inflammation is commonly characterized by redness, 

swelling, pain, and heat, localized at the site of infection (Ruslan, 2010). The 
process of inflammation is regulated by several pro-inflammatory and 

antiinflammatory cytokines. Tumor necrosis factor alpha (TNF-α) is one of the 

proinflammory cytokines and also a regulatory protein in the cell signaling 

cascade. TNF-α is produced by immune cells including macrophages, 
neutrophils, monocytes and fibroblasts in response to lipopolysaccharide (LPS). 

Overproduction of TNF-α and inflammation were found to occur not 
only due to a pathogenic infection, but also due to dysregulation of proteins in 

the immune system like in several chronic inflammatory diseases such as 

rheumatoid arthritis, crohn’s disease (CD), inflammatory bowel disease, and 
other  autoimmune diseases. Suppression of TNF-α could be a method for 

preventing and treating diseases associated with inflammation (Paul et al., 

2006). Currently several proteins based TNF-α inhibitors are available for 

treatment of rheumatoid arthritis, but these drugs are associated with risk, high 
cost and potential side effects (Scheinfeld, 2004). To find a safe, cheap source 

for drug development, plants are of interest. 

Many currently known natural products were originally identified using 

in-vitro assays such as cell lines (Lee et al., 2007; Wang and Mazza, 2002). 

However, for in-vivo studies zebrafish embryo has become an important 
vertebrate model for assessing pharmacological and toxic effects. It is well 

suited for studies in genetics, embryology, development, and cell biology. 

Zebrafish embryos exhibit unique characteristics, including ease of maintenance 

and drug administration, short reproductive cycle, and transparency that permits 
visual assessment of developing cells and organs. Because of these advantages, 

zebrafish bioassays are cheaper and faster than mouse assays, and are suitable 

for large-scale drug screening. Transgenic lines of zebrafish which express the 
green fluorescent protein in neutrophils were used for in-vivo activity test. Due 

to the transparency of the embryo, movement of neutrophils toward effected site 

can be seen (d'Alencon et al., 2010; Parng et al., 2004). By screening plant 
extracts one may find not only single active compounds but also mixtures 

including synergy. Hits from the screening can be isolated and be further 

developed into new leads with good activity and low toxicity. 
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Plants have been and continue to be the greatest sources of medicines 
being used traditionally by people in different parts of the world since thousands 

of years. Until now, around 150,000 plants compounds are already known, and 

many more will be discovered as only a small percentage of all plants have been 
studied phytochemically and/or pharmacologically. As each plant contains 

probably as many compounds as genes, there is a huge potential for finding new 

compounds. Together with the already known compounds, they form a great 
source for screening for TNF-α inhibitors.  

Natural dietary agents including fruits, vegetables, and spices have 

drawn a great deal of attention from the scientific community regarding the 
presence of bioactive compounds. These dietary agents are excellent sources of 

active ingredients like flavonoids, phenolics, terpenoids, and alkaloids which 

have been shown to be protective against different diseases. Several plant 
derived agents like curcumin, quercetin, resveratrol, kaempferol, capsaicin, and 

eugenol have been found to be potent inhibitors of TNF-α. Recently several 

reports have been published regarding TNF-α inhibitors from plant sources (Ali 
et al., 2012; Khanna et al., 2007; Paul et al., 2006; Yuliana et al., 2011).  

We used in-vitro and in-vivo models to confirm the anti-inflammatory 

activities of different plant extracts. Lipopolysaccharide (LPS)-induced U937 
human cell lines were used in the in-vitro study, and zebrafish larvae served as 

the in-vivo study. Inflammation is considered as major characteristic of several 

diseases related to autoimmunity. Thus, this study was designed to investigate 
the antiinflammatory activities of spices, herbs and fruits in-vitro and in-vivo 

model system. 

 

3.2. Materials and Methods 

 

3.2.1. Spices and medicinal plants 

Kandol (Benincasa hispida Thunb.), chameleon (Houttuynia cordata 

Thunb.), white mustard (Sinapis alba L.), black mustard (Brassica nigra L.), 
purslane (Portulaca oleracea L.), radish (Raphanus sativus L.), oregano 

(Oreganum vulgare L.), rosemary (Rosmarinus officinalis L.), celery (Apium 

graveolens L.), cress (Barbarea verna P. Mill. Aschers.), ajwain 
(Trachyspermum ammi [L.] Sprague.), wolfberry (Lycium chinense Mill.), 

Asian ginseng (Panax ginseng L.), marijuana (Cannabis sativa L.), babchi 
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(Psoralea corylifolia L.), houseleeks (Sempervivum smagard L.), and tora 
(Cassia tora [L.] Roxb.), were provided by Dr. Henrie Korthout (Fytagoras BV 

Plant Science, Leiden, The Netherlands). Leaves of vasaka (Adhatoda vasica L.) 

were kindly provided by a lab colleague Muhammad Jahangir. 

The following spices were obtained from TRS Co. Ltd, London, UK, in 

a dried form and identified by Mr. Anil Shah from TRS Co. Ltd; Anis (seed of 
Foeniculum vulgare P. Mill.), coriander (seed of Coriandrum sativum L.), 

cumin (seed of Cuminum cyminum L.), dill (seed of Anethum graveolens L.), 

lovage (seed of Levisticum officinale Koch.), annato (seed of Bixa orellana L.), 

brown mustard (seed of Brassica juncea (L.) Czern.), candle nuts (seed of 
Aleurites moluccana (L.) Willd.), fenugreek (seed of Trigonella foenum-

graecum L.), star anise (fruit of Illicium floridanum Ellis), cinnamon (stem bark 

of Cinnamomum verum), cloves (flower bud of Syzygium aromaticum (L.) 
Merr. et Perry),  piment (fruit of  Pimenta officinalis Lindl.),  mace (arillus seed 

of Myristica fragrans Houtt.), nutmeg (seed of Myristica fragrans Houtt.), 

poppy seeds (seed of Papaver somniferum L.), sesame seeds (seed of Sesamum 
indicum L.), black pepper (seed of  Piper nigrum L.), pomegranate seeds (seed 

of Punica granatum L.), black onion (seed of  Nigella sativa L.), red chili (fruit 

of Capsicum annuum L.), and black cardamom (seed of Amomum subulatum 

Roxb.). Lemon grass, (stalk of Cymbopogon citratus (DC) Stapf), greater 
galangal (rhizome of Alpinia galanga (L.) Willd.), ginger (rhizome of Zingiber 

officinale Rosc.), sand ginger (rhizome of Kaempferia galanga L.),  onion (bulb 

of Allium cepa L.), garlic (bulb of Allium sativum L.), and  kluwek nut (seed of 
Pangium edule Reinw. ex Blume) were purchased fresh from local supermarket 

in Leiden, The Netherlands. Temulawak (rhizome of Curcuma xanthorrhiza 

Roxb.) and temukunci (rhizome of Boesenbergia rotunda (L.) Mansf.) were 

purchased from traditional market in Bandung, Indonesia.  

Orthosiphon stamineus Benth. leaves were purchased from drugstore 

van der Pigge, Haarlem, The Netherlands, and identified by Nancy Dewi 
Yuliana (Leiden University,  Leiden,  The Netherlands).  Astragalus 

membranaceus  (Fisch.) Bunge roots were purchased from Shanxi Hunyuan 

Hengshan Huangqi Company of Limited Liability (Hunyuan County, Shanxi 
Province, China).  Codonopsis pilosula Franch roots were purchased from 

Beijintonrentang Lingchuandanshen Youxianzerendongsi (Linchuan County, 

Shanxi Province, China). Both were identified by Dr. Young Hae Choi (Leiden 

University, Leiden, The Netherlands) and Prof. Xue-Mei Qin (Shanxi 
University, Taiyuan, Shanxi Province, China). Morus alba L. stem bark and 

leaves were purchased from Korean Export and Import Federation of Drugs, 

Seoul, Korea, and identified by Dr. Young Hae Choi.  Curcuma kwangsiensis S. 
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G. Lee and C. F. Liang rhizome. Plantago major L. leaves, Morus alba L. fruit 
were purchased from TongRengTang TCM Pharmacy, Chengdu City, Sichuan 

province and identified by Dr. Henrie Korthout (Fytagoras BV Plant Science, 

Leiden, The Netherlands). Urtica dioica L. leaves was purchased from drug 
store van der Pigge, Haarlem, The Netherlands and identified by Dr. Henrie 

Korthout. Hoodia gordonii (Masson) Sweet ex Decne was provided by BZH 

exporters and Importers CC, Hermanus, South Africa, and identified by Mr. 
Adolf Joubert (BZH exporters and Importers CC, Hermanus, South Africa). All 

voucher specimens are stored in Pharmacognosy Department, Section 

Metabolomics, Leiden University, Leiden, The Netherlands. 

 

3.2.2. Chemicals and reagents 

Methanol and DMSO were purchased from Biosolve BV 

(Valkenswaard, The Netherlands). Fetal bovine serum (FBS), penicillin, 
streptomycin and RPMI1640 were purchased from GIBCO (Grand Island, NY) 

and U937 cell lines were purchased from ATCC (CRL-1593.2). 

Lipopolysaccharide (Escherichia coli O111:B4) and phorbol 12-myristate 13-

acetate (PMA) were obtained from Sigma-Aldrich (St. Louis, MO, USA). 
Human TNF-α ELISA kit was purchased from BioSource International Inc. 

(Camarillo, CA, USA). All solvents and reagents were of analytical grade. 

 

3.2.3. Extraction Method 

Lemon grass, (Cymbopogon citratus), galangal (Alpinia galanga), 

ginger, (Zingiber officinale), sand ginger (Kaempferia galanga), onion (Allium 
cepa), garlic (Allium sativum L.), and kluwek nut (Pangium edule Reinw. ex 

Blume) were powdered and subsequently dried in a freezedryer, while other dry 

spices were just powdered and directly extracted. 

     One gram of each dried powdered spice was placed in a reaction 

tube, to which 2 mL of MeOH 80% is added, vortexed, and sonicated for 15 

minutes. The filtrate was collected by filtration and the extraction on the solid 
phase was repeated two times. The solvent was evaporated by a vacuum 

rotavapor. The dried extracts were subsequently dissolved in DMSO at 10 

mg/mL concentration and ready for the assays.  

 

http://id.wikipedia.org/wiki/Reinw.
http://id.wikipedia.org/wiki/Blume
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3.2.4. Growth of cells, LPS stimulation and treatment with extract 

Human monocyte-like histiocytic lymphoma cells U937 obtained from 

the ATCC (CRL-1593.2) were grown in RPMI-1640 medium, supplemented 
with 10% (v/v) fetal calf serum and 2 mM l-glutamine (Life technologies, 

Breda, The Netherlands) at 37 °C, 5 % CO2 in a humidified atmosphere. U937 

monocytic cells (5x10
5
 cells per well) were plated in 96-well culture plates and 

then differentiated into macrophages using phorbol 12- myristate 13-acetate 

(PMA, 10 ng/ml, overnight, Omnilabo, Breda, The Netherlands). The PMA-

differentiated macrophages were allowed to recover from PMA treatment for 48 

h, during which the culture medium was replaced daily. Cells were stimulated 
with Lipopolysaccharide (LPS) as described by (Sajjadi et al., 1996). Treatment 

of cells were performed immediately after LPS stimulation at different 

concentrations ranging from (1-100µg mL
-1

) and then incubated at 37 °C for 4 
hours. Supernatants were then collected and measured for TNF-α content using 

the Human TNF-α enzyme linked immunosorbent assay (ELISA) kit (R and D 

systems, Europe Ltd). 

 

3.2.5. TNF-α assay 

TNF-α in culture supernatants were determined by quantitative 

‘‘sandwich’’ enzyme-linked immunosorbent assay using paired antibodies 
purchased from (Biosource Etten-Leur, The Netherlands) (Verhoeckx et al., 

2006). In brief, wells of high-binding Immulon plates (Millipore, Bedford, MA, 

USA) were coated with 100 µl of the capture antibody (anti-Human TNF-α) 
(0.250 mg/0.125 mL). After overnight incubation at 4 °C, the plates were 

washed with the washing buffer and blocked for 1 hour with 1% bovine serum 

albumin in phosphate-buffered saline. After washing one time, 100 µl of culture 

supernatants, various concentrations of standard (recombinant Human TNF-α 
protein) along with 50 µl of  detection antibody, was incubated for 2 hours at 

room temperature with continuous shaking (at 700 rpm). The mixture was 

discarded and wells were washed again 5 times with washing buffer before 
addition of 100 µl of streptavidin-HRP to the wells and incubated at room 

temperature further for 30 minutes with continuous shaking (at 700rpm). The 

wells were aspirated and washed again 5 times before addition of 100 µl of 
TMB substrate. The plates were incubated for 30 minutes at room temperature 

with continuous shaking (at 700 rpm). After 30 minutes the reactions were 

terminated by addition of 100 µl of 2 M H2SO4, and absorbance was determined 

using a microtiter plate reader (Bio-Tek Instruments Inc., Winooski, VT, USA) 
at 450 nm. The concentration of TNF- α in the unknown samples was calculated 



Anti-TNF-α activity of extracts from herbs and spices  Chap.3 

 

71 

 

by comparison of the absorbance of the unknown samples to the standard curve. 
The ratio (%) of TNF-α inhibition release was calculated by the equation; 

Inhibition (%) =  (1 – T/C) x 100%, of which ‘T’ represents the concentration of 

TNF-α released from the cells treated with plant extracts while ‘C’ is the 
concentration of TNF-α produced by control cells (treated only with 

LPS+DMSO).  

 

3.2.6. Cell viability assay 

Cell viability (after treatment with different plant extracts) was 

determined by using MTT assay (Lee et al., 2007). After removal of supernatant 

for TNF-α measurement, cells were treated with MTT at the rate of 2mg/ml.  
After 2.5 hours of incubation at 37 °C, the medium was discarded and formazan 

blue, which is formed from MTT by the  mitochondrial dehydrogenase in the 

living cells, was dissolved in 100 µL DMSO. The optical density (OD) was 
measured at 540 nm. The background signal (inherent to the wells when no cell 

was present) was subtracted from the absorbance obtained from each sample.  

 

3.2.7. Zebrafish 

Standard procedures (in agreement with local animal welfare regulations) were 

adopted to raise and maintain Zebrafish (Danio rerio) embryos. The GFP 

Transgenic lines (MPO,s) of zebrafish were used in this study (Lawson and 
Weinstein, 2002). Embryos were obtained by natural crosses. Fertilized eggs 

were collected and staged as previously described by (Kimmel et al., 1995). 

 

3.2.8. Chemical Induced Inflammation Assay (ChIn assay) 

Assay was performed as described by (d'Alencon et al., 2010). Briefly, 

E3 medium was used to grow zebrafish larvae of the GFP strain. They were 

kept in petri dish until 56 hours post fertilization. Spontaneously hatched larvae 
were transferred to 48- well plates at the rate of 1 larva/well in a volume of 500 

µL of E3 solution. Fruit extracts and controls were pipette to the wells 

containing embryos 1 hour before the addition of CuSO4. Plates were incubated 
for 40 minutes at 28 °C. E3 medium was replaced with 4% paraformaldehyde in 

PBS buffer which was used to fix the embryo and further incubation was carried 

out for 1 hour at room temperature. Fixing and subsequent steps normally 
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carried out in dark to evade fading of the fluorescent protein signal. Larvae were 
washed with PBS-Tween20. Fluorescent cells were examined and counted 

within the next 48 hours after fixation using a Leica (Wetzlar, Germany) MZ-12 

fluorescent stereoscope. Labeled cells were within a specific area known as 
myoseptum which consist of between the first somite and the end of the tail on 

one side of each larva. Sixteen embryos were used for each concentration and 

cells were counted by two independent observers. 

 

3.2.9. Statistical analysis  

 Statistical analyses were performed using GraphPad Prism version 5.00 

for Windows, GraphPad Software, San Diego California 
USA, www.graphpad.com. One way ANOVA followed by posthoc Tucky’s test 

was performed for TNF-α assay n=3 while for zebrafish assay one way 

ANOVA followed by posthoc comparison between means and controls were 
made by Dunnett’s test. Value of P ≤ 0.05 was considered statistically 

significant for both assays. 

 

 
 
 
 
 
 
 
 
 
 
 

http://www.graphpad.com/
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Figure 1: TNF-α inhibition and cell viability % exhibited by various plant 

extracts (for plants names 1-66, see table 2.1) at a concentration of 10µgmL
-1

. 
Each error bar represents ±SEM of three replicates. 

The most significant inhibition was observed from the extracts of 

Rosmarinus officinalis, Curcuma xanthorrhiza, Bosenbergia rotunda and the 
bark of Pistacia lentiscus without exerting cytotoxicity. In addition, the extracts 

of Orthosiphon stamineus, Cannabis sativa, Psoralea corylifolia and Curcuma 

longa also show significant inhibition of TNF-α, however, they were cytotoxic 
at the highest concentration applied. It is noteworthy that extracts from 

Cannabis sativa and Psoralea corylifolia inhibit TNF-α release even at a 

concentration of 1 µg/ml. Furthermore, extracts from Urtica dioica, Houttuynia  
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Figure 2: TNF-α inhibition and cell viability % exhibited by various plant 

extracts (for plants names 1-66, see table 2.1) at a concentration of 10µgmL
-1

. 

Each error bar represents ±SEM of three replicates. 

cordata, Salvia officinalis, Acacia alata, Origanum vulgare, Sempervivum 

smagard, Syzygium aromaticum, Pimenta officinalis, Myristica fragrans, 
Capsicum annuum, Alpinia galanga, Zingiber officinale, Kaempferia galanga, 

Bixa orellana and Pistacia lentiscus leaves also show significant inhibition of 

TNF-α (Fig1-3). 

 
Extracts which showed activity in-vitro were subjected to zebrafish for 

in-vivo studies to confirm their antiinflammatory activity. Copper sulphate was 

used to induce injury in 56hpf embryo followed by treatment with plant 
extracts. From this study, we have found that extracts from Salvia officinalis, 

Rosmarinus officinalis, Curcuma xanthorrhiza, Myristica fragrans, Curcuma  
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 Figure 3: TNF-α inhibition and cell viability % exhibited by various plant 

extracts (for plants names 1-66, see table 2.1) at a concentration of 10µgmL
-1

. 

Each error bar represents ±SEM of three replicates. 

longa and bark of Pistacia lentiscus showed highly significant inhibition of 

neutrophils migration towards the wounded areas in zebrafish embryos (Fig.4). 

Nettle (Urtica dioica L.) extract was found to be active in lowering 

TNF-α level. The plant has been used as drug, food, dye, cosmetic and for fibres 

for centuries. Stalk and leaves of the nettle have been used in treatment of 
diabetes, hypertension, antirheumatic, diuretic, antidiuretic, and cholagogue. 

Several phenolic compounds have been identified including rutin, quercetin, 

quercetin glycoside, kaempferol and kaempferol glycosides (Otles and Yalcin, 
2012). Extract of Urtica dioica folium (IDS 23, Rheuma-Hek) have been 

reported to inhibit significantly LPS-stimulated TNF-α level in human whole 

blood of healthy volunteers (Obertreis et al., 1996; Teucher et al., 1996). 
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Vasaka (Adhatoda vasica (L.) Nees) is a well-known plant drug in 
Ayurvedic and Unani medicine. It has been used for the treatment of various 

diseases and disorders, particularly for the respiratory tract ailments. The major 

alkaloid of the plant, vasicine, has been found to be biologically active and is 
the subject of many chemical and pharmacological studies (Claeson et al., 

2000). Tea prepared from the stems and leaves of H. cordata, has been shown 

to possess a variety of pharmacological activities like antiviral, antibacterial, 
antileukemic, and antiallergic activities. It is reported that H. cordata contains a 

wide range of polyphenols such as rutin, quercetin, hyperoside, quercitrin, and 

chlorogenic acid, which have been considered to be responsible for the 

antioxidant activity (Meng et al., 2009; Nuengchamnong et al., 2009). 

Salvia officinalis L. has been used as medicinal plant since centuries. 

This plant is very rich in biologically active compounds like carnosol, carnosic 
acids, and ursolic acids, which are used for the treatments of soar throat, 

dyspepsia and diverse inflammatory diseases in the Western world (Bauer et al., 

2012). 

Fresh juice of leaves of Sempervivum has been used as traditional 

medicine since ancient times to treat wounds, skin burns, insect bites and 

inflammation of the ears. Drinking tea prepared from the leaves of this plant is 
used to treat ulcer. All of these activities have been attributed to the phenolic 

compounds (quercetin, myricetin, herbacetin, kaempferol) present in 

Sempervivum (Abram and Donko, 1999; Sentjurc et al., 2003). 

Clove (Syzygium aromaticum L.) and nutmeg has been used by the 

traditional Ayurvedic healers of India since ancient times to treat respiratory 
problems, fever, skin diseases and digestive ailments (Banerjee et al., 2006; 

Chung et al., 2006). Many different essential oils have been identified from 

clove and nutmeg, in which the most abundant one is eugenol, which is reported 

to inhibit LPS-stimulated TNF-α release in U937 cell lines (Chung et al., 2006; 
Lee et al., 2007). It has also been reported that myristicin is an important 

component of essential oil of the nutmeg, significantly inhibiting TNF-α release 

at 50 µM (Lee and Park, 2011). 

Pimenta dioica has been used in the treatment of digestive ailments and 

abdominal pain, high blood pressure, hyperglycemia, obesity, menstrual cramps 
and inflammatory conditions in traditional medicine of South American, Middle  
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Figure 4: Leukocyte cluster inhibition in zebrafish embry exhibited by various 

plant extracts (for plants names 1-66, see table 2.1) at a concentration of 

10µgmL
-1

. Each error bar represents ±SEM of N= 10. 

Eastern and Asian countries (Al-Rehaily et al., 2002). Allspice has been 

reported to contain flavonoids and an essential oil containing eugenol, which is 
considered to be the active principal (Kikuzaki et al., 1999; Kikuzaki et al., 

2008). Several flavonoids and alkaloids have been isolated from Capsicum 

annuum with a wide range of biological activities (Lee et al., 1995). Capsaicin, 
a major ingredient of hot pepper has been reported to suppress TNF-α release 

(Park et al., 2004). Alpinia galanga has been used for the treatment of 

bronchitis, heart disease, renal calculus, diabetes, and rheumatism. 

Phytochemical investigation has led to the isolation of flavonoids, phenolic 
acids and several other compounds (Kaushik et al., 2011; Mayachiew and 

Devahastin, 2008). The rhizome of Kaempferia galanga is used by people in 

many regions for relieving toothache, abdominal pain, muscular swelling and 
rheumatism. The extract of (dried) rhizome contains volatile oils as the major 

components, which includes ethyl-p-methoxycinnamate (31.77%), 

methylcinnamate (23.23%), carvone (11.13%), eucalyptol (9.59%) and 
pentadecane (6.41%);  these oils were found to possess anti-bacterial properties 

(Ridtitid et al., 2008; Tewtrakul et al., 2005).  

Table 3.1 shows all the plants which we have tested in our studies. It 
also shows their botanical names, respective families and their 

ethanobotanical/trdaitional use in different parts of the world. 
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Previous studies reported the presence of leucocyanidin, ellagic acid, apogenin, 
luteolin, and the flavonoid bisulphates, ishwarane and bixaghanen in B. orellana 

leaf oil (Harborne, 1975; Lawrence and Hogg, 1973). The pharmacological 

action of its leaves’ extract includes anticonvulsant, analgesic, antidiarrheal, 
antimicrobial, antileishmanial and antifungal activity (Fleischer et al., 2003; 

Shilpi et al., 2006). 

Gum of Chios mastic (Pistacia lentiscus) is a natural antimicrobial 

agent that has found extensive use in pharmaceutical products and as a 

nutritional supplement. Antiinflammatory activities have been well described 

(Mahmoudi et al., 2010) and can be attributed to a variety of compounds such as 
triterpenes of the oleanane, euphane, and lupine type; alpha-tocopherol and 

polyphenols (Assimopoulou and Papageorgiou, 2005; Sanz et al., 1992). It has 

also been reported that the essential oil of Pistacia lentiscus reduces leukocyte 
migration to the damaged tissue and exhibits antiinflammatory activity (Maxia 

et al., 2011). 

Ginger extract and its pungent constituents gingerol, shogaol, and 

zingerone have been found to possess many interesting pharmacological and 

physiological activities, such as antiinflammatory, analgesic, antipyretic, 

antihepatotoxic, and cardiotonic effects (Mascolo et al., 1989; Mustafa et al., 
1993). 

Several sesquiterpenoids have been isolated from C. xanthorrhiza. The most 
popular one is xanthorrizol which has anti-bacterial activity (Hwang et al., 

2000). The hexane-soluble fractions from C. xanthorriza were found to decrease 

the level of serum and liver triglycerides in rats. The major compound of C. 
xanthorriza essensial oil, α-curcumene, was thought to be one of the active 

principles (Yasni et al., 1994). 

From the methanolic extract of B. rotunda, several prenylchalcones and 
prenylflavanones have been isolated. Among them are krachaizin B, 4-

hydroxypanduratin A, 4-hydroxypanduratin A, isopanduratin A, alpinetin, 

cardamonin, and 2, 6-dihydroxy-4-methoxy dihydrochalcone (Morikawa et al., 
2008). Most of the compounds isolated from C. xanthorriza and B. rotunda 

have a prenyl substituent, which may be involved in activity, as it is thought to 

be important for protein-binding (Magee and Seabra, 2003). 

Curcumin, the major constituent isolated from the rhizomes of C. longa 

L., is responsible for the antiinflammatory effects (Araújo and Leon, 2001). 

Several compounds namely rosmarinic acid (RA), caffeic acid (CA), 
chlorogenic acid, carnosolic acid, rosmanol, carnosol and different diterpenes 
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were identified in the aqueous extract of rosemary and these compounds were 
reported for different biological activities (Hoefler et al., 1987; Wu et al., 1982). 

It is also worth to mention that the rosemary essential oil has been reported to 

have antiinflammatory activities (de Melo et al., 2011). 

 

3.4. Conclusion 

In conclusion, our results demonstrate that extracts of Urtica dioica, 
Houttuynia cordata, Salvia officinalis, Acacia alata, Origanum vulgare, 

Sempervivum smaragd, Syzygium aromaticum, Pimenta officinalis, Myristica 

fragrans, Capsicum annuum, Alpinia galangal, Zingiber officinale, Kaempferia 

galangal, Bixa orellana and Pistacia lentiscus show significant inhibition of 
TNF-α in LPS stimulated U937 cells lines. In addition, there are some other 

plants including Origanum vulgare, Rosmarinus officinalis, Curcuma 

xanthorrhiza, Bosenbergia rotunda, Orthosiphon stamineus, Cannabis sativa, 
Psoralea corylifolia, Curcuma longa, and bark of Pistacia lentiscus which show 

highly significant inhibition of TNF-α, but they also exhibited toxicity at the 

highest concentration applied in this study. We have also found that extracts 

which were active in in-vitro also showed activity in-vivo with few wxceptions 
which suggest that in-vivo system behaves totally different. Extracts from Salvia 

officinalis, Rosemarinus Officinalis, Curcuma Xanthorrhiza, Myristica 

fragrans, Curcuma longa and bark of Pistacia lentiscus showed highly 
significant inhibition of neutrophil migration towards wounded area in zebrafish 

embryo. This study demonstrates the potential applications of the medicinal 

constituents of these plants in the prevention and treatment of inflammatory 
diseases. 
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Abstract 

 

We investigated the antiinflammatory effect of a series of cannabinoids in an in-

vitro systems, human U937 cells stimulated with LPS to secrete 
immunoregulatory cytokine tumor necrosis factor alpha (TNF-α). 

Phytocannabinoids like the psychoactive delta-9- tetrahydrocannabinol (THC) 

and nonpsychoactive cannabidiol (CBD), cannabigerol  (CBG), cannabinol 
(CBN), cannabichromene (CBC), cannabidiolic acid (CBDA), Δ9-

tetrahydrocannabinolic acid  (THCA), cannabigerolic acid  (CBGA) showed 

activity which suggest that cannabinoids can potentially alter cytokine secretion 
of human U937 cell lines. 
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4.1. Introduction 
 

Inflammation is a response of a tissue to injury, which can be caused (or 

followed by) pathogen invasion. It is characterized by redness, heat, swelling, 
pain and dysfunction of the organs involved. The process of inflammation is 

mediated by several pro-inflammatory and antiinflammatory cytokines. Tumor 

necrosis factor alpha (TNF-α) is one of the most important pro-inflammatory 
cytokines which promotes inflammation. TNF-α is mainly produced by 

macrophages upon stimulation by a bacterial cell wall component 

lipopolysaccharide (LPS) at nanogram per milliliter concentration. Wounds can 

never heal without inflammation, so release of TNF-α plays an essential role in 
host defense against pathogens and tissue recovery. However, excessive 

production of TNF-α can lead to endotoxic shock, rheumatoid arthritis, and 

cachectic states associated with malignancies, chronic parasitic infections and 
several diseases related to autoimmunity. In these cases anti-TNF-α therapies 

are recommended for the treatment of several inflammatory diseases. Several 

protein based drugs are available for the inhibition of TNF-α but these are 

associated with high costs and side effects. Thus, it is important and even 
essential to develop safer and perhaps more-cost-effective TNF-α inhibitors. 

