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Damage recognition by NER

Obviously, a crucial step in NER is the decision where in the genome it is appropriate
to incise the DNA. Although the damage recognition step is extensively studied it is
still unknown how NER is able to make this decision and how it detects the damaged
nucleotides in the genome. Damage recognition involves several aspects. The basis of
recognition is to distinguish a damaged nucleotide from the undamaged ones. Enzymes
involved in this step must somehow be able to sense certain features of the DNA that
reveal whether it is damaged or not. This is especially a puzzling ability since NER is
able to recognize a large number of chemically and structurally unrelated lesions. Apart
from this feature, damage recognition entails additional aspects. Before a specific DNA
fragment is examined by the NER damage sensors, the location of the lesion must be
determined; enzymes have to search the genome for damaged nucleotides. How the
NER factors search the genome for lesions is currently not known. The recognition
factors may be constantly binding and dissociating, or may scan along the DNA until
an injury is detected. Furthermore, the NER damage sensors may continuously probe
for lesions, or alternatively, the search might only be started in the case lesions are pres-
ent. How damage recognition is regulated is not known in detail, but various regulat-
ing mechanisms appear to be present that might activate, or increase the activity of,
NER proteins once the presence of DNA damage is detected. Of these three different
phases of recognition the final step, the actual detection of a lesion, is decisive for the
incision. The topic of this chapter is the mechanism by which the GGR sub-pathway is
able to determine the presence of a lesion in the DNA.

An important challenge faced by the NER damage recognition factors is the relative
tiny number of lesions compared to the amount of undamaged DNA. Amidst the more
than 12 million base pairs in yeast, or an overwhelming 3.3 billion base pairs in hu-
mans, NER must be able to discriminate a damaged from an undamaged base. Several
NER proteins exhibit specific affinity for DNA lesions, but the preference for damaged
DNA over undamaged DNA of these factors is typically only around a 1000 fold. None
of the proposed damage sensors possess the extraordinary specificity required to ac-
complish lesion-detection in the context of the genome. In fact, it is hard to imagine that
such a protein exists at all. This suggests that NER factors must cooperate to accom-
plish efficient recognition of lesions. One possibility is that a pre-assembled damage
sensor, consisting of multiple NER proteins with affinity for damaged DNA, provides
higher specificity. However, such a complex could only possess enhanced specificity
when its individual components would recognize different aspects of the damaged
DNA. It is doubtfull whether such complexes exist, as analysis of the diffusion rate of
NER proteins indicates that the NER damage recognition proteins operate separately
before engaging the DNA (Houtsmuller et al., 1999; Rademakers et al., 2003).

Alternatively, the incision reaction may only be initiated when two or more inde-
pendently probing damage sensors are bound to the same DNA region. In this case, the
chance that the bound region actually does contain a lesion will be synergistically higher
compared to DNA bound by a single factor. However, as NER factors operate in a pre-
determined order (see 2.2) it seems more likely that the factor binding initially will re-
cruit proteins that verify whether the bound DNA actually contains a lesion. When this
double check method will be applied, the first encounter with a lesion is still depend-
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ent on the search by the first factor. Considering the low specificity of the single NER
factors, this factor should be present in very large quantities and verification by addi-
tional factor(s) should occur fast to achieve efficient recognition. The NER damage
sensor(s) may also apply a different approach. A NER factor may ‘slide’ along the DNA
in search for damaged nucleotides, as recently demonstrated for damage binding fac-
tors of the mismatch repair system (Gorman et al., 2007) and previously for photolyase
(van Noort et al., 1998). In theory this can be an efficient method to locate the lesion,
searching the DNA in a more systematic manner rather than random binding and dis-
sociation. Yet, such a scanning mechanism will almost certainly require the remodeling
of the chromatin structure. Indeed, chromatin remodeling is thought to be an impor-
tant part of GGR, but it has yet to be explained how NER copes with chromatin dur-
ing the search for DNA lesions.

