Genomics driven metabolomics novel strategies for the discovery and identification of secondary metabolites
Ries, M.

Citation

Version: Corrected Publisher’s Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/24303

Note: To cite this publication please use the final published version (if applicable).
The handle http://hdl.handle.net/1887/24303 holds various files of this Leiden University dissertation

Author: Ries, Marco
Title: Genomics driven metabolomics: novel strategies for the discovery and identification of secondary metabolites
Issue Date: 2014-02-25
Genomics driven metabolomics

Novel strategies for the discovery and identification of secondary metabolites
Genomics driven metabolomics - Novel strategies for the discovery and identification of secondary metabolites
Thesis, Leiden University, Leiden

ISBN: 9789074538817

Cover illustration: Secondary metabolites produced by *Penicillium chrysogenum* drawn as balls-and-sticks. Biosynthetic reactions, performed by the fungus, are indicated by dashed arrows. High structural similarity between two compounds, based on fragmentation tree comparison, is represented by solid two-headed arrows

Printed by Ipskamp Drukkers B.V.
Genomics driven metabolomics
- Novel strategies for the discovery and identification of secondary metabolites

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus prof. mr. C. J. J. M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op dinsdag 25 februari 2014
klokke 11.15 uur

door
Marco Ries

geboren te Lauchhammer, Duitsland

in 1982
This research is supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organisation for Scientific Research (NWO) and partly funded by the Ministry of Economic Affairs (project number 10469).
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>General introduction</td>
<td>7</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium chrysogenum</td>
<td>19</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway</td>
<td>49</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>A single unspecific non-linear NRPS is involved in the synthesis of cyclic tetrapeptides in Penicillium chrysogenum</td>
<td>67</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Chemoinformatics supported MSn Comparison Pipeline (CMCP): Towards automated de novo structure elucidation using multiple-stage fragmentation tree comparison</td>
<td>91</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Multiple stage fragmentation tree comparison enables detailed structure elucidation in direct infusion mass spectrometry based experiments</td>
<td>113</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Summary, conclusions and perspectives Samenvatting</td>
<td>129</td>
</tr>
<tr>
<td>Appendix</td>
<td>Dankwoord Currculum Vitae List of publications</td>
<td>141</td>
</tr>
</tbody>
</table>