Many natural compounds belonging to various classes have been found to 

reduce TNF-α level (Paul et al., 2006). 
Nature is a main source of compounds for pharmaceutical purposes. 

Because of the great structural diversity, natural products or natural product-

derived compounds offer great opportunities for the development of 
antiinflammatory drugs. Their origin extends to plants, fungi, bacteria, and 

marine organisms. Plants have been and continue to be the greatest source of 

natural compounds from which drugs can be synthesized. Of the 1184 new 

chemical entities registered as medicine in the period of 01/1981 to 06/2006, 
60% are derived from or based on natural products. Natural products clearly 

play a dominant role in the discovery of leads for drug development (Gautam 

and Jachak, 2009). 
Cannabis is considered one of the oldest psychotropic drugs known to 

humanity. It is difficult to trace the beginnings of its use by humans because it 

was cultivated and consumed long before the appearance of writing (McKim, 
2000). There are several species of cannabis. The most relevant are Cannabis 

sativa, Cannabis indica and Cannabis ruderalis. Cannabis sativa, the largest 

variety, grows in both tropical and temperate climates. The two main 

preparations derived from cannabis are marijuana and hashish. Marijuana is a 
Mexican term initially attributed to cheap tobacco but referring today to the 

dried leaves and flowers of the hemp plant. Hashish, the Arabic name for Indian 

hemp, is the viscous resin of the plant (Ben Amar, 2006). 
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More than 460 different compounds have been identified from cannabis 
plants, around 60 of which are grouped under the name cannabinoids. The 

major psychoactive ingredient of cannabis is delta-9-tetrahydrocannabinol, 

commonly known as THC. Other cannabinoids present in Indian hemp include 
delta-8-tetrahydrocannabinol (∆

8
 THC), cannabinol (CBN), cannabidiol (CBD), 

cannabicyclol (CBL), cannabichromene (CBC) and cannabigerol (CBG), but 

they are present in small quantities and have no significant psychotropic effects 
compared to THC. However, they may have an impact on the product’s overall 

effect. 

The therapeutic effects of cannabis and its derivatives have been 

extensively investigated, and  they have been shown to exhibit a wide variety of 
beneficial properties, inhibiting cancer, neuropathic pain, multiple sclerosis, 

Alzheimer’s disease, atherosclerosis, rheumatoid arthritis, asthma and many 

inflammatory diseases (Alexander et al., 2009; Ligresti et al., 2009; Nolin et al., 
2002; Pacher et al., 2006). Inflammation plays a crucial role in most of the 

mentioned health issues, and cannabinoids have been proven to influence these 

processes. Their biological activity is connected to the activation of specific 

receptors: CB1, expressed mostly in the central nervous system; and CB2, 
found mainly in peripheral tissues. CBD, a non-psychoactive cannabinoid, is 

responsible for the antiinflammatory activity of marihuana, acting mostly on the 

CB2 receptor in peripheral tissues (Rajesh et al., 2007; Zoratti et al., 2003).  
Antinflammatory studies are performed using the U937 cell line derived 

from a human histiocytic lymphoma (Sundström and Nilsson, 1976). This cell 

line is maintained as replicative non-adherent cells having many of the 
biochemical and morphological characteristics of blood monocytes (Harris and 

Ralph, 1985). When treated with phorbol myristate acetate (PMA), U937 cells 

differentiate to become adherent, non-replicative cells with characteristics of 

tissue macrophages, including isoenzyme patterns, 17 CR3 expressions, 18 and 
other phenotypic markers (Pearlman et al., 1988). The purpose of this study was 

to investigate antiinflammatory activities of cannabinoids using U937 cell lines 

(in-vitro). 
 

4.2. Materials and Methods 

4.2.1. Chemicals and reagents 

Fetal bovine serum (FBS), penicillin, streptomycin and RPMI1640 were 

purchased from GIBCO (Grand Island, NY) and U937 cell lines from ATCC 

(CRL-1593.2). Lipopolysaccharide (Escherichia coli O111:B4) and phorbol 12-

myristate 13-acetate (PMA) were from Sigma–Aldrich (St. Louis, MO, USA). 
The Human TNF-α ELISA kit was purchased from BioSource International 
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Inc.(Camarillo, CA, USA). DMEM, fetal bovine serum (FBS), penicillin and 
streptomycin solution, phosphate buffered saline, were supplied by GIBCO 

Netherlands BV (Breda, The Netherlands). DMSO was purchased from 

Biosolve BV (Valkenswaard, The Netherlands). 

 

4.2.2. Plant Cannabinoids 

The cannabinoids used in this study were kindly provided by Dr Arno 
hazekamp. 

 

4.2.2. Cell culture 

Human monocyte-like histiocytic lymphoma cells U937 were cultured 
as described in chapter 3. 

 

4.2.4. TNF-α ELISA 

TNF-α in culture supernatants were performed as described in chapter 

3. 

 

4.2.5. Cell viability assay 

Cell viability assay was performed as described in chapter 3. 

4.2.6. Data analysis 

Statistical analyses were performed using GraphPad Prism version 5.00 

for Windows, GraphPad Software, San Diego California 
USA, www.graphpad.com. One way ANOVA was performed. Posthoc 

comparison between means and controls were made using Dunnett’s test. Value 

of P ≤ 0.05 was considered statistically significant. 

4.3. Results and Discussions 

Cannabis has a long history as a medicinal preparation, mainly for 
properties such as analgesia, antiemesis, ocular hypotension, and anticonvulsion 

http://www.graphpad.com/
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(Mechoulam et al., 1998). Recent research in-vitro  and in animal models has 
led to increasing evidence that cannabinoids are also important modulators of 

the immune system (Klein et al., 1998) and thus could cannabinoids have a role 

in the treatment of chronic inflammatory diseases. It is therefore important to 
find out whether nonpsychoactive cannabinoids are suitable for treating chronic 

inflammatory diseases. 

  

 

Figure 1: Structures of cannabinoids studied in this chapter. 
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The inhibitory effects of eight major cannabinoids and Cannabis sativa 
extract on TNF-α inhibition was evaluated in U937 cell line stimulated by LPS. 

Crude extract, ∆
9
-THC, ∆

9
-THCA, CBD, CBDA, CBG, CBGA, CBC and CBN 

were evaluated for their ability to inhibit TNF-α at a concentration of 10 µgmL
-

1
, 1 µgmL

-1
 and 0.01 µgmL

-1
 respectively. In this study, it was found that 

phytocannabinoids show highly significant inhibition of TNF-α at a 

concentration of 1µg/ml. Maximum inhibition was observed in ∆
9
-THCA 

followed by CBDA > CBGA > CBD >∆
9
-THC > CBG > CBN and CBC. They 

all show activity in a concentration-dependent manner. It was also found that all 

these compounds show toxicity towards cell lines at concentration of 10µg/ml. 

TNF-α inhibition and cell viability of cannabinoids after stimulated with LPS 
has shown in Figure 2-4. 

Figure 2: TNF-α inhibition and cell viability of LPS stimulated U937 cell lines 
treated with different cannabinoids. One way ANOVA was performed. Posthoc 

comparison between means and controls (LPS+DMSO) were made using 

Dunnett’s test. Each error bar represents ±SEM of three replicates. * = the value 
shows a significant difference (P ≤ 0.05). 
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Delta-9-tetrahydrocannabinol (THC) is one of more than 80-100 
cannabinoids in the marijuana plant and has been recognized as the major 

psychoactive component of this plant. THC being psychoactive and most 

studied component of marijuana is widely acknowledged because of its 
therapeutic effects including relief of nausea and vomiting associated with 

cancer and its treatments; stimulation of appetite in AIDS patients and patients 

with anorexia and wasting syndrome; analgesia; and muscle relaxation. In this 
study, we show that ∆

9
-THC inhibits TNF-α release in LPS stimulated U937 

cell line. THC shows toxicity towards cells at highest concentration while at 

low concentration (1µg/ml), it shows significant inhibition of TNF-α. Various 

in-vitro studies have shown that THC exhibits a variety of inhibitory effects on 
immune functions.  THC has been used with success in controlling severe 

cachexia seen in patients with cancer or AIDS (Kusher et al., 1994; Razdan, 

1986). THC has been shown to inhibit TNF-α production in various models of 
cell lines (Fischer-Stenger et al., 1993; Zheng and Specter, 1996; Zhi-Ming et 

al., 1992). The mechanism by which THC inhibits TNF-α production is not yet 

clear but there are several possibilities proposed (Specter et al., 1990). There are 

reports saying THC as a lipophilic compound, can be incorporated into the cell 
membranes and cell membrane altercation could be the reason of inhibitory 

action. There is also a report regarding THC acid and its potential to inhibit 

TNF-α release in LPS stimulated U937 cell lines. Moreover, it was also found 
that the inhibitory effect on TNF-α production by THC and THCA are not 

mediated via CB1 and CB2 receptors instead via TLR4 and IFN receptors 

(Figure 3) (Kozela et al., 2010; Verhoeckx et al., 2004). 

Cannabidiol (CBD; Fig. 3), the most abundant nonpsychoactive 

cannabinoid in the plant has been studied more extensively in recent years. 

CBD is well-known for its immunosuppressive, antiinflammatory and 
antioxidant properties both in-vitro and in various preclinical models 

(Fernández-Ruiz et al., 2005; Mechoulam et al., 2007). We here report that 

CBD significantly suppresses the level of TNF-α associated with LPS in U937 
cell lines. At higher dose (10µg/ml) CBD shows significant toxicity towards 

cell lines but at lower dose (1µg/ml), it strongly inhibits the release of TNF-α in 

LPS stimulated cell lines. 
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Figure 3: TNF-α inhibition and cell viability of LPS stimulated U937 cell lines 
treated with different cannabinoids. One way ANOVA was performed. Posthoc 

comparison between means and controls (LPS+DMSO) were made using 

Dunnett’s test. Each error bar represents ±SEM of three replicates. * = the value 
shows a significant difference (P ≤ 0.05). 

There are several reports which support our results regarding the 

inhibition of TNF-α. Costa et al., (2007) reported that in synovial cells isolated 
from mice, CBD treatment inhibits the release of TNF-α. In addition, oral 

administration of CBD (2.5–20 mg/kg) reduces neuropathic and inflammatory 

pain in rats. In another study it has been shown that a low dose of CBD 
suppresses TNF-α production induced by lipopolysaccharide (LPS) in mice 

(Carrier et al., 2006). CBD has been shown to reduce joint inflammation in 

collagen-induced arthritis (CIA) in mice (Sumariwalla et al., 2004) and 
carrageenan paw edema in rats (Costa et al., 2004). Though CBD did not reduce 

inducible nitric oxide synthase (iNOS) in these studies, others (Esposito et al., 

2006; Esposito et al., 2007) have reported that CBD does inhibit iNOS in a beta-

amyloid induced murine model of neuroinflammation. CBD also reduces 
intestinal inflammation in mice (Capasso et al., 2008). In addition to its ability 

to suppress production of the inflammatory cytokine TNF-α, CBD appears to 
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exert antiinflammatory activity by suppressing fatty acid amidohydrolase 
(FAAH) activity, thereby increasing concentrations of the antiinflammatory 

endocannabinoid anandamide (Ben-Shabat et al., 2006).  

The complex mechanisms whereby these compounds exert their effects 

is illustrated by the fact that hydrogenation at different double bonds has 

different effects on bioactivities, none of which appear dependent on CB1 
activation. Further, insight into mechanisms whereby CBD exerts therapeutic 

effects is provided by experiments which indicate that CBD attenuates 

inflammation induced by high glucose in diabetic mice (Rajesh et al., 2007). 

Specifically, CBD treatment reduces mitochondrial superoxide, iNOS, nuclear 
factor kappa B (NF-κB) activation, and transendothelial migration of 

monocytes. Another potential therapeutic use of CBD may lie in its ability to 

counter some undesirable effects of THC (sedation, psychotropic effects, 
tachycardia), thus suggesting that if given together with THC, it may allow 

higher doses of THC (Russo and Guy, 2006). Several studies pointed out that 

cannabinoids could have CB1/CB2 receptor-independent mechanisms of action. 
CBD exhibits very low affinity towards CB1 and CB2 and thus shows 

immunosuppressive effects through non CB1 and non-CB2 mechanisms 

(Kaplan et al., 2003). There was reported that CBD inhibits production of pro-

inflammatory cytokines by decreased activity of NF-κB (Kozela et al., 2010). 

Cannabichromene (CBC) is, together with ∆
9
-tetrahydrocannabinol, 

cannabidiol and cannabinol, the most abundant naturally occurring cannabinoid 
(Brown and Harvey, 1990; Holley et al., 1975). It is particularly abundant in 

freshly harvested dry-type cannabis material and it is the second most abundant 

cannabinoid in some strains of marijuana growing in the USA (Brown et al., 
1990).  It is reported that in USA during period 1993–2008, CBC represented 

0.7 and 0.9% of the constituents from hashish or hash oil, respectively 

(Mehmedic et al., 2010). Despite the relative abundance of this compound in 

cannabis preparations, very little is known about its pharmacology. 
Cannabichromene was reported to have anti-inflammatory activity in the 

carageenan paw edema assay (DeLong et al., 2010; Wirth et al., 1980) and has 

analgesic effects (Davis and Hatoum, 1983). CBC inhibits prostaglandin 
synthesis in-vitro, but less potently than CBD or THC (Burstein et al., 1973). 

CBC exhibits strong antibacterial activity and mild antifungal activity, superior 

to THC and CBD in most instances (Eisohly et al., 1982). The mechanism by 

which CBC exerts its antiinflammatory effects is not known but it is confirmed  
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Figure 4: TNF-α inhibition and cell viability of LPS stimulated U937 cell lines 

treated with different cannabinoids. One way ANOVA was performed. Posthoc 
comparison between means and controls (LPS+DMSO) were made using 

Dunnett’s test. Each error bar represents ±SEM of three replicates. * = the value 

shows a significant difference (P ≤ 0.05). 
 

that these effects are mediated through a non cannabinoid receptor mechanism 

of action (DeLong et al., 2010). 

 
Cannabigerol (CBG; Fig. 4) is the biosynthetic precursor of CBC, CBD, 

and THC, and is present only in minor amounts. CBG has being shown less 

affinity towards CB1 receptors as compared to THC, approximately the same as 
CBD (Devane et al., 1988). CBG is also reported to inhibit the uptake of 

serotonin and norepinephrine in rat brains, less effectively than CBD and THC, 

but CBG inhibits GABA uptake more effectively than CBD and THC (Banerjee 
et al., 1975). CBG acts as an analgesic (more potently than THC), it inhibits 

erythema (much more than THC), and it blocks lipoxygenase, again more  
 

TNF-  inhibition

LPS+D
M

S
O U

n

C
urc

um
in

g/m
l



0.
1 

g/m
l


1 

g/m
l


10

 

0

1000

2000

3000

4000

*

*

*

*

CBG

T
N

F
- 

 i
n

h
ib

it
io

n
 p

g
/m

l

TNF-  inhibition

LPS+D
M

S
O U

n

C
urc

um
in

g/m
l



0.
1 

g/m
l


1 

g/m
l


10

 

0

1000

2000

3000

4000

*

*

*

*

*

CBGA

T
N

F
- 

 i
n

h
ib

it
io

n
 p

g
/m

l

TNF-  inhibition

LPS+D
M

S
O U

n

C
urc

um
in

g/m
l



0.
1 

g/m
l


1 

g/m
l


10

 

0

1000

2000

3000

4000

*

*

*

*

CBN

T
N

F
- 

 i
n

h
ib

it
io

n
 p

g
/m

l

Cell Viability

LP
S
+D

M
S
O U

n

C
urc

um
in

g/m
l



0.
1 

g/m
l


1 

g/m
l


10

 

0.000

1.000

2.000

3.000

*

CBG

A
b

s
o

rb
a
n

c
e
 (

5
4
0
n

m
)

Cell Viability

LP
S
+D

M
S
O U

n

C
urc

um
in

g/m
l



0.
1 

g/m
l


1 

g/m
l


10

 

0.000

1.000

2.000

3.000

*

CBGA

A
b

s
o

rb
a
n

c
e
 (

5
4
0
n

m
)

Cell Viability

LP
S
+D

M
S
O U

n

C
urc

um
in

g/m
l



0.
1 

g/m
l


1 

g/m
l


10

 

0.000

1.000

2.000

3.000

*

CBN

A
b

s
o

rb
a
n

c
e
 (

5
4
0
n

m
)



Evaluation of anti-TNF-α activity of eight major cannabinoids isolated from 

Cannabis sativa 

Chap.4 

 

107 

 

effectively than THC (Evans, 1991). CBG has antibacterial (Appendino et al., 
2008; Mechoulam and Gaoni, 1965) and antitumoural activities (Baek et al., 

1998b).  

Its activity against gram-positive bacteria, mycobacteria, and fungi is superior to 

that of THC, CBD, and CBC (Eisohly et al., 1982). CBG inhibits the growth of 

human oral epitheloid carcinoma cells (Baek et al., 1998a).  CBG has been 

found to activate alpha (2)-adrenoceptors, to block 5-HT1A and CB1  

Figure 5: Possible antiinflammatory mechanism exhibited by THC & 

CBD. Pointed arrows represent activation while blunt arrows show 

suppression.   

receptors and bind to CB2 receptors (Cascio et al., 2010) and may serve as a 

treatment for glaucoma (Colastani, 1990). It has been recently reported that 

CBG strongly inhibits the synthesis of IL-1β, IL-6, PGE2 and TNF-α in a dose-
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dependent manner. PPARγ receptors have been shown to be involved in the 

modulation of inflammation, as PPARγ agonists downregulate the expression of 

several proinflammatory cytokines. Activation of PPARγ receptors might 

explain the TNF-α inhibitory action of CBG (Granja et al., 2012; Jiang et al., 

1998). 

Cannabinol (CBN; Fig. 4) is the degradation product of THC, and is 

found most often in aged cannabis products. CBN has been reported for its anti-

convulsant and antiinflammatory activities (Evans, 1991; Turner et al., 1980). 
CBN shows greater affinity for CB2 receptors thus it may affect cells of the 

immune system more than the central nervous system. Furthermore, it is also 

reported that CBN modulates thymocytes by attenuating the activity of the c-
AMP response element-binding protein (CREB), nuclear factor κB (NF-κB), 

and interleukin-2 (IL-2). CBN inhibits the expression of these proteins in 

splenocytes, via decreased activation of ERK MAP kinases (Faubert and 

Kaminski, 2000). 
  

 

4.4. Conclusion 
 

Cannabis sativa has been used throughout the history not only for its 

fiber, but also as a medicinal plant. Here, we have demonstrated that acidic 

forms of different cannabinoids are more active and strongly inhibit the release 
of TNF-α. Maximum activity was found in ∆

9
-THCA followed by CBDA and 

CBGA. These acidic forms also showed strong toxicity towards U937 cells at 

highest concentration of 10μg/ml. Our studies support earlier findings that 
cannabinoids are potent antiinflammatory agents and they exert their effects 

through suppression of cytokine production.  
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Abstract 

Nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis 
methods were applied to the metabolite profiling of different types of berries. 

The water, methanol-water (1:1), and methanol fractions from solid phase 

extraction (C18) were subjected to in-vitro TNF-α activity assay. All the SPE 

fractions were clearly separated on a score plot of principal component analysis 
(PCA). In order to find correlations between metabolites and activities, partial 

least squares-discriminant analysis (PLS-DA) and partial least squares-

discriminant analysis (OPLS-DA) were used. Signals related to the TNF-α 
inhibition observed in the SPE fractions of berries were identified as a wide 

range of phenolics. By calculating variable importance in the projection (VIP), 

the active ingredients in the high activity samples have been identified as gallic 

acid, caftaric acid, quercetin, myricetin, and (+)-catechin. The present study 
shows the usefulness of NMR spectroscopy in combination with chemometrics 

to identify the possible bioactive metabolites in the crude extracts.  

 

 

Keywords: Berries, chemometrics, NMR spectroscopy, TNF-α inhibition, 

phenolic identification 
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5.1. Introduction 

Inflammation plays a crucial role in diseases like asthma, 
atherosclerosis, and rheumatoid arthritis. The imbalance between pro-oxidants 

and antioxidants in an organism lead to a condition known as oxidative stress 

which can be a trigger in the autoregulation of cytokines in the inflammatory 
diseases. Pro-inflammatory cytokines including interleukin-1 (IL-1), tumor 

necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) are known to be released 

during inflammation and. Tumor necrosis factor-α is a regulatory pro-

inflammatory cytokine  produced mainly by macrophages, but various other 
cells like T-cell, neutrophils, NK cells, and synovial cells are also known to 

release TNF-α (Vilcek and Lee, 1991). TNF-α is secreted during the early phase 

of inflammatory diseases and responsible to initiate the secretion of other 
cytokines like IL-1, IL-6, and IL-8 (Cho et al., 2001; Cho et al., 1998). Low 

production of TNF-α is advantageous for the host but overproduction of TNF-α 

during infection plays a pivotal role in the development of several diseases 
(Björnsdottir and Cypcar, 1999; Medana et al., 1997; Murphy et al., 1998). The 

suppression of TNF-α or anti TNF-α therapy could be beneficial for the 

treatment of these acute and chronic diseases.  

It is reported that a negative correlation exists between the consumption 

of diet rich in fruits, and vegetables and the risks for chronic angiogenic 

diseases, such as cardiovascular diseases, arthritis, chronic inflammation and 
cancers (Chen et al., 2006; Prior, 2003; Saleem et al., 2002; Zhang et al., 2005). 

Fruits and vegetables, especially some deep-coloured varieties, are good sources 

of phenolics (Cieślik et al., 2006), including flavonoids (Qian et al., 2004) and 
anthocyanins, as well as carotenoids (Sass-Kiss et al., 2005). Among fruits, 

berries such as bilberries, blackberries, blueberries, cranberries, elderberries, 

raspberries and strawberries contain diverse anthocyanins and exert differential 

inhibition effects on COXs activity (Seeram et al., 2001). Among these berries, 
strawberries contain abundant amounts of phenolic compounds (Häkkinen and 

Törrönen, 2000) and have demonstrated anticancer activity in several diferent 

experimental systems (Hannum, 2004). Phenolic compounds have been reported 
to have a strong antioxidant activity (Johnson, 2005) and exhibit a wide range of 

biological and pharmacological activities both in-vitro and in-vivo, such as the 

inhibition of cyclooxygenase (COX), induction of CD95 signalling dependent 
apoptosis, effects on cell division cycle and the modulation of NF-Kb activation 

(Falchetti et al., 2001). Therefore, a diet rich in fruits and vegetables is 

suggested to have immuno-modulatory effects such as antiinflammation 

(Devereux and Seaton, 2005; Sanchez-Moreno et al., 2006). 
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 Considering the great chemical diversity, for finding active compounds 

in plants it is unlikely that a single analytical method could provide information 

about all the metabolites, and at the same time be unbiased, rapid, reproducible, 
and stable over time, while requiring only simple sample preparation. 

Metabolomics is an approach aimed for the better understanding of primary and 

secondary metabolism and can be defined as a metabolic snapshot of a living 
system (Andrew Clayton et al., 2006). Other than the use of NMR spectroscopy 

in structure elucidation of novel compounds, NMR based metabolomics is now 

a popular tool in the area of metabolome analysis (Son et al., 2009). Often 

criticized for its low sensitivity as compared to other platforms for 
metabolomics analysis, the most promising features of NMR are its non-

destructive nature, simple sample preparation, and spectra are obtained in 

relative short time.  

The development of methods and algorithms for the multivariate 

statistical modeling have contributed much to metabolomics as they opened the 
way for handling the huge datasets of large-scale metabolic analyses (Crockford 

et al., 2005). In combination with different multivariate data analyses methods, 

NMR has been widely used for metabolic profiling of various samples (Brescia 

et al., 2002; Charlton et al., 2002). Several studies showed the analysis of the 
extracts (Bailey et al., 2004; Cardoso-Taketa et al., 2008; Cho et al., 2009; Roos 

et al., 2004) for the prediction of different pharmacological activities using 

NMR spectroscopy in combination of chemometrics methods. 

The present study is aimed to measure the in-vitro anti-TNF-α activity 

of different berry types. Several phenolics were also identified using 1D and 2D 
NMR techniques. The correlation of activity data and NMR data using different 

multivariate data analyses methods in order to identify the active ingredients is 

also presented.   

 

5.2. Materials and Methods 

5.2.1. Sampling 

All fruit berries [Cranberry, blueberry, redberry, strawberry, raspberry, 

blackberry, grapeberry (green), grapeberry (red), and grapeberry (black)] were 

purchased from local market in The Netherlands. The berries were milled using 
mortar and pestle and susequently dried in a freeze drier. 
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5.2.2. Solid phase extraction (SPE) 

A sample of 1 g dry weight powder of each berry was extracted with 
MeOH-H2O (8:2). Subsequently the extract was dried using a vacuum 

evaporator at room temperature and redissolved in 1 mL of deionized water 

before application to solid phase extraction (SPE) of a SPE-C18 cartridge 
(Waters, Milford, MA, USA). Prior to its use, the SPE cartridge was 

preconditioned by elution with 10 mL of methanol followed by 10 mL of water. 

The extract was eluted successively with 5 mL of water, 5 mL of methanol-

water (1:1) and finally with 5 mL of methanol. All three fractions were 
collected separately in a round-bottom flask, evaporated under vacuum and used 

for further NMR analysis. All the solvents were purchased from Biosolve B.V. 

(Valkenswaard, The Netherlands). 

 

5.2.3. Preparation of berry’s extracts for bioassay 

One gram DW of (each) berry powder was extracted with 30 mL of 
methanol-water (8:2). The crude extract was subsequently dried using a rotary 

evaporator at room temperature, weighed, redissolved in DMSO and diluted 

several times to achieve a concentration of 100 µg/mL.  The dried extracts 

achieved from SPE experiment were also redissolved and diluted in DMSO to 
provide the same concentration (100µg/ml). 

 

5.2.4. Growth of cells and treatment with berry’s extract 

Human monocyte-like histiocytic lymphoma U937 cells were cultured 

as dscribed in chapter 3.  

5.2.5. ELISA for TNF-α 

TNF-α in culture supernatants was determined by quantitative 

‘sandwich’ enzyme-linked immunosorbent assay as described in chapter 3. 

 

5.2.6. Cell viability assay 

Cell viability was determined by MTT assay as described in chapter 3. 
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5.2.7. 
1
H NMR Spectroscopy 

The dried extracts of the three fractions eluted from SPE were 
redissolved in 1 mL of methanol-d4. An aliquot of 800 µL of sample was 

transferred to the 5-mm NMR tube and used for the NMR analysis. The 

deuterated methanol was purchased from Cambridge Isotope Laboratories, Inc., 
Andover, MA, USA. 

1
H NMR spectra were recorded at 25 °C on a 500 MHz 

Bruker DMX-500 spectrometer (Bruker, Karlsruhe, Germany) operating at a 

proton NMR frequency of 500.13 MHz. Methanol-d4 was used as the internal 

lock. Each 
1
H NMR spectrum consisted of 128 scans requiring 10 min and 26 

sec acquisition time with the following parameters: 0.16 Hz/point, pulse width 

(PW) = 30° (11.3 µsec), and relaxation delay (RD) = 1.5 sec. A pre-saturation 

sequence was used to suppress the residual H2O signal with low power selective 
irradiation at the H2O frequency during the recycle delay. FIDs were Fourier 

transformed with LB = 0.3 Hz. The resulting spectra were manually phased and 

baseline corrected, and calibrated to MeOH- d4 at 3.3 ppm, using XWIN NMR 
(version 3.5, Bruker). 2D NMR techniques were performed on a 600 MHz 

Bruker DMX-600 spectrometer (Bruker, Karlsruhe, Germany) operating at a 

proton NMR frequency of 600.13 MHz. J-resolved NMR spectra were acquired 

using 8 scans per 128 increments for F1 and 8 k for F2 using spectral widths of 
5000 Hz in F2 (chemical shift axis) and 66 Hz in F1 (spin–spin coupling 

constant axis). A 1.5 s relaxation delay was employed, giving a total acquisition 

time of 56 min. Datasets were zero-filled to 512 points in F1 and both 
dimensions were multiplied by sine-bell functions (SSB = 0) prior to double 

complex FT. J-resolved spectra tilted by 45°, were symmetrized about F1, and 

then calibrated, using XWIN NMR (version 3.5, Bruker). 
1
H–

1
H correlated 

spectroscopy (COSY) and heteronuclear multiple bonds coherence (HMBC) 

spectra were recorded on a 600 MHz Bruker DMX-600 spectrometer (Bruker). 