3.1 The composition of NER substrates

It is hard to imagine that there is a common feature shared by all the different lesions
that are removed by NER. It is therefore conceivable that the NER damage recognition
factor(s) are able to detect a deviation in one or more of the characteristics of undam-
aged DNA brought about by the presence of the lesion. All NER substrates invoke
changes to the standard Watson-Crick geometry of the DNA (Dip et al., 2004), alter-
ations commonly referred to as ‘helix distortion’. The efficiency by which the different
NER substrates are repaired via the GGR pathway increases proportionately with the
degree of helix distortion imposed by the lesions (Gunz et al., 1996). For example, the
deformation of the DNA helix induced by (6-4)PPs is more severe than that caused by
CPDs (Kim et al., 1995; McAteer et al., 1998), accordingly, both Rad4 and XPC bind
to (6-4)PPs with a strong preference over CPDs (Batty et al., 2000; Guzder et al., 1998b;
Kusumoto et al., 2001).

Intra-strand crosslinks caused by cis-diamminedichloroplatinum (cisplatin) induce
helix distortion in a variable degree, dependent on the type of crosslink (Bellon et al.,
1991). Consistent with the notion described above, a 1,3 GTG cisplatin crosslink is re-
moved more efficiently than the less helix distorting 1,2-GG and 1,2-AG variants
(Moggs et al., 1997). Furthermore, the positioning of one or two non-complementary
bases opposite a 1,2-GG-cisplatin crosslink or a CPD also improves the repair of these
lesions (Moggs et al., 1997; Mu et al., 1997a; Sugasawa et al., 2001). The observa-
tions above suggest that deviation from the Watson-Crick geometry is the determining
factor that allows recognition of the various lesions by the NER damage recognition
proteins. Indeed, lesions that do not perturb the DNA helix, like C4’ backbone modi-
fications, are not detected by NER (Hess et al., 1997b). Since mismatches and small
DNA loops however are extremely poor NER substrates it seems that disturbances of
the DNA helix alone are also not sufficient to meet the criteria of NER recognition
(Hess et al., 1997a; Hess et al., 1997b; Moggs et al., 1997; Mu et al., 1997a). Work
from the group of Hanspeter Naegeli demonstrated that sites exhibiting disturbed base
pairing are only repaired in the presence of a modified nucleotide (Hess et al., 1997b),
even when these two features are positioned 15 nucleotides apart (Buschta-Hedayat et
al., 1999). These observations show that NER recognizes two aspects of damaged
DNA, and may possibly indicate that the recognition of these two features occurs by
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separate subunits of the NER machinery.
In later experiments from the same group the excision of a non-distorting pivaloyl

adduct was monitored strand specifically. By insertion of additional nucleotides the ef-
fect of a one-sided DNA bulge on the incision reaction was examined (Buterin et al.,
2005). In agreement with earlier results, a pivaloyl adduct that does not interfere with
normal base pairing was only recognized by the NER machinery in the presence of the
DNA bulge in the undamaged strand (Buterin et al., 2005). Interestingly, the DNA was
not incised when this bulge was located in the same strand as the adduct. Moreover,
DNA fragments in which the inserted nucleotides in the opposite strand also contained
a pivaloyl adduct were also not incised (Buterin et al., 2005), suggesting that NER
senses DNA damage via deformations in the undamaged strand of the damaged DNA.
Consistent with this assumption, XPC-hHR23B binding to photoreactive damages was
inhibited when a modified base was positioned in the opposite strand (Maltseva et al.,
2008) and the affinity of XPC for UV treated ssDNA is lower than that for undamaged
ssDNA (Maillard et al., 2007a).

