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Introduction

Immunity against tuberculosis

Currently no effective vaccines exist against the three deadliest infectious diseases on earth:
tuberculosis, HIV/AIDS and malaria [1]. Tuberculosis (TB) - in humans and other
species - is caused by bacteria of the Mycobacterium tuberculosis complex (MTBC): a
highly genetically conserved group of mycobacteria including M. tuberculosis, M.
africanum and M. bovis, that has evolved from an estimated 3 million years old common
progenitor [2]. The origin of M. tuberculosis (Mtb), the main causative agent of human TB,
can in all probability be traced back at least 70 000 years to early human populations in
Africa, and Mtb’s distinct seven lineages correspond to the migration patterns of humans
across the globe [3]. TB became epidemic in medieval Europe, in which period the
disease had many names including ‘consumption’ or ‘the white plague’ [4]. No other
pathogen in the history of man has resulted in so many deaths [4]: in the past 200 years
around one billion people have died from TB. Only in the late 19" century Mtb was
identified by Robert Koch as the pathogen causing human TB. The discovery of the first
antibiotics against TB dates back to the 1940s [4]. Currently, one-third of the world
population is latently infected with Mtb [5]. In latent infection non- or slowly replicating
Mtb bacilli are present, yet the infection is contained in a subclinical state [6]. The
lifetime risk of developing active TB disease is 3 - 10%; this risk increases to 5 - 10%
per year in HIV-infected individuals [6]. Though in the western world TB incidence has
dropped spectacularly, in developing countries TB has become one of the major health
problems. This has partly been driven by high HIV prevalence, and TB is the leading
cause of death in HIV-infected patients [5]. The increased prevalence of type-II diabetes
mellitus in developing countries further adds to the TB epidemic [7]. In 2013 1.5 million
people died from TB disease, and middle- or low-income countries accounted for 95% of
these TB-deaths [5].

During its co-evolution with the human host, Mtb has evolved as a master manipulator of
the immune system. Following inhalation of Mtb-loaded aerosols, the bacterium is
phagocytosed by professional phagocytic cells in the airways. Mtb is however
remarkably capable of persisting in these innate phagocytic cells, employing various
strategies that enable it to survive in the hostile cellular compartments within the
infected host cell (reviewed in [8]). Mtb also inhibits the migration of infected dendritic

cells (DCs) from the infected site to the draining pulmonary lymph nodes (LN) by 10-14
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days, thereby delaying the initiation of the adaptive immune response compared to other
pathogens, as assessed in murine TB infection models [6;9]. This time-window likely
enables establishment of infection before onset of specific immunity. Within the draining
lymph nodes, naive T-cells are primed and induced towards differentiation into a variety
of pro-inflammatory or regulatory CD4" and CD8" T-cell subsets [8].

Both CD4" T helper (Th)-1 (IFNy")-cells as well as CD8" T-cells are essential in protection
against TB [10]. Thl IFNy- and TNFo-producing T-cells activate macrophage effector
mechanisms, whereas CD8" T-cells produce cytolytic molecules as well as pro-
inflammatory cytokines [11]. IFNy'IL2'TNFa' polyfunctional CD4" T-cells could be
important mediators of protection against TB, since polyfunctional T-cells produce
higher levels of cytokines compared to single-cytokine producing T-cells, and their
simultaneous production might also allow for synergistic activity of these cytokines [12].
Indeed, in a murine model of vaccination against Leishmania major, an intracellular
pathogen, the frequency of IFNy TL2'TNFa" polyfunctional CD4" T-cells correlated with
vaccine-induced protective immunity; and similar data were reported for BCG in that same
study [12]. One approach in the quest for immune correlates of protection has been to
compare immunity in individuals with latent, controlled infection versus individuals with
active TB. However, reports on mono- vs. triple-cytokine producing T-cells in latent versus
active TB in adults have been conflicting [13;14]. Since polyfunctional T-cells are present
in active TB they appear not to be the hoped for surrogate marker of protection against
active TB [11;14].

Other T-helper subsets include Th17-cells, Th22, Th9-cells, and follicular helper T-cells
[8]. Th17 cells produce IL17, a cytokine that is vital in the recruitment and activation of
neutrophils, but its excessive production can lead to hyper-inflammation and tissue
damage [11]. CD1-restricted T-cells, MAIT cells and HLA-E restricted CD8" T-cells are
alternative T-cell subsets that recognize antigens through non-classical MHC-1b

presentation, that may contribute directly in the combat towards Mtb [15-17].

M. tuberculosis-induced regulatory T-cells
As opposed to pro-inflammatory cells, regulatory T-cells (Treg cells; Tregs) inhibit pro-

inflammatory responses and are vital for maintaining immune homeostasis, inhibiting auto-
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immunity, and preventing excessive tissue destruction that results from persistent
immune activation during infection [18]. However, regulatory mechanisms can also be
exploited by Mtb for its own benefit, as demonstrated in murine TB-models: Tregs were
induced in the LN by Mitb-infected DCs, and further delayed the priming of pro-
inflammatory CD4" and CD8" T-cells, thereby even further delaying the migration of
these cells to the lung [19]. The early establishment of successful Mtb infection therefore
is favoured by a myriad of mechanisms, including suppression of immunity by Tregs.

A hallmark of Mtb infection is granuloma formation: early during the immune response
innate cells control and sequester the infectious lesion, followed after two weeks by T-
cells migrating into the granuloma periphery, further sequestrating the infected tissue [6].
Also during chronic infection, the granuloma represents a dynamic environment with in-
and efflux of immune cells and a spatial distribution of pro- and anti-inflammatory immune
cells [20;21]. Although as mentioned above, Tregs may have a beneficial effect in
limiting pulmonary tissue destruction during inflammation, this comes at the potential risk
of pathogen persistence [18].

Chapter 2 further introduces and reviews the role of Tregs in acute and chronic
human infectious diseases, including Mtb, the induction of Tregs by tolerogenic antigen-
presenting cells, other mechanisms of Treg induction and expansion, and their modes of

suppressing immunity.

Terminally differentiated T-cells in chronic Mtb infection

During chronic infection, pro-inflammatory T-cells are essential to maintain control of
Mtb, and this requires continued effector T-cell function and proliferation of T-cells [22].
However, in chronic viral infections and tumours many studies have shown how continued
antigen exposure ultimately drives T-cells into functional exhaustion, a state also called
terminal differentiation or the chronic (infection) phenotype [23]. These T-cells are
marked by the expression of inhibitory receptors and are impaired in their
proliferative capacity [23]. Persistent Mtb infection could thus potentially exhaust the T-
cell response in a similar way.

Expression of PD-1 has been associated with exhaustion of T-cell function in many human

chronic viral infections [24-26], but interestingly, in murine TB proliferating and cytokine-
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producing T-cells were marked by PD-1 expression [27;28]. In contrast, murine T-cells
with impaired proliferative and/or cytokine-expressing capability expressed the inhibitory
marker KLRG1 [27-29]. Also the protective efficacy against TB-challenge of Mtb-antigen
specific KLRG1" T-cells was decreased, compared to PD-1" T-cells, in a murine adoptive
transfer model [27]. These markers have not been compared yet in the various stages of
human TB infection, and it is unknown whether these markers demarcate antigen
exposure, or are also indicative of loss of T-cell mediated control in chronic human TB

infection.