The COSY spectra were acquired with 1.0 s relaxation delay, 6361 Hz spectral 

width in both dimensions. Window function for COSY spectra was sine-bell 
(SSB = 0). The HSQC spectra were obtained with 1.0 sec relaxation delay, 6361 

Hz spectral width in F2 and 27,164 Hz in F1. Qsine (SSB = 2.0) was used for 

the window function of the HSQC. The HMBC spectra were recorded with the 
same parameters as the HSQC spectra except for 30,183 Hz of spectral width in 

F2. The optimized coupling constants for HSQC and HMBC were 145 Hz and 8 

Hz, respectively. 

5.2.8. Data analysis  

The 
1
H NMR spectra (from all SPE fractions) were automatically 

reduced to ASCII files. Spectral intensities were scaled to methanol signal (δ 
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3.30) and reduced to integrated regions of equal width (δ 0.04) corresponding to 

the region of δ 0.0–10.0. The regions of δ 4.85–4.95 and δ 3.28–3.4 were 

excluded from the analysis because of the residual signal of D2O and CD3OD, 
respectively. Bucketing was performed by AMIX software (Bruker) with 

scaling on total intensity. The SIMCA-P software (v. 12.0, Umetrics, Umeå, 

Sweden) was used for application of principal component analysis (PCA) with 
scaling based on Pareto, and also projection to latent structures (PLS) such as 

PLS-discriminant analysis (PLS-DA), bidirectional orthogonal PLS (O2PLS), 

and O2PLS-discriminant analysis (O2PLS-DA) with scaling based on Unit 

Variance. The TNF-α content was arbitrarily set as 100 in the negative control 
(LPS+DMSO) and all the other values are normalized to this (% activity) as 

shown in results. Means and standard deviations were calculated and means 

comparisons were made with one way ANOVA followed by posthoc Tucky’s 
test at a significance level <0.01. 

5.3. Results and Discussions 

The 
1
H NMR spectra of three SPE fractions resulted from grape berry 

extract are shown in Fig. 1.  

Fig. 1: Comparison of 1H NMR spectra of SPE fractions of black grapes extract.
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All the three SPE fractions are quite different from each other with 

respect to the contained metabolites. Sugars and amino acids are more 

concentrated in water fraction while the high signals intensity of amino acids 
and fatty acids are observed higher in the methanol fraction with some 

resonances in the phenolics region. The 50% methanol fraction shows 

maximum amount of phenolics with higher signals related to amino acids and 
fatty acids.  

In NMR-based metabolomics studies, signals congestion is the biggest 

obstacle in metabolite identification. Several 2D NMR techniques, like J-
resolved, 

1
H-

1
H COSY, 

1
H-

13
C HMBC, and 

1
H-

13
C HSQC, provide additional 

information which facilitates the identification of metabolites. J-resolved and 
1
H-

1
H COSY are proved effective and widely used in metabolomics due to short 

measuring time with good quantitative features (Viant et al. 2003; Liang et al. 

2006). Recently the potential of 
1
H-

13
C-related NMR techniques, like 

1
H-

13
C 

HMBC and 
1
H-

13
C HSQC for application in metabolomics has also been 

discussed (Hyberts et al., 2007; Lewis et al., 2007).  

In this study, several flavonoids and phenolic acids are identified using 

our in-house library of NMR data of common metabolites. Flavonols like 
quercetin, kaempferol, and myricetin were identified in the aromatic region 

along with (+)-catechin of the flavan-3-ols group. The signals at δ 6.46 and δ 

6.77 correlated with each other in the COSY spectrum with a coupling constant 
of 2.0 Hz were assigned to be H-6 and H-8 of kaempferol. The correlation 

between the signals at δ 7.00 (H-2′, H-6′, d, J=8.8 Hz) and δ 8.07 (H-3′, H-5′, d, 

J=8.8 Hz) led to the elucidation of the B-ring protons of kaempferol. The 
flavonoids quercetin and myricetin were also identified in the aromatic region. 

The quercetin signal at δ 6.49 of H-8 was correlated in the 
1
H-

1
H COSY 

spectrum with the signal at δ 6.27 of H-6 and a signal at δ 6.95 of H-5′ with one 

at δ 7.56 of H-6′. Similar correlations for the signals of myricetin at δ 6.51 of H-
8 with δ 6.29 of H-6 also showed 

1
H-

1
H COSY correlations. 

The aromatic part of the 
1
H NMR spectra shows some signals of p-

hydroxybenzoic acid and gallic acid. The singlet at δ 7.03 was assign to gallic 

acid while resonances at δ 7.94 and δ 6.83 were assign to p-hydroxybenzoic 

acid which are also found correlated in 
1
H-

1
H COSY spectrum. Resonances of 

H-8′ and H-7′ (olefinic protons) of trans-hydroxycinnamic acids are clearly 

observed as doublets of 16.0 Hz in the range of δ 6.39-6.50 and δ 7.59-7.70, 

respectively, in J-resolved spectrum. These protons are also found correlated in 

the 
1
H-

1
H COSY spectra, with the coupling with carbonyl carbon at δ 168.3 in 

the HMBC spectra. These signals are assigned to cinnamic acid derivatives 
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including caffeic acid, p-coumaric acid, and ferulic acid. In the 
1
H NMR spectra 

of grape berry samples, these resonances were assigned to three different 

hydroxycinnamic acids moieties which include trans-caffeoyl, trans-coumaroyl, 
and trans-feruloyl derivatives. The 

1
H-

1
H COSY spectra showed correlations 

among signals like δ 6.41 with δ 7.62; and δ 7.02 with δ 6.88 of caffeoyl; δ 7.51 

with δ 6.87; and δ 6.45 with δ 7.65 of coumaroyl; δ 6.46 with δ 7.56 of feruloyl 
derivative.  

These hydroxycinnamic acids were also found to be conjugated with 

tartaric acid via an ester linkage. The signal for tartaric acid was observed in the 
region of δ 5.32-5.44 in 

1
H NMR spectrum, being shifted downfield from the 

typical tartaric acid signal at δ 4.30 due to the bonding to the carboxylic 

function of cinnamic acids which was confirmed by their correlation with the 
signal at the region of δ 167.5-168.5 in the HMBC spectra. Based on these 

assignments, these compounds were identified as trans-caftaric acid (caffeic 

acid conjugated with tartaric acid), trans-fertaric acid (ferulic acid conjugated 
with tartaric acid), and trans-coutaric acid (coumaric acid conjugated with 

tartaric acid).  

Along with the trans- forms, the cis- forms of these hydroxycinnamic 
acids, i.e. cis-caffeic and cis-p-coumaric acid, were also detected. When 

compared to their trans-configuration, the cis-forms showed an upfield shift of 

the signals for H-8′ and H-7′ along with the reduction in the coupling constant 
from 16.0 Hz to 13.0 Hz. Two clear doublets of 13.0 Hz at δ 5.92 and δ 5.94 

were detected for the H-8′ in the cis-configuration. The 
1
H-

1
H COSY spectra 

also confirmed this by showing the correlation of these signals with the 
respective H-7′ protons at δ 6.81 and δ 6.86. It was also confirmed by the 

correlation of this signal with the carbonyl resonance at δ 167.2 in the HMBC 

spectra. All the phenolics are identified by comparing the spectra of the 

reference compounds analyzed under same condition from our in-house library 
and our previous reports (Abdel-Farid et al., 2007; Liang et al., 2006). 

In this study all three fractions of SPE from different berries extracts 
were tested for their potential inhibition against TNF-α production (Fig. 2). The 

100% water and 100% methanol fractions provided the least anti-TNF-α 

activity with no significance difference among different berry types. The 
methanol-water fraction showed maximum TNF-α inhibition, with cranberry 

showing significantly higher activity than all of the other berry types except 

black grape berry. Among the grape berries, it is interesting to note that black 

and white grapes provided significantly higher activities than red grapes. 
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Among the other berry type, raspberry and blueberry showed significantly 

higher activities than the redberry and strawberry. 

Multivariate data analysis algorithms are an essential component of any 

metabolomics study. These methods are used to reduce the dimensionality of a 

multivariate dataset and thus enable to recognize possible differences or 
similarities among the samples. Principal component analysis (PCA) is 

considered as a primary tool in metabolomics and helps to better understand 

possible differences between samples. It is an unsupervised method; hence the 
separation of samples is purely due to differences among the samples. The 

NMR data from the SPE fractions of all samples were subjected to PCA in  
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Fig. 2: TNF-α inhibition ratio (%) exhibit by different berries. Bars represent standard error of Mean (n=3).
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order to highlight the differences existed among the SPE fractions and to 
identify the metabolites responsible for that distinction. The PCA score plot 

shows good separation among the SPE fractions (Fig. 3). 

The methanol fractions are totally separated from the other two 

fractions by PC1 (56.6%) while the water and methanol-water fractions are 
separated by PC2 (8.8%). By examining the loadings plot and the respective 

NMR spectra, it is clear that all the three fractions are quite different in their 

metabolic contents. The methanol fraction was also found higher in fatty acids 

with very small quantities of phenolics and amino acids. The water fraction was 
relatively higher in sugars and some amino acids and organic acids. Most of the 

phenolics were found to be eluted in the methanol:water fraction. In order to 

identify the metabolites responsible for anti-TNF-α activity, a supervised 

method, i.e. partial least squares-discriminant analysis (PLS-DA), was used. For 
PLS-DA, samples were classified in high and low active classes by creating 

dummy Y-variables. The score plot shows nice separation among the high and 

low activity samples (Fig. 4A). To achieve better clustering, bidirectional 
orthogonal-PLS-DA (O2PLS-DA) was used which was resulted in a clear 

distinction among the samples from different classes (Fig. 4C). The 

corresponding loadings plot indicated the accumulation of phenolics like 
quercetin, caffeic acid, gallic acid, and (+)-catechin in the samples with high 

activity. 

Fig. 3: Principal component analysis score plot of SPE fractions of different kind of berries. Red

represents methanol, green represents methanol:water (1:1), and blue represents water fractions.
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Projection to latent structures (PLS) is another supervised method in 
which instead of creating dummy Y-variables, the actual data from anti-TNF-α 

assay can be used as a Y-data set. The PLS analysis was found effective in 

separating the high and low activity samples similar to PLS-DA method (Fig. 
5A). The application of bidirectional orthogonal-PLS (O2PLS) resulted in much 

better distinction of the samples with different activities than PLS model (Fig. 

5C). By examining the loadings plot, the findings from the O2PLS-DA model 
were endorsed as similar phenolics were found responsible for higher activity in 

the samples. 

One of the key aspects of a supervised regression algorithm is model 
validation. A permutation test is often used for validation of methods like PLS 

and PLS-DA. A permutation test is the calculation of goodness of fit and the 

predictive ability of the model, R2 and Q2, respectively. The R2 and Q2 values 
of PLS and PLS-DA were calculated using four and six components for PLS 

and PLS-DA, respectively. For anti-TNF-α activity the R2 and Q2 values for 

A B

C

Fig. 4: The PLS-DA score plot (A), PLS-DA permutation test (B), and O2PLS-DA score plot (C) of anti-TNF-α 

activity of SPE fractions of different kind of berries. Black squares represent samples with low activity, whilst 

red circles represent samples with high activity.
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PLS analysis were 0.84 and 0.77, respectively, while for PLS-DA these figures 

were 0.96 and 0.91. These PLS and PLS-DA models were validated by the 
permutation method through 20 applications in which all Q2 values of permuted 

Y vectors were lower than original ones and the regression of Q2 lines intersect 

at below zero (Fig. 4B and 5B). 

It has been indicated that VIP (variable importance in the projection) 

score is directly proportional with the influence of a factor on the separation on 

score plot, meaning, factors have higher VIP values are more important in the 
separation of samples. For O2PLS-DA analysis, VIP values for identified 

phenolic compounds are calculated. It has been reported that factors with VIP 

values more than 0.7 could be regarded influential for the separation of samples 
(Eriksson et al., 2006). The VIP values of the major contributing metabolites are  

 

A B

C

Fig. 5: The PLS score plot (A), PLS permutation test (B), and score plot of O2PLS (C) of anti-TNF-α activity of SPE

fractions of different kind of berries. Black circles represent samples with low activity, red triangles represent

samples with high activity.
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shown in Fig. 6. Among the phenolics, gallic acids was found with the highest 

VIP score followed by myricetin and (+)-catechin. The p-coumaric acid score is 
the highest among the cinnamic acids. Kaempferol shows the least VIP score 

among all the identified phenolics. These VIP scores for the identified phenolics 

authenticate their involvement in the separation of high activity samples and 
suggest a role of these compounds in inhibiting TNF-α production. 

Chemometrics methods in combination with NMR spectroscopy are 

gaining popularity among the researchers. In this study, various multivariate 
data analysis methods were used in combination with NMR spectroscopy in 

order to correlate the activity data with the spectroscopy data of the same 

extracts. Such analyses of extracts from Hypericum perforatum, Artemisia 
annua, Citrus grandis, and Galphimia glauca, were successful in linking 

pharmacological activities with certain compounds (Bailey et al., 2004; 

Cardoso-Taketa et al., 2008; Cho et al., 2009; Roos et al., 2004). This approach 
is very effective in the screening of plant extracts in order to identify active 

compounds without laborious fractionation and chromatographic separation of 

the crude extract. Fractions from SPE of various berries were analyzed for anti-

TNF-α activity and the combination of NMR spectroscopy and chemometrics 
was successfully applied to identify metabolites like quercetin, myricetin, gallic 

Fig. 6: The VIP scores of different phenolics identified in berries.
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acid, caffeic acid, and ferulic acid, which are responsible for the high anti-TNF-

α activity.  

Phenolics is a class of metabolites which are well known for their anti-

oxidant and antiinflammatory activities, both in-vivo and in-vitro (Miles et al., 

2005; Pietta, 2000). Many reports have been published with regard to activities 
of flavonoids like quercetin, myricetin, and kaempferol against TNF-α 

production (Chuang et al., 2010; Park et al., 2008). Similarly, phenolics acids 

including caffeic, ferulic, and p-coumaric acid are well known in inhibiting 

TNF-α production (Sakai et al., 1997; Shin et al., 2004). Benzoates like gallic 
acid and p-hydroxybenzoic acid are also known for their free radical scavenging 

potentials and antiinflammatory activities (Giftson et al., 2010; Kroes et al., 

1992; Yeh et al., 2004). In the present study, all these metabolites were found to 
be correlated with the TNF-α inhibition in LPS stimulated cell line.  Gallic acid 

was found to have the highest correlation whereas the kaempferol is the least 

correlated among the identified phenolics. 

 

5.4. Conclusion 

In conclusion, combination of chemometric methods and nuclear 

magnetic resonance spectroscopy (1D and 2D) has been applied for the 
phenotyping of different type of berries. In order to separate phenolics from the 

other metabolites, solid phase extraction was used which resulted in water, 

methanol:water (1:1), and methanol fractions and have been tested for TNF-α 
inhibition. The assay showed that the methanol:water fraction from SPE 

strongly inhibit TNF-α production. Various multivariate data analysis methods 

showed good correlation between the NMR resonances for phenolics and anti-
TNF-α activity. Algorithms like PLS and PLS-DA showed good separation 

among the samples classified as high and low activity with high model validity. 

The application of bidirectional orthogonality, i.e. O2PLS-DA and O2PLS, 

showed even better distinction among the classes. The VIP plot showed that 
NMR signals related to metabolites like quercetin, myricetin, (+)-catechin, 

caftaric acid, coutaric acid, and gallic acid, were statistically significantly 

correlated with high activity. Using the presented approach, the analysis of 
NMR shifts in relation to pharmacological activity can provide information 

about what part of the NMR spectrum (aromatic or aliphatic regions) correlates 

with the activity which gives information about the active ingredients in crude 

extracts of medicinal plants.  
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Abstract 

Nuclear magnetic resonance combined with multivariate data analysis were 
applied to the evaluation of TNF-α inhibition from three grapes, ‘Trincadeira’, 

‘Touriga Nacional’, and ‘Aragoneˆs’,  at four different developmental stages. 

The initial stages of grape development, green and veraison, were found more 
active against TNF-α production as compared to the later ripe and harvest 

stages. Among the cultivars, ‘Touriga Nacional’ was found to be the most 

potent inhibitor. Different multivariate data analyses algorithms based on 

projections to latent structures were applied to correlate the NMR and TNF-α 
inhibition data. The variable importance in the projections plot showed that 

phenolics like quercetin, myricetin, (+) - catechin, (-)-epicatechin, caftarate, and 

coutarate, were positively correlated with high activity. This work demonstrates 
the great potential of NMR spectroscopy in combination with chemometrics for 

the screening of large set of crude extracts, to study the effects of different 

variables on the activity, and identifying sets of active compounds in complex 

mixtures like plant extracts. 

 

Keywords: Grapes, developmental stages, NMR spectroscopy, multivariate 

data analysis, anti-TNF-α activity, PLS modeling 
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6.1. Introduction 

Inflammation is a key characteristic of many diseases related to 
autoimmunity. It is a complex process and regulated by various pro-

inflammatory and antiinflammatory cytokines (Choy and Panayi, 2001). TNF-α 

is one of the most important pro-inflammatory cytokines which promotes 
inflammation. It was discovered in 1975 as having an anti-tumor activity, but is 

now recognized as a host defense factor in immunological and inflammatory 

responses (Tracey and Cerami, 1994). TNF-α is known to be secreted during 

early stages of acute and chronic inflammatory diseases such as rheumatoid 
arthritis, asthma, septic shock and other allergic diseases (Cho et al., 2001; 

Herath et al., 2003). Low production of TNF-α is advantageous for the host but 

overproduction of TNF-α during infection plays a pivotal role in the 
development of diseases like disseminated intravascular coagulation, death in 

septic shock, cerebral malaria, along with a wide range of other inflammatory 

diseases including asthma, dermatitis, multiple sclerosis, inflammatory bowel 
disease, cystic fibrosis, rheumatoid arthritis, and immunological disorders 

(Björnsdottir and Cypcar, 1999; Cohen et al., 1996; Medana et al., 1997; 

Murphy et al., 1998; Sekut and Connolly, 1996). Therefore it is evident that the 

suppression of TNF-α or anti TNF-α therapy could be beneficial for the 
treatment of these acute and chronic diseases.  

Recently, several studies have been published regarding natural 
compounds inhibiting TNF-α release (Paul et al., 2006; Yuliana et al., 2011). 

Chemical phenotyping has become the focal point in recent years, as the 

analysis of the low molecular weight compounds reflect the physiological 
activities of an organism or tissue under certain conditions.  The observable 

chemical profile or fingerprint, referred as ‘metabolome’, is highly complex 

consisting of a variety of compounds of very different nature. Considering the 

great chemical diversity it is unlikely that a single analytical method could 
provide information about all the metabolites, and at the same time be unbiased, 

rapid, reproducible, and stable over time, while requiring only simple sample 

preparation.  

An accurate snap shot of the metabolome is highly important in 

metabolomics which requires a reliable metabolite extraction (Colquhoun, 
2007; Kopka et al., 2004). Many platforms are now available for the high 

throughput analysis of metabolites, varying in their sensitivity (Beckonert et al., 

2007). In case of a pure organic compound, two of the most widely used 

parameters for solvent selection are total solubility and constituent partial 
solubility, but in metabolomics extraction is a totally different state of affairs. 
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Based on sample chemistry and aim of the research, many extraction protocols 

for metabolomics studies have been published, offering different advantages but 

also having some limitations (De Vos et al., 2007; Kim et al., 2010; Kruger et 
al., 2008; Lisec et al., 2006). In grapes, the high sugar concentration may 

hamper metabolite identification especially if they are in low quantities, like 

secondary metabolites. Solid Phase Extraction (SPE) has been an effective 
sample handling technique with advantages like high recovery, high pre-

concentration factors, low organic solvent consumption, simplicity, and ease of 

operation (Zhao et al., 2007) and has been successfully used in many studies 

(Cai et al., 2003; Fraccaroli et al., 2008; Zou et al., 2007). 

NMR has a unique place not only in structure elucidation and 

characterization of molecules, but is now also considered as a major tool in 
metabolomics studies. Though criticized because of its low sensitivity, NMR is 

known for advantages like non-destructive nature, easy sample preparation, and 

a relatively short analysis time. These striking features of NMR,  its non-
selectivity and the use of NMR data directly for quantification, makes NMR an 

optimum choice for a broad range of metabolite analyses and quantification 

(Dixon et al., 2006; Son et al., 2009). NMR is now widely used in combination 

with different multivariate data analyses methods to do metabolic profiling of 
various samples (Brescia et al., 2002; Charlton et al., 2002). Characterization of 

different plant species (Hye Kyong Kim et al., 2005), and cultivars (Ali et al., 

2009), monitoring grape berry growth (Ali et al., 2011), and the effects of 
growing regions, vintage, soil, and microclimate have been reported using NMR 

based metabolomics (Pereira et al., 2005; Pereira et al., 2006b). Many reports 

have been published on correlating the NMR and bioactivity data using various 
multivariate data analysis methods (Bailey et al., 2004; Cardoso-Taketa et al., 

2008; Cho et al., 2009; Roos et al., 2004).  

Food items like spices, herbs and fruits are well known for their anti-
inflammatory properties (Mueller et al., 2010). Among the fruits, the use of 

grapes for multiple purposes like juice, fresh and dried fruit, and most 

importantly in wine production, make them one of the most economically 
important and widely cultivated fruit crops across the world. In addition to their 

economic importance, an increasing number of medicinal advantages have been 

attributed to grapes. Grapes phytochemistry is known to have relatively high 
concentrations of phenolics which in turn resulted in many health effecting 

properties, for instance, cardioprotective, anti-oxidant, antiinflammatory, and 

anti-cancer activities (Ali et al., 2010). Studies using human (Zern et al., 2005), 

and animal (Cui et al., 2002; Fuhrman et al., 2005; Seymour et al., 2008) 
models have shown that due to abundance of polyphenols possessing anti-
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oxidative and antiinflammatory properties, dried grape powder has 

cardioprotective effects. 

The present study was designed to measure TNF-α inhibition of 

Portuguese grape varieties at different development stages of berries in 

combination with SPE. Two different vintages of the ‘Trincadeira’ cultivar are 
also compared. Several primary and secondary metabolites (especially, 

phenolics) using 1D and 2D NMR techniques are identified. The correlation of 

activity and NMR data using different multivariate data analyses methods in 

order to identify the active ingredients in grape berries are also presented. 

 

6.2. Materials and Methods 

 

6.2.1. Sampling 

Three elite Portuguese grapes cultivars i.e. ‘Trincadeira’, ‘Touriga 

Nacional’, and ‘Aragoneˆs’, were used in this study. Five biological replicates 

of each cultivar of 80–100 berries from 8 to 10 plants were collected in 2008 
and 2007 (for ‘Trincadeira’ only) corresponding to the developmental stages of 

EL 32 (green), 35 (veraison), 36 (ripe), 38 (harvest) (EL refers to the modified 

Eichhorn and Lorenz developmental scale as described by Coombe, 1995 

(Viant, 2003). Each biological replicate contained berries from a single row of 
plants. Four rows distant 3 to 10 m from each other were used for each variety. 

Plants from the three varieties were growing in the vineyard 15 to 30 m apart. 

Seeds were removed from all the berries prior to extraction. 

 

 6.2.2. Solid Phase Extraction (SPE) 

A sample of 100 mg of lyophilized grape berries was extracted with 2 

ml of the mixture of water and methanol (2:8), with ultrasonication for 20 
minutes at 25 

o
C. The suspension was then centrifuged at 3500 rpm and the 

supernatant was transferred to a round bottomed flask. The same procedure was 

repeated two more times and the supernatants were pooled together in the flask 
and taken to dryness with a rotary evaporator. This grape berries extract was 

subjected to solid phase extraction (SPE) on SPE-C18 cartridges (Waters, 

Milford, MA, USA). Prior to its use, the SPE cartridge was prepared by elution 
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of 6 mL of methanol followed by 6 mL of water. Then, the redissolved grape 

berry extract (1 mL of deionized water) was applied to the cartridge and eluted 

successively with 5 mL of water and then 5 mL of methanol:water (1:1) and 
finally with 5 mL of methanol. All three fractions were collected in round 

bottomed flasks and evaporated under vacuum and were used for further NMR 

analysis and TNF-α bioassay. All the solvents were purchased from Biosolve 
B.V. (Valkenswaard, the Netherlands). 

 

6.2.3. Cell culture and treatment with plant extract 

Human monocyte-like histiocytic lymphoma U937 cells were cultured 
as described in chapter 3.  

 

6.2.4. TNF-α ELISA assay 

TNF-α in culture supernatants were determined by quantitative 

‘‘sandwich’’ enzyme-linked immunosorbent assay as described in chapter 3. 

 

6.2.5. Cell viability assay 

Cell viability was determined by using MTT assay (Lee et al., 2007) as 

described in chapter 3.  

 

6.2.6.
 1
H NMR Spectroscopy 

Fractions eluted from SPE were redissolved in 1 mL of methanol-d4. An 

aliquot of 800 µL of sample was transferred to the 5-mm NMR tube and used 
for the NMR analysis. The deuterated methanol was purchased from Cambridge 

Isotope Laboratories, Inc., Andover, MA, USA. 
1
H NMR spectra were recorded 

at 25 °C on a 500 MHz Bruker DMX-500 spectrometer (Bruker, Karlsruhe, 

Germany) operating at a proton NMR frequency of 500.13 MHz. MeOH- d4 
was used as the internal lock. Each 

1
H NMR spectrum consisted of 128 scans 

requiring 10 min and 26 sec acquisition time with the following parameters: 

0.16 Hz/point, pulse width (PW) = 30° (11.3 µsec), and relaxation delay (RD) = 
1.5 sec. A pre-saturation sequence was used to suppress the residual H2O signal 
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with low power selective irradiation at the H2O frequency during the recycle 

delay. FIDs were Fourier transformed with LB = 0.3 Hz. The resulting spectra 

were manually phased and baseline corrected, and calibrated to MeOH- d4 at 3.3 
ppm, using XWIN NMR (version 3.5, Bruker). 2D NMR techniques were 

performed on a 600 MHz Bruker DMX-600 spectrometer (Bruker, Karlsruhe, 

Germany) operating at a proton NMR frequency of 600.13 MHz. J-resolved 
NMR spectra were acquired using 8 scans per 128 increments for F1 and 8 k for 

F2 using spectral widths of 5000 Hz in F2 (chemical shift axis) and 66 Hz in F1 

(spin–spin coupling constant axis). A 1.5 s relaxation delay was employed, 

giving a total acquisition time of 56 min. Datasets were zero-filled to 512 points 
in F1 and both dimensions were multiplied by sine-bell functions (SSB = 0) 

prior to double complex FT. J-resolved spectra tilted by 45°, were symmetrized 

about F1, and then calibrated, using XWIN NMR (version 3.5, Bruker). 
1
H–

1
H 

correlated spectroscopy (COSY) and heteronuclear multiple bonds coherence 

(HMBC) spectra were recorded on a 600 MHz Bruker DMX-600 spectrometer 

(Bruker). The COSY spectra were acquired with 1.0 s relaxation delay, 6361 Hz 
spectral width in both dimensions. Window function for COSY spectra was 

sine-bell (SSB = 0). The HSQC spectra were obtained with 1.0 sec relaxation 

delay, 6361 Hz spectral width in F2 and 27,164 Hz in F1. Qsine (SSB = 2.0) 

was used for the window function of the HSQC. The HMBC spectra were 
recorded with the same parameters as the HSQC spectra except for 30,183 Hz 

of spectral width in F2. The optimized coupling constants for HSQC and 

HMBC were 145 Hz and 8 Hz, respectively. 

 

 6.2.7. Data analysis 

The 
1
H NMR spectra (from all SPE fractions) were automatically 

reduced to ASCII files. Spectral intensities were scaled to methanol signal (δ 
3.30) and reduced to integrated regions of equal width (0.04) corresponding to 

the region of δ 0.0–10.0. The regions of δ 4.85–4.95 and δ 3.2–3.4 were 

excluded from the analysis because of the residual signal of D2O and CD3OD, 
respectively. Bucketing was performed by AMIX software (Bruker) with 

scaling on total intensity. Principal component analysis (PCA) with scaling 

based on Pareto while projection to latent structures (PLS), PLS-discriminant 
analysis (PLS-DA), bidirectional orthogonal PLS (O2PLS), and O2PLS-

discriminant analysis (O2PLS-DA), with scaling based on Unit Variance were 

performed with the SIMCA-P software (v. 12.0, Umetrics, Umeå, Sweden). 

TNF-α level was arbitrarily set as 100 in the negative control (LPS+DMSO) and 
all the other values are normalized to this (% activity). Means and standard 
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deviations were calculated and means comparisons were made with ANOVA 

followed by posthoc Tucky’s test at a significance level <0.01.  