The data above show that NER senses DNA that exhibits helical distortion and con-
tains a chemically modified nucleotide. Of these two, helical distortion appears the
more conspicuous feature and hence a better target for the initial search for DNA dam-
age. Indeed, binding of the initiator of NER, Rad4-Rad23/XPC-hHR23B, is not de-
pendent on the presence of a chemical modification (Sugasawa et al., 2001), suggesting
that NER initially recognizes helical distortion. As mentioned earlier, helix distortion
refers to the deviation from standard, undamaged DNA. But what constitutes the de-
viation recognized by NER? One model assumes that thermodynamic destabilization
of the damaged helix facilitates binding of the NER damage sensors (Geacintov et al.,
2002; Gunz et al., 1996). Thermodynamic destabilization is associated with the low-
ering of the melting temperature of damaged DNA compared to that of undamaged
molecules. The presence of certain lesions however, such as psoralen crosslinks, increase
the thermodynamic stability of the DNA rather than destabilize it, and still are recog-
nized by NER (Shi and Hearst, 1986; Thoma et al., 2005). Moreover, a perfectly nor-
mal TAT/ATA trimer is thermodynamically even less stable than a GGC/CGG
mismatch. Therefore it seems that thermodynamic destabilization alone can not ex-
plain how NER initially identifies damages within the DNA. In view of this, Isaac and
Spielmann (2004) proposed an alternative model, in which an increase in local flexi-
bility in damaged DNA is a determining factor in damage recognition. This model is
based on the observation that conformational alterations in the DNA caused by cova-
lent modifications decrease the energy required to bend the DNA. It was proposed that
the NER damage sensors search for DNA that exhibit increased flexibility. While prob-
ing the DNA for lesions, the NER damage sensors will attempt to force the DNA into
a deformed conformation. The energy required to induce bending of the damaged DNA
must be sufficiently small to (temporarily) trap the sensor protein as it scans the DNA
(Isaacs and Spielmann, 2004). The observation that binding of XPC-hHR23B induces
a strong bend in the DNA, which is fixed at the position of a lesion supports this hy-
pothesis (Janicijevic et al., 2003).

An alternative, though not intrinsically different, view on damage recognition arose
from mathematical analysis of the double helix (Blagoev et al., 2006; Maillard et al.,
2007a). Mathematical models describing the dynamics of double stranded DNA show
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that thermal fluctuations constantly cause the DNA strands to oscillate with respect to
each other, creating short lived bubble structures (Alexandrov et al., 2006). In un-
damaged DNA the oscillations are assumed to be too fast (on the pico to nanosecond
scale) to allow detection by the NER machinery. However, even the presence of a rela-
tively non-distorting CPD dimer leads to a 3 fold increase of the average distance be-
tween the two strands and 25 times increased occurrence of longer lived, larger bubble
structures (Blagoev et al., 2006). This model postulates that NER detects the single
stranded nature of the DNA in the close vicinity of the lesion. An important aspect of
this model is that the oscillations are most pronounced in the undamaged strand, which
is in concord which several damage binding features of Rad4-Rad23/XPC-hHR23B
(Maillard et al., 2007a; Maltseva et al., 2008; Min and Pavletich, 2007).

Summarizing, the exact nature of the ‘helix distortion’ that is required to catch the
attention of the NER machinery is not known, but it is clear that NER recognizes DNA
that deviates from standard B-DNA. It seems that the NER damage sensors force the
DNA into a different conformation, a transaction that is only possible, or more stable,
in the presence of DNA damage. This identification of an aberration in the structure of
the DNA helix might also represent a method by which NER searches the genome. A
NER factor may scan along the DNA, searching for regions that are susceptible to the
conformational change it is trying to inflict. Once the DNA can be forced into a cer-
tain changed conformation, the NER factor traps itself, thereby forming a signal for
downstream NER factors to further inspect the bend region. The receptiveness of the
DNA to this transaction signifies that a lesion may be present, but does not yet confirm
the presence or precise location of a chemically modified nucleotide. It is likely that the
initial damage sensor, stably in complex with the conformationally changed DNA, is
bound by subsequent NER factors that verify the presence of an adducted nucleotide.