BCG-vaccination against tuberculosis

Mycobacterium bovis bacillus Calmette-Guérin (M. bovis BCG), the only available and
licensed TB-vaccine, was developed already in 1921. BCG was derived from
Mycobacterium bovis, a bacterium of the Mycobacterium tuberculosis complex that causes
TB in cattle and wildlife; and attenuated through years of continuous in vitro passage by
Albert Calmette and Camille Guérin [30]. Estimates are that BCG has been administered
at least 3 billion times since its introduction in 1921, which is more than any other
vaccine. It is part of the WHO Expanded Programme on Immunization (EPI) and as such
routinely administered at birth in nearly all (developing) countries with high TB-
prevalence. M. bovis BCG-vaccination protects infants from disseminated forms of TB, but
it provides insufficient and inconsistent protection against pulmonary TB in adults [31].
Although new vaccines against TB are being developed and evaluated, aiming to either
replace BCG or boost its effect, no new effective vaccine is available yet [31]. A recent
phase 2B trial in infants in South Africa demonstrated no efficacy in terms of protection
against developing TB disease of the TB-vaccine candidate MVASS5A, when given as a
booster following previous BCG-vaccination, compared to BCG alone, even though T-cell
responses were induced [32].

TB-vaccine efficacy would have to include protection against the development of active
pulmonary TB in the adult population, since this is the transmissible form of the disease; it
has been estimated that a vaccine effective against active pulmonary TB in the adult

population would have an enormous impact on the TB-epidemic [33]. A major conundrum



Introduction

in TB-vaccinology is what exactly constitutes protective immunity against TB and how this
can be achieved by vaccination. Most successful vaccines against human pathogens have
been those for which the induction of humoral immunity sufficed [34]. The
predominantly intracellular lifestyle of Mtb, however, clearly necessitates more than
antibodies, as is the case for HIV and malaria [35]. However, there is no clear leading
example for vaccine design against these three deadly infectious diseases. Basic
research into which exact mechanisms of vaccine-induced (cellular) immune responses are
essential to induce protection, are needed to guide vaccine design [31]. A further
complicating factor is the lack of any true correlate of protection, such that vaccine trials
currently require long follow up to reach clinical endpoints [36]. New surrogate endpoints
of protection may be identified through researching vaccine-induced cellular profiles and
mechanisms of protection. The availability of such correlates would accelerate the
evaluation of TB-vaccine candidates in smaller cohorts through increased statistical power
[36;37].

The effect of BCG-vaccination in protecting infants from disseminated forms of TB
may be partly due to epigenetic modifications in innate immune cells such as trained
immunity [38], and this could also explain the ‘non-specific effect’” of BCG-vaccination
in protecting infants against other unrelated infectious diseases [39]. Further, specific
cytokine-expressing CD4" and CD8" T-cells are induced by BCG-vaccination in infants
and adults [40-47]. IFNy TL2 " TNFa" polyfunctional CD4" T-cells have been demonstrated
in infant BCG-vaccination [48], yet conflicting reports exist on whether adult BCG-
vaccination induces polyfunctional T-cells [49;50]. A large follow up study in BCG-
vaccinated infants revealed that there was no association between the induction of
polyfunctional CD4" T-cells and protection against TB [51]. Thus, it is not clear whether
BCG-vaccination induces polyfunctional CD4" T-cells in adults, and whether these cells
are involved in mediating vaccine-induced protective immunity in adults against
pulmonary TB.

Several other, and non-mutually exclusive hypotheses exist concerning the incomplete
protection mediated by BCG-vaccination in adults. Systematic reviews have indicated
that the protective efficacy of BCG wanes over time [52;53], and this could partly be
explained by the relative inability of BCG to induce stable long-term central memory

T-cells [54;55]. Further, the immune response to BCG-vaccination in adults may be
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hampered by blocking BCG replication through pre-existing immune responses against
non-tuberculous mycobacteria (NTM) that are present in the environment (especially in
tropical regions, and this would explain the ‘latitude effect’ in protective efficacy) [56].
Also, BCG’s protective efficacy could have diminished through the loss of protective
antigens by in vitro passaging [57], and indeed it has been shown that BCG-vaccination
fails to induce immune responses to e.g. DosR regulon proteins, likely because these are
not expressed following intradermal vaccination [58]. In addition, the response to BCG-
vaccination could be modulated by helminth or NTM co-infection [31].

M. bovis BCG may itself induce regulatory responses in humans; IL10-producing CD4"
Tregs have indeed been demonstrated in BCG-vaccinated newborns and adults [59;60].
CDS8" Tregs were demonstrated in mycobacteria-infected lymph nodes, and could be
isolated from in vitro live BCG-activated PBMCs from blood donors, that had in vitro
reactivity to Mtb-PPD [61]. However, CDS8" Tregs are less studied - and often even
overlooked - compared to CD4" Tregs, especially in infectious diseases and vaccination
[18], and no paired analysis of BCG-activated CD4 " vs. CD8" Tregs exists. Thus, there are
virtually no data to estimate the relative impact of CD4" vs. CD8" Tregs on BCG-vaccine
immunogenicity or protective efficacy. In addition, much is still unknown regarding how
CD8" Tregs mediate suppression of Th1 T-cells [18].

Recent studies in murine TB-vaccine models discovered a relation between expression of
KLRGI1 or PD-1 and vaccine-induced immunity against TB: in these models KLRGI1
expression marked terminally differentiated T-cells that had decreased cytokine
polyfunctionality and proliferative capability compared to PD-1-expressing T-cells, and
KLRG1 expression was associated with impaired protection against TB-challenge [62;63].
However, the induction of KLRGI1 expression on human T-cells in response to
mycobacteria in particular has not been investigated yet. M. bovis BCG can be
isolated as a live bacterium from the vaccine lesion months after vaccination,
demonstrating antigen persistence, but it remains unknown whether prolonged antigen
exposure could drive inhibitory marker expression by T-cells.

Thus, several possible explanations have been formulated to account for the incomplete
protection against TB mediated by BCG-vaccination in the adult population, and better
research into BCG-vaccine immunogenicity in adults is needed to understand immune

responses and immune response diversity induced by this almost a century old vaccine.
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Basic research into which exact mechanisms of vaccine-induced (cellular) immune
responses are essential for protection will also help guiding future vaccine design

[31], and new surrogate endpoints of protection may be identified in parallel.

Outline of this thesis

There is no effective vaccine against pulmonary TB in adults. The only currently available
TB-vaccine, M. bovis BCG, reduces the risk of severe TB in infants, but provides highly
variable and only limited protection against pulmonary TB in adults. This thesis aims to
characterize the M. bovis BCG-reactive human T-cell response, in order to identify
cellular responses that may account for the suboptimal and poorly understood protective
efficacy of BCG-vaccination. Firstly, through assessment of the induction of CD4" and
CD8" regulatory T-cells by BCG in human adults. Secondly, in view of the inconsistent
results on (vaccine-induced) cytokine-producing T-cell subsets in protected vs. non-
protected cohorts, by investigating primary BCG-vaccine induced T-cell responses,
including both pro-inflammatory and regulatory cellular subsets. Thirdly, by assessing
specific induction of inhibitory markers, especially KLRG1, expressed on human T-cells
following BCG-vaccination in adults, and whether expression of such inhibitory markers
would correlate with impaired immune control in patients with active TB disease compared
to individuals with latent (controlled) Mtb infection.