 

6.3. Results and Discussion 

By looking at NMR spectra, it is clear that all three SPE fractions are 

quite different from each other in terms of contained metabolites Fig. 1A. 
Mostly sugars and organic acids can be seen in the water fraction while the 

methanol fraction shows mostly amino acids and fatty acids with some 

resonances in the phenolic region Fig. 1B. The methanol: water fraction shows 

the presence of maximum amount of phenolics with relatively few sugars and 
amino acids. The phenolic regions of 

1
H NMR spectra from all three cultivars 

are shown in Fig. 1C. Among the cultivars, ‘Touriga Nacional’ is found to have 

highest phenolic content. It is also observed from NMR spectra that high levels 
of phenolics with fewer sugars and organic acids characterize the initial stage in 

berry growth. As the berry grows, the level of sugars and organic acids seems to 

increase with a decrease in phenolics content.  
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Figure 1a: Comparison of 1H NMR spectra of phenolic (A) and aliphatic (B) regions of SPE fractions, 

and phenolic region of three cultivars at green stage (C).
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Figure 1b: Comparison of 1H NMR spectra of phenolic ‘A’ and aliphatic ‘B’ regions of ‘Trincadeira’ 

2007 and ‘Trincadeira’ 2008 vintages.
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As a powerful analytical tool,
 1
H NMR offers many advantages in metabolomics 

studies but signals congestion in NMR spectra hampers the metabolite 

identification. Several 2D NMR techniques, like J-resolved, 
1
H-

1
H COSY, 

1
H-

13
C HMBC, and 

1
H-

13
C HSQC, provide additional information which facilitates 

the identification of metabolites. Among the above mentioned techniques J-

resolved and 
1
H-

1
H COSY are widely used due to short measuring time, for 

signal purity and to sort out signals from same molecule respectively. They 

showed to be quite effective in the confirmation of metabolites like 

phenylpropanoids and flavonoids (Ali et al., 2009; Lewis et al., 2007; Mark R, 

2003). Several compounds (Flavonoids, amino acids and organic acids) were 
identified using our in-house library of NMR data of common metabolites. The 
1
H NMR chemical shifts for all these metabolites are shown in Table 1. All 

these assignment of metabolites are based on previous studies (Ali et al., 2011; 
Ali et al., 2009). 

Table 1: 
1
H NMR chemical shifts (δ) and coupling constants (Hz) of grape 

metabolites identified by references and using 1D and 2D NMR spectra 

(CD3OD-KH2PO4 in D2O, pH 6.0) 

Compounds Chemical Shifts (δ) 

Gallic acid 7.03 (s) 

Syringic acid 3.89(s), 7.31(s) 

Vanillic acid 3.90 (s), 6.77 (d, J=8.2), 7.22 (m) 

(+) - Catechin 2.49 (dd, J=16.1, 8.2), 2.83 (dd, J=16.0, 5.4), 4.04 (m), 

4.55 (d, J=7.5), 5.91 (d, J=2.2), 6.75 (d, J=8.0) 

(-) - Epicatechin 2.72 (dd, J=16.8, 2.8), 2.85 (dd, J=16.7, 4.6), 5.91 (dd, 

J=10.0, 2.3), 6.96 (d, J=2.2)  

Quercetin-3-O-

glucoside 

5.30 (d, J=7.6), 6.27 (d, J= 2.0), 6.49 (d, J=2.0), 6.95 (d, 

J=8.6), 7.56 (dd, J=8.5, 2.0), 7.81 (d, J=2.0) 

Myricetin 6.28 (d, J= 2.0), 6.51 (d, J=2.0), 7.30 (s) 

trans-Caftaric acid 5.34 (s), 6.41 (d, J=16.0), 6.88 (d, J=8.4), 7.02 (dd, J=8.4, 
2.0), 7.12 (d, J=2.0), 7.62 (d, J=16.0) 

trans-Fertaric acid 3.89 (s), 5.38 (s), 6.32 (d, J=16.0), 6.89 (d, J=8.4), 7.01 
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(dd, J=8.4, 2.0), 7.19 (d, J=2.0), 7.56 (d, J=16.0) 

trans-p-Coutaric 
acid 

5.42 (s), 6.45 (d, J=16.0), 6.87 (d, J=8.8), 7.51 (d, J= 
8.8), 7.65 (d, J=16.0) 

cis-Caftaric acid 5.34 (s), 5.92 (d, J=13.0), 6.71 (d, J=8.4), 6.81 (d, 
J=13.0), 7.03 (dd, J=8.4, 2.0), 7.44 (d, J=2.0) 

cis-p-Coutaric acid 5.41(s), 5.94 (d, J=13.0), 6.73 (d, J=9.2), 6.86 (d, 
J=13.0), 6.93 (d, J=9.2), 7.61 (d, J=9.2) 

Valine 1.01 (d, J=7.0), 1.06 (d, J=7.0), 2.28 (m) 

Leucine 0.96 (d, J=7.5), 0.98 (d, J=7.5) 

Alanine 1.48 (d, J=7.4), 3.73 (q, J=7.4) 

GABA 1.90 (m), 2.31(t, J=7.5), 3.01 (t, J=7.5) 

Proline 2.35 (m), 3.37 (m) 

Methionine 2.15 (m), 2.65 (t, J=8.0) 

Threonine 1.32 (d, J=6.5), 3.51 (d, J=5.0), 4.27 (m) 

Glutamic acid 2.13 (m), 2.42 (m), 3.71 (dd, J=7.0, 1.9) 

α-Glucose 5.17 (d, J=3.78) 

β-Glucose 4.58 (d, J=7.89) 

Fructose 4.08 (d, J=7.80) 

Sucrose 5.39 (d, J=3.94) 

2,3-butanediol 1.14 (d, J=6.47) 

Acetic acid 1.94 (s) 

Choline 3.20 (s) 

Succinic acid 2.53 (s) 

Citric acid 2.56 (d, J=17.6), 2.74 (d, J=17.6) 
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Tartaric acid (free) 4.30 (s) 

α-Linolenic acid 0.95 (t, J=7.5) 

Ascorbic acid 4.52 (d, J=2.0) 

Malic acid 2.68 (dd, J= 16.6, 6.6), 2.78 (dd, J=16.6, 4.7), 4.34 (dd, 

J=6.6, 4.7) 

Formic acid 8.45 (s) 

Fumaric acid 6.52(s) 

 

All three fractions from SPE of grape extracts were tested for TNF-α 
inhibition at 100 µg mL

-1
. The methanol: water fractions show significantly 

higher activity than the water and methanol fractions (Fig. 2). It has been shown 

in the previous section that the metabolic compositions of these fractions are 
quite different from each other and the methanol: water fraction contained most 

of the grape phenolics. The water and methanol, fractions also showed some 

activity, though mostly not significantly different from each other. 

Methanol:water extracts of three cultivars show different activity at different 
developmental stages. 
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Figure 2: TNF-α inhibition ratio (% of positive control) exhibited by grape cultivars and vintages at

different developmental stages at the concentration of 100μg/ml. Bars represent the Mean  S.D. (n=3)

p<0.01.
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Figure 3: TNFα inhibition ratio (% of positive control) exhibited by different grape cultivars at same

developmental stages at the concentration of 100μg/ml. Bars represent the Mean  S.D. (n=3) at p<0.01.



Identification of active metabolites in grape cultivars with different ripening 
stage using NMR and multivariate data analysis 

Chap.6 

 

143 

 

The veraison stage is found to have maximum TNF-α inhibition in 

every cultivar followed by the green stage. For two cultivars, ‘Touriga 

Nacional’ and ‘Aragonês’, the ripe and harvest stages are not significantly 
different in TNF-α inhibition. The ripe stage of ‘Trincadeira’ is significantly 

higher than the harvest stage in inhibiting the TNF-α production. Among the 

green stages of all three cultivars, the green  ‘Touriga Nacional’ grapes are 
found more active than the green grapes of ‘Trincadeira’ and ‘Aragonês’ (Fig. 

3). At veraison, the ‘Aragonês’ and ‘Touriga Nacional’ grapes are not different 

but both are significantly more active than ‘Trincadeira’. All the three cultivars 

show similar potency of inhibiting TNF-α production at the ripe and harvest 
stages. 

In order to highlight the vintage effect on anti-TNF-α activity, the 2007 
and 2008 vintage of ‘Trincadeira’ cultivar are compared. ‘Trincadeira’ 2007 

also shows highest TNF-α inhibition at veraison stage followed by green stage 

but unlike ‘Trincadeira’ 2008 (see above), the 2007 vintage shows no 
significant difference in TNF-α inhibition at later stages of development i.e. ripe 

and harvest (Fig. 2). Comparing every developmental stage of these two 

vintages, only green and harvest are different. Green ‘Trincadeira’ 2008 grapes 

show higher activity while at harvest ‘Trincadeira’ 2007 grapes show significant 
inhibition of TNF-α production (Fig. 4). The 

1
H NMR spectra (Fig. 1b) analysis 

shows that ‘Trincadeira’ 2007 has more phenolics as compared to ‘Trincadeira’ 

2008, this suggesting a relationship between phenolics and activity.designed to 
prevent further pathogen spread or plant damage.  
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 Principal component analysis (PCA) is considered as a primary tool in 

metabolomics used to reduce the dimensionality of a multivariate dataset, and 
thus helping to better understand possible differences between classes. It is an 

unsupervised method hence the clustering or separation of samples is purely due 

to similarities or differences, respectively, among all the samples. The NMR 
data from the SPE fractions of all the samples have been subjected to PCA in 

order to identify possible markers for the different cultivars, developmental 

stages, and SPE fractions. Fig. 5 shows the score plots of PCA where samples 

are colored according to SPE fractions, cultivars, and developmental stages. 
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Figure 4: TNFα inhibition ratio (% of positive control) exhibited by ‘Trincadeira’ 2007 and ‘Trincadeira’

2008 at similar developmental stages at the concentration of 100μg/ml. Bars represent the Mean  S.D.

(n=3) at p<0.01.
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 Fig. 5 represents the PCA score plot where samples are colored 
according to SPE fractions. It is clear from the figure that PC1 (51%) is 

responsible for the separation of all three SPE fractions. The water fractions are 

clustered on the negative side of PC1 while the methanol fractions are grouped 
on the positive side of PC1. The methanol:water fractions are located in 

between the methanol and water fractions, mostly having negative PC1 values. 

To highlight the differences based on developmental stages, samples from the 
same PCA are colored according to developmental stages in Fig. 5. It is obvious 

from the score plot that while PC1 is responsible for the separation of SPE 
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Figure 5: Principal component analysis score plots. In ‘A’, samples are colored according to SPE

fractions where red represents methanol, black represents methanol:water (1:1), and blue represents

water fraction. In ‘B’, samples are colored according to developmental stages where green represents

green stage, blue represents veraison, black represent ripe, and red represents harvest stage. In ‘C’,

samples are colored according to grape cultivars where red represents samples from Aragone, blue

represents samples from ‘Touriga Nacional’, and black represents samples from ‘Trincadeira’.
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fractions, PC2 (19%) is quite effective in discriminating the developmental 

stages of grapes. The initial stages, like green and veraison, are on the negative 

side of PC2 whereas the remaining stages, like ripe and harvest, mostly have 
positive PC2 scores. The same PCA score plot is shown in Fig. 5C but this time 

the samples are colored according to grape cultivar. It is evident from this figure 

that PCA is not very effective as the samples are not clustered based on the 
grape cultivars. 

The corresponding loading plots with the respective NMR spectra 

reveal the information regarding the metabolites responsible for the 
differentiation of samples on the score plots. As also shown by Fig. 1A, the SPE 

fractions are very much distinct in their metabolic contents. The water fraction 

is relatively higher in sugars and some amino acids and organic acids. Most of 
the phenolics are found to elute in the methanol:water fraction while the 

remaining amino acid and phenolics come out with the last methanol fraction. 

The methanol fraction is also found higher in fatty acids. The PCA is also found 
very effective in discriminating the developmental stages and by examining the 

loading plot the metabolites involved in differentiation could be identified. The 

grapes in green and veraison stages have higher levels of phenolics with 

relatively less sugar and organic acid contents. As the berries grow, the level of 
phenolics starts to decrease whereas sugars and organic acids concentrations 

increase (Ali et al., 2011). SPE fractions of grapes from 2007 and 2008 vintages 

of the ‘Trincadeira’ cultivar at four developmental stages were analyzed and 
compared for metabolic differences. Principal component analysis, also in this 

case, is found effective in highlighting the metabolic differentiation among the 

samples based on developmental stages and SPE fractions and responsible 
metabolites are identified. As discussed above, phenolics are the main 

discrimination factor in SPE fractions while a similar metabolic behavior of 

developmental stages was observed in all grape cultivars. However, to analyze 

specifically the vintage effects on the grape metabolic profile, supervised 
multivariate data analysis was applied. 
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First, projection to latent structures-discriminant analysis (PLS-DA) 
was used in which samples are classified in to two classes based on samples 

from 2007 and 2008 vintages. The score plot (Fig. 7A) shows good separation 

among the samples belonging to the two different classes but none of the 
components is found totally effective. The PLS-DA model was validated using 

permutation test with 20 applications (Fig. 7B). To draw clear conclusions, 

bidirectional orthogonal projection to latent structures-discriminant analysis 

(O2PLS-DA) was applied. The score plot (Fig. 7C) shows very clear distinction 
among the different vintages. Component 1 is responsible for the separation as 

samples from 2007 and 2008 vintages are on the positive and negative side, 

respectively. The loading plot shows that the 2007 vintage has higher levels of 
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Figure 6: Principal component analysis score plots. In ‘A’, samples are colored according to SPE

fractions where red represents methanol, black represents methanol:water (1:1), and blue represents

water fraction. In ‘B’, samples are colored according to developmental stages where green represents

green stage, blue represents veraison, black represent ripe, and red represents harvest stage. In ‘C’,

samples are colored according to ‘Trincadeira’ vintages where red represents samples from

‘Trincadeira’ 2008, and black represents samples from ‘Trincadeira’ 2007.
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phenolics than the 2008 vintage. The 2008 vintage shows elevated levels of 

organic acids like malate and citrate with some sugars like glucose and fructose. 
Projection to latent structures-discriminant analysis (PLS-DA) is considered as 

the second step of metabolomics studies. It is a supervised method in which 

samples are classified into different groups on the basis of creating a set of 
dummy Y-variables. In this study, based on activity data, we classify our 

samples into low (<10%), medium (>10% and <25%), and high (>25%) activity 

classes as Y-variables, and used these in a PLS-DA. Fig. 8A shows that this 

gives a clear separation especially the samples with the lowest and medium 
activity are grouped separately. Samples with high activity are scattered and 

some are mixed with the samples with medium activity.  
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Figure 7: Multivariate data analysis of ‘Trincadeira’ 2007 and 2008. The PLS-DA score plot (A),

permutation test for PLS-DA (B), and score plot of O2PLS-DA (C) are shown. Samples with black color

are from ‘Trincadeira’ 2007 while samples with red color are from ‘Trincadeira’ 2008. Samples with ‘*’

represents an outlier.
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Validation of the supervised regression model is one of the key aspects 
in such analysis. For supervised algorithms, like PLS and PLS-DA, permutation 

test is used for validation which is a calculation of goodness of fit and the 

predictive ability of the model, represented by R2 and Q2, respectively. 
Generally R2 describes how well the data in the training set are mathematically 

reproducible. The R2 value can vary from 0 to 1, where 1 means a model with a 

perfect fit. If the Q2 value is more than 0.5, the model is considered to have 

good predictability and if it is higher than 0.9 and less than 1.0, then the model 
is considered to have an excellent predictability. It is suggested that if more than 

five PLS components are included in the model the training set data generally 

reproduce excellently. The R2 and Q2 values of PLS-DA using six components 
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Figure 8: Score plots of PLS-DA (A) and O2PLS-DA (C) are represented. Samples with black color

show lowTNF-α inhibition while samples with red and blue colors show medium and high TNF-α

inhibition, respectively. The permutation test for PLS-DA (C) is also presented.
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were calculated. For anti-TNF-α activity the figures were 0.82 and 0.78, 

respectively. This PLS-DA model was validated by the permutation method 

through 20 applications in which all Q2 values of permuted Y vectors were 
lower than original ones and the regression of Q2 lines intersect at below zero 

(Fig. 8B). 

In order to get better separation, especially for the samples with high 

activity, bidirectional orthogonal projection to latent structures-discriminant 

analysis (O2PLS-DA) is applied. The score plot of O2PLS-DA (Fig. 8C) shows 

much better separation among the samples based on anti-TNF-α activity. 
Samples with the low activity are grouped separately on the positive side of 

component 1 while the samples with medium and high activity are having 

negative component 1 scores. Component 2 was found effective in separating 
the high and medium activity samples as they clustered on positive and negative 

side of component 2, respectively. Few samples from low activity and medium 

activity classes are mixed with the medium activity and high activity classes, 
respectively, as their anti-TNF-α activity values are on the border line of their 

classes. The O2PLS-DA model is validated by cross validation-analysis of 

variance (CV-ANOVA) with a p-value of 8.35x10
-38

. By examining the 

corresponding loadings plot, the metabolites responsible for separation are 
identified. Samples with different activity levels mainly differ in their phenolic 

contents. The high anti-TNF-α activity samples have higher levels of phenolics 

like cinnamic acids, flavonols, and flavan-3-ols while the medium and low 
activity samples have less or no phenolic contents. 

The next step is to perform the direct correlation between the activity 
and NMR data using original anti-TNF-α assay values. Instead of classifying 

samples as high, medium, and low activity groups, the activity data from TNF-α 

assay for each sample are directly used as such. In such approaches PLS and/or 

PLS-DA are used and two different data sets, independent variable (like NMR 
spectral data) and dependent variable (like anti-TNF-α activity), are correlated 

using regression. For this purpose projection to latent structures (PLS) analysis 

was performed using the NMR and activity data. The PLS score plot (Fig. 9A) 
shows relatively good separation among the samples but many are overlapping 

with the other groups. Component 1 is mainly responsible for the separation as 

the samples are arranged from low to high activity along the negative to positive 
side of component 1, respectively. For PLS modeling again the permutation 

method through 20 applications was used for validation. The regression of Q2 

lines intersect at below zero with all Q2 values of permuted Y vectors were 

lower than original. Variance (R2) and cross-validated variance (predictive 
ability of the model, Q2) values of PLS using seven components were 
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calculated and for anti-TNF-α activity the figures were 0.95 and 0.89, 

respectively (Fig. 9B). 

Finally for the identification of metabolites responsible for high activity 

in grapes, we used another multivariate data analysis method known as 

bidirectional orthogonal projection to latent structures (O2PLS). Analyses like 
PLS regression can cause systematic variation of any data block due to 

structured noise present in the data blocks. Other algorithms, like O2PLS-DA 

and O2PLS, are multivariate projection methods which remove the structured 
noise by extracting linear relationships from independent and dependent data 

blocks, in a bidirectional way, and results in the decomposition of systematic 

variation into two model parts: the predictive or parallel part and the orthogonal 

part (Baur et al., 2006; Chuang et al., 2010). The score plot, Fig. 9C, shows very 
nice separation among low, medium and high activity samples based on 
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Figure 9: Score plots of PLS (A) and O2PLS (C) are represented. Samples with black color show low

TNF-α inhibition while samples with red and blue colors show medium and high TNF-α inhibition,

respectively. The permutation test for PLS (C) is also presented.
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component 1. This O2PLS model was validated by CV-ANOVA with p-value 

of 1.4x10
-37

. Like PLS-DA and O2PLS-DA the corresponding loadings plot 

show that the samples with high anti-TNF-α activity contained more phenolics, 
such as cinnamates and flavonoids, when compared to samples with low and 

medium activity.  

In PLS based regression, VIP can be defined as a weighted sum of 

squares of the PLS weights. It has been indicated that it is directly proportional 

with the influence of factor on the separation on score plot, meaning, factors 

have higher VIP values are more important for the samples separation. For 
O2PLS-DA and O2PLS analyses, VIP (variable importance in the projection) 

values for several phenolic compounds, responsible for separation on the score 

plot, are presented in Table 2. As indicated, in O2PLS-DA analysis, caftaric 
acid, and (+)-catechin are the metabolites with top two VIP scores while 

quercetin and myricetin have relatively less VIP values. In O2PLS model, again 

(+)-catechin is one of the top two followed by coutaric acid while caftaric acid 
showned a much lower VIP score. This high VIP scores for the identified 

phenolics legitimate their involvement in the separation of high activity samples 

and suggest a role of these compounds in inhibiting TNF-α production.  

Table 2: The VIP (variable importance in the projection) values of the major 

contributing compounds for the separation in the score plots derived from 

O2PLS-DA and O2PLS models. 

Compounds Chemical shift (ppm) VIP values 

O2PLS-DA O2PLS 

Quercetin-3-O-glucoside 6.27 1.38 2.06 

Myricetin 6.51 1.17 1.62 

(+)- Catechin 6.75   1.44*   2.16* 

(-)- Epicatechin 6.96 1.40 2.09 

Caftaric acid 7.62   1.55* 1.80 

Fertaric acid 6.32 1.43 2.08 

p-Coutaric acid 7.65 1.41   2.10* 

 



Identification of active metabolites in grape cultivars with different ripening 
stage using NMR and multivariate data analysis 

Chap.6 

 

153 

 

The 
1
H NMR spectra clearly shows distinction among different 

cultivars and vintages, their developmental stages, and the SPE fractions. This 

clearly advocates the enormous analytical potential of NMR spectroscopy as 
compared to other platforms for metabolomics studies (Verpoorte et al., 2008). 

Multivariate data analysis in combination with NMR is very popular in 

metabolic phenotyping studies of plants. Many reports have been published 
regarding grape berries using the same approach (Pereira et al., 2006a; Pereira 

et al., 2005; Pereira et al., 2006b; Son et al., 2009). In this study, metabolic 

profiling of different grapes at different stages of ripening has been successfully 

performed. The initial stages, green and veraison, have been characterized with 
high phenolics, whereas high sugar and organic acids content is observed in the 

later stages i.e. ripe and harvest, as also reported previously (Ali et al., 2011). 

This metabolic distinction among the developmental stages is reflected in the 
associated anti-TNF-α activity as green and veraison are found more active than 

ripe and harvest. 

The vintage effect on the grape metabolome is quite obvious now as it 

is widely accepted that the several climatic factors are involved in the 

biosynthesis of several key metabolites in grapes (Pereira et al., 2006a). The 

green and harvest stages of these two vintages present significant metabolic 
differences, characterized by higher and lower phenolic contents in 2008 

vintage, respectively, as compared to 2007 vintage. Since vintage has shown its 

effects on the phenolic contents of ‘Trincadeira’, the anti-TNF-α activity shown 
by these vintages is also affected. The green and harvest stages from 2008 and 

2007 vintages, respectively, showed significantly different anti-TNF-α activity. 

As shown by the NMR spectra, this is due to difference in phenolic contents. It 
has been reported that different factors like hot and dry climate can result in 

higher phenolic contents in grapes (Pereira et al., 2006a). For instance, the 

insolation totals were higher in July and August of 2007 and differences in rain 

totals and average temperature were also observed in between seasons and may 
influence the fine tuning of phenolics  ́ biosynthesis (unpublished data). It is 

interesting to note that transcriptomic analysis using Affymetrix GrapeGen® 

genome array showed that a gene coding for anthocyanidin reductase which is 
involved in proanthocyanidins biosynthesis such as catechin was more 

expressed in 2007 samples. Since catechin seems to present high anti-TNF-α 

activity as suggested by the results hereby presented this may constitute a good 

example of positive integration of transcriptomic and metabolomic data, and 
medicinal properties that deserves further attention. 

Data correlation using different multivariate data analysis tools is now 
increasingly popular and found efficient in predicting the unknown NMR 
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signals (metabolites) by using the resulting training model (Eriksson et al., 

2006). Many reports have been published on developing predictive models for 

certain pharmacological activities in plants. Plants like St. John Wort 
(Hypericum perforatum) (Roos et al., 2004), Artemesia annua (Bailey et al., 

2004), Citrus grandis (Cho et al., 2009), and Galphimia glauca (Cardoso-

Taketa et al., 2008), have been efficiently studied for the prediction of different 
medicinal properties, using this approach. Such chemometrics based approach 

can provide firsthand knowledge regarding the plant extracts and any related 

bioactivity without tedious chromatographic separations. Since grapes are one 

of the richest sources of polyphenolics, many studies (Chuang et al., 2010; 
Seymour et al., 2008; Zern et al., 2005) have shown their potency against TNF-

α production and grape polyphenolics are widely acclaimed and accepted to 

have anti-oxidative and antiinflammatory properties (Baur et al., 2006; Breksa 
Iii et al., 2010). Phenolics in grapes, like resveratrol (Stewart et al., 2008) and 

quercetin (Rivera et al., 2008) are known to reduce inflammation, while others 

like cinnamates, benzoates, flavonols, flavan-3-ols, and anthocyanins, are well 
known antioxidants (Lee et al., 2009). The present study is the only known 

attempt to analyze different grape cultivars, their developmental stages, and 

vintages for TNF-α inhibition. The identified NMR signals, responsible for the 

activity, are related to quercetin, myricetin, (+)- catechin, (-)- epicatechin, 
coutaric acid, fertaric acid, and caftaric acid, which are found relatively higher 

in the samples with high activity using different chemometrics methods. 

 

6.4. CONCLUSION 

Nuclear magnetic resonance spectroscopy (1D and 2D) has been 

applied for the phenotyping of three grape cultivars from Portugal at different 

stages of their development. Solid phase extraction was used in order to 
separate the phenolics from the other components of grape metabolome which 

resulted in water, methanol: water (1:1), and methanol fractions which were 

tested for TNF-α inhibition. The assay showed that grapes from all three 
cultivars at veraison and green stages strongly inhibit TNF-α production. 

Various multivariate data analysis methods showed good correlation between 

the NMR resonances for phenolics and TNF-α inhibition. Algorithms like PLS 
and PLS-DA showed good separation among the samples classified as high, 

medium, and low activity with high model validity. The application of 

bidirectional orthogonality, i.e. O2PLS-DA and O2PLS, showed even better 

distinction among the classes. The VIP plot showed that NMR signals related to 
metabolites like quercetin, myricetin, (+)-catechin, (-)-epicatechin, caftaric acid, 
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and coutaric acid, were statistically significantly correlated with high activity. 

Using the presented approach, the analysis of NMR shifts in relation to 

pharmacological activity can provide information about what part of the NMR 
spectrum (aromatic or aliphatic regions) correlates with the activity which gives 

information about the active ingredients in crude extracts of medicinal plants. In 

the approach shown here the compounds related to activity can be identified 
without extensive and elaborate chromatographic separation, and thus allows 

rapid identification of active compounds in extracts with biological activity. 
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Abstract 

It is very well documented that bioactive compounds from plant derived food 
may have beneficial effects on human health and can reduce the risk of various 

chronic inflammatory diseases. In this study, eleven different types of red wine 

from Portugal were screened for their potential TNF-α inhibition. Nuclear 
magnetic resonance (NMR) spectroscopy together with multivariate data 

analysis methods are applied for the metabolite profiling of different red wines. 

All the fractions from solid phase extraction were subjected to in-vitro TNF-α 

bioassay. Principal component analysis (PCA) was used to see separation 
among the different SPE fractions. Supervised multivariate data analysis, i.e. 

Partial least square (PLS), Partial least squares-discriminant analysis (PLS-DA), 

orthogonal bidirectional OPLS-DA and orthogonal partial least square (OPLS) 
were used as statistical methods to find correlation between metabolite profile 

of the extracts and their respective bioactivities. OPLS-DA was found most 

effective in discriminating the high activity samples from the low and medium 
activity samples. According to variable importance in the projection (VIP), 

different phenolic compounds were found to correlate with high activity 

samples and identified as caftaric acid, quercetin, and (+)-catechin. Among the 
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different vintages, maximum TNF-α inhibition was found in samples from the 

2010 vintage. The results obtained in this study advocate the efficacy of NMR 

spectroscopy in combination with chemometrics to identify the possible 
bioactivity in the several crude extracts of red wines. 

Keywords: Chemometrics, NMR, red wines, TNF-α,  
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7.1. Introduction 

Inflammation is the response of the body (immune system) against an 
external stimuli e.g. a pathogenic invasion aiming at the production, activation, 

and recruitment of immune cells (leucocytes) to sites of infection in order to 

combat the pathogens.  The process of inflammation involves a complex 
mechanism of cell signaling cascades and is regulated by different pro-

inflammatory cytokines and antiinflammatory cytokines. However, besides 

pathogenic infection, dysregulation of one or more regulatory proteins in the 

cell signaling pathways can also lead to inflammation and the emergence of 
wide varieties of chronic inflammatory diseases such as metabolic disorders, 

diabetes, atherosclerosis and cardiovascular complications, rheumatoid arthritis, 

Alzheimer’s disease and cancer (Neuman, 2007).  