3.2 The prokaryotic damage recognition model

To get a better understanding of eukaryotic damage recognition the mechanism in the
prokaryotic system, which is elucidated in considerably detail, is discussed here. The
number of proteins involved in the NER reaction in prokaryotes is limited; just three
proteins are required for the basic incision reaction whereas eukaryotic NER employs
at least 16 proteins. The three prokaryotic players UvrA, UvrB and UvrC (collectively
known as the UvrABC system) can nevertheless cope with a similar diversity of sub-
strates and the lesions are removed in a similar fashion.

Two of the three proteins required for the incision reaction are involved in damage
recognition, while the third, UvrC, is required for the incision. Damage recognition is
not separated from ‘downstream’ NER events but is in fact intertwined with the con-
struction of the pre-incision complex. In line with the ‘bipartite recognition model’
(Hess et al., 1997a) two steps can be discerned in prokaryotic damage recognition, ini-
tial detection of helical distortion (by UvrA2 and UvrB) and subsequent recognition of
the base modification (by UvrB). For detailed reviews on prokaryotic NER see Truglio
et al. (2006a) and Van Houten et al. (2005). A summary of the damage recognition
mechanism is described below.

UvrA and UvrB reside in a UvrA2UvrB2 complex (Malta et al., 2007). The initial
contact with (damaged) DNA is made by the UvrA2 subunit, which exhibits roughly
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1000 fold preference for binding to damaged DNA over undamaged DNA (Seeberg
and Steinum, 1982). The affinity of UvrA2 for (damaged) DNA appears to be largely
based on electrostatic interactions (Pakotiprapha et al., 2008) and the UvrA2 subunit
is therefore expected to bind helical distorted DNA in general and to be insufficient for
determining the true nature of the deformed DNA region.

The decision whether to abort or continue the NER reaction is made by UvrB, the
protein that can be considered to be the central damage recognition factor of the
UvrABC system. The UvrB protein contains several domains required for interactions
with UvrA2 and UvrC, but the key features in UvrB that enable damage recognition are
a ß-hairpin and six helicase motifs that are dispersed throughout the protein. The crys-
tal structure confirms that UvrB meets the requirements of a bona fide helicase, sug-
gesting that UvrB functions in the separation of the DNA strands, similar to the role of
TFIIH in eukaryotic NER.

After the UvrA2-DNA interaction positioned the UvrA2-UvrB2 complex at a po-
tential lesion, the DNA is transferred from the UvrA dimer to UvrB2, initiating the ac-
tual recognition of the lesion. Once the DNA is bound by UvrB, the ß-hairpin is inserted
in between the DNA strands, clamping one of the two strand behind the ß-hairpin. Sev-
eral aromatic residues at the base of the ß-hairpin interact with the DNA via hy-
drophobic interactions. Two specific residues (Tyr92 and Tyr93) are thought to force
the base out of the helix, a mechanism referred to as ‘base flipping’ (Malta et al., 2006;
Moolenaar et al., 2001). The insertion of the ß-hairpin and the subsequent flipping of
bases is presumed to be only possible when base stacking interactions are loosened, a
property that is shared by all the lesions repaired by NER (Van Houten and Snowden,
1993).

Based on the crystal structure of UvrB bound to a ssDNA loop it was suggested that,
once one of the strands is clamped behind the ß-hairpin, ATPase driven 3’ > 5’ translo-
cation of a few nucleotides facilitates a mechanism to pinpoint the precise location of
the lesion (Truglio et al., 2006b). During the translocation the nucleotides are proposed
to be flipped out one by one into a hydrophobic pocket of UvrB. When a damaged nu-
cleotide is encountered, the translocation will be arrested as it will not fit in the hy-
drophobic pocket (Truglio et al., 2006b). In this model, the damaged base will always
be located directly 5’ of the flipped-out nucleotide. These results are supported by the
notion of Malta et al. that flipping of the base 3’ adjacent to the lesion may be the gen-
eral mechanism for damage recognition (Malta et al., 2006).

