Genomics driven metabolomics novel strategies for the discovery and identification of secondary metabolites
Ries, M.

Citation

Version: Corrected Publisher’s Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/24303

Note: To cite this publication please use the final published version (if applicable).
The handle http://hdl.handle.net/1887/24303 holds various files of this Leiden University dissertation

Author: Ries, Marco
Title: Genomics driven metabolomics: novel strategies for the discovery and identification of secondary metabolites
Issue Date: 2014-02-25
Appendix

Acknowledgements
Curriculum Vitae
List of publications
Curriculum Vitae

Marco Ries was born on October 16th, 1982. After his high-school diploma in 2002 and 9 months of military service, Marco studied chemistry at the Johannes-Gutenberg University (Mainz, Germany) and University of Valencia (Valencia, Spain). During that time, he worked for Clariant GmbH (Frankfurt, Germany) and Sanofi-Aventis GmbH (Frankfurt, Germany), among others. After graduating with a diploma thesis in the field of analytical environmental chemistry under the supervision of Prof. Hoffmann in Mainz, Marco started his PhD project at the division of Analytical Biosciences of the University Leiden (Leiden, Netherlands) in November 2009. Since October 2013, Marco is writing his diploma thesis at the department for quantitative methods and mathematical economics of the University Hagen (Hagen, Germany) to complete his diplomas in business and economics.
List of publications

Application of time-of-flight aerosol mass spectrometry for the online measurement of gaseous molecular iodine
M. Kundel, R. Huang, U. Thorenz, J. Bosle, M. Mann, M. Ries, T. Hoffmann

A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium chrysogenum

Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway
M. Ries, H. Ali, P. Lankhorst, T. Hankemeier, R. Bovenberg, A. Driessen, R. Vreeken
J. Biol. Chem. 2013; 288 (52): 37289-37295

A single unspecific non-linear NRPS is involved in the synthesis of cyclic tetrapeptides in Penicillium chrysogenum
Submitted to PLoS One

Chemoinformatics supported MS^n Comparison Pipeline (CMCP): Towards automated *de novo* structure elucidation using multiple-stage fragmentation tree comparison
Manuscript in preparation

Multiple stage fragmentation tree comparison enables detailed structure elucidation in direct infusion mass spectrometry based experiments
Manuscript in preparation

* Authors contributed equally to this work