Tumor necrosis factor-α is one of the regulatory proteins of the immune 

system in which dysregulation of this protein can lead to the emergence of the 
diseases. The proper regulation of TNF-α is necessary to keep the immune 

system in balance (homeostasis). TNF-α is secreted by immune cells; (mainly) 

by macrophages and also by T-cells, neutrophils, NK cells, and synovial cells 

(Vilcek and Lee, 1991). Increased level of TNF-α occurs during the early phase 
of inflammatory diseases and it contributes significantly to the secretion of 

other cytokines like IL-1, IL-6, and IL-8 (Cho et al., 2001; Cho et al., 1998). 

Overproduction of TNF-α can lead to systemic toxicity, thus, suppression of the 
secretion of TNF-α in this case can be a method for prevention and/or therapy. 

The imbalance between prooxidants and antioxidants in an organism 
leads to a condition known as oxidative stress, which can be a trigger of a 

chronic inflammatory disease (Rahman et al., 2006). Healthy life style includes 

a rich antioxidant diet, which moderates the immune system and prevents 

diseases. Plants are known to be a rich source of antioxidants. Food and 
beverage from plants contain compounds that may work as TNF-α inhibitor. 

Wine for example, is a beverage of long tradition and high value and known to 

contain a complex mixture of compounds at a wide range of concentrations. The 
compounds in wine cover a diverse range of metabolites including primary (e.g. 

sugars, organic acids, amino acids) and secondary metabolites (e.g. flavonoids, 

hydroxycinnamates, hydroxybenzoates, anthocyanins). Wine phenolics have 
been proved to posses several health promoting activities (Ali et al., 2010a; 

Halpern, 2008) and nearly all of these beneficial effects associated to wine are 

due to anti-oxidant and radical scavenging properties of wine phenolics 

(German and Walzem, 2000). Since grape skin, seeds, and stem are the main 
source of phenolics in wine, red wines contain much higher concentrations of 
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these compounds as compared to white wines as skin, seeds, and stem are left in 

contact with must in red wine making, but is rapidly separated from the must in 

the case of white wine. 

Metabolomics is a powerful tool to be applied on food or beverages 

such as wines in order to gain more insight in the compounds that are 
responsible for an interesting pharmacological activity. Metabolomics is an 

approach aimed for the better understanding of primary and secondary 

metabolism and can be defined as a metabolic snap shot of a living system 

(Andrew Clayton et al., 2006). More powerful and sophisticated tools (like mass 
spectrometry and NMR) for such chemical analyses have been introduced with 

the advancement in the field of analytical chemistry. Other than the use of NMR 

spectroscopy in structure elucidation of novel compounds, it is now a popular 
tool in the area of metabolome analysis (Son et al., 2009). Often criticized for 

its low sensitivity as compared to other platforms for metabolomics analysis, the 

most promising features of NMR are its non destructive nature, simple and fast 
sample preparation, and quantification is easy as for all compounds it is only 

dependent on the molar concentration. Nuclear magnetic resonance now has an 

important place in the chemical analyses of food. Some recent publications 

reported the use of NMR for the studies like quality control, authenticity or 
geographical characterization of different food products like coffee, olive oil, 

tomato and orange juices, wine and beer (Charlton et al., 2002; D’Imperio et al., 

2007; Le Gall et al., 2001; Nord et al., 2004; Sobolev et al., 2003). 

The development of methods and algorithms for the multivariate 

statistical modeling have contributed much to metabolomics as they opened the 
way for handling the huge datasets of large-scale metabolic analyses (Crockford 

et al., 2005). In combination with different multivariate data analyses methods, 

NMR has been widely used to do metabolic profiling of various samples 

(Brescia et al., 2002; Charlton et al., 2002). Several other studies have been 
published using the same combination focusing on the characterization of 

different plant species (Hye Kyong Kim et al., 2005) and cultivars (Ali et al., 

2009), monitoring grape berry growth (Ali et al., 2011), and studying the effects 
of growing areas, vintage, soil, and microclimate (Pereira et al., 2005; Pereira et 

al., 2006). NMR based metabolomics was used for the analysis of the extracts of 

Hypericum perforatum (Roos et al., 2004), Artemisia annua (Bailey et al., 
2004), Citrus grandis (Cho et al., 2009), and Galphimia glauca (Cardoso-

Taketa et al., 2008), to correlate metabolites with the aid of pharmacological 

activities. 
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As wine in many countries is considered to be beneficial for health, 

with antioxidant thought to be responsible for this, we were interested to learn if 

also other effects could be present. With inflammation being a major disease, 
the present study was aimed at measuring the effect on an important mediator of 

inflammation. We therefore measured in-vitro TNF-α inhibition of some 

Portuguese red wines from different vintages. Several wine phenolics and other 
primary metabolites were identified using 1D and 2D NMR techniques. The 

correlation of activity data and NMR data using different multivariate data 

analyses methods in order to identify the active ingredients in red wines is also 

presented.   

 

7.2. Materials and Methods 

 

7.2.1 Wine samples 

Wine samples analyzed in this study were kindly provided by Eng. Inês 

Aranha and Esporão (http://www.esporao.com). 

 

7.2.2 Solid Phase Extraction (SPE) 

A sample of 10 mL of each wine was completely dried under vacuum 

and redissolved in 1 mL of deionized water before subjected to solid phase 

extraction (SPE) on SPE-C18 cartridges (Waters, Milford, MA, USA). Prior to 
its use, the SPE cartridge was preconditioned by elution using 10 mL of 

methanol followed by 10 mL of water. The sample was subsequently applied to 

the cartridge and eluted successively with 5 mL of water, 5 mL of 
methanol:water (1:1) and 5 mL of methanol. 1mL of each fraction was taken 

into separate 2ml vial, dried under Nitrogen gas and dissolved in DMSO with 

concentration of 10mg/ml. The remaining fractions were collected, each in a 

round bottom flask and evaporated using a rotary evaporator except water 
fraction which was dried using freeze drier. The dried samples were in MeOD 

for NMR analysis. All the solvents were purchased from Biosolve B.V. 

(Valkenswaard, the Netherlands). 
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7.2.3. Growth of cells, Lipopolysaccharides stimulation, and treatments with 

wine 

Human monocyte-like histiocytic lymphoma U937 cells were cultured 

and treated with extracts as described in chapter 3  

 

7.2.4 ELISA for TNF-α 

TNF-α in culture supernatants were determined by quantitative 

‘sandwich’ enzyme-linked immunosorbent assay as described in chapter 3. 

 

7.2.5. Cell viability assay 

Cell viability after treatment with different wine samples was 

determined by using MTT assay (Lee et al., 2007) as described in chapter 3. 

 

7.2.6.
 1
H NMR Spectroscopy 

The three fractions eluted from SPE were redissolved in 1 mL of 
methanol-d4. An aliquot of 800 µL of sample was transferred to the 5-mm NMR 

tube and used for the NMR analysis. The deuterated methanol was purchased 

from Cambridge Isotope Laboratories, Inc., Andover, MA, USA. 
1
H NMR 

spectra were recorded at 25 °C on a 500 MHz Bruker DMX-500 spectrometer 
(Bruker, Karlsruhe, Germany) operating at a proton NMR frequency of 500.13 

MHz. MeOH- d4 was used as the internal lock. Each 
1
H NMR spectrum 

consisted of 128 scans requiring 10 min and 26 sec acquisition time with the 
following parameters: 0.16 Hz/point, pulse width (PW) = 30° (11.3 µsec), and 

relaxation delay (RD) = 1.5 sec. A pre-saturation sequence was used to suppress 

the residual H2O signal with low power selective irradiation at the H2O 
frequency during the recycle delay. FIDs were Fourier transformed with LB = 

0.3 Hz. The resulting spectra were manually phased and baseline corrected, and 

calibrated to MeOH- d4 at 3.3 ppm, using XWIN NMR (version 3.5, Bruker). 

2D NMR techniques were performed on a 600 MHz Bruker DMX-600 
spectrometer (Bruker, Karlsruhe, Germany) operating at a proton NMR 

frequency of 600.13 MHz. J-resolved NMR spectra were acquired using 8 scans 

per 128 increments for F1 and 8 k for F2 using spectral widths of 5000 Hz in F2 
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(chemical shift axis) and 66 Hz in F1 (spin–spin coupling constant axis). A 1.5 s 

relaxation delay was employed, giving a total acquisition time of 56 min. 

Datasets were zero-filled to 512 points in F1 and both dimensions were 
multiplied by sine-bell functions (SSB = 0) prior to double complex FT. J-

resolved spectra tilted by 45°, were symmetrized about F1, and then calibrated, 

using XWIN NMR (version 3.5, Bruker). 
1
H–

1
H correlated spectroscopy 

(COSY) and heteronuclear multiple bonds coherence (HMBC) spectra were 

recorded on a 600 MHz Bruker DMX-600 spectrometer (Bruker). The COSY 

spectra were acquired with 1.0 s relaxation delay, 6361 Hz spectral width in 

both dimensions. Window function for COSY spectra was sine-bell (SSB = 0). 
The HSQC spectra were obtained with 1.0 sec relaxation delay, 6361 Hz 

spectral width in F2 and 27,164 Hz in F1. Qsine (SSB = 2.0) was used for the 

window function of the HSQC. The HMBC spectra were recorded with the 
same parameters as the HSQC spectra except for 30,183 Hz of spectral width in 

F2. The optimized coupling constants for HSQC and HMBC were 145 Hz and 8 

Hz, respectively. 

 

7.2.7 Data analysis  

The 
1
H NMR spectra (from all SPE fractions) were automatically 

reduced to ASCII files. Spectral intensities were scaled to methanol signal (δ 
3.30) and reduced to integrated regions of equal width (0.04) corresponding to 

the region of δ 0.0–10.0. The regions of δ 4.85–4.95 and δ 3.2–3.4 were 

excluded from the analysis because of the residual signal of D2O and CD3OD, 
respectively. Bucketing was performed by AMIX software (Bruker) with 

scaling on total intensity. Principal component analysis (PCA) with scaling is 

based on Pareto scaling, while projection to latent structures (PLS), PLS-

discriminant analysis (PLS-DA), bidirectional orthogonal PLS (O2PLS), and 
O2PLS-discriminant analysis (O2PLS-DA), is based on Unit Variance scaling, 

all  were performed with the SIMCA-P software (v. 12.0, Umetrics, Umeå, 

Sweden). The TNF-α level was arbitrarily set as 100 in the positive control and 
all the other values are normalized to this (% activity) and shown in results. 

Means and standard deviations were calculated and means comparisons were 

made with ANOVA at a significance level <0.01.  
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7.3. Results and Discussion 

TNF-α inhibition results from the SPE fractions of the different wine 
samples are shown in Table 1.  Water fraction of Petit Verdot 2008 shows least 

inhibition while the most active water fraction is of Aragones 2010 wine. The 

most active methanol fraction of SPE is from the Aragones (2009) while the 
least active fraction is from Alicante 2008. By comparison among the three SPE 

fractions maximum TNF-α inhibition was found in the methanol:water fraction. 

In the fractions, the vintage effect is obvious as Petit Verdot, Touriga Nacional, 

Aragones, and Alicante from 2010 vintage are significantly more active than the 
vintages of 2008 (Petit Verdot, Touriga Nacional, and Alicante) and 2007 

(Aragones). Among all SPE fractions of different wine types, the Touriga 

Nacional (2010) showed the maximum inhibition of TNF-α production. 

Wine type Vintage 

TNF-α inhibition (%)* 

Water Fraction 
Methanol:Water 

Fraction (1:1) 

Methanol 

Fraction 

Petit Verdot 2008 7.51±2.72 56.53±3.14 34.10±6.10 

 2010 39.77±0.58 83.82±2.41 37.40±6.96 

Touriga 

Nacional 

2008 34.39±2.00 64.84±5.64 28.11±2.04 

 2009 20.03±4.16 79.51±4.59 26.39±2.25 

 2010 35.93±0.09 88.81±2.56 35.23±2.90 

Aragones  2007 36.22±2.90 57.86±2.11 34.14±2.28 

 2009 48.93±0.94 63.71±1,29 43.08±5.38 

 2010 54.47±3.68 77.83±7.49 24.68±2.65 

Alicante 2008 36.77±5.52 55.14±1.97 17.71±2.87 

 2009 25.45±3.76 61.26±3.62 25.93±3.12 
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 2010 38.11±4.92 73.47±1.35 27.69±3.35 

* Values are expressed as mean ± standard deviation of n=3 experimental 

replicates. Means in a      column differ significantly (P<0.01). 

NMR spectroscopy of the SPE fractions was used for the metabolic 

profiling of the different red wines. Figure 1 shows the 
1
H NMR spectra of 

water, methanol:water (1:1), and methanol fractions. From the NMR spectra it 

is clear that the SPE fractions are different from each other in terms of 

metabolites contained. Sugars and organic acids are mostly found in the water 
fraction. The methanol fraction shows high signal intensity in amino acids and 

fatty acids regions with relatively less sugars and no phenolics. The 

methanol:water fraction shows more signals in the phenolic region (δ 5.50 to 

A

1

2

3

B
1

2

3

Figure 1: Comparison of 1H NMR spectra of phenolics (A) and amino acids (B) regions of SPE

fractions. Both (A) and (B) show water (1), methanol:water (1:1) (2), and methanol (3) fractions

from top to bottom.
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8.50) with relatively less sugars and amino acids. 

  1D and 2D NMR techniques like J-resolved, 
1
H-

1
H COSY, HMBC and 

HSQC were used to identify the metabolites responsible of activity. Among the 

flavonoids, quercetin, myricetin, and kaempferol, are identified in the aromatic 

region. Signal correlation is observed between δ 6.49 of H-6 and δ 6.27 of H-8, 
and also between 6.99 of H-5′ and δ 7.66 of H-6′ of quercetin in the 

1
H-

1
H 

COSY spectrum. Likewise myricetin signals, δ 6.47 of H-8 with δ 6.25 of H-6, 

and kaempferol signals at δ 8.04 of H-2′ and H-6′ with δ 6.74 of H-3′ and H-5′, 

and at δ 6.52 of H-8 with δ 6.28 of H-6 also showed 
1
H-

1
H COSY correlations. 

Compounds like (+)-catechin and (-)-epicatechin were also identified. For both 

the (+)-catechin and (-)-epicatechin, signals of H-6′ and H-5′ along with signals 

of H-6 and H-8 showed correlations in 
1
H-

1
H COSY spectra. Resonances like δ 

6.21 (t, J = 2.1 Hz), δ 6.31 (d, J = 2.1 Hz), δ 6.68 (d, J = 13.3 Hz), δ 6.71 (d, J = 

8.5 Hz), δ 6.76 (d, J = 13.3 Hz), and δ 7.18 (d, J = 8.5 Hz) are assigned to 

resveratrol. This compound is identified as cis- isomer of resveratrol as the 
olefinic protons signals are shifted, i.e. H-8: from δ 6.79 to δ 6.68, and H-7: 

from δ 6.89 to δ 6.76, with reduced coupling constants (from 16.1 Hz to 13.2 

Hz). These olefinic protons are also found to be correlated in the 
1
H-

1
H COSY 

spectrum along with other signal correlations like H-4 (δ 6.21) with H-2 and H-
6 (δ 6.30), and H-6′ (δ 7.18) with H-3′ (δ 6.71). 

The aromatic part of the 
1
H NMR spectra also showed some signals of 

benzoic acid derivatives such as gallic acid, syringic acid, p-benzoic acid, and 

vanillic acid. The presence of characteristic doublets of 16.0 Hz in the range of 

δ 6.39-6.50 and δ 7.59-7.70 represent the H-8′ and H-7′ (olefinic protons) of 
trans-cinnamic acids, respectively, which are also found correlated in the 

1
H-

1
H 

COSY spectra and also coupled with the carbonyl carbon at δ 168.3 in the 

HMBC spectra. These metabolites are identified as caffeic acid, and p-coumaric 

acid. These two cinnamic acids derivatives, along with trans-feruloyl derivative, 
were also identified conjugated with tartaric acid through an ester linkage. 

Based on these assignments, these compounds were identified as trans-caftaric 

acid (caffeic acid conjugated with tartaric acid), trans-fertaric acid (ferulic acid 
conjugated with tartaric acid), and trans-coutaric acid (coumaric acid 

conjugated with tartaric acid). Along with the trans- forms, the cis- forms of 

these conjugated cinnamic acids, i.e. cis-caftaric acid and cis-coutaric acid, were 
also detected as an upfield shift of the signals for H-8′ and H-7′ along with the 

reduction in the coupling constant from 16.0 Hz to 13.0 Hz was observed in the 

J-resolved spectrum. Different amino acids like alanine, threonine, valine, 

proline, methionine, tyrosine, phenylalanine, glutamic acid, glutamine, arginine, 
and aspartic acid were identified by comparison with the reference spectra of 
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these compounds. All the compounds were identified (Table 2) by comparing 

the spectra with previous reports (Ali et al., 2011; Ali et al., 2009; Choi et al., 

2004; Choi et al., 2005; Liang et al., 2006) and 1D and 2D NMR spectra of 
common plant metabolites in our in-house library.  

Table 2: 
1
H NMR chemical shifts (δ) and coupling constants (Hz) of wine 

metabolites identified by using 1D and 2D NMR Spectra of the reference 

compounds (CD3OD-KH2PO4 in D2O, pH 6.0) 

Compounds Chemical Shifts (δ) 

Alanine 1.48 (d, J=7.4) 

Threonine 1.32 (d, J=6.5), 3.51 (d, J=5.0), 4.27 (m) 

Valine 1.01 (d, J=7.0), 1.06 (d, J=7.0), 2.28 (m) 

Proline 2.35 (m), 3.37 (m) 

Methionine 2.15 (m), 2.65 (t, J=8.0) 

Tyrosine 6.85 (d, J=8.5), 7.19 (d, J=8.5) 

Phenylalanine 3.15 (dd, J=8.2, 14.5), 3.91 (t, J=9.6) 

Glutamine 2.14 (m), 2.41 (td, J=16.2, 7.5) 

Glutamate 2.13 (m), 2.42 (m), 3.71 (dd, J=7.0, 1.9) 

Arginine 1.75 (m), 3.75 (t, J=5.5) 

Aspartate 2.80 (m), 3.80 (m) 

β-glucose 4.58 (d, J = 7.8) 

α-glucose 5.17 (d, J = 3.7) 

Sucrose 5.39 (d, J = 3.9) 

GABA 1.90 (m), 2.31(t, J=7.5), 3.01 (t, J=7.5) 

Choline 3.20 (s) 
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Glycerol 3.56 (m), 3.64 (m) 

2,3-butanediol 1.14 (d, J=6.5) 

Acetic acid 1.94 (s)  

Succinic acid 2.53 (s) 

Fumaric acid 6.52 (s) 

Formic acid 8.45 (s) 

Citric acid 2.56 (d, J = 17.6), 2.74 (d, J = 17.6) 

Malic acid 2.68 (dd, J = 16.6, 6.6), 2.78 (dd, J = 16.6, 4.7), 4.34 (dd, 

J = 6.6, 4.7) 

Lactic acid 1.40 (d, J=7.0) 

Tartaric acid 4.35 (s) 

cis-Resveratrol 6.21 (t, J=2.1), 6.31 (d, J=2.1), 6.68 (d, J=13.3), 6.71 (d, 
J=8.5), 6.76 (d, J=13.3), 7.18 (d, J=8.5) 

Gallic acid 7.03 (s) 

Syringic acid 3.89(s), 7.31(s) 

Vanillic acid 3.90 (s), 6.77 (d, J=8.2), 7.22 (m) 

p-Benzoic acid 6.83 (d, J=8.7), 7.94 (d, J=8.6) 

p-Coumaric acid 6.38 (d, J=16.0), 6.84 (d, J= 8.8), 7.50 (d, J=8.8), 7.59 (d, 

J=16.0) 

Caffeic acid 6.24 (d, J=16.0), 6.87 (d, J=8.4), 7.02 (dd, J=8.4, 2.0), 

7.12 (d, J=2.0), 7.52 (d, J=16.0) 

(+)- Catechin 2.52 (dd, J=16.1, 8.2), 2.83 (dd, J=16.0, 5.4), 4.04 (m), 

4.55 (d, J=7.5), 5.89 (d, J=2.2), 6.75 (d, J=8.0), 6.80 (dd, 

J=8.5, 2.0), 6.88 (d, J=8.5), 6.9 (d, J=2.0) 

(-)- Epicatechin 2.72 (dd, J=16.8, 2.6), 2.89 (dd, J=16.9, 4.6), 4.26 (m), 
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6.03 (d, J=2.0), 6.06 (d, J=2.0), 6.88 (brs), 6.96 (d, J=2.2) 

Quercetin 6.27 (d, J= 2.0), 6.49 (d, J=2.0), 6.99 (d, J=8.6), 7.66 (dd, 
J=8.5, 2.0), 7.71 (d, J=2.0) 

Myricetin 6.28 (d, J= 2.0), 6.51 (d, J=2.0), 7.30 (s) 

Kaempferol 6.28 (d, J= 2.0), 6.52 (d, J=2.0), 6.74 (d, J=8.6), 8.04 (d, 

J=8.6), 

trans-Caftaric acid 5.77 (s), 6.29 (d, J=16.0), 6.88 (d, J=8.4), 7.02 (dd, J=8.4, 

2.0), 7.12 (d, J=2.0), 7.52 (d, J=16.0) 

trans-p-Coutaric 

acid 

5.84 (s), 6.36 (d, J=16.0), 6.87 (d, J=8.8), 7.51 (d, J= 8.8), 

7.59 (d, J=16.0) 

Fertaric acid 3.89 (s), 5.38 (s), 6.32 (d, J=16.0), 6.89 (d, J=8.4), 7.01 

(dd, J=8.4, 2.0), 7.19 (d, J=2.0), 7.56 (d, J=16.0) 

cis-Caftaric acid 5.34 (s), 5.92 (d, J=13.0), 6.71 (d, J=8.4), 6.81 (d, 

J=13.0), 7.03 (dd, J=8.4, 2.0), 7.44 (d, J=2.0) 

cis-p-Coutaric acid 5.41(s), 5.94 (d, J=13.0), 6.73 (d, J=9.2), 6.86 (d, J=13.0), 

6.93 (d, J=9.2), 7.61 (d, J=9.2), 

 

Multivariate data analysis algorithms (supervised or unsupervised) were 

used to reduce the dimensionality of multivariate dataset and thus enable us to 
discriminate among the samples. The NMR data from the SPE fractions of all 

the samples were subjected to PCA to see the differences among the SPE 

fractions and to identify the metabolites responsible for that distinction. Figure 2 

shows the score plots of PCA where samples are colored according to SPE 
fractions. By examining the corresponding loadings plot, metabolites 

responsible for this separation are revealed (Table 1). 
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 PLS-DA is a supervised multivariate data analysis method in which 

samples are classified into various classes on the basis of activity by creating 

dummy Y-variables. The score plot of PLS-DA (Figure 3A) shows good 
separation of samples with high activity from the others but no clear distinction 

was found among samples with medium and low activity. To see the difference 

among low and medium activity samples, another supervised algorithm, 

bidirectional orthogonal PLS-DA (O2PLS-DA), was used. Figure 3B shows 
very nice separation among all the three classes of samples. Metabolites 

responsible for the separation are identified by examining the corresponding 

loadings plot. Samples with high activity are found with higher levels of 
phenolics like quercetin, myricetin, (+)-catechin, caftaric acid, and coutaric acid 

while metabolites like glucose, sucrose, valine, proline, methionine, and alanine 

are found more concentrated in low and high activity samples. 
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Figure 2: Principal component analysis (PCA) score plot of SPE fractions of all the wine samples.

Three fractions are clearly separated from each other. Samples in blue, green, and red indicates

water, methanol:water (1:1), and methanol fractions, respectively.
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 Projection to latent structures (PLS) is a supervised data reduction 

algorithm in which actual activity values were used instead of dummy Y-
variables. The score plot of PLS analysis (Figure 4A) shows that samples with 

high activity are well separated, but no distinction was found among low and 

medium activity samples. Bidirectional orthogonal PLS was also used in order 

to separate all the three classes of samples but as shown by the score plot 
(Figure 4B), only high activity samples are clearly separated from the others. 

Permutation test is often used for validation of PLS and PLS-DA. The R2 and 

Q2 values for PLS and PLS-DA were calculated using six components for both 
analyses. 

 

 

-10

0

10

-20 -10 0 10 20

P
L

S
-D

A
 (

2
6

.8
4

%
)

PLS-DA (33.58%)

1 2 3

SIMCA-P+ 12.0.1 - 2012-01-25 12:26:59 (UTC+1) 

A

0

-10 0 10

t[
2

]

t[1]

1 2 3

SIMCA-P+ 12.0.1 - 2012-01-25 12:52:42 (UTC+1) 

B

-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0

R
2

 o
r 

Q
2

Correlation (Y-permuted vs. Y-original)

R2 Q2

SIMCA-P+ 12.0.1 - 2012-01-25 12:55:43 (UTC+1) 

C
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For anti-TNF-α activity the R2 and Q2 values for PLS analysis were 

0.91 and 0.84, respectively, while for PLS-DA these figures were 0.92 and 0.91 

(Figure 4C and 3C). For O2PLS-DA and O2PLS analyses, VIP values for 
several phenolic compounds, responsible for separation on the score plot, are 

calculated. It has been reported that factors with VIP values more than 0.7 could 

be regarded influential for the separation of samples (L. Eriksson et al., 2006). 
VIP values of the major contributing metabolites are as follows; caftaric acid at 

δ 7.02: 1.91, quercetin at δ 7.81: 1.74, coutaric acid at δ 7.68: 1.42, and (+)-

catechin at δ 5.92: 1.18. It is thus assumed that these compounds with high VIP 

scores are directly related to the inhibition of TNF-α production.  

 Various multivariate data analysis methods are used in combination 

with NMR spectroscopy in order to correlate the activity data of the extract with 
the spectroscopy data of the same. Several studies showed the analysis of the 
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extracts (Bailey et al., 2004; Cho et al., 2009; Roos et al., 2004) with NMR 

spectroscopy using chemometrics methods to identify the active compounds. 

This approach is very effective in the screening of various plant extracts in 
order to identify the plant compounds with an activity without laborious 

fractionation and chromatographic separation of the crude extract. Fractions 

from SPE of various red wines from Portugal were analyzed for anti-TNF-α 
activity and the combination of NMR spectroscopy and chemometrics was 

successfully applied to identify the active ingredients.  

The vintage effect on the metabolic profile of grapes and ultimately on 
wine has been extensively studied (Lee et al., 2009; Pereira et al., 2006) and the 

importance of the vintage is widely accepted. The amino acids and polyphenols 

contents are highly affected by the climatic conditions of a grape production 
area. It has been shown that a hot and dry climate results in a higher proline and 

phenolic contents in wine (Lee et al., 2009). This study is also capable to 

highlight the effects of vintage on the TNF-α inhibition potential of different 
wines. It is evident from the results that samples from 2010 are more active than 

samples from the other vintages and based on this observation it can be 

postulated that in the 2010 vintage the berries experienced a hot and dry climate 

which ultimately resulted in higher phenolic contents and more potency towards 
TNF-α inhibition. 

Our diet has beneficial effects on health and the consumption of 
antioxidant rich food (fruits, vegetables, tea, and wine) may have health 

promoting effects. The medicinal importance of moderate wine consumption 

has been proven by many studies. Wine metabolites, especially phenolics, are 
now well known to act against cardiovascular diseases (Cordova and Sumpi, 

2009), renal disorders (Bertelli et al., 2005), Alzheimer’s disease (Marambaud 

et al., 2005), cancer (Barstad et al., 2005), and also against bacteria (Murray et 

al., 2002) and viruses (Takkouche et al., 2002). Several health promoting 
activities associated to wine polyphenols were comprehensively reviewed 

recently (Ali et al., 2010b; Cordova et al., 2009; Halpern, 2008; Opie and 

Lecour, 2007). Phenolics are well known for their potency to inhibit TNF-α 
production as they are widely accepted to have anti-oxidative and 

antiinflammatory properties (Baur et al., 2006; Chuang et al., 2010). Phenolics 

like resveratrol (Stewart et al., 2008) and quercetin (Rivera et al., 2008) are 
known to reduce inflammation, while others like cinnamates, benzoates, 

flavonols, flavan-3-ols, and anthocyanins, are well known antioxidants (Lee et 

al., 2009; Meyer et al., 1997).  