Summarizing, in prokaryotic NER high specificity is achieved by combining a gen-
eral scanning for sites that display helical distortion followed by a more detailed de-
tection of the damaged nucleotide. The search for DNA exhibiting helical distortion is
initially performed by UvrA but also involves UvrB, which uses its ß-hairpin to detect
regions of disturbed basepairing or basestacking. In both the UvrA2-UvrB-DNA and
UvrB-DNA complexes the DNA is wrapped around the UvrB protein, causing a sharp
kink in the DNA (Shi et al., 1992; Verhoeven et al., 2001). In line with the general
mechanism to probe for helix distortion suggested in the previous paragraph, the
UvrA2-UvrB2 complex may probe for DNA regions that are stable in this forced con-
formation. However, it appears more likely that the wrapping of DNA facilitates the
possibility to place the ß-hairpin in between the strands when destabilized DNA is en-
countered. Successful insertion will trap the complex and trigger ATP driven translo-
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cation to localize the damaged nucleotide. UvrB can only examine one strand and at this
stage UvrB does not ‘know’ which strand contains the lesion. However, the presence of
two UvrB molecules in the UvrA2-UvrB2 complex might enable the inspection of both
strands of the DNA; when no damage is detected in the first search, the DNA might be
transferred to the second UvrB protein to inspect the other strand (Verhoeven et al.,
2002).

3.3 Damage recognition in eukaryotic NER

Sensing helical distortion
Assuming that the principle of damage recognition in eukaryotes is comparable with
that in the prokaryotic system, a two step mechanism will also be applied in eukary-
otes. In the core-NER reaction Rad4-Rad23/XPC-hHR23B is the initial damage recog-
nition factor and hence the primary candidate to function as a sensor for helical
aberrations. Rad4/XPC indeed displays a general affinity for distorted DNA. XPC-
hHR23B binds mismatch bubble structures regardless of the presence of a modified
base (Sugasawa et al., 2001). The crystal structure of CPD-bound Rad4 (discussed in
section 2.3) implicates that Rad4 has affinity for DNA that is destabilized such that it
allows insertion of the Rad4 ß-hairpin in between the strands of the DNA. In addition,
a predicted conformational change of the DNA bound Rad4 is postulated to introduce
a kink in the DNA (Min and Pavletich, 2007). Binding of XPC-hHR23B is observed to
kink DNA fragments regardless of the presence of a lesion. When the DNA fragment
contains a lesion, XPC-hHR23B is fixed at the site of the injury (Janicijevic et al., 2003).
Similar to what has been suggested above for UvrA2-UvrB2, the kinking of the DNA
might be required to allow inspection of basepairing by the ß-hairpin. Possibly, Rad4-
Rad23/XPC-hHR23B may actively scan along the DNA for regions that are suscepti-
ble to insertion of the ß-hairpin. The domain in Rad4 that binds undamaged DNA
adjacent to the lesion (Min and Pavletich, 2007) might function to anchor the DNA
while attempting to place the hairpin between the strands of the DNA. The crystal
structure shows no direct contact between Rad4 and the damaged nucleotides (Min
and Pavletich, 2007), indicating that a chemical modification is not required in order
to facilitate the Rad4-DNA interaction. This strongly suggests that Rad4-Rad23/XPC-
hHR23B recognizes the consequences of the presence of the lesion and that the lesion
itself has to be detected by a different factor.