Chapter 2 summarizes and discusses current evidence for the impact of regulatory T-cells
on protective immunity in human infectious diseases and following vaccination. The
chapter highlights mycobacteria, including M. tuberculosis, M. bovis BCG, M. leprae and
non-tuberculous mycobacteria (NTM) as manipulators of the human immune system.
Chapter 3 presents a comparative analysis of the suppressive phenotypes and functions of
BCG-activated CD4" compared to CD8" T-cells. PBMCs were isolated from human donors
who responded in vitro to M. tuberculosis PPD and restimulated with BCG. Considering
the partly different antigen presentation pathways targeted by live vs. killed BCG bacteria
in activating CD8" vs. CD4" T-cells we compared live vs. heatkilled BCG in inducing the
suppressive phenotype and function of BCG-activated CD4" vs. CD8" T-cells.

CD39 (E-NTPDasel), an ectoenzyme hydrolysing pericellular ATP to AMP, is a relatively
new marker of CD4" T-cells with a regulatory phenotype and activity. CD39 has been

-17-
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found to be expressed on T-cells circulating in patients with active TB and is also induced
on T-cells following vaccination with novel candidate TB-vaccines. The role of CD39 or
its expression by BCG-activated CD8" Treg cells, however, had not been investigated.
Chapter 4 investigates the expression of CD39 and its involvement in mediating
suppression by in vitro live BCG-activated CD8" Treg cells.

The above studies describe in vitro BCG-activation of Treg subsets. However, to follow
induction of T-cell subsets by BCG-vaccination, we prospectively studied the pro-
inflammatory and regulatory T-cell response induced by primary BCG-vaccination of
healthy adult volunteers (Chapter 5). Identification of immune responses was further
complemented by assessing local vaccine-induced skin reactivity (by ‘classical’
inflammation markers), serum CRP, and IFNy-expression/-production assays.

Finally, in Chapter 6 the expression of markers with a role in T-cell inhibition was
studied: the expression of KLRGI, PD-1 and CTLA-4 on T-cells was determined
following BCG-vaccination, the proliferative capacity of KLRG1- vs. PD-1-expressing T-
cells was compared; and the expression of these markers in active TB disease, latent Mtb
infection, and following TB-treatment was evaluated.

In the concluding Chapter 7 the most important findings are summarized and discussed.
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Abstract

Regulatory T-cells (Tregs) act at the interface of host and pathogen interactions in human
infectious diseases. Tregs are induced by a wide range of pathogens, but distinct effects of
Tregs have been demonstrated for different pathogens and in different stages of infection.
Moreover, Tregs that are induced by a specific pathogen may non-specifically suppress
immunity against other microbes and parasites. Thus, Treg effects need to be assessed not only
in homologous but also in heterologous infections and vaccinations. Though Tregs protect the
human host against excessive inflammation, they probably also increase the risk of pathogen
persistence and chronic disease, and the possibility of disease reactivation later in life.
Mycobacterium leprae and Mycobacterium tuberculosis, causing leprosy and tuberculosis,
respectively, are among the most ancient microbes known to mankind, and are master
manipulators of the immune system toward tolerance and pathogen persistence. The majority
of mycobacterial infections occur in settings co-endemic for viral, parasitic, and (other)
bacterial co-infections. In this paper, we discuss recent insights in the activation and
activity of Tregs in human infectious diseases, with emphasis on early, late, and non-
specific effects in disease, co-infections, and vaccination. We highlight mycobacterial
infections as important models of modulation of host responses and vaccine-induced

immunity by Tregs.
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Introduction

A myriad of innate and adaptive immune regulatory cells is induced upon infection,
including cells of different lineages: regulatory-like macrophages, dendritic cells (DCs),
NKT-cells, T-cells, B-cells, neutrophils, and mesenchymal stem cells. During the last
decade, many reports have described the role of regulatory T-cells (Tregs) in infectious
diseases and following vaccination. In infectious diseases, Tregs play a dual role: they
benefit the host by limiting immune-mediated pathology and also facilitate chronic
pathogen persistence by reducing effector immunity and clearance of infection [1]. During
acute infection, the beneficial role of Tregs seems to predominate, by regulating leukocyte
in- and efflux into lymph nodes (LN) and infected sites, suppression of proliferation of
infected cells, and favoring memory formation by increasing the time window of antigen
availability.

Regulatory T-cells can be induced either in an antigen- and T-cell receptor (TCR)-
dependent or in an antigen- and TCR-independent manner [2;3]. Specificity for self- or
pathogen-derived antigens (or dual-specificity) was originally used to divide Treg
populations into ‘natural’ resp. ‘adaptive’ Tregs, but it was recently recommended to
denote Treg populations by place of induction: ‘thymus derived’ or ‘peripherally derived’,
or when the origin is unclear ‘Foxp3” Treg cell’ [4]. Designations of human Tregs are,
however, complicated by the fact that, unlike murine Tregs, unique markers are lacking. In
addition, non-Treg populations can express ‘Treg markers’ such as Foxp3 and CD25 upon
activation; therefore, human Tregs are preferably defined by multiple regulatory markers
and/or by demonstrating suppressive activity [5]. Human CD8" Tregs have been studied
much less than CD4" Tregs [5], even though they were among the first described
‘suppressor cells’, especially in mycobacterial infections [6;7]. The relative lack in studies
on human CD8" Tregs is possibly the result of technical difficulties in isolating and
assessing functions of CD8" T-cells [8]. Notwithstanding, CD8" Tregs are re-emerging as
important players in general, including in human infectious disease and following
vaccination [5].

Once activated, Tregs can suppress pro-inflammatory cells through several mechanisms
that are adaptable to the local environment [9]. These mechanisms can mostly be divided

into inhibitory cytokine production (either membrane-bound or by their release in the
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pericellular environment), suppression by cytolysis, metabolic disruption of pro-
inflammatory cells, modulation of antigen-presenting cells (APCs), and the activity of
certain Treg membrane expressed molecules (see below) [10]. These mechanisms indeed
support the concept that antigen-specifically induced Tregs can cross-suppress also other
cells irrespective of the presence of their cognate antigen or specificity, e.g., through the
secretion of cytokines [5]. This ‘bystander’ or heterologous suppression can compromise
immunity toward unrelated pathogens, as has been described for co-infection by helminths
in diseases such as malaria and tuberculosis (TB) [11]. Helminth co-infections can also
impair the immunogenicity of vaccines such as (oral) cholera vaccination and (intradermal)
BCG (Mycobacterium bovis bacillus Calmette-Guérin) and tetanus vaccination [12].
Several Treg-expressed molecular markers have now been implicated directly in mediating
suppression, such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), which
modulates APCs via its ligands CD80 and CD86. Tregs were shown to use trans-
endocytosis of CD80 and CD86, followed by their intracellular degradation, thereby
relatively depleting the APC’s expression of essential co-stimulatory receptors for T-cell
CD28 ligation [13]. In addition, the ectoenzyme CD39 (E-NTPDasel), which is a relatively
recently discovered Treg marker, exerts its suppressive effects through breakdown of
adenosine triphosphate (ATP) [14].