 



Application of NMR spectroscopy and chemometrics based approach to 
examine the effect of red wine polyphenols on TNF-α production 

Chap.7 

 

177 

 

7.4. Conclusion 

In this study, solid phase extraction integrated with NMR spectroscopy 
and multivariate data analysis methods were used to identify the correlation of 

metabolites with a TNF-α inhibition data set. Active ingredients in an extract 

could be identified using PLS-based regression models with 
1
H NMR and 

activity data set. Phenolics like quercetin, caftaric acid, and (+)-catechin are 

identified as most influential in inhibiting TNF-α production among the other 

wine metabolites. The approach presented here, can be applied for the 

identification of TNF-α inhibiting compounds in crude plant extracts using 
NMR and multivariate data analysis. The methodology can also be applied to 

infer the various bioactivities associated to wine without any laborious 

chromatographic separation of metabolites.    
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Abstract 

Eugenia uniflora is widely used in Argentina, Brazilian and Paraguayan folk 

medicine.  In this study, crude extracts of berries in different developmental 
stages were examined by assessing their effect on the production of TNF-α in 

lipopolysaccharide (LPS) stimulated U937 cell lines. Zebrafish embryos 

expressing fluorescent protein were used for in-vivo studies. Berries were staged 
into green, yellow, red and purple according to the period towards maturity. The 

fruits at the green stages presented significant antiinflammatory activity in both 

the assays followed by yellow, purple and red stages. NMR spectroscopy 
together with multivariate data analysis was applied to identify the compounds 

responsible for activity. Projections to latent structures (PLS) were found 

effective in discriminating high activity samples from low activity samples. By 

analysing the coefficient plot, the active constituents in the high activity 
samples have been identified as quercetin, myricetin, kaempferol, cinnamic acid 
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and chlorogenic acid. NMR spectroscopy proved to be a valuable tool for 

identifying compounds responsible for activity. 

Keyword: Eugenia uniflora, NMR, TNF-α, inflammation, zebrafish, 

multivariate data analysis 
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8.1. Introduction 

Inflammation is a response of the innate immune system to external 
stimuli and an essential part of the healing process without which the affected 

area could not be cured. Several factors such as infections, ultraviolet exposure 

and injuries play an important role in inducing inflammation. In an 

inflammatory process, macrophages, mast cells or other monocytes release 
many types of mediators including chemokines and cytokines, one of which is 

the tumor necrosis factor-alpha (TNF-α). Primarily, it plays an important role in 

regulation of immune cells but also takes part in the initiation of several 
inflammatory diseases (Habtemariam, 2000).  

The healing process involves not only the release of mediators such as 
TNF-α but also the recruitment of leukocytes, which in turn release other 

mediators (Comalada et al., 2006). Any injury or infection accelerates the 

release of pro-inflammatory cytokines, chemokines or prostaglandins, which in 

turn produce the adhesion of leukocytes or white blood cells to the infected 
area. Among these, the first in situ responders are neutrophils, type of white 

blood cells present in large amount in blood. Neutrophil-induced inflammation 

is important in the wound-healing process however failure to regulate the 
recruiting can cause irreparable damage to the infected site (Renshaw et al., 

2006).  

Once the infected site is healed, the process is interrupted. In case of the 

overproduction of mediators, such as TNF-α, however, chronic conditions 

including inflammatory bowel disease, rheumatoid arthritis or even septic shock 

can occur (De Rycke et al., 2005; Singh et al., 2001). Furthermore, people 
prone to chronic inflammation are diagnosed with various types of cancer in 

several studies (Karin and Greten, 2005; Mantovani et al., 2008). 

Due to an increasingly unhealthy life style, inflammatory diseases are 

becoming ever more common and the synthetic drugs used to treat them are not 

entirely satisfactory, among other reasons, for their negative side effects (Hu, 
2011). An alternative to these drugs is the use of natural products, a potential 

source of new bioactive compounds (Iqbal et al., 2012).  

Eugenia uniflora, also known as “arrayán” in Argentina,“Surinam 

cherry”, “cerezo Brazileño”, “cereza de Cayena”, “pitanga” in Brazil, 

“pendanga” in Venezuela, “guinda” in El Salvador, ñanga-piré and “cereza 

cuadrada” in Colombia, belongs to the family Myrtaceae, indigenous to 
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Argentina, Southern Brazil, Surinam, Guyana, Uruguay and also commonly 

dispersed in other South American countries. People consume this fruit as fresh 

fruit, juice, frozen pulp, or jam. It is also used to make typical liquor in 
Northeastern Brazil (Porcu and Rodriguez-Amaya, 2008). It is a 7- to 10-ribbed 

berry that ranges between 1.5 and 5.0 cm long and is known for its exotic 

flavor. While ripening, its taste varies from very acid to sweet (Malaman et al., 

2011). Epicarp of the fruit changes from green to yellow, orange, dark red and 
finally almost black in order from (Celli et al., 2011).  

Polyphenols like flavonoids and leucoanthocyanidins are characteristic 
secondary metabolites of this species, apart from steroids and/or triterpenoids in 

leaves (Bandoni et al., 1972). High amounts of catechins, flavonols, and 

proanthocyanidins are found in the ripe fruits collected from Brazil and 
Argentina, all of which are known for their antioxidant activity (Einbond et al., 

2004).  The fruits are also rich in carotenoids which are described as vitamin A 

precursors: the carotenoids present in the Brazilian and Argentine berries are 

trans-lycopene, trans-rubixanthin, trans-β-cryptoxanthin, 13-cis-lycopene and 
lower amounts of zeaxanthin, cis-rubixanthin, lutein and γ-, α- and β-carotene 

(Azevedo-Meleiro et al., 2004; Porcu and Rodriguez-Amaya, 2008). Lycopene is 

the most important carotenoid, comprising of 46% of the total carotenoid content 
(Filho et al., 2008). The characteristic flavour of the Brazilian cherry was 

credited to sesquiterpenes and ketones identified by (Malaman et al. 2011).  

Several disease and disorder like bronchitis, chest cold, cough, gout, 

sore throat, hypertension, headaches, influenza, hepatic diseases, painful 

urination, rheumatism, diarrhea, fever stomach diseases and other gastro-

intestinal disorders are treated from the extracts of E.uniflora. There are also 
reports of its diuretic and insect repelling properties and of its ingestion as a tea 

to ease the process of child-birth (Begossi et al., 2002; Consolini et al., 1999; 

Schapoval et al., 1994). It is used to treat obesity, diabetes and to stimulate 
menstrual flow. Volatile oil of this plant has been reported to contain digestive, 

eupeptic and carminative properties. Hot water extract of the fresh leaf and 

unripe fruit is used as remedy to treat malaria and fever in Nigeria. Due to its 
high content of carotenoids and phenolic compounds the E. uniflora fruit can be 

considered to be a strong candidate for cancer prevention (Bagetti et al., 2011; 

Celli et al., 2011). 

Transgenic line of zebrafish expressing green fluorescent protein in 

neutrophils was used to study in-vivo. Due to the transparency of zebrafish 

embryo, it is possible to visualize the movement of neutrophils towards the 
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affected site. Other advantages of zebrafish embryo are their limitless 

availability, low cost and ease of handling. Apart from this they require very 

little medium for growth, so that they are cost effective if compared with other 
mammalian models (Kari et al., 2007). 

The metabolomic study and identification of active compounds in 

natural products requires the use of different platforms, e.g., gas or liquid 
chromatography in combination with mass spectrometry (Kobayashi et al., 

2012; Staszkow et al., 2011) or nuclear magnetic resonance (NMR) 

spectroscopy. In this case, we chose the latter as the main tool to characterize 
the compounds responsible for the pharmacological effects. Objections to NMR 

for its low sensitivity are outweighed by its numerous advantages since it 

involves simple sample preparation, short analysis time, it is non-destructive, 
non-selective and highly reproducible. Additionally it allows the direct 

quantification of all compounds without the need of calibration curves or 

reference substances. Altogether it is thus the ideal tool for a broad 

metabolomic analysis (Son et al., 2009). The low sensitivity of NMR that 
hinders the detection of secondary metabolites present at low concentrations can 

be counteracted with different extraction techniques such as liquid-liquid 

fractionation, removal of sugars by solid phase extraction or 2D NMR methods 
(Ali et al., 2012; Kim and Verpoorte, 2010). Based on previous report that 

showed that TNF- activity differs according to their developmental stage (Ali 
et al., 2012), our main objective here was to characterize the metabolic profile 

of E. uniflora fruits at different stages of their development and explore their 

potential as anti-inflammatory agents. 

 

8.2. Materials and Methods 

8.2.1. Sampling 

Fruits of Eugenia uniflora L from 4 different ripening stages were used. 

Fruits were classified as followed: green (inmature), orange, red and purple 

(mature). The berries were collected around 10 a.m. in November of 2009 at 
Nogalito's wood located in El Siambón, Tucumán (Northwestern Argentina). 

Samples were immediately transported to the laboratory in dry ice. Five 

biological replicates (each including 80-100 berries) were realized.  Each 
replicate contained berries from a single plant, and from the sunny and shady 
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sides of the plants. Berries were grinded in liquid nitrogen, seeds removed and 

kept at -20 ºC until use. 

 
8.2.2. Extraction   

 

A sample of 50 mg of lyophilized fruit was extracted according to (Kim 

et al., 2010). Briefly, powdered dry plant material 50 mg was taken into 2mL 
eppendorf tube and extracted with 50% aqueous methanol followed by 

ultrasonication at room temperature for 20 minutes. The procedure was repeated 

three times. The supernatant was pooled together and dried using rotary 
evaporator.   

 
8.2.3. Cell Culture 

Human monocyte-like histiocytic lymphoma U937 cells were cultured 

and treated with plant extracts as described in chapter 3.  

 

8.2.4. TNF-α assay 

TNF-α in culture supernatants were determined by quantitative 
‘‘sandwich’’ enzyme-linked immunosorbent assay as described in chapter 3. 

 

8.2.5. MTT assay 

Cell viability after treatment with fruit extracts in different ripening 
stages was determined by using MTT assay (Lee et al., 2007) as described in 

chapter 3.  

 

8.2.6. Zebrafish culture 

Standard procedures (in agreement with local animal welfare 

regulations) were adopted to raise and maintain Zebrafish (Danio rerio) 
embryos. The GFP Transgenic lines (MPO,s) of zebrafish were used in this 

study (Lawson & Weinstein, 2002). Embryos were obtained by natural crosses. 
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Fertilized eggs were collected and staged as previously described by (Kimmel et 

al., 1995). 

  

8.2.7. Chemical induced inflammation assay (ChIn) 

Assay was performed as described by (d'Alencon et al., 2010). Briefly, 

E3 medium was used to grow zebrafish larvae of the GFP strain. They were 

kept in Petri dish until 56 hours post fertilization. Spontaneously hatched larvae 
were transferred to 48- well plates at the rate of 1 larva/well in a volume of 500 

µL of E3 solution. Fruit extracts and controls were pipette to the wells 

containing embryos 1 hour before the addition of CuSO4. Plates were incubated 
for 40 minutes at 28 °C. E3 medium was replaced with 4% paraformaldehyde in 

PBS buffer which was used to fix the embryo and further incubation was carried 

out for 1 hour at room temperature. Fixing and subsequent steps normally 
carried out in dark to evade fading of the fluorescent protein signal. Larvae were 

washed with PBS-Tween20. Fluorescent cells were examined and counted 

within the next 48 hours after fixation using a Leica (Wetzlar, Germany) MZ-12 

fluorescent stereoscope. Labeled cells were within a specific area known as 
myoseptum which consist of between the first somite and the end of the tail on 

one side of each larva. Sixteen embryos were used for each concentration and 

cells were counted by two independent observers. 

 

8.2.8. 
1H

 NMR spectroscopy
 

50 mg lyophilized sample of berries was extracted according to (Kim et 

al., 2010). Briefly samples were transferred to 2 ml eppendorf tubes, 1ml of 
MeOD and D2O buffer with 0.01% TSP (1:1) was added. Sample was vortexed 

for 30 second and then sonicated for 15 minutes. After sonication sample was 

centrifuged and clear supernatant (800 ul) was transferred to the 5-mm NMR 
tube and used for NMR analysis. Deuterated methanol was purchased from 

Cambridge Isotope Laboratories, Inc., Andover, MA, USA. 
1
H. NMR spectra 

were recorded at 25 °C on a 500 MHz Bruker DMX-500 spectrometer (Bruker, 
Karlsruhe, Germany) operating at a proton NMR frequency of 500.13 MHz. 

MeOH- d4 was used as the internal lock. Each 
1
H NMR spectrum consisted of 

128 scans requiring 10 min and 26 sec acquisition time with the following 

parameters: 0.16 Hz/point, pulse width (PW) = 30° (11.3 µsec), and relaxation 
delay (RD) = 1.5 sec. A pre-saturation sequence was used to suppress the 
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residual H2O signal with low power selective irradiation at the H2O frequency 

during the recycle delay. FIDs were Fourier transformed with LB = 0.3 Hz. The 

resulting spectra were manually phased and baseline corrected, and calibrated to 
TSP at 0 ppm, using XWIN NMR (version 3.5, Bruker). 2D NMR techniques 

were performed by using parameters described by (Ali et al., 2012) 

 

8.2.9. Data analysis 

The 
1
H NMR spectra were reduced to ASCII files. Bucketing was 

performed by AMIX software (Bruker) with scaling to total intensity. Spectral 

intensities were scaled to the TSP signal (δ 0.0) and reduced to integrated 
regions of equal width (0.04) corresponding to the region of δ 0.3–10.0. During 

analysis, regions between δ 4.75–4.9 and δ 3.28–3.40 were excluded because of 

the residual signal of water and methanol-d4, respectively. SIMCA-P software 
(v. 12.0, Umetrics, Umeå, Sweden) was used to perform principal component 

analysis (PCA) with scaling based on Pareto while partial least square (PLS) 

with scaling based on Unit Variance. Means and standard deviations were 

calculated. ANOVA was performed for comparison with means and 
significance level was set at <0.05. 

 

8.3. Results and discussion 

Metabolites variations of four different developmental stages of 

Eugenia uniflora have been evaluated. All these four stages differ both 

quantitatively and qualitatively from each other. The differences between these 

stages can be sorted out by using a simple metabolomic approach with the help 
of 

1
H NMR. First NMR spectra were phased; base line corrected and compared 

visually to see any visible change during the development of the fruit (Fig.1). 

Here the developmental stages of Eugenia uniflora has been divided into four 
phases namely green, yellow or yellow orange, red and purple. Green is the 

earliest and purple to be the most ripened. Representative 
1
H NMR spectra’s of 

these four stages are shown in Figure 1. From this figure we can see that the 
developmental stages follow a pattern. Green stage contain a high amount of 

phenolics like quercetin, myricetin, kaempferol, shikimic acid, chlorogenic acid 

and amino acids like glutamate and glutamine which decreases gradually as the 

fruit ripens. While we also see the decrease in the chlorogenic acid. On the other 
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hand malic acid seems to increase up to red stage and to decrease in the purple 

stage, whereas alanine increases along with the ripening stages. 

 Multivariate data analysis is a technique to filter out the most important 
variables affecting the results. The main aim of using this statistical technique is 

to reduce the dimensionality of the data (Eriksson et al., 2006). Among the 

different tools available the most common used are Principal component 
analysis (PCA), partial least square analysis (PLS) and Orthogonal partial least 

square analysis (OPLS). Where PCA is an unbiased analysis the other two 

mentioned methods depend upon the input information given. The most 

important information obtained by the supervised biased analyses is the 
correlation of the certain variables with the given information, e.g. identification 

of markers. 

To analyze and identify the most important metabolites characteristic 
for the developmental process of Eugenia uniflora, we subjected NMR data to 

PCA. The obtained results are displayed in Fig. 2. The PCA score plot reveals a 

pattern in which green stages tend to cluster on the negative side of PC1 along 
with the yellow stages. Few replicates of the yellow stages lie closer to the red 

stage in the positive side of PC1. Both Red and purple ripened stages are on the 

positive side of PC1. This result indicates good separation of the four 

developmental stages on the basis of the time of development. The loading 

Figure 1: Comparison of 1H NMR spectra of four developmental stages from Eugenia uniflora. g (green),

y (yellow), r (red), p (purple). 1. Ethanol. 2. Alanine, 3. Quinic acid, 4. Glutamine/Glutamate, 5. Malic acid, 6.

GABA, 7. Shikimic acid, 8. Creatine, 9. Quercetin, 10. Myricetin, 11. Cinnamic acid, 12. Gallic acid, 13.

Chlorogenic acid, 14. Kaempferol, 15. Formic acid, 16. Histidine, 17. Fumaric acid, 18. Glucose, 19.

Sucrose.
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column plot which is the projection of the variables in our case metabolites of 

the cherries revealed that green and yellow stages are rich in phenolics, organic 

acids and amino acids while the more ripened stage obviously has high content 
of sugars like sucrose, fructose and glucose. 

Among the four stages, low TNF-α inhibition was exhibited by mature 

stages, while highest activity was obtained by the green stage followed by the 

yellow stage as shown in Fig 3A. From the figure it is clear that initial 
developmental stage (green) has highest inhibition activity as compared to the 

others, similar results were observed in grapes (Ali et al., 2012). 

In-vivo analysis was done by using mutant zebrafish embryos as a 
model. A representative figure of control and zebrafish embryo treated with 

CuSO4 with and without fruit extract is shown in Fig 3. B. The fluorescents cells 

represent the sites of injury after treating the embryo with 10 µM CuSO4. The 
zebrafish embryo treated with CuSO4 in presence of fruit extract exhibit less 

number of leukocytes movement as compare to embryo treated with CuSO4 

without fruit extract. Fig 3.C shows results similar to the in-vitro TNF-α 

inhibition. The green stage of fruits would seem to be dominantly significant 
from other stages in term of controlling or inhibiting the injury. To identify 

Figure 2: Scatter plot of stage development. G stands for green, P stands for purple, Y stands for yellow

and R stands for red.
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compounds related to activity activity for TNF-α inhibition, a supervised 

method (Partial least square model, PLS) was applied. TNF-α inhibition value 

was added as Y -input to the model. Activity values were divided into to two 
classes: active (>60%) and non active (<60%). The score plot for the resulting 

model is shown in Fig 4 A. The red dots show the stage responsible for high 

TNF-α inhibition activity, while the black triangles show samples with less 
activity for TNF-α inhibition. One replicate from the study has been excluded 

due to some experimental error. As the PLS score plot shows, a nice separation 

between active and non active groups have been achieved with PLS1 (65%) and 

 

Figure 3 A: TNF-α inhibition (%) exhibited by four different developmental stages of Eugenia uniflora at the

dose rate of 100 µg/ml. Bars represent standard error of Means (n=3). 3B (a): 56hpf zebrafish embryo with

fluorescent leukocytes. (b) myoseptum area of 10 µM CuSO4 treated embryo (yellow arrows shows the area

of injury with fluorescent clusters of leukocytes). (c) myoseptum area of extract treated embryo exhibit less

number of leukocytes movement as compare to CuSO4 treated embryo. 3 C. Quantification of migrating

leukocytes after treatment with extract at the dose rate of 100 µg/ml. The higher the number of cells the lower

the activity of extracts.

A B

C
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and PLS2 (13%). The stage related to high activity is on the positive side of 

vector t1 of the PLS scatter plot while stages correlating with less activity 

cluster on the negative side of t1. By examining the corresponding Y-coefficient 
loadings plot Fig 4.b, we find high content of phenolics like quercetin, 

myricetin, kaempferol, cinnamic acid, chlorogenic acid, and amino acids like 

glutamate and glutamine which are corresponding with the inhibition of TNF-α. 

For in-vivo analysis cell counts were used as Y-input value. Fruit 

extracts able to reduce the cell count to less than10 were assigned as active 

while extracts unable to reduce the cell count less than 10 were assigned as non 
active. The resulting model does not show a clear distinction among the active 

and non-active samples (data not shown) which can be due to noise in the 

spectra. To improve the correlation of activity with metabolites, a built-in filter 
was used called orthogonal signal correction (OSC). This filter removes the 

unwanted and uncorrelated signals by using orthogonal logarithm (Ali et al., 

2012; Eriksson et al., 2006). After applying their filter the remaining data were 

again subjected to PLS modeling, the resulting model was highly improved with 
PLS1 (37%) and PLS2 (32%) values. From the score scatter plot (Fig.5 A), we 

can see that the active stages are on the negative side of the score plot or PLS1 

while the non active stages are on the positive side of the PLS1 plot. The 

relevant coefficient plot (Fig.5.B) showed a high content of phenolics 
compounds like quercetin, myricetin, kaempferol, organic acids like cinnamic 

Figure 4A: PLS score plot for in vitro activity based on whole range of 1H NMR spectra. Triangle shows

non active extracts, while red dots represent active extracts for in vitro anti inflammatory activity. 5B.

Coefficient plot for in vitro PLS score plot. Black bars on negative side of coefficient plot relate with the

non active extracts while red bars on the positive side of coefficient plot relate with active extract for in

vitro activity.
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acid, chlorogenic acid, malic acid and amino acid like glutamate and glutamine 

for the active stages the PLS1 while high sugar content is on the non active side 

of PLS1. These results confirm the findings that high phenolic contents are 
responsible for antiinflammatory activities both in-vivo as in-vitro. 

It is a well known fact that synthetic drugs are costly and associated 

with risks to human health; hence efforts to develop safer and more effective 
medicines are essential. Natural products provide an alternative source for 

developing antiinflammatory drugs. Agents derived from plants can modulate 

the expression of pro-inflammatory signals. These include flavonoids, quinones, 
catechins, anthocyanins and anthoxanthins, terpenes and alkaloids, all of which 

are known to have anti-inflammatory effects (Paul et al., 2006).   

Flavonoids present in the plants either simple or complex glycosides. 

These polyphenolic compounds and their sugar derivatives display a remarkable 

spectrum of biological activities including anti-inflammation (Miles et al., 2005; 

Pietta, 2000). Several reports have been published related to activities of the 
mentioned flavonoids against TNF-α production (Chuang et al., 2010; Park et 

al., 2008). There are reports that quercetin inhibits TNF-α secretion selectively 

in different cell studies (Wadsworth and Koop, 1999; Wadsworth et al., 2001). 
Myricetin, another flavonoids have been reported to inhibit TNF-α production 

in LPS stimulated J774.1 cell lines (Herath et al., 2003). Similarly, phenolics 

Figure 5A: OSC-PLS scatter plot for in-vivo activity. Triangle shows non active extract, while red dots

represent active extract for in-vivo anti inflammatory activity. 6B. Coefficient plot for in-vivo OSC- PLS

score plot. Black bars on positive side of coefficient plot relate with the non active extracts while red bars

on the negative side of coefficient plot relate with active extract for in vitro activity.
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acids including caffeic acid, gallic acid, ferulic acid, p-coumaric acid and 

chlorogenic acids are well known inhibiting TNF-α production (Chauhan et al., 

2011; Kim et al., 2006; Sakai et al., 1997; Shin et al., 2004).  

The application of combinations of chemometric methods with NMR 

spectroscopy is gaining popularity among researchers due to the wealth of 

information they provide. This approach is very effective in the screening of 
plant extracts allowing the identification of active compounds without laborious 

fractionation and chromatographic separation of the crude extract. When 

applied to extracts of Hypericum perforatum, Artemisia annua, Citrus grandis, 
and Galphimia glauca it proved to be very successful in linking 

pharmacological activities with certain compounds (Bailey et al., 2004; 

Cardoso-Taketa et al., 2008; Cho et al., 2009; Roos et al., 2004). In this study, 
diverse multivariate data analysis methods were used in combination with NMR 

spectroscopy in order to correlate the activity data of the extracts with their 

spectroscopic data. Crude extracts from E.uniflora fruit were studied for anti-

TNF-α activity and the combination of NMR spectroscopy and chemometrics 
was successfully applied to identify the metabolites quercetin, myricetin, gallic 

acid, cinnamic acid, and chlorogenic acid as those responsible for their high 

anti-TNF-α activity.   

  

8.4. Conclusion 

The present study is the first to analyze Eugenia uniflora at different 
developmental stages for TNF-α inhibition and neutrophils migration towards 

wounded area in Zebrafish using an NMR based metabolomic approach.NMR 

spectroscopy (1D and 2D) was applied for the metabolic profiling of Eugenia 

uniflora berries. The crude extracts (8:2) methanol:water of berries were tested 
for TNF-α inhibition and antiinflammatory activity. Green stage of berries was 

found active in both assays. Various multivariate data analysis methods showed 

good correlation between the NMR resonances for phenolics and anti-TNF-α 
activity. Algorithms like PLS and PLS-DA showed good separation among the 

samples classified as high and low activity with high model validity. 

Metabolites like quercetin, myricetin, gallic acid, cinnamic acid, and 

chlorogenic acid, were statistically significantly correlated with high activity. 
Using the presented approach, the analysis of NMR shifts in relation to 

pharmacological activity can provide information about what part of the NMR 

spectrum (aromatic or aliphatic regions) correlates with the activity which in 
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turn gives information about the active ingredients in crude extracts of 

functional food. Our study suggests a potential use of edible fruit as a source of 

anti-inflammatory agents. 
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Abstract 

A novel approach was applied to investigate the potential antiinflammatory 

activities of genus Sempervivum in-vitro by using U937 cell lines assay and 
zebrafish embryos for in-vivo studies. Twenty four different species/cultivar of 

Sempervivum were screened for their ability to inhibit TNF-α release. 

Sempervivum Smaragd, Sempervivum Pilatus, Sempervivum Noir, Sempervivum 

Pseudo-calcareum, Sempervinum microcephalum, Sempervivum tectorum 
Glaucum showed maximum TNF-α inhibition respectively. Two different 

Sempervivum pseudocalcareum (active) and Sempervivum calcareum (non 

active) (cultivar of Sempervivum tectorum L.) were selected for further studies 
on the basis of our screening results. Comprehensive extraction was applied to 

cover a broad range of metabolites by using a gradient from water to methanol 

in combination. Seventeen fractions were eluted and subjected to NMR analysis 

and activity related studies. NMR based metabolomics coupled with 
multivariate data analysis was used to identify bioactivity related metabolites in 

fractionated plant extracts.  Fractions (4-6) of S. pseudocalcareum show strong 

inhibition of TNF-α in-vitro  and for in-vivo  studies fractions (2, 3) were found 
most promising whereas in case of Sempervivum calcareum only fraction 6 was 

found active in-vitro  but none of the fraction showed activity in-vivo .  
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Multivariate data analysis likes PCA, PLS, PLS-DA, O2PLS-DA and O2PLS 

were used to see discrimination among samples and to correlate NMR signals 

with activity data. The VIP plot showed that kaempferol analogues were 
positively correlated with high activity. The bioassays presented here allow us 

to screen thousands of plant extracts and pure compounds which show this is a 

rapid way of finding new lead compounds for drug development.  

Key words: Sempervivum pseudocalcareum, Sempervivum calcareum, 

inflammation, zebrafish, bioactivity, metabolomics, multivariate data analysis 
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9.1. Introduction 

Inflammation is the reaction of the body’s defense system (immune 
system) which protects the body from harmful stimuli such as pathogens, 

damaged tissues and irritant. The process of inflammation is regulated by 

several cytokines. Some cytokines induce inflammation, make the diseases 

worse and are called pro-inflammatory cytokines such as TNF-α, IL-1 and IL-
18 while others take part to reduce inflammation, accelerate the process of 

healing and are called antiinflammatory cytokines like IL-4, IL-6, IL-10, IL-11, 

and IL-13 (Dinarello, 2000). Tumor necrosis factor alpha (TNF-α) is one of the 
most important pro-inflammatory cytokines which promotes inflammation in 

different disease conditions like septic shock, AIDS, cancer, rheumatoid 

arthritis, diabetes and several other disease. An optimum level of TNF-α is 
beneficial for the human body but increased production can lead to the 

development of chronic diseases related to autoimmunity (Paul et al., 2006). 

Thus anti-TNF-α therapies are considered for treatment of inflammatory 

diseases. Although protein based drugs are available for TNF-α inhibition, they 
have limitations such as high costs and health affecting side effects. Plants are 

considered as an alternate source for drugs for treatment of diseases mediated 

through TNF-α. Several investigations have been published regarding inhibition 
of TNF-α by plant crude extracts and pure natural compounds (Yuliana et al., 

2011a). 

The plant kingdom is able to produce an enormous amount of different 

chemicals as a response to variable and harsh environmental conditions. Among 

these chemicals, a vast number expose pharmacological interesting properties. 

Since ancient times plants with medicinal activities were used by mankind. 
Knowledge on the specific medicinal activity of a particular plant or herbal 

mixture was based on long historical clinical use.  In modern science however 

knowledge of the active constituents (metabolites) in an herbal- or plant derived 
preparation is required in order to meet the demands of quality control, safety 

and efficacy. The complexity of the (multi) metabolic content, the variability in 

the metabolic content due to the plants responses to changes in environmental 
conditions and synergistic effects are serious bottlenecks for the identification 

of  bioactive metabolites in herbal extracts (Li et al., 2011). In recent years it 

became more and more clear that a holistic approach based on metabolomics 

technology is very promising to overcome these bottlenecks (Jiang et al., 2010; 
van der Kooy et al., 2009; Yuliana et al., 2011b; Zhang et al., 2010). Such a 

technology enables to link metabolites in multi-constituent plant extracts, 
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obtained by variations in cultivation or extraction procedures, to bioactivity data 

by using statistical data analysis (Hou et al., 2010; Yuliana et al., 2011c).  