Recognition of the damaged nucleotide
In prokaryotes, ATP driven helicase activity of UvrB confirms the presence and the pre-
cise location of the damaged nucleotide, utilizing the ß-hairpin to flip out nucleotides
one by one, until it arrests when the damaged nucleotide is encountered (see 3.2). In eu-
karyotes a similar mechanism may be applied. Here, a ß-hairpin is already inserted
through the DNA by Rad4. Rad4 lacks helicase or ATPase activity and can therefore
not employ an UvrB-like damage-localization mechanism by itself. Yet, a second NER
factor might translocate the DNA while the Rad4 ß-hairpin is kept in place in between
the DNA strands. The only core-NER factor possessing helicase activity is TFIIH, which
is indeed the first factor that is recruited after Rad4-Rad23/XPC-hHR23B binding
(Volker et al., 2001; Yokoi et al., 2000). Rad4-Rad23/XPC-hHR23B and TFIIH could
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cooperate to locate the damaged nucleotide, and consequently confirm that the DNA
bound by Rad4/XPC is actually damaged. As Rad4 binds the undamaged strand and
the flipped out thymine dimer is exposed towards the solvent (Min and Pavletich,
2007), it must be assumed that TFIIH not only provides the helicase activity, but also
the equivalent of the UvrB hydrophobic pocket that arrests the translocation once a
damaged nucleotide will not fit into the pocket. Very recently, analysis of the crystal
structure of an archeal XPD protein (a helicase subunit of TFIIH) showed the presence
of a narrow pocket that could hold non-adducted bases but would reject damaged sub-
strates, prompting the suggestion that this pocket may enable XPD to verify the pres-
ence of damaged nucleotides (Wolski et al., 2008).

Alternatively, the TFIIH helicase activity may be involved in the verification of the
lesion separately from base flipping by the Rad4/XPC ß-hairpin. Since the Rad3 heli-
case activity is inhibited in the presence of DNA damage, it has previously been pro-
posed that Rad3/XPD will arrest when processing a damaged nucleotide (Naegeli et
al., 1992, , 1993a) and that by this feature TFIIH might determine the presence and lo-
cation of a chemical modification to the nucleotide (Wood, 1999).

Rad3/XPD will inspect one strand of the potentially damaged DNA, but it is not
clear how NER proceeds when no lesion is identified in the examined strand. Will the
complex disassemble or does TFIIH somehow check the second strand? Possibly, ini-
tial binding of Rad4/XPC already notifies in which strand the lesion is present. Al-
though Rad4 also binds DNA regions that do not contain a damaged nucleotide, when
a lesion is present, binding of Rad4 may confer strand specificity. The Rad4-CPD crys-
tal structure shows that the CPD is approached from the side of the undamaged strand
and in fact predicts that Rad4 will be unable to approach the DNA from the strand that
contains the CPD (Min and Pavletich, 2007). In concord, It has been shown that bind-
ing of XPC-hHR23B to ssDNA is inhibited by the presence of DNA damage (Maillard
et al., 2007b; Trego and Turchi, 2006) and experiments by Maltseva et al. (2008) show
that XPC-hHR23B requires an undamaged strand opposite the adducted strand in
order to bind. These results strongly suggest that Rad4/XPC recognizes deviations in
the undamaged strand of damaged DNA, in support of the model postulating that the
presence of a NER substrate leads to an increase in oscillation of primarily the un-
damaged DNA strand (Blagoev et al., 2006; Maillard et al., 2007a).