In this paper, we will discuss the induction of Tregs (both specific and non-specific) by
various pathogens as well as the functional implications of CD4" and CD8" Tregs in acute
vs. chronic infectious diseases. We will discuss the role of Tregs in co-infections and
highlight in particular infections with M. leprae and M. tuberculosis (Mtb), which are
master manipulators of the human innate and adaptive immune response through the
induction of regulatory circuits. We will discuss how the balance of pro- vs. anti-
inflammatory responses could ultimately regulate pathogen persistence, and impact on the
development of active vs. latent or reactivation of disease. We will also discuss the impact
of Tregs on diagnosis and treatment of TB, as well as their possible impact on vaccination

against TB.
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Mechanisms of Treg induction by pathogens

As a first line of host-defense against infection, the activation of innate immune cells
through pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), lectin
receptors, retinoic acid-inducible gene (RIG) receptors, scavenger, and phagocytic
receptors, activates these cells to phagocytose and process the pathogen, after which they
migrate to the draining lymph node (DLN) and present antigen to prime naive T-cells.
These cells then can differentiate into various classes of T-helper cells (Th), cytotoxic T-
cells, or Tregs. Further activation and differentiation signals are provided to the T-cells
upon migration into the infected tissue; these signals originate from other T-cells, activated
tissue-resident APCs, or even directly from the pathogen (see below). Tissue-resident,
circulating, and migrating APCs comprised heterogeneous populations, and the activation
of APCs can lead to the induction of pro-inflammatory or regulatory, homeostatic T-cell
responses [15]: for example, pro-inflammatory human type-1 macrophages promote Thl-
immunity and are characterized by IL-23 production and secretion of IL-12 after IFNy
stimulation, whereas type-2 macrophages poorly express co-stimulatory molecules, produce
IL-10, and induce Tregs [16;17].

Modulation of macrophages and DCs toward tolerogenic subsets has been described for
various pathogens: after in vitro treatment of human DCs with Japanese encephalitis virus
or Mtb, DCs upregulated the inhibitory receptor PD-L1, which induced the expansion of
Tregs through PD-1 ligation [18-20]. These effects were mediated by the Mtb-derived
protein Acr (HspX Rv2031c), which is expressed during latency: Acr induced expression of
PD-L1, TIM3, IDO, and IL-10 by murine DCs and promoted the induction of
CD4°CD25 Foxp3" T-cells [21]. Furthermore, APCs can be modulated through alterations
in (pericellular) purinergic pathways: extracellular ATP, a pro-inflammatory danger signal,
which activates the killing of Mtb in macrophages, is rapidly hydrolyzed to AMP by CD39,
which is expressed by various regulatory cells [14]. The degradation of ATP to AMP in the
microenvironment was accompanied by a switch in macrophage gene expression from type
1 toward type 2, and Mtb infection actively upregulated expression of the adenosine A2A
receptor on macrophages [22]. This receptor has been described as a major
immunosuppressive immune cell adenosine receptor acting through elevation of cAMP

[23], and its expression on macrophages was central to M2-like polarization after Mtb
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infection [22]. Other cell types acting as APCs were demonstrated to contribute to Treg
induction: both hepatitis C virus (HCV)-infected hepatocytes and H. pylori-infected gastric
epithelial cells directly induced Tregs through production of TGF-§3 [24;25].

Regulatory T-cells can also be induced directly through pathogen-derived components. This
has been demonstrated in several murine studies: zwitterionic capsular polysaccharides
from S. pneumoniae-induced CD8'CD28  Tregs that were CDI122"°CTLA-4"CD39",
synthesized IL-10 and TGF-B, and exhibited suppressive activity. This induction was
independent of APCs and involved direct crosslinking of the TCR [26]. In another murine
study, proteins secreted by H. polygyrus induced Foxp3" T-cells through ligation of the
TGF-B-receptor [27]. The herpes virus entry mediator HVEM, a binding site for viral
glycoprotein HSVgD, is upregulated on murine CD4 Foxp3" Tregs after HSV-1 infection,
and activation of this receptor led to preferential expansion of Tregs [28]. In the human
situation, CD4'CD25" Tregs exhibited extended survival and increased suppressive
capacity after binding HIVgp120 [29].

The preferential expression of TLRs, such as TLR2, on Tregs as compared to
‘conventional’ T-cells has been reviewed by Sutmuller and colleagues [2]. A large variety
of TLR2 ligands have been described in bacteria, including Mtb [30]. Mtb-induced TLR-
signaling in APCs leads to inhibition of the MHC-II transactivator-gene CIITA, thereby
decreasing expression of MHC-II and antigen presentation [30]. During chronic Mtb
infection, prolonged TLR2 signaling (e.g., through the 19kD lipoprotein) can lead to
suppressive cytokine production [31] and recruitment of CD4" Tregs to the lung [32]. A
role for TLR-mediated Treg induction has also been described in murine malaria: murine
Plasmodium-activated DCs induced Tregs through TLR9, and TLR9"” mice had impaired
activation of Tregs, associated with a partial resistance to lethal infection [33]. Other factors
in the local environment vital for the expansion and function of Tregs include changes in
metabolism [34], endothelial cytokine (IL-33) production and cytokine balance (IL-23 : IL-
33 ratio) [35], and metabolite products from commensal microbiota [36;37]. Thus, specific
pathogen components can skew toward Treg phenotype or function. The significance of
these Tregs for the disease process, concomitant diseases, and vaccinations will be

discussed further below.
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The impact of Tregs in infectious diseases

Viral infections: acute vs. chronic infectious disease

Regulatory T-cells have been found after retrovirus-, RNA virus-, and DNA virus infection
in mice and humans [reviewed in Ref. [3]; figure 1A]. Various CD4" and CD8" Treg
subsets have been identified [38], but mostly in chronic viral infection. Yet, in hepatitis A
virus infection - an acute inflammatory disease, usually followed by pathogen clearance -
hepatitis A virus bound to its cellular receptor (HAVCR1), which is expressed on Tregs,
which resulted in inhibited Treg function and inflammation [39]. By contrast, in acute
dengue fever, Treg function and the suppression of vasoactive cytokine release were similar
in acutely infected and recovered patients, such that in this case, the disproportionate
activation of pro-inflammatory cells and cytokines often found in dengue fever was not
explained by acute phase Treg malfunction [40]. Thus, blockade of Tregs in acute viral
infection could assist in pathogen clearance, at the cost of temporary hyper-inflammation,
but not all (pathological) hyper-inflammation is associated with Treg hypo-functionality.
On the other side, Tregs could also benefit the host during acute infection: first, Treg
depletion in murine herpes simplex infection increased LN levels of IFN-o and -y, but
infection-site-associated IFNy was decreased, and the arrival of DCs, NK cells, and T-cells
at the infected lesion was delayed [41], pointing to a role for Tregs in promoting LN in- and
efflux of pro-inflammatory cells [42]. Second, Tregs may suppress infected cell
proliferation at the mucosal point-of-entry to a level where infection cannot be established,
which was suggested as a protective mechanism in early HIV infection [43;44]. Third,
Tregs were vital in allowing memory formation through promoting antigen persistence, as
was recently demonstrated in a murine West Nile virus infection model [45].