Nuclear magnetic resonance (NMR) spectroscopy has been commonly 

used to study metabolic profiles of plants, as well as for identification, 

characterization and structure elucidation of molecules (Ali et al., 2010; Son et 

al., 2009). NMR spectroscopy is a prime tool for metabolomic studies. NMR is 
often criticized because of its low sensitivity but NMR also provides advantages 

of being non destructive in nature, simple sample preparation, short analysis 

time and ease in quantitation (Dixon et al., 2006). NMR based metabolomics 
has been applied successfully in combination with different multivariate data 

analysis methods in different types of biological or medical studies (Ali et al., 

2011b; Charlton et al., 2002). For example several reports have been published 
on NMR in combination with multivariate data analyses to identify 

pharmacologically active substances in plants extracts (Bailey et al., 2004; 

Cardoso-Taketa et al., 2008; Cho et al., 2009; Roos et al., 2004). 

A large amount of variable extracts have to be tested in-vitro cell based 

assays and molecular based assays in order to discover novel bioactive 

compounds. However, using in-vitro  assays of herbal or plant extracts have 
some major drawbacks: (i) the multi-constituents of a herbal or plant extract 

may probably act on multiple targets in an organism (Lan and Jia, 2010) and (ii) 

the effected composition of the herbal/plant extract  in in-vitro assays may 
significantly differ from the in-vivo  effect due to miscellaneous and 

uncontrolled (enzymatic) biotransformations and/or differential absorption 

characteristic during intake in the body of an organism (Lan et al., 2010; Unger, 

2010). Therefore the availability of high-throughput in-vivo models is highly 
desirable for active compound identification in herbal extracts. In the last 

decade, Zebrafish has emerged as a model organism for different scientific 

studies. Zebrafish as a model organism offers lot of advantages over other 
animals in term of cost, availability, and handling.  Recently the Zebrafish as an 

in-vivo model has been explored for metabolomic studies and discovery of 

bioactive molecules from nature (Deo and MacRae, 2011; Mandrekar and 
Thakur, 2009). By using transparent larvae it was successfully demonstrated 

that zebrafish could be used as a high-throughput screening assay for 

antiinflammatory activity after chemically induced inflammation (d'Alencon et 

al., 2010).  

Sempervivum or Housleek (Crasssulaceae) genus comprises 30 species 

and over 1200 varieties. This plant is mostly found 200-2800 m above sea level 
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and is widely distributed in the Europe and Asia. It normally grows on 

chimneys, old walls, rocks and roofs. Although it is an ornamental plant, it has 

also been used as medicine since ancient times. Several reports have been 
published regarding its utilization as folk medicine. Fresh juice prepared from 

the leaves has been used to treat wounds, skin burns, insect bites and 

inflammation of the ears. A tea is also prepared from the leaves of this plant to 

treat ulcers. All of these activities have been attributed to the presence of 
phenolic compounds (quercetin, myricetin, herbacetin, kaempferol) (Abram and 

Donko, 1999; Šentjurc et al., 2003; Swart, 1991). 

The present study first describes the screening of different cultivar of 

Genus Sempervivum for in-vitro TNF-α inhibition. In the second step, two 

cultivars Sempervivum pseudocalcareum (active) and Sempervivum calcareum 
(non active) were selected on the basis of the screening using an in-vivo 

Zebrafish assay. Several primary and secondary metabolites (especially 

phenolics) using 1D and 2D NMR techniques were identified. The correlation of 

activity data and NMR data using different multivariate data analyses methods 
for identification of the the active ingredients in Sempervivum pseducalcareum 

is also presented. 

 

9.2. Materials and Methods 

9.2.1. Plant Material  

All species, subspecies and cultivars of the genus Sempervivum were 

obtained from Radder (Margraten, the Netherlands). Plants were cultivated 

under organic conditions. After harvesting, the aerial parts of the plants were 

lyophilized and subsequently milled to obtain a fine homogenized powder. 

 

9.2.2. Extraction and Fractionation 

All organic solvents were purchased from Sigma. For “crude” 
extraction, 150 mg powdered plant material was dissolved in 2 mL n-hexane, 

chloroform or methanol-water (80:20 v/v). The mixtures were placed in an 

ultrasonic bath for 30 minutes followed by intensive shaking for 30 minutes. 
Thereafter the mixture was centrifuged for 10 minutes at 2000 rpm, the 
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supernatant removed and evaporated under N2. The dried supernatants were 

solved in 100 μL DMSO for in-vitro and in-vivo studies. 

For “comprehensive” extraction, 750 mg of the powdered plant material 

was used and simultaneously extracted and fractionated as described by 

(Yuliana et al., 2011c). Briefly the plant material was extracted/fractionated in a 

linear gradient of 100% solvent A (H2O) to 100% solvent B (methanol). During 
extraction/fractionation 17 fractions of 10 mL were collected; 1 mL was dried 

and dissolved in DMSO for determination of in-vitro and in-vivo bioactivity, the 

remaining 9 mL was dried and dissolved in MeOD for 
1
H-NMR analysis.  

 

9.2.3. In -vitro Bioactivity Assay 

Human monocyte-like histiocytic lymphoma U937 cells were cultured 
and treated with the extracts as described in chapter 3.  

 

9.2.4. TNF-α Assay 

TNF-α in culture supernatants were determined by quantitative 
‘‘sandwich’’ enzyme-linked immunosorbent assay as described in chapter 3. 

 

9.2.5. Zebrafish 

Standard procedures in agreement with local animal welfare regulations 

were adopted to raise and maintain Zebrafish (Danio rerio) embryos. The GFP 

Transgenic lines (MPO,s) of zebrafish were used in this study (Lawson & 
Weinstein, 2002). Embryos were obtained by natural crosses. Fertilized eggs 

were collected and staged as previously described by (Kimmel et al., 1995). 

 

9.2.6. ChIn Assay  

 ChIn assay (Chemical induced inflammation) was performed as 

described by (d'Alencon et al., 2010). Briefly Zebrafish larvae of the GFP strain 

were grown in E3 medium in groups of 20-25 larvae per 10-cm Petri dish until 
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56 hours post fertilization. Spontaneously hatched larvae were used for the 

assay. Selected larvae were transferred to forty eight well plates at the rate of 1 

larva/well in a volume of 500 µl of E3 solution. Furthermore wells were pasted 
with 1 drop of 1% Agarose gel to avoid sticking of embryos to the bottom 

before addition of larvae to the wells. Plant extracts and controls were added to 

the wells containing embryos 1 hour before the addition of CuSO4, and 

incubation was carried out for 40 minutes at 28 °C. Larvae were then fixed by 
transferring them to 1.5-ml microfuge tubes and replacing the E3 medium with 

4% paraformaldehyde prepared in phosphate-buffered saline (PBS) and 

incubating for 1 hour at room temperature. During fixation and subsequent 
handling, the tubes were kept in the dark to avoid bleaching or fading of the 

fluorescent protein signal. After fixation, larvae were washed three times for 5 

minutes each in PBS-Tween20 with gentle agitation. Examination of fluorescent 
cells and counting was carried out within the next 48 hours after fixation using a 

Leica (Wetzlar, Germany) MZ-12 fluorescent stereoscope. Labeled cells were 

counted under fluorescent illumination within 10 cell diameters of the 

horizontal myoseptum between the first somite and the end of the tail on one 
side of each larva. All experiments were carried out with a minimum of 16 

larvae for each condition, and counts were carried out by two observers. 

9.2.7. 
  1

HNMR Spectroscopy 

All the fractions eluted from comprehensive extraction were dissolved 
in 1mL of methanol D4. Samples were transferred to 2 ml eppendorf tubes, 1ml 

of MeOD and D2O buffer with 0.01% TSP (1:1) was added. Sample was 

vortexed for 30 second and then sonicated for 15 minutes. After sonication 

sample was centrifuged and clear supernatant (800 ul) was transferred to the 5-
mm NMR tube and used for NMR analysis. Deuterated methanol was purchased 

from Cambridge Isotope Laboratories, Inc., Andover, MA, USA. 
1
H. NMR 

spectra were recorded at 25 °C on a 500 MHz Bruker DMX-500 spectrometer 
(Bruker, Karlsruhe, Germany) operating at a proton NMR frequency of 500.13 

MHz. MeOH- d4 was used as the internal lock. Each 
1
H NMR spectrum 

consisted of 128 scans requiring 10 min and 26 sec acquisition time with the 
following parameters: 0.16 Hz/point, pulse width (PW) = 30° (11.3 µsec), and 

relaxation delay (RD) = 1.5 sec. A pre-saturation sequence was used to suppress 

the residual H2O signal with low power selective irradiation at the H2O 

frequency during the recycle delay. FIDs were Fourier transformed with LB = 
0.3 Hz. The resulting spectra were manually phased and baseline corrected, and 

calibrated to TSP at 0 ppm, using XWIN NMR (version 3.5, Bruker). 2D NMR 

techniques were performed by using parameters described by (Ali et al., 2012). 
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9.2.8. Data Analysis 

The 
1
HNMR spectra were automatically reduced to ASCII files. 

Bucketing was performed by AMIX software (Bruker). Spectral intensities were 

scaled to total intensity and reduced to integrated regions of equal width (0.04) 

corresponding to the region of δ 0.3-10.0. The regions of δ 4.85-4.95 and δ 

3.28-3.34 were excluded from the analysis because of the residual signal of 
H2O and methanol-D4, respectively. Principal component analysis (PCA) with 

scaling based on Pareto while projections to latent structures (PLS), PLS-

discriminant analysis (PLS-DA), bidirectional orthogonal PLS (O2PLS), and 
O2PLS- discriminant analysis (O2PLS-DA) with scaling based on Unit variance 

were performed with the SIMCA-P+ software (v. 12.0, Umetrics, Umeå 

Sweden). 

 

9.2.9. Statistical analyses 

Statistical analyses were performed using GraphPad Prism version 5.00 

for Windows, GraphPad Software, San Diego California 
USA, www.graphpad.com. One way ANOVA was performed for both assays. 

Tukey’s multiple comparison test was performed for in-vitro studies while 

Posthoc comparison between means and controls were made using Dunnett’ s 
multiple comparison test. Value of P ≤ 0.05 was considered statistically 

significant for both assays. 

 

9.3. Results and discussion 

The Genus Sempervivum has not been studied much regarding its 

metabolic profile and medicinal properties. Sempervivum tectorum L., common 

houseleek is a wild-growing succulent belonging to the family of Crassulaceae. 
In traditional folk medicine grounded leaves and leaf juice are used to relieve 

pain and sore ailments, particularly earache and ear inflammations. Leaves have 

been used traditionally for ear inflammations, warts, ulcers, skin rash and corns 
in Bosnia and Herzegovina. In Serbia houseleek has been used for earache as a 

compress made from leaf juice and applied to the sore area. In Italy fresh leaves 

of S. tectorum have been used for insect bites, while beaten aerial parts have 

been placed on the brow with handkerchief for headache Recently few reports 
have been published describing antinociceptive, liver protecting and membrane 

http://www.graphpad.com/
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stabilizing effect related to Sempervivum tectorum and flavonoids like 

kaempferol, quercetin, myricetin, and herbacetin have been credited for these 

activities (Alberti et al., 2012). This is the first study which was designed to 
measure antiinflammatory properties of Sempervivum pseudocalcareum and 

Sempervivum calcareum in-vitro and in-vivo. A preliminary study was 

performed to screen 4 species and 20 cultivars of the genus Sempervivum 

against TNF-α inhibition. Only a few cultivars showed strong TNF-α inhibition. 
TNF-α release caused by all these cultivars are presented in Table 1. 

Species of Genus Sempervivum 

% TNF-α 

inhibition 

Sempervivum tectorum L. 59 

Sempervivum pittonii NYM. et Kotschy 25 

Sempervivum calcareum Jord. 0 

Sempervivum arachnoideum L. 0 

Cultivar of Sempervivum tectorum L.  

Sempervivum smaragd  96 

Sempervivum pilatus  93 

Sempervivum noir  90 

Sempervivum pseudo-calcareum  85 

Sempervivum microcephalum  83 

Sempervivum tectorum glaucum  76 

Sempervivum crimson piratey 70 

Sempervivum feldmaier  67 

Sempervivum silbergroenarneol  67 

Sempervivum packardian  64 

Sempervivum seerosenstern  63 

Sempervivum lipari  55 

Sempervivum cordeurs  53 

Sempervivum brons  52 

Sempervivum borisii  45 

Sempervivum rubin  25 

Sempervivum Van der Steen 21 

Sempervivum Monique  10 
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Figure 1: TNF-α (%) inhibition exhibited by different fractions (1-17) of S. 

pseudocalcareum and S. calcareum eluted with comprehensive extraction. Each 

bar represents ±SEM of three replicates. 

Based on the screening, further experiments were designed to identify 

the metabolite responsible for this activity by comparing an active 
(Sempervivum pseudocalcareum) and non active cultivar (Sempervivum 

calcareum). The comprehensive extraction method was used to evaluate the 

potential antiinflammatory activity of Sempervivum pseudocalcareum and 
Sempervivum calcareum. Seventeen fractions were obtained and subjected to 

TNF-α bioassay in-vitro. To determine the TNF-α inhibition by plant extracts, 

U937 cells were treated with LPS and plant extracts simultaneously. The 

activity of all the fractions is presented in (Figure 1). It is clear from the figure 
that fractions (4-6) and (14,15) of Sempervivum pseudocalcarem show 

significant high activity as compared to other fractions while in case of 

Sempervivum calcareum only fraction 6 inhibits TNF-α production.  

As in-vivo bioassay, zebrafish larvae were used in this study. It is well 

documented that zebrafish larvae establish a primary lateral line system by 3 
days of post fertilization (dpf). For chemical inflammation, exposure of 

zebrafish to copper sulphate rapidly destroys hair cells of the lateral line system 

by inducing oxidative stress followed by cell death. Immediately after the 

treatment with copper sulphate, fluorescent leukocytes start making clusters at 
the damaged neuromast (d'Alencon et al., 2010). Fluorescent neutrophils were 

counted manually within a specific area known as myoseptum which runs from  
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 Figure 2: Inhibition of leukocytes infiltration or clusring by fractions (1-17) 
from S. pseudocalcareum and S. calcareum towards wounded area 

(myoseptum) of zebrafish. Less cells means high activity. Each error bar 

represents ±SEM n= 16. 

the first somite to the end of the tail. It is interesting to observe that fractions (2) 

and (3) of Sempervivum pseudocalcareum show strong activity as compared to 
other fraction which is unlike the in-vitro bioassay, while in case of 

Sempervivum calcareum none of the fraction show any significant activity.  

The 
1
HNMR spectras of both cultivars have been shown in Figure 3 (A, B) and 

it is evident from visual inspection of the spectra that both cultivars are different 

from each other in terms of metabolic profile specially in the phenolic region. 

The 
1
HNMR spectra of active fractions (3) and (5) of S. pseudocalcareum are 

presented in the figure 3 (C, D) respectively. By looking at the spectra, it can be  
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observed that there are not so many compounds present in the phenolic region 

of fraction (5) as in case of fraction (3). Several compounds (Flavonoids, amino 
acids and organic acids) were identified using our in-house library of NMR data 

of common metabolites. The 
1
H NMR chemical shifts for all these metabolites 

are shown in Table 1. All these assignment of metabolites are based on previous 

studies (Abdel-Farid et al., 2007; Ali et al., 2011a; Ali et al., 2009). A number 
of amino acids and organic acids were identified due to high signal intensities in 

the amino acid region. Amino acids like alanine, glutamine, isoleucine, 

threonine, and valine were identified by comparing spectra with our inhouse 
NMR spectral library of reference compounds. The signals in the carbohydrate 

region are highly clustered and overlapping. Signals of sucrose, α-glucose, β-

glucose, mannose and arabonise could be identified. 

 

 

. 

NMR Chemical Shift (ppm)

A

B

NMR Chemical Shift (ppm)

Figure 3: Comparison of 1HNMR spectra of cultivar Sempervivum pseudocalcareum (A) and Sampervivum calcareum (B). Spectra of fractions

which showed strongest activity in-vitro (C, 5) and in-vivo (D, 3)are presented in (C) and (D) respectively.

C

D

Plants
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Table 2: 
1
H NMR chemical Shifts (δ) and coupling constants (Hz) of 

Sempervivum pseudocalcareum metabolites identified by references and using 

1D and 2D NMR spectra (CD3OD-KH2PO4 in D2O, pH 6.0). 

Compounds Chemical Shifts (δ) 

Gallic acid 7.03 (s) 

Syringic acid 3.89(s), 7.31(s) 

Kaempferol 

analogue 1 

6.23 (d, J=2.0 Hz), 6.43 (d, J=2.0 Hz), 6.90 (d, J=9 Hz), 

8.07 d, J=8.8 Hz) 

Kaempferol 

analogue 2 

6.46 (d, J = 2.1 Hz), 6.77 (d, J = 2.1 Hz), 7.00 (d, J = 8.8 

Hz), 8.09 (d, J = 8.8 Hz) 

Myricetin 6.28 (d, J= 2.0), 6.51 (d, J=2.0), 7.30 (s) 

Valine 1.01 (d, J=7.0), 1.06 (d, J=7.0), 2.28 (m) 

Leucine 0.96 (d, J=7.5), 0.98 (d, J=7.5) 

Alanine 1.48 (d, J=7.4), 3.73 (q, J=7.4) 

GABA 1.90 (m), 2.31(t, J=7.5), 3.01 (t, J=7.5) 

Methionine 2.15 (m), 2.65 (t, J=8.0) 

Threonine 1.32 (d, J=6.5), 3.51 (d, J=5.0), 4.27 (m) 

Glutamine 2.46 (t of d), 2.16-2.10 (m) 

Glutamic acid 2.13 (m), 2.42 (m), 3.71 (dd, J=7.0, 1.9) 

α-Glucose 5.17 (d, J=3.78) 

β-Glucose 4.58 (d, J=7.89) 

Fructose 4.08 (d, J=7.80) 

Sucrose 5.39 (d, J=3.94) 

Choline 3.20 (s) 
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Citric acid 2.56 (d, J=17.6), 2.74 (d, J=17.6) 

α-Linolenic acid 0.95 (t, J=7.5) 

Ascorbic acid 4.52 (d, J=2.0) 

Malic acid 2.68 (dd, J= 16.6, 6.6), 2.78 (dd, J=16.6, 4.7), 4.34 (dd, 
J=6.6, 4.7) 

Formic acid 8.45 (s) 

Aspartic acid 2.82 (dd) J = 17.0, 8.5, 2.64 (dd) J=17.0, 10.0 

Shikimic acid 2.18 (dt, J=18.1, 1.7), 2.69 (dt, J=18.0, 5), 3.70 (dd 

J=10,4), 4.00 (m), 4.32 (t, J=4.5), 6.56 (dt, J=4.0, 1.7 Hz) 

 

Multivariate data analysis methods are generally used to see possible 

similarities and differences for the metabolomic studies. Principal component 
analysis (PCA) is considered as primary tool among all these multivariate data 

analysis methods. It is an unsupervised method in which samples are clustered 

or separated purely on the basis of metabolic similarities or differences 
respectively. The NMR data from all the fractions of Sempervivum 

pseudocalcareum have been subjected to PCA to find out the differences among 

the fraction and to identify possible candidate for the separation. The score plot 

of PCA (Figure 4A) shows a clear separation among all the fractions. 
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In order to find compounds responsible of activity, supervised methods 
are used. Projection to latent structures-discrimination analysis (PLS-DA) was 

employed to separate active from less active samples, a supervised method in 

which samples were classified into three different classes by creating dummy 
Y-variables. The samples were classified into high (>50%), medium (<50% and 

>30%), and low (≤30%) activity classes. The score plot of PLS-DA (Figure 5A) 

shows the clear separation among the fractions based of the different classes. By 

looking at the corresponding loading plot of PLS-DA (Figure 5D), it is quite 
clear that mostly phenolic compounds are present in the active fractions. The 

PLS-DA method was validated using permutation test with 20 applications 

(Figure 5C). For activity data R2 and Q2 values for PLS-DA analysis were 0.94 
and 0.88 respectively. Although, a separation was observed in PLS-DA, 

bidirectional orthogonal projection to latent structures –discriminant analysis 

(O2PLS-DA) was also employed. The score plot of O2PLS-DA (Figure 5B) 

shows much better separation among different activity classes. Samples with 
medium activity are grouped on the positive side of PC1 while samples with 

low and high activity are grouped on the positive sides of component 2 and 

negative sides of component 1 respectively. The O2PLS-DA method was 
validated by cross validation-analysis of variance (CV-ANOVA) with a p-value 

of 7.42x10
-24

. By examining the loading plot, the metabolites responsible for 

separation are identified. The high TNF-α activity samples have higher levels of 
phenolic contents while the medium or low activity samples have less or no 

phenolic contents. 

The next step was to perform the direct correlation between the activity 
and NMR data using original anti-TNF-α assay values. Instead of classifying 

samples as high, medium, and low activity groups, the activity data from TNF-α 

Figure 4. Score plot (A, PC1+PC2) and loading plot (B, PC1) of principal component analysis (PCA) of fractions 

from Sempervivum pseudocalcareum. All fractions are separated from each other. Samples are colored according 

to different fractions (1-17).

A Amino and organic acids

Phenolics Sugars

B
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assay for each sample are directly used as such. In such approaches PLS and/or 

PLS-DA are used and two different data sets, independent variable (like NMR 

spectral data) and dependent variable (like anti-TNF-α activity), are correlated 
using regression. 

 

For this purpose projection to latent structures (PLS) analysis was 

performed using the NMR and activity data. The PLS score plot (Fig. 6A) 

shows relatively good separation among the samples but many are overlapping 

with the other groups. Component 1 is mainly responsible for the separation as 
the samples are arranged from low to high activity along the negative to positive 

side of component 1, respectively. For PLS modeling again the permutation 

method through 20 applications was used for validation.  

Finally for the identification of metabolites responsible for high activity 

in Sempervivum pseudocalcareum, we used another multivariate data analysis 
method known as bidirectional orthogonal projection to latent structures 

(O2PLS). Analyses like PLS regression can cause systematic variation of any 

data block due to structured noise present in the data blocks. Other algorithms, 

like O2PLS-DA and O2PLS, are multivariate projection methods which remove 
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the structured noise by extracting linear relationships from independent and 

dependent data blocks, in a bidirectional way, and results in the decomposition 

of systematic variation into two model parts: the predictive or parallel part and 
the orthogonal part (Baur et al., 2006; Chuang et al., 2010). The score plot, 

(Figure 6B) shows very nice separation among low, medium and high activity 

samples based on component 1. This O2PLS model was validated by CV-

ANOVA with p-value of 1.10x10
-17

. Like PLS-DA and O2PLS-DA the 
corresponding loadings plot show that the samples with high anti-TNF-α 

activity contained more Kaempferol derivatives, when compared to samples 

with low and medium activity. 

  Variable importance in the projection can be defined as a weighted sum 

of the squares of the PLS weights. It has been indicated that it is directly 
proportional with the influence of a factor of separation on the score plot which 

means factors having high VIP values are more important for the separation. It 

is also worth to mention that factors having VIP values more than 0.7 could be 

considered as most significant for the separation of samples (Eriksson et al., 
2006). VIP values for O2PL-DA and O2PLS are calculated for different 

compounds responsible for activity. Here it was found that for in-vitro study, 

signals from the kaempferol molecule (6.90) are strongly correlating with 
activity data and have high VIP values 2.52, while in case of in-vivo study sugar 

molecules with signal at (5.10) have the highest VIP value (2.0), whereas 

kaempferol has 1.91 and myrecetin 1.70. The high VIP scores for the identified 

phenolics legitimate their involvement in the separation of high activity samples 
and suggest a role of these compounds in inhibiting TNF-α production and 

neutrophil migration in the in-vivo study.  

TNF-α has been implicated in the pathogenesis of many vascular 

diseases such as atherosclerosis, heart attack, shock and sepsis (Brånén et al., 

Active in-vitro

Active in-vivo

Active in-vitro

Active in-vivo

Figure 6: Score plot of PLS (A), and OPLS (B).
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2004; Li et al., 2005). Therefore, inhibition of cytokine production or function is 

a key mechanism in the control of inflammation. In this study, we have found 

that fractions (4-6) from Sempervivum pseudocalcareum significantly inhibits 
the production of TNF-α in LPS stimulated U937 cell lines. Furthermore, we 

have also shown that fractions (1-3) significantly inhibited neutrophils 

migration towards wounded area in Zebrafish. The NMR profile of these active 

fractions has led to the identification of flavonoids like kaempferol and 
myricetin as related to the activity. 

Flavonoids were reported to possess various biological/pharmacological 
activities including anticancer, antimicrobial, antiviral, antiinflammatory, 

immunomodulatory, and antithrombotic activities (Havsteen, 1983). Of these 

biological activities, the antiinflammatory capacity of flavonoids has long been 
utilized in Chinese medicine and the cosmetic industry in a form of crude plant 

extracts. Many investigations have proven that various flavonoid molecules 

possess antiinflammatory activity in various animal models of inflammation. 

Especially, some flavonoids (quercetin and rutin) were found to inhibit chronic 
inflammation in several experimental animal models (Takahashi et al., 2001). It 

has been reported that flavones, flavonols, and chalcones are the potent 

inhibitors of production of TNF-α in LPS stimulated J774.1 cell lines (Herath et 
al., 2003). Recently, it has been reported that NMR spectroscopy integrated 

with multivariate data analysis was applied successfully for the identification of 

flavonoids responsible of activity (Ali et al., 2012). 

Kaempferol is a common flavonoid in the human diet and has various 

biological activities including antioxidant, anticancer, and antiinflammatory 

effects (Kang et al., 2008; Mahat et al., 2010). A number of reports have shown 
the immunomodulatory effect of kaempferol on T lymphocytes (Okamoto et al., 

2002), B cells (Zunino and Storms, 2009), macrophages (Comalada et al., 2006; 

Hamalainen et al., 2007; Harasstani et al., 2010; Kim et al., 2005; Liang et al., 
1999), neutrophils (Moreira et al., 2007; Selloum et al., 2001; Wang et al., 

2006), basophils (Shim et al., 2009), and mast cells (Kempuraj et al., 2005; Lee 

et al., 2010). A similar inhibition of inflammatory cytokines such as TNF-α, IL-
12, and IL-1β by kaempferol is also observed in LPS-stimulated macrophages 

(Fang et al., 2005; Harasstani et al., 2010; Kowalski et al., 2005).  Myricetin, 

another flavonoid commonly found in tea, wines, berries, fruits and medicinal 

plants, have been reported to possess antiproliferative and antiinflammatory 
effects (Yanez et al., 2004).  



Application of NMR spectroscopy integrated with comprehensive extraction 

method to find antiinflammatory active compounds in the plant of 
Sempervivum pseudocalcareum 

Chap.9 

 

218 

 

The suppression of TNF-α production by flavonoids may occur by 

several pathways:  by inhibition of a key enzyme activity involved in production 

of a group of powerful pro-inflammatory signaling molecules; by inhibition of 
enzyme activity of protein kinases involved in cell activation processes; by 

inhibition of biosynthesis of protein cytokines that mediate various 

inflammatory processes or any combination of these. Recently, it has been 

reported that kaempferol down-regulates inflammatory iNOS and TNF-α 
production in aged rat gingival tissues via the inhibition of NF-kB activation, by 

interfering with the activation of NIK/IKK and MAPK (Kim et al., 2007). 

 

9.4. Conclusion 

 Nuclear magnetic resonance (NMR) spectroscopy integrated with 

comprehensive extraction and multivariate data analysis was applied for the 
identification of active metabolites in Sempervivum pseudocalcareum. Various 

multivariate data analysis methods show good correlation between NMR and 

activity data. Algorithms like PLS and PLS-DA show good separation among 

samples classified as high, medium and low activity. Application of 
bidirectional orthogonality like O2PLS-DA and O2PLS show even more 

discrimination among the classes. The VIP plot showed the NMR signals that 

are correlated to activity. The signals were identified as belonging to 
kaempferol-derivatives, myricetin and sugars. This novel approach allows us to 

screen thousands of plant extracts, and fractions, without an immediate need of 

chromatographic techniques.  
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Chapter 10 

 

Concluding remarks and prospective 
 
Since long ago, plants have been used as the primary source of food, 

timber, fuel, and medicine, among other purposes. The ability of plants to 

produce different kinds of complex compounds makes them a very special, and 

one of the most important sources for developing new drugs. Currently plants, 
plant extracts and plant-derived components are being used as herbal remedies 

against different diseases in different parts of the world. Chronic inflammation 

is linked to numerous human diseases and a serious health problem around the 
world so scientists are trying to find cures for inflammatory diseases. Increasing 

number of evidences suggest that modulation of inflammatory response by 

natural phytochemicals plays an important role in the prevention, mitigation, 

and treatment of many chronic inflammatory diseases. 
The work described in this thesis shows the application of NMR 

spectroscopy integrated with multivariate data analysis for metabolic profiling 

and to find active ingredients from the crude extracts of different plants. The 
supervised multivariate data analysis methods like partial least square (PLS) and 

orthogonal partial least square (OPLS) analysis to study the correlations of 

metabolic profile of the extracts with their bioactivities. Mostly phenolic 
compounds were identified by using this approach. Recently lot of attention has 

been given to a class of secondary metabolites which are extensively present in 

a wide range of food plants: the flavonoids, for which many different biological 

activities have been reported. Epidemiological studies suggest that a high intake 
of vegetables and fruits are associated with lower risk of chronic diseases. 