In eukaryotes an additional protein, Rad14/XPA, is implicated in damage recogni-
tion. The role of Rad14/XPA is not clarified, but since the protein acts after TFIIH and
preferentially binds to damaged DNA in vitro it was assumed that Rad14/XPA func-
tions as a damage verification factor. Nevertheless, Rad14/XPA does not appear to ex-
amine the damaged DNA in more detail than Rad4/XPC does in the initial probing. A
detailed examination of the DNA binding characteristics of XPA demonstrated that
the affinity of XPA for damaged DNA is entirely based on the presence of deformations
in the DNA helix and does not require any chemical modification of nucleotides (Mis-
sura et al., 2001). Also the binding of the XPA-RPA complex, which was reported to
possess superior damage specificity compared to XPA or RPA alone, is dependent on
helix distortion only (Missura et al., 2001). Based on the affinity of XPA for certain
DNA structures the authors concluded that rigid bending of the deoxyribose-phosphate
backbone is the predominant factor that determines the high affinity interaction of XPA
with DNA (Missura et al., 2001). These data implicate Rad14/XPA in the recognition
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of specific structural features of the developing open complex, not in the direct sensing
of the lesion. As the inclusion of XPA in the XPC-hHR23B-TFIIH-DNA complex is re-
ported to stimulate strand separation by TFIIH (Coin et al., 2006; Winkler et al., 2001)
it seems that lesion-verification by TFIIH is initiated only after recruitment of XPA,
implicating the protein in indirect verification of the lesion. In general XPA appears
mainly involved in the architecture of the pre-incision complex. The DNA binding prop-
erties of Rad14/XPA and its interactions with most of the core-NER proteins likely en-
ables the coordination of the NER complex in relation to the damaged DNA.

The data discussed here strongly suggest that Rad4-Rad23/XPC-hHR23B and TFIIH
are the key players in damage sensing in eukaryotes (Figure 3). The heart of the dam-
age recognition is performed by the TFIIH helicase subunit Rad3/XPD. Arrest of heli-
case activity serves as a signal to proceed with the reaction; when TFIIH is not
obstructed it may dissociate from the substrate along with Rad4-Rad23/XPC-hHR23B.
The true nature of the helicase-arrest is not essentially relevant for this model of dam-
age recognition; it may require ‘active’ base-flipping by the ß-hairpin (as suggested for
prokaryotic NER), but may also be an intrinsic characteristic of the Rad3/XPD (or per-
haps all) helicase(s). Importantly, the central enzyme in damage recognition, TFIIH,
does not require affinity for damaged DNA, a property that was the basis to implicate
certain NER proteins in the damage recognition process.

The principle of damage recognition in prokaryotes and eukaryotes might be com-
parable since similar tools are applied (the ß-hairpin and helicase activity); however, the
events that lead to recognition are organized differently in these two systems. In
prokaryotes the two recognition proteins (UvrA and UvrB) exist in one complex
whereas in eukaryotes Rad4/XPC and TFIIH operate as separate units, although some
reports show interaction between Rad4-Rad23/XPC-hHR23B and TFIIH in absence
of DNA damage (Drapkin et al., 1994; Mu et al., 1995). In prokaryotes, UvrB is in-
volved both in the detection of helix distortion and in the precise localization of the le-
sion, i.e., it first inserts its ß-hairpin through the DNA strands and then applies helicase
activity. Rad4/XPC senses helical disrupted DNA and sets the stage for the localization
of the lesion in the process. However, the required ATPase/helicase activity for the dam-
age-verification is provided by the Rad3/XPD subunit of the consequently recruited
factor TFIIH.
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Figure 3
Possible model for damage recognition. (A) Damaged DNA is scanned by Rad4-Rad23, probing for regions
that are destabilized such that the Rad4-β-hairpin can be inserted in between the DNA strands and/or DNA
that can be forced into a curved conformation. How this scanning is performed is not precisely known. Rad4-
Rad23 could slide along the DNA until a lesion is encountered or the Rad4-Rad23 complex may continu-
ously bind and dissociate until a damaged region is encountered. (B) Once Rad4-Rad23 is bound to a DNA
region that is bendable and/or susceptible to the insertion of the β-hairpin, Rad4-Rad23 is (temporarily)
trapped, allowing the recruitment of TFIIH. (C) The helicase activity of TFIIH separates the two strands. The
presence of a modified nucleotide will block the Rad3 helicase, triggering the further formation of the NER
pre-incision complex. Absence of a modified nucleotide will lead to disassembly of the DNA-Rad4-Rad23-
TFIIH complex.
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