The role of human Tregs in chronic viral infection has been more extensively delineated. A
meta-analysis of 12 studies demonstrated increased CD4" Treg frequencies in chronic
hepatitis B virus (HBV) infection compared to both acute infection and healthy controls,
revealing a strong association of Tregs with disease progression, viral load, absence of
therapy response, and risk of hepatocellular carcinoma [46]. In chronic HCV infection, the
contribution of Tregs to low inflammatory CD4" and CD8" T-cell responses has been

described [47;48]. Tregs were recruited to the liver through the Treg-attracting chemokines
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CCL17 and CCL22 [49], thereby promoting pathogen persistence. It has been argued,
however, that Tregs may also be functional in limiting HCV-induced liver damage [48].

In chronic HIV infection, CD4" Tregs were relatively increased in the mucosa and in the
circulation compared to healthy controls, but the Treg-mediated effects on anti-HIV
immune responses remain a matter of debate [50]. CD4" Tregs decreased HIV replication in
T-cells in vitro through CD39-mediated ectonucleotide shifts and by transfer of cAMP
through gap junctions formed with conventional T-cells [43]. Tregs inhibited spreading of
virus from DCs to T-cells through interfering with the immunological synapse [51]. In
another study, blocking of CD39 by monoclonal antibodies (mAbs) restored cytokine
production by HIV-gag-stimulated CDS8" T-cells [52]. Indeed, the relative frequency of
CD4'CD39" Tregs positively correlated with HIV viral loads and disease progression in
infected individuals [53]. These different effects of Tregs could be explained by
differentiating between acute and chronic infection, as argued in Ref. [50]: control of
viral replication by CD4'(CD39") Tregs may be important early after infection with a
limited number of infected cells (relatively high Treg : T-effector ratio), yet during chronic
infection Tregs may not be able to suppress proliferation of all infected cells, and potentially
become more detrimental due to dampening anti-HIVresponses. This points to the need for

more detailed analyses of Treg functions in acute vs. chronic (hyper-) inflammation.

Bacterial infections: reservoirs for Treg induction

Early vs. late effects of Tregs in bacterial infection were elegantly described in a mouse
model of Salmonella (Salmonella enterica serotype Typhimurium): Tregs suppressed early
protective immunity, thereby allowing for establishment of infection, yet clearance of
infection at later time points corresponded with a decrease in Treg suppressive capacity
[54]. After acute infection, Treg-mediated failure to completely eradicate Salmonella may
thus lead to a carrier state of persistent asymptomatic infection, resulting in a reservoir for
shedding of pathogens into the environment and further infection (reviewed in Ref. [55]).

A carrier state of Streptococcus pneumonia in the nasopharynx was associated with
increased TGF-f levels from nasal washes in humans, and TGF- was shown to lead to
Treg expansion in in vitro murine experiments [56]. In Helicobacter pylori infection, a

carrier state can last for life; and several studies have described the ability of Helicobacter
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pylori to induce Tregs. These Tregs were found in the circulation as well as in the gastric
mucosa of both infected children and adults, and though Tregs initially can limit
inflammationand therefore probably gastric ulceration, pathogen persistence could, on the
other hand, lead to chronic inflammation and tumor induction [57] (reviewed in Ref. [58]).
Increasing attention has been drawn to the interplay of the immune system with non-
pathogenic commensal microbiota in the intestine. Tregs can be induced by commensal
microbiota, as has been demonstrated in multiple murine studies: butyrate, a metabolite
from commensals, potently induced Tregs in the intestine [36;37], possibly through
butyrate-mediated enhanced histone H3 acetylation in the FOXP3 promoter [37].
Polysaccharide A (PSA) from B. fragilis induced conversion of T-cells into Tregs, and
cured experimental colitis [59]. The CNRZ327-component from Lactobacillus delbrueckii
induced regulatory responses in colonic tissue, but importantly also in cecal LNs and the
spleen, pointing to systemic distribution of these microbiota-induced Tregs [60].

Raising mice in germ-free conditions decreased the number of Tregs in the gut, but the
number of cutaneous Tregs was increased, possibly through loss of inhibition by pro-
inflammatory cells [61]. In any case, data on activation of Tregs by skin commensals is also
emerging [61], and these Tregs induced by skin microbiota may modulate systemic
inflammatory responses [61]. As recently reviewed [62], increasing evidence reveals
resident microbiota in the lungs. Though relatively low in bacterial biomass compared to
the microbiota of the skin and the intestinal mucosa, these microorganisms are present in
healthy lungs as they are at other mucosal surfaces, and probably differ in composition
between healthy individuals and individuals with (pulmonary) disease [62].

Clearly, mucosal surfaces are the primary sites both for pathogenic and commensal
microbiota; and induction of Tregs - within the myriad of innate and adaptive cells - has
been described for both. Further research should elucidate local and systemic effects of
Tregs induced at barrier sites in human studies, and whether systemic effects of Tregs

induced by (non-pathogenic) commensals are to be expected (figure 1A).
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Figure 1. Main effects of Tregs as described for various pathogens.

A: Various Treg-mediated effects have been described for the various classes of pathogens; early vs. late, and
heterologous suppression, are described in several taxonomies. Prominent features are noted, as well as prominent
Treg markers for the various pathogens. Circles ‘CD4/CD8’ depict the scale in reports of either CD4" or CD8"
Tregs in literature for the various classes. B: Treg effects on TB-vaccine immunogenicity are displayed in a similar
fashion. BCG immunogenicity may be decreased by or inversely related to BCG-induced Tregs, or may be
suppressed by heterogenic Tregs. Treg induction has also been described in various TB-vaccine candidate trials.
BCG = Mycobacterium bovis bacillus Calmette-Guérin; CCL4 = CC chemokine ligand 4; CTLA-4 = cytotoxic T-
lymphocyte-associated antigen 4; LAG-3 = lymphocyte activation gene-3; LN = lymph node; LTBI = latent
tuberculosis infection; MDR-TB = multi-drug-resistant tuberculosis; NTM = non-tuberculous mycobacteria; TB =

tuberculosis; Treg = regulatory T-cell.
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Parasitic infections: suppression across boundaries

Murine Leishmaniasis models have been pivotal in demonstrating Tregs at the site of
(parasitic) infection: antigen-specific CD4'CD25" Tregs were present at the site of chronic
Leishmania major infection [63] and retention at the infection site was dependent on
expression of CD103 by CD4'CD25" Tregs [64]. In this model, the impact of Tregs on
establishment of chronic infection and reactivation of disease was elegantly demonstrated:
after pathogen clearance, Leishmania super-infection led to reactivation of disease and
increased Treg numbers at the primary site. Also, adoptive transfer of Tregs from infected
mice into chronically infected mice caused reactivation of disease [65]. Mechanisms of
suppression included IL-10 production by Tregs as well as other mechanisms [66]. In
another study, Foxp3-negative cells were the major producers of IL-10, and anti-IL-10R
mAb treatment decreased parasite burden to a greater extent compared to anti-CD25-mAb
treatment [67]. In humans, functionally suppressive CD4'CD25" Tregs have been isolated
from cutaneous leishmaniasis (skin) lesions [68]; and FOXP3 mRNA levels in skin lesions
were increased in chronic compared to acute Leishmania major infection [69]. Also in
Leishmania guyanensis-induced skin lesions, FOXP3 mRNA levels were significantly
higher in chronic compared to acute patients, though in both cases Tregs isolated from these
lesions displayed suppressive activity in vitro [70]. Importantly, IL-10 and FOXP3 mRNA
expression in Leishmania guyanensis-infected skin lesions were associated with
unresponsiveness to treatment [71].