However, the mechanism of action and the components involved in this effect 

have not been identified clearly. The antiinflammatory actions of flavonoids in-
vitro or in cellular models involve the inhibition of the synthesis and activities 

of different pro-inflammatory mediators such as eicosanoids, cytokines, 

adhesion molecules and C-reactive protein. Molecular activities of flavonoids 
include inhibition of transcription factors such as NF-kB and activating protein-

1 (AP-). However, the impact of in-vitro studies on flavonoids are limited due 

to the non-physiological concentrations utilized (5-100µM). In addition, it has 

been observed in the human studies that flavonoid absorption in the 
gastrointestinal tract is only between 1 and 5% of the ingested food. Moreover, 

in-vivo flavonoids are extensively metabolized to molecules with different 

chemical structures and activities compared with the ones originally present in 
the food. Human studies investigating the effect of flavonoids on markers of 

inflammation are insufficient, and are mainly focused on flavonoid-rich food 
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but not on pure molecules. Most of the studies lack assessment of flavonoid 
absorption or fail to associate an effect on inflammation with a change in 

circulating levels of flavonoids. Human cinical trials on pure flavonoid 

molecules are needed to clarify if flavonoids represent key molecules involved 
in the antiinflammatory properties of food plants. In this study, we tested 

several reference compounds from active extracts. Compounds like curcumin, 

quercetin, kaempferol, myricetin and eugenol were highly active in in-vitro 
studies but none of them showed activity in in-vivo except curcumine. The 

activity might be due to the combination of certain compounds (synergism) or 

unidentified compounds present in the extracts. Further studies are needed to 

confirm this. With the emergence of new analytical tools and techniques with 
lot more precision, accuracy and sensitivity we can deeply look inside plant 

metabolome and find active ingredient from them. Furthermore, proteomics, 

transcriptmics and genomics data is necessary to determine their mechanism of 
action. 
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Cytokines play an important role in the immune system. Any disorder 
in the regulation of cytokines can lead to the development of inflammatory 

diseases. Tumour necrosis factor- α (TNF-α) is one of the most important 

inflammatory cytokines that controls different types of cell functions. The 
overproduction of TNF-α is linked with the development of various diseases 

such as asthma, rheumatoid arthritis, psoriatic arthritis, inflammatory bowel 

disease, septic shock, diabetes and atherosclerosis. Currently, several types of 

clinically approved drugs are available for the inhibition of TNF-α production in 
different disease conditions. These include, Etnercept, Infliximab, and 

Adalimumab. Although these drugs are potentially beneficial to human health, 

they can also exert some devastating effects such as an increased chance of 
infection, heart failure, neurological changes, and problems related to 

autoimmunity. Thus, it is essential to develop safer, less toxic, and more 

beneficial anti-TNF-α drugs. Low molecular weight compounds provide many 
advantages over protein-based drugs, particularly concerning production, 

stability and route of administration. Plants are considered a good source for the 

development of novel drugs and already many natural compounds, belonging to 

various chemical classes like flavonoids, terpenoids, alkaloids, cannabinoids, 
ginsenosides, and phytosterols, have been found to inhibit the upstream 

signalmolecules that are involved in TNF-α expression. The dose at which most 

of these compounds are active in the various in-vitro tests is in the range of 
about 1-50 µM (Chapter 2). 

Since ancient times, in various cultures worldwide, inflammatory 
disorders and related diseases have been treated with plants or plant-derived 

formulations. The anti-inflammatory activity of several plant extracts and 

isolated compounds has already been scientifically demonstrated. In this study, 

we examined the antiinflammatory activities of approximately 66 plant extracts 
in LPS-stimulated macrophages, an in-vitro model for studying 

antiinflammatory drugs or herbs. However, for in-vivo  studies the zebrafish 

embryo has become an important vertebrate model for assessing 
pharmacological and toxic effects. It is well suited for studies in genetics, 

embryology, development, and cell biology. Zebrafish embryos exhibit unique 

characteristics, including ease of maintenance and drug administration, short 

reproductive cycle, and transparency that permits visual assessment of 
developing cells and organs. Because of these advantages, zebrafish bioassays 

are cheaper and faster than mouse assays, and are suitable for large-scale drug 
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screening. The results from our study demonstrate that extracts of Urtica dioica, 
Houttuynia cordata, Salvia officinalis, Adhatoda vasica, Origanum vulgare, 

Sempervivum smaragd, Syzygium aromaticum, Pimenta officinalis, Myristica 

fragrans, Capsicum annuum, Alpinia galanga, Zingiber officinale, Kaempferia 
galanga, Bixa orellana and Pistacia lentiscus show significant inhibition of 

TNF-α in LPS stimulated U937 cells lines. In addition, there are some other 

plants including Origanum vulgare, Rosmarinus officinalis, Curcuma 
xanthorrhiza, Boesenbergia rotunda, Orthosiphon stamineus, Cannabis sativa, 

Psoralea corylifolia, Curcuma longa, and bark of Pistacia lentiscus which show 

highly significant inhibition of TNF-α, but they also exhibited toxicity at the 

highest concentration applied in this study (Chapter 3).  

Recent studies have suggested that psychotropic and non-psychotropic 

phytocannabinoids exert a wide range of pharmacological effects. Based on our 
screening results, we designed an experiment to explore the antinflammatory 

activities of different cannabinoids isolated from Cannabis sativa. These 

include delta9-tetrahydrocannabinol (delta9-THC), cannabidiol (CBD), 
cannabigerol (CBG), cannabinol (CBN) cannabichromene (CBC), as well as 

cannabinoid acids such as delta9-tetrahydrocannabinolic acid (delta9-THCA), 

cannabidiolic acid (CBDA) and cannabigerolic acid (CBGA). We found that the 

acid form of cannabinoids show more significant inhibition of TNF-α as 
compared to the decarboxylated form. These compounds show toxicity towards 

cell lines at concentration of 10 µg/ml, maximum inhibition was observed in 

delta9-THCA followed by CBDA > CBGA > CBD >∆
9
-THC > CBG > CBN 

and CBC at a concentration of 1 µg/ml (Chapter 4).  

Eating diet rich in fruits and vegetables is thought to be the best and 
safest means of preventing cancer and many chronic inflammatory diseases. An 

experiment was designed to detect the anti-TNF-α activity of different fruit 

berries [Cranberry, blueberry, redberry, strawberry, raspberry, blackberry, 

grapeberry (green), grapeberry (red), grapeberry (black)] and find out the 
responsible compounds by using Solid phase extraction (SPE), NMR 

spectroscopy and multivariate data analysis. All the SPE fractions were clearly 

separated on a score plot of principal component analysis (PCA). In order to 
find correlations between metabolites and activities, partial least squares-

discriminant analysis (PLS-DA) and orthogonal partial least squares-

discriminant analysis (OPLS-DA) were used. Signals related to the TNF-α 
inhibition observed in the SPE fractions of berries were identified as a wide 

range of phenolics. By calculating variable importance in the projection (VIP), 

the active ingredients in the high activity samples have been identified as gallic 

acid, caftaric acid, quercetin, myricetin, and (+)-catechin. This study shows the 
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usefulness of NMR spectroscopy in combination with chemometrics to identify 
the possible bioactive metabolites in crude extracts. Furthermore, this study also 

supports the thought that a diet rich in fruit could contribute to the prevention of 

inflammatory diseases (Chapter 5). 

Based on the results of chapter 5, three Portuguese grape varieties at 

different development stages were analyzed for the same activity. Two different 
vintages of ‘Trincadeira’ cultivar were also compared. The initial stages of 

grape development, green and veraison, were found more active against TNF-α 

production as compared to the later ripe and harvest stages. Among the 

cultivars, ‘Touriga Nacional’ was found to be the most potent inhibitor. 
Different multivariate data analyses algorithms based on projections to latent 

structures were applied to correlate the NMR and TNF-α inhibition data. The 

variable importance in the projections plot showed that phenolics like quercetin, 
myricetin, (+)- catechin, (-)-epicatechin, caftarate, and coutarate, were 

positively correlated with high activity. Using this approach, compounds related 

to activity can be identified without extensive and elaborate chromatographic 
separation, and thus allows rapid identification of extracts with biological 

activity (Chapter 6). 

Based on the results in chapter 6, we further tested samples of wine 
which were prepared from those grapes. There are several reports regarding 

cancer preventive properties of polyphenolic compounds present in wines. In 

this study, eleven different types of red wine from Portugal were analyzed for 
their potential TNF-α inhibition. NMR spectroscopy together with multivariate 

data analysis was applied to find active ingredients of wine.  OPLS-DA was 

found most effective in discriminating the high activity samples from the low 
and medium activity samples. According to variable importance in the 

projection (VIP), different phenolic compounds were found to correlate with 

high activity samples and identified as caftaric acid, quercetin, and (+)-catechin. 

Among the different vintages, maximum TNF-α inhibition was found in 
samples from the 2010 vintage. This study shows again the usefulness of NMR 

spectroscopy in combination with chemometrics to identify the possible active 

compounds in crude extracts (Chapter 7). 

Eugenia uniflora is widely used in Argentina, Brazilian and Paraguayan 

folk medicine. The study was designed with the aim of the metabolic 
characterization of fruits of Eugenia uniflora and to determine antiinflammatory 

activities of crude extracts using NMR spectroscopy and chemometrics 

methods. Berries were staged into green, yellow, red and purple according to 

the period towards maturity. The fruits at the green stages presented significant 
antiinflammatory activity in both the assays followed by yellow, purple and red 
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stages. NMR spectroscopy together with multivariate data analysis was applied 
to identify the compounds responsible for activity. Projections to latent 

structures (PLS) were found effective in discriminating high activity samples 

from low activity samples. By analyzing the coefficient plot, the active 
constituents in the high activity samples have been identified as quercetin, 

myricetin, kaempferol, cinnamic acid and chlorogenic acid. NMR spectroscopy 

proved to be a valuable tool for identifying compounds responsible for activity 

(Chapter 8). 

The potential antiinflammatory activities of Genus Sempervivum were 

evaluated by using NMR spectroscopy and multivariate data analysis. Twenty 
four different species of Sempervivum were screened for their ability to inhibit 

TNF-α release. Sempervivum smaragd, Sempervivum pilatus, Sempervivum 

noir, Sempervivum pseudo-calcareum, Sempervinum microcephalum, 
Sempervivum tectorum glaucum showed maximum TNF-α inhibition 

respectively. In the second stage of the experiment, a comparison was made 

between Sempervivum pseudocalcareum (active) and Sempervivum calcareum 
(non active) to find out the responsible compounds for activity. Comprehensive 

extraction integrated with NMR spectroscopy was successfully applied for 

metabolic characterization and identification of compounds responsible of the 

antiinflammatory activity. The approach presented here allows us to screen 
thousands of plant extracts and pure compounds without using laborious 

chromatographic techniques (Chapter 9). 

This bioassay mentioned above was an important goal of this thesis: the 

development and description of a relatively simple, robust and easily 

adaptable in vitro model for screening anti-inflammatory activity. This was 
achieved using the human monocytic cell line, U937, for screening of anti-TNF-

α activity of different plant extracts and isolated pure compounds.  

The zebrafish embryos proved to be a good model for evaluation of 
antiinflammatory activity of crude extracts and pure compounds, confirming the 

utility of zebrafish embryos as an in-vivo model for assessing drug effects by 

offering unique characteristics, including ease of maintenance and drug 
administration, short reproductive cycle, and transparency that permits visual 

assessment of developing cells and organs. Because of these advantages, 

zebrafish bioassays are cheaper and faster than mouse assays, and are suitable 
for large-scale drug screening. Because of the complexity of the mixtures and 

compounds present in minor quantities, it is impossible to extract all from a 

plant using one single solvent system. Thus, solid phase extraction (SPE) was 

used to enrich minor compounds and comprehensive extraction methods to 
extract the total metabolome of the plant material. SPE can be used to extract 
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specific class of compounds.  The major advantage of this method is removal of 
sugars and fatty acids which may interfere in activity based assays. Thus using 

this approach, we were able to extract three different types of fractions from one 

extract based on differences in polarity. Moreover, comprehensive extraction 
was used as an alternative method to obtain the total metabolome. 

 Multivariate data analysis of the NMR spectra of active extracts or 
fractions was used to identify the signals correlating with biological activity. By 

further 2D NMR spectroscopy the active compounds could be identified. 

Application of comprehensive extraction together with multivariate data 

analysis makes the identification of active compounds (dereplication) fast and 
easy without any need for chromatographic steps.  Using this approach, a wide 

range of compounds can be extracted from non-polar to polar. Comprehensive 

extraction is a simple, efficient, robust and reproducible method for 
identification of biologically active compounds from crude extracts. 

In conclusion, NMR metabolomics in combination with bioassays is an 
effective method for rapid dereplication, i.e. the identification of the active 

compounds in active extracts. Interestingly in most cases several active 

compounds were found in active extracts. Using NMR spectroscopy integrated 

with chemometric based methods like (PLS, PLS-DA and OPLS), thousands of 
unexplored plant extracts can be screened in a short time for lead finding 

without laborious and costly chromatographic techniques. 
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Samenvatting 

 

Cytokines spelen een belangrijke rol in het immuun systeem. 
Ontregeling van de regulatie van cytokines kan leiden tot de ontwikkeling van 

ontstekingsziektes. De tumor necrosis factor- α (TNF-α) is een van de 

belangrijkste ontsteking gerelateerde cytokines die verschillende typen 
celfuncties controleert. De overproductie van TNF-α is verbonden met de 

ontwikkeling van verschillende ziektes zoals astma, reumatoïde arthritis, 

psoriasis, artritis, inflammatoire darmziekten, septic shock, diabetes en 

atherosclerose.  

Momenteel zijn er verschillende klinisch goedgekeurde medicijnen 

beschikbaar voor de inhibitie van TNF-α productie bij verschillende ziektes. Tot 
deze medicijnen behoren o.a. Etnercept, Infliximab, en Adalimumab. Hoewel 

deze medicijnen potentiële voordelen hebben voor de menselijke gezondheid, 

hebben ze ook negatieve effecten zoals een toegenomen kans op infecties, hart 
falen, neurologische veranderingen en problemen gerelateerd aan auto-

immuniteit. Zodoende is het essentieel om veiligere, minder schadelijke en beter 

werkzame anti-TNF-α medicijnen te ontwikkelen.  

Natuurstoffen van laag moleculair gewicht hebben vele voordelen ten 

opzichte van eiwit gebaseerde medicatie, vooral wat betreft de productie, 

stabiliteit en manier van toediening. Planten worden beschouwd als een goede 
bron voor de ontwikkeling van nieuwe geneesmiddelen. Van veel natuurstoffen, 

behorende tot verschillende chemische klasses, zoals flavonoïden, terpenoïden, 

alkaloïden, cannabinoïden, ginsenosiden, en fytosterolen, is ontdekt dat zij een 
remming geven op het niveau van signaal moleculen upstream van de TNF-α 

expressie. De dosis waarbij de meeste van deze stoffen actief zijn in de 

verschillende in-vitro testen is in de orde van ongeveer 1-50 µM (Hoofdstuk 2). 

Sinds lang vervlogen tijden, werden en worden wereldwijd in 

verschillende culturen ontsteking gerelateerde ziektes behandeld met planten of 

daarvan afgeleide producten. De ontstekingsremmende activiteit van sommige 
plantenextracten en geïsoleerde stoffen zijn al wetenschappelijk aangetoond. In 

deze studie onderzochten we de ontstekingsremmende werking van 66 

plantenextracten in LPS-gestimuleerde macrofagen, een in-vitro model voor het 
bestuderen van ontstekingsremmende medicijnen in plantenextracten.  

Voor in-vivo studies is het zebravis embryo een belangrijk model 

geworden voor het bepalen van farmacologische en toxicologische effecten. Het 
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is ook zeer geschikt voor studies in genetica, embryologie, 
ontwikkelingsbiologie en celbiologie. Zebravis embryos bezitten unieke 

eigenschappen, zoals het gemak van het kweken en onderhouden van de vissen, 

de eenvoudige toediening van de te testen monsters, een korte reproductie 
cyclus en hun transparantie, wat de visuele beoordeling van ontwikkelende 

cellen en organen mogelijk maakt. Vanwege deze voordelen zijn zebravis 

bioassays goedkoper en sneller dan testen met muizen en zijn ze geschikt voor 
het op grote schaal screenen van nieuwe leads voor geneesmiddelen.  

Uit de resultaten van onze studie blijkt dat extracten van Urtica dioica, 

Houttuynia cordata, Salvia officinalis, Adhatoda vasica, Origanum vulgare, 
Sempervivum smaragd, Syzygium aromaticum, Pimenta officinalis, Myristica 

fragrans, Capsicum annuum, Alpinia galanga, Zingiber officinale, Kaempferia 

galanga, Bixa orellana en Pistacia lentiscus een significante remming geven 
van TNF-α productie in LPS gestimuleerde U937 cellijnen. De extracten van, 

Origanum vulgare, Rosmarinus officinalis, Curcuma xanthorrhiza, 

Boesenbergia rotunda, Orthosiphon stamineus, Cannabis sativa, Psoralea 
corylifolia, Curcuma longa, en de schors van Pistacia lentiscus, geven een 

significante remming  van de TNF-α productie, maar waren toxisch bij de 

hoogste concentraties die in de studie werden gebruikt (Hoofdstuk 3). 

Recente studies hebben aangetoond dat psychotropische en niet-

psychotropische fytocannabinoïden een breed scala aan farmacologische 

effecten teweeg kunnen brengen. Gebaseerd op de resultaten van de screening, 
hebben we een experiment opgezet om de ontstekingsremmende activiteiten van 

verschillende cannabinoïden te bepalen. De volgende, uit Cannabis sativa 

geïsoleerde, cannabinoïden werden onderzocht: delta9-tetrahydrocannabinol 
(delta9-THC), cannabidiol (CBD), cannabigerol (CBG), cannabinol (CBN) en 

cannabichromene (CBC), en ook de cannabinoïde zuren delta9-

tetrahydrocannabinolzuur (delta9-THCA), cannabidiolzuur (CBDA) en 

cannabigerolzuur (CBGA).  

De zure vormen van de cannabinoïden bleken een significante hogere 

inhibitie van TNF-α te vertonen dan hun gedecarboxyleerde vorm. Deze stoffen 
zijn toxisch voor cellijnen bij concentraties van 10 µg/ml. Maximale inhibitie 

werd gevonden voor delta9-THCA gevolgd door CBDA > CBGA > CBD >∆
9
-

THC > CBG > CBN en CBC bij een concentratie van 1 µg/ml (Hoofdstuk 4). 

Een dieet rijk aan fruit en groenten is, zo wordt algemeen gedacht, de 

beste en veiligste methode voor het voorkomen van kanker en vele chronische 

ontstekingsziektes. Daarom werd een experiment opgezet om een mogelijke 
vermindering van TNF-α activiteit te detecteren door extracten van 
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verschillende besvruchten (cranberry, blauwe bosbes, rode bes, aarbei, 
framboos, braam, groene/rode/zwarte druif) en in geval van activiteit de actieve 

stoffen te vinden, door middel van een combinatie van ‘solid phase extraction 

(SPE)’, NMR spectroscopie en multivariaat data analyse. Alle SPE fracties 
waren duidelijk van elkaar gescheiden in een score plot van een ‘principal 

component analysis (PCA)’ van de NMR spectra. Om correlaties te vinden 

tussen de signalen en activiteit, werden ‘partial least squares-discriminant 
analysis (PLS-DA)’ en ‘orthogonal partial least squares-discriminant analysis 

(OPLS-DA)’ gebruikt. De NMR signalen gerelateerd aan de remming van TNF-

α productie, werden geïdentificeerd als behorend tot een brede groep van 

fenolen. Door het berekenen van de ‘variable importance in the projection 
(VIP)’ konden de actieve stoffen in de extracten met  hoge activiteit worden 

geïdentificeerd als: galzuur, caftaarzuur, quercetin, myricetin, en (+)-catechin.  

Deze studie toont de bruikbaarheid aan van NMR spectroscopie, in combinatie 

met chemometrie om potentiële biologisch actieve natuurstoffen te identificeren 

in ruwe extracten. Verder ondersteunt deze studie ook de gedachte dat een dieet 
rijk aan fruit, zou kunnen bijdragen aan het voorkomen of beheersen van 

ontstekingsreacties (Hoofdstuk 5).  

Gebaseerd op de resultaten van hoofdstuk 5, werden drie Portugese 
druiven variëteiten in verschillende ontwikkelingsstadia geanalyseerd op 

remming van TNF-α activiteit. Twee verschillende oogstjaren van de druiven 

van de cultivar Trincadeira werden ook vergeleken. De initiële 
ontwikkelingsstadia van druiven, groen en veraison (net kleurend), bleken een 

sterkere remming te geven van de TNF-α productie, dan de extracten van de 

meer rijpere stadia. Van de cultivars bleek Touriga Nacional de meest potente 
inhibitor. Verschillende multivariaat data analyse algoritmes, gebaseerd op 

projecties naar latente structuren, werden toegepast om de NMR data te 

correleren aan TNF-α productieremmings data. De ‘variable importance in the 

projections plot’ liet zien dat fenolen zoals quercetin, myricetin, (+)- catechin, (-
)-epicatechin, caftaarzuur, en coutaarzuur, positief correleren met hoge 

activiteit. Gebruik makend van deze aanpak kunnen stoffen worden 

geïdentificeerd die gerelateerd zijn aan activiteit, zonder uitgebreide en 
ingewikkelde chromatografische scheidingen en staat daardoor snelle 

identificatie toe van de actieve stoffen in extracten met biologische activiteit 

(Hoofdstuk 6). 

Gebaseerd op de resultaten van hoofdstuk 6, hebben we wijn monsters 

getest, die bereid waren van die druiven. Er zijn verschillende publicaties over 

de preventieve werking op kanker van in wijn voorkomende fenolische 
componenten. In deze studie werden elf verschillende soorten Portugese rode 
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wijn getoetst op hun potentiële TNF-α inhibitie. NMR spectroscopie, samen met 
multivariaat analyse werden toegepast om actieve componenten te vinden in 

wijn. Het bleek dat OPLS-DA het meest effectief is in het discrimineren tussen 

de hoog actieve en de laag en medium actieve monsters. Met de ‘variable 
importance in the projection (VIP)’, werden verschillende fenolische 

componenten gevonden die correleren met monsters met hoge activiteit. Deze 

werden geïdentificeerd als caftaarzuur, quercetin, en (+)-catechin. Van de 
verschillende oogstjaren, werd maximale TNF-α inhibitie gevonden in monsters 

van de oogst uit 2010. Deze studie toont wederom de bruikbaarheid aan van 

NMR spectroscopie in combinatie met chemometrie, voor het identificeren van 

mogelijk actieve stoffen in ruwe extracten (Hoofdstuk 7). 

Eugenia uniflora wordt veel gebruikt in traditionele Argentijnse, 

Braziliaanse en Paraguayaanse medicijnen. De studie was opgezet met als doel 
de metabolieten in de vruchten van de Eugenia uniflora te karakteriseren en om 

een eventuele ontstekingsremmende activiteit te meten van ruwe extracten, om 

vervolgens gebruik makend van NMR spectroscopie en chemometrics 
methoden de actieve stoffen te identificeren. Aan de hand van hun rijpheid 

werden de bessen ingedeeld in de groepen: groen, geel, rood en paars. De 

vruchten in het groene stadium vertoonden significante ontstekingsremmende 

activiteit in beide meet methoden, gevolgd door geel, paars en rode stadia. 
NMR spectroscopie samen met multivariaat data analyse werden toegepast om 

stoffen te identificeren die verantwoordelijk waren voor de activiteit. De 

methode ‘projections to latent structures (PLS)’ gaf een duidelijk onderscheid 
van monsters met hoge en van lage activiteit. Door het analyseren van de 

coëfficiënt plot, konden de actieve bestandsdelen van de hoge activiteit 

monsters worden geïdentificeerd als quercetin, myricetin, kaempferol, 
kaneelzuur en chlorogeenzuur. Met NMR spectroscopie kon de structuur van 

deze stoffen bevestigd worden. (Hoofdstuk 8). 

De potentiële ontstekingsremmende activiteit van extracten van planten 
van het genus Sempervivum werd geëvalueerd door gebruik te maken van NMR 

spectroscopie en multivariaat analyse. Vierentwintig verschillende soorten van 

Sempervivum werden gescreend op hun vermogen om TNF-α productie te 
remmen. Sempervivum smaragd, Sempervivum pilatus, Sempervivum noir, 

Sempervivum pseudo-calcareum, Sempervinum microcephalum en 

Sempervivum tectorum glaucum toonden de sterkste remming. In de tweede fase 
van het experiment werden Sempervivum pseudocalcareum (actief) en 

Sempervivum calcareum (niet actief) vergeleken om de stoffen te vinden die 

verantwoordelijk zijn voor de activiteit. ‘Comprehensive extraction’, 

geïntegreerd met NMR spectroscopie, werd succesvol toegepast voor 
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karakterisatie van de stoffen die verantwoordelijk zijn voor de 
ontstekingsremmende activiteit. De aanpak zoals hier gepresenteerd, stelt ons in 

staat om duizenden plantextracten en zuivere stoffen te screenen, zonder 

gebruik te hoeven maken van bewerkelijke chromatografische technieken 
(Hoofdstuk 9). 

Met de bioassay voor de TNF-α activiteit werd een belangrijk doel van 
deze thesis bereikt:  het ontwikkelen en beschrijven van een relatief simpel, 

robuust en eenvoudig adapteerbaar in-vitro model voor het vinden van 

onstekingsremmende natuurstoffen. Dit werd gerealizeerd met de menselijke 

monocytische cellijn U937, waarin de remming van TNF-α activiteit door 
plantenextracten en plantenstoffen gescreend kan worden. 

Zebravis embryos bleken een goed model voor de evaluatie van anti-ontstekings 
activiteit van ruwe extracten en zuivere stoffen, waardoor het zebravis model 

gebruikt kan worden als een in-vivo model voor het bepalen van 

farmacologische effecten. Vanwege de complexiteit van de mengsels en omdat 
veel stoffen slechts in kleine hoeveelheden aanwezig zijn, is het onmogelijk om 

alle stoffen uit een plant te extraheren met slechts een enkel oplosmiddel. 

Daarom werd ‘solid phase extraction (SPE)’ gebruikt om specifiek bepaalde 

groepen van stoffen, die in kleinere hoeveelheden aanwezig zijn, te verrijken. 
SPE kan worden gebruikt om specifieke klasses van stoffen te extraheren. Het 

grote voordeel van deze methode is dat suikers en vetzuren worden verwijderd, 

die mogelijk interfereren in activiteit gebaseerde toetsen. Met deze aanpak 
konden we drie verschillende typen fracties extraheren van een extract, 

gebaseerd op verschillen in polariteit. Tevens werd de ‘comprehensive 

extraction’ methode toegepast om het totale metaboloom uit de planten te 
extraheren. 

Multivariaat data analyse van de NMR spectra van actieve extracten of 

fracties, werd gebruikt om de signalen te identificeren die correleren met 
biologische activiteit. Met verdere 2D NMR spectroscopie konden de actieve 

componenten worden geïdentificeerd. Het toepassen van ‘comprehensive 

extraction’, samen met multivariaat data analyse, maakt het identificeren van 
actieve componenten (‘dereplication’) snel en eenvoudig zonder dat 

chromatografische stappen nodig zijn. Met deze methode kan een breed scala 

aan stoffen worden geëxtraheerd van niet-polair tot polair. ‘Comprehensive 
extraction’ is een simpele, efficiënte, robuuste en reproduceerbare methode voor 

het identificeren van biologisch actieve stoffen in ruwe extracten. 

NMR metabolomics is, in combinatie met biotoetsen, een effectieve 
methode voor snelle identificatie van actieve stoffen in actieve extracten. In veel 
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gevallen bleken er meerdere actieve stoffen aanwezig te zijn in de actieve 
extracten. Door gebruik te maken van NMR spectroscopie, geïntegreerd met 

chemometrics methoden, zoals PLS, PLS-DA and OPLS, kunnen duizenden 

nog niet onderzochte plantenextracten in korte tijd worden gescreend voor het 
vinden van leads, zonder de noodzaak voor bewerkelijke en dure scheidings 

methodes. 
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