Several studies have reported increased Treg frequencies in Plasmodium falciparum-
infected individuals compared to asymptomatic or uninfected controls [72]; furthermore in
patients with clinically severe malaria, the frequency of CD4"CD25 Foxp3'CD127"° Treg
cells correlated with levels of parasitemia and total parasite biomass [73]. Tregs were
associated with risk of malaria disease: reduced expression of CTLA-4 and FOXP3 was
found in Fulani, an ethnic group in Burkina Faso relatively resistant to P. falciparum
compared to Mossi (a different ethnic group from the same region) [74]. Proliferative
PBMC responses to malaria antigens from Mossi were increased following CD25"-
depletion, but those from Fulani were not [74]. In Kenyan adults with natural immunity to
malaria, CD4"CD25™" T-cell frequency at enrollment was associated with the risk of

developing clinical malaria during follow up [75].
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Many helminth parasitic infections steer immunity toward Th2 and T-regulatory responses
[12]; and murine data indicate that immune suppression is achieved through cross-mucosal
induction of regulatory cytokines, regulatory DCs, macrophages, and CD4" and CDS"
Tregs [76]. In a recent study of murine Trichuris muris infection, Th2 cell proliferation was
enhanced by early Treg depletion post-infection and by Treg depletion after establishment
of infection [77]. However, the ultimate effect of Tregs on pathogen persistence was clearly
time dependent: both early and late Treg depletion enhanced Th2 responses and reduced
Thl responses, but while early Treg depletion resulted in enhanced clearance of infection,
later, during infection, Treg depletion resulted in enhanced worm burden [77].

Importantly, in geohelminth-infected children in vitro depletion of CD4 Foxp3'CD25™ T-
cells increased not only antigen-specific proliferative responses but also IFNy production in
response to Plasmodium-infected red blood cells [11]. The in vivo effect of helminth co-
infection on immunity against Plasmodium varies between studies, but helminth co-
infection may be associated with protection against cerebral malaria, a state of severe
hyper-inflammation [12]. Latent tuberculosis infection (LTBI) individuals with hookworm
[78] and filarial co-infection [79] had decreased Thl and Th17 responses and increased
Treg frequencies compared to parasite-uninfected LTBI individuals. Whether deworming
has clinical impact on the course of TB disease is not clear: in TB patients with helminth
co-infection, albendazole treatment decreased IL-10 levels, but there was no clinical
improvement in TB after 2 months [80]. Since (helminth-induced) Tregs are capable of
exerting non-specific suppressive responses, research in malaria and TB (diseases where
strong Th2 and Thl responses are vital, respectively) will hopefully clarify the effect of
Tregs across the boundaries of disease (figure 1A), especially in settings where co-infection

of helminths with malaria and/or TB is endemic.
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Tregs in leprosy and tuberculosis

Tregs in leprosy, an ancient disease

Leprosy, caused by M. leprae, is an ancient, chronic, disabling, but curable disease
affecting the skin, the peripheral nerves, the eyes, and mucosa of the respiratory tract [81].
The clinical spectrum of the disease ranges from tuberculoid (TT) and borderline
tuberculoid (BT) to borderline lepromatous (BL) and lepromatous leprosy (LL), where
TT/BT is immunologically characterized by a strong Thl response accompanied by limited
growth of the bacillus (paucibacillary leprosy), whereas BL/LL is classically characterized
by a predominant Treg/Th2 response, high antibody titers, absent granuloma formation, and
thus poor containment of infection and clinical deterioration [82].

Though the exact mechanisms ruling this spectrum have not been elucidated, it is clear that
Tregs play a part, and demonstration of the suppressive activity of CD4" and CD8" Tregs
isolated from the skin and circulation of LL patients were among the first reports on
‘human T-suppressor cells’ [6;7]. In the circulation of leprosy patients, both CD4 Foxp3"
and CD8 Foxp3 " T-cells were almost twofold increased compared to healthy contacts [83].
Within the spectrum of disease, increased percentages of CD4Foxp3"CD25" and
CD8 Foxp3'CD25" T-cells have been demonstrated in the circulation of LL patients
compared to BT patients or healthy contacts [82;84]. Also in lepromatous lesions, Foxp3™
T-cells were increasingly expressed in LL compared to TT/BT patients [82;84].
Suppression of the Thl response by Tregs was demonstrated by enhanced in vitro IFNy
production through depletion of CD25" cells in a subset of LL patients [82]. Both
CD4'CD25" derived IL-10 production and regulation through TGF-B have been described
[85;86].

A possible mechanism of Treg induction by M. leprae-infected DCs is the expression of the
mycobacterial cell wall component PGL-1, that by association with the complement
component C3 can steer toward Treg differentiation [87]. Type-2 anti-inflammatory
(CD163") macrophages are important Treg inducers [17], possibly due to the action of ROS
[88]; indeed, a regulatory phenotype was described in monocytes stimulated with M. leprae
[89]. Recently, CD68 CD163" cells were demonstrated in LL skin lesions with increased

frequencies compared to BT/TT lesions [82]. Intracellular pathways leading to enhanced
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Foxp3 expression in CD4" T-cells have been described in association with progression of
disease toward BL/LL, in addition to low Foxp3 ubiquitination (marked for intracellular
degradation) [86]. In T-cells isolated from LL patients, Foxp3 interacted with histone
deacetylases and bound directly to the promotor regions of CD25 and CTLA-4 [90]. The
importance of this transcriptional regulation by Foxp3 within the immunological spectrum
of disease is further supported by the fact that not only Treg frequencies are increased in LL
compared to BT patients but also the intensity of expression (mean fluorescence intensity)
of Foxp3 as determined by flow cytometry [83].

Thus, Tregs are clearly involved in the impairment of mycobacterial control. However, this
does not necessarily equate to increased suppression of Thl over Th2 responses toward the
LL pole spectrum: gene expression profiling of PBMCs isolated from TT, LL, and
borderline leprosy patients revealed decreased expression of both Thl and Th2 genes in LL
patients, but enhanced expression of CTLA-4 and TGFB1 [91]. The authors further found
overexpression of CBL-B, an E3 ubiquitin-ligase that after encounter with antigen is crucial
in modulating T-cells toward activation vs. anergy, dependent on the presence or absence of
co-stimulatory signals [92]. Cbl-b, TGF-B, and CTLA-4 expression were molecularly
related, as demonstrated by the dependency of Cbl-b expression on TGF-f and the
decreased expression of Cbl-b after treatment with CTLA-4 siRNA [91]. Within the
paradigm of a generalized suppressed peripheral T-cell response associated with LL
development, Tregs could thus play an important role in inducing and maintaining low
cellular immune responsiveness (figure 1A), although their impact on humoral (mostly but
not exclusively Th2-related) responses remains less clear. Further work would be needed to
clarify causal relationships, e.g., if Tregs are a cause or consequence of bacterial burden in

LL disease [93].

Tuberculosis: early and late effects of Tregs

Pathogen-specific Tregs were induced by Mtb as demonstrated in a murine Mtb aerosol
infection model, and these Tregs delayed priming of CD4" and CDS8" T-cells in the
pulmonary LNs, thereby delaying migration of these cells to the lung [94]. Tregs were
demonstrated in the lung, including in granulomas [95], and were shown to prevent

pathogen clearance [96]. Interestingly, in contrast to Listeria monocytogenes, pathogen-
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specific Treg expansion could be found in LNs only after Mtb infection [97]. Thus, Mtb-
induced Tregs contribute to the delayed onset of adaptive immunity that is observed in TB
compared to other diseases and which allows establishment of infection [98;99]. The
impact of Tregs on establishment of infection was further demonstrated in a murine study,
where depletion of CD25" cells early after Mtb infection - but not during chronic infection -
decreased bacterial load and granuloma formation [100]. However, it might also be that
(pre-existing) Tregs have a beneficial role very early in infection, but also these data are
only derived from animal experiments. In macaques, Tregs and IFNy-producing effector T-
cells expanded early after pulmonary TB infection, yet in vivo depletion of both IFNy-
producing- and regulatory T-cells led to decreased resistance against granuloma
progression [101]. Analogous to the possibly beneficial role for Tregs in regulating LN in-
and efflux during early murine HSV infection [41;42], it is conceivable that the presence of
a very low level of (possibly pre-existing) Tregs before or in a very early state after Mtb
infection might thus accommodate priming and subsequent emergence of a pro-
inflammatory immune response. Clearly, further research will be needed to specify the
impact of Tregs in various organs [102], early in (human) Mtb infection, and to
differentiate their impact in early vs. chronic infection (figure 1A).

Regulatory T-cells are also present in human Mtb infection as has been demonstrated
extensively: Tregs could be isolated both from the circulation and from the site of infection
in TB patients. In the circulation of TB patients, an increase in FOXP3 mRNA expression
was found compared with healthy controls [103], and also an increase in CD4" T-cell
frequencies with regulatory phenotypes was demonstrated (defined as CD4'CD25"™
[103;104], CD4 Foxp3 CD25™ [105;106], or CD4'CD25™CD39" [105]). Tregs could be
isolated from various Mtb-infected sites, including bronco-alveolar lavage (BAL) fluid,
ascites, pericardial fluid, and pleural fluid; and FOXP3 mRNA expression levels and
CD4°CD25™ T-cell frequencies were increased stronger locally than systemically (in the
circulation) [103;107]. In a study comparing TB cases with infected and uninfected TB
contacts (defined by positive tuberculin-skin test (TST) and ELISpot results), PBMCs from
uninfected contacts had lower FOXP3 mRNA expression levels compared to TB cases, but
higher FOXP3 expression levels compared to infected TB contacts; which according to the
authors could signify migration of Tregs to the lungs during early infection, with a

reappearance in the circulation during latent (established) infection [108]. Also
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CD8 Foxp3'CD25" Tregs were demonstrated in the circulation and BAL fluid of TB
patients [107]; and CD8'LAG-3"CCL4" Tregs (lymphocyte activation gene-3 (LAG-3); CC
chemokine ligand 4 (CCL4)) were shown by histological staining of infected LNs from TB
patients [109]. Furthermore, after stimulation with HLA-E restricted Mtb-derived peptides
CD8" Tregs could be isolated from PBMCs of in vitro mycobacterial purified protein
derivative (PPD)-reactive donors [110;111].

Elevated frequencies of circulating Tregs in TB patients declined during successful
chemotherapy [106], in contrast, in patients with emerging MDR-TB circulating Treg
frequencies remained persistently high [106]. Other data on Tregs in MDR vs. normally
resistant (NR)-TB are scarce and conflicting: similar frequencies of circulating
CD4 Foxp3" Tregs were found in MDR-TB patients compared to (NR-)TB patients [112];
however, in another study comparing MDR-TB, NR-TB, and non-tuberculous
mycobacteria (NTM) infections, increased ex vivo frequencies of Tregs were found in
MDR-TB but also in NTM infections compared to NR-TB. This may reflect chronicity of
infection in MDR-TB and NTM infection, which is often treated suboptimally; however,
the contrast reported by the authors between elevated serum IL-10 levels in MDR-TB
patients vs. elevated serum TGF-B levels in NTM-infected patients could also suggest
different subsets of Tregs or different suppressive effector pathways to be involved in

MDR-TB vs. NTM [113].

Tuberculosis: Tregs differentiate active from latent disease

CD4 Foxp3'CD25" Tregs are increased in frequency in active TB compared to LTBI
[107;114], both in the circulation and in BAL fluid [107] (figure 1A). A report on
CD4'CD25°CD134" T-cells in TB demonstrated differentiation between active and latent
TB solely through the presence or absence of the CD39-molecule on this subset [115].
Stasis of mycobacterial growth in macrophages, both monocyte-derived and alveolar, was
suppressed by CD4" Tregs [107]. Depletion of CD4 Foxp3'CD25™ T-cells increased IFNy
responses to the mycobacterial antigen heparin-binding hemagglutinin (HBHA) of patients
with active TB in vitro, to the level observed in LTBI individuals [116]. Treg frequency in

the circulation of smear-positive TB patients was increased compared to smear-negative
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patients; however, this did not correlate with radiologic determination of extent of disease
[112].

Pro-inflammatory signatures of CD8" T-cells differentiated between latent infection and
active TB disease [117], and also in vitro an association was found between burden of
infection of cells and lysis by cytotoxic CD8" T-cells [118]. The frequency of CD8" T-cells
producing IL-10 or TGF-B was increased in active TB patients compared to latently
infected or control subjects [119]. In this study, CD8", CD8 TFNy', and CD8TL-17" T-cell
numbers were similar between groups, and were - interestingly - not dependent on sputum
bacillary load, while sputum bacillary load was positively associated with specific
regulatory cytokine expression in CD8" T-cells, and negatively associated with CD8"
granzyme-B expression [119]. However, in another study, the frequency of
CD8 Foxp3'CD25" Tregs did not differ between active vs. latent TB, or between cells
isolated from the circulation vs. cells isolated from BAL fluid [107]. The differences
between these reports may be explicated by differences in regulatory markers that were
studied, or by methods that were used: in the former study, cells were stimulated with Mtb
specific antigen for 96 hours, while in the latter study, cells were PPD-stimulated for 12
hours. CD8" Tregs are relatively understudied compared to CD4" Tregs in mycobacterial
infection [5], and this clearly points to the need for more (uniform) research into these
possibly important regulators and/or markers of activity of disease. Of note, CD8" Tregs
were found at the disease site in mice, and progression of disease correlated with
accumulation of IL-10-secreting CD8" T-cells in granulomas [120].

Instead of being a steady state of infection, latent TB comprises a dynamic spectrum with
supposedly increasing rates of subclinical Mtb replication and inflammation extending
eventually to active TB. Serial IGRA testing has been proposed as an indicator of human
host resistance in latent TB. Using serial testing, a consistently negative test in TB-exposed
individuals would likely indicate strong resistance to infection, a consistently positive test
(recent) active infection, and (repeated) test conversions (positive to negative, possibly
followed by conversion, etc.) changing dynamics of infection and control of bacterial load.
In a comparison of T-cell subsets between IGRA-consistently positive and consistently
negative TB-case contacts, CD4 Foxp3" and CD4 CTLA-4" Tregs were increased in TB-
case contacts with consistently positive IGRA tests, possibly indicating Treg interference

with host resistance in the development of active infection [121].
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Tuberculosis: Tregs in extra-pulmonary disease

A minority of TB cases present with extra-pulmonary disease or extra-pulmonary
involvement following pulmonary infection, and it is assumed that this represents failure of
the immune system to contain infection [122]. Multiple studies indicate involvement of
Tregs in dissemination of disease (figure 1A). An increase in FOXP3 mRNA expression
has been described in PBMCs from patients with extra-pulmonary TB (disseminated and
lymphatic TB) compared to pulmonary TB [103]. In a comparison of TB pleural effusion
and miliary TB, representing in this case containment vs. dissemination of disease, elevated
FOXP3 mRNA expression levels and frequencies of CD4'Foxp3'CD25" T-cells were
found in cells isolated from miliary disease sites [123]. Another study confirmed an
increase in CD4" Treg frequencies in patients previously treated for extra-pulmonary TB
compared to pulmonary TB, but reported an analogous increase in CD4 " activation markers
[124]. In TB pleurisy, CD4 Foxp3 'CD25" Treg frequencies were increased in pleural fluid
compared to the circulation [125;126], and Tregs suppressed IFNy expression in CD4" and
CD8" T-cells [126]. Pleural CD39" Tregs inhibited generation of Th17 cells, which could
be reversed in vitro by antagonizing TGF-f through the addition of latency-associated
peptide (LAP) [127]. Mtb infection of the pleurae favored Treg migration into the pleural
exudate when compared to other causes of pleurisy: tuberculous pleural fluid, but not
effusions from other bacterial origin, or transudates, had high concentrations of the
chemoattractant CCL22, which is chemotactic for Treg migration in vitro, and an increase
in CD4"CD25™ T-cell frequency compared to the circulation [125]. Intercellular adhesion
molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on pleural
mesothelial cells regulated migration of leukocytes from the circulation into the pleural
fluid; however, these molecules also seemed to favor (non-antigen-specific) expansion of
Tregs [128].

In TB lymphadenitis in children, CD4 Foxp3" T-cells were demonstrated in the LNs, and
quantitative mRNA analysis demonstrated induction of TGFf and IL13, but not of IFNy,
TNFa, or IL-17 [129]. Data on frequency and function of Tregs in other forms of TB
disease, such as bone TB, urogenital TB, or TB of the central nervous system (CNS) are
scarce. It is, however, conceivable that the interplay of Tregs and Mtb may differ in
infections at immune-privileged sites, such as the CNS or the eye. The assessment of anti-

inflammatory mechanisms could be highly relevant in regard to CNS-immune
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reconstitution syndromes, given their often disastrous outcomes [130]. Several studies have
associated plasma biomarkers and CD4" T-cell activation with the development of HIV-
associated immune reconstitution inflammatory syndromes (IRIS), but did not find an
association with (CD4") Treg frequencies, both in the development of cryptococcal-IRIS
disease [131] and TB-IRIS disease [131;132]. TB-IRIS may either be ‘unmasking’ (of an
occult infection) or ‘paradoxical’ (worsening of a known infection during retroviral
treatment) hyper-inflammation: decreased serum IL-10 levels were found in paradoxical
compared to unmasking syndromes [133]. Interestingly, this might represent Treg function,
not Treg phenotype: a study in patients developing symptoms of Mycobacterium avium and
intracellulare complex-infection, following commencement of retroviral treatment,
reported a significant expansion of CD4'Foxp3'CD25'CDI127° Tregs, but reduced
functional capacity and diminished IL-10 secretion of these cells in in vitro suppression

assays [134].

Tuberculosis: Tregs in the clinic

Tregs may interfere with clinical diagnosis of TB (figure 1A). Classically, diagnosing TB
has relied for decades on the TST, testing cell-mediated immunity against intradermally
injected Mtb-derived tuberculin PPD. Skin anergy is defined as the absence of dermal
reactivity in otherwise confirmed Mtb infection. /n vitro PPD stimulation of cells isolated
from PPD-reactive TB patients induced both IL-10- and IFNy-production; however, cells
from anergic TB patients produced only IL-10 but not IFNy [135]. Reduced levels of IFNy
and IL-2, and increased levels of IL-10 in anergic compared to PPD-reactive TB patients
were confirmed in another study. This anergy was found only after in vitro stimulation with
PPD- but not unrelated antigens, indicating an antigen-specific anergic reaction [136].
Suppression of IL-2- and TNFa-production was accompanied by CD8" T-cell expansion
and high levels of IL-10 in anergic TB patients, and CD8" T-cell depletion and blocking of
IL-10 reversed this suppression [137].

A direct effect of Treg-mediated suppression on interferon-y release assays (IGRAs), such
as the in-tube QuantiFERON Test, has so far not been established. Nevertheless, several
studies have described ‘rescue’ of mycobacterial-specific IFNy production by Treg

depletion in Mtb-infected individuals [104;105;114;138]. Interestingly, depletion of CD25"
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T-cells increased IFNy production by PBMCs in Mtb-infected individuals, but did not
increase the production of IL-17A [114]. Yet, pleural CD39" Tregs (CD4"
CD25'CD39°CDI127") inhibited Th17 differentiation [127], and an inverse correlation
between production of IL-17A and CD39-expressing Tregs has been described after
vaccination [139;140]. CD39 expression on Tregs may thus be more closely linked to
suppression of IL-17 production compared to cells expressing CD25, but this needs further
clarification. Also the extent of TB infection as determined by chest X-ray (CXR) scoring
was associated with T-cell modulation: in a study dividing patients by severity of disease
by CXR, double-negative (DN, CD4 CD8 ) TCRyd T-cells from patients with severe
disease displayed a modulatory profile with high IL-10 production, in contrast to patients
with less severe disease, where TCRyd DN T-cells displayed a pro-inflammatory cytokine
profile with high IFNy [141].

During TB therapy, circulating CD4" Treg frequencies declined as mentioned; however,
this was only noted following chemotherapy for pulmonary TB (figure 1A) [106;142;143].
In contrast, an increase was noted during extra-pulmonary TB treatment [143;144].
Differences between forms of disease possibly represent differences in
compartmentalization of Tregs, or heterogeneous kinetics of Treg contraction following
decrease of bacterial burden. TB patients in which MDR-TB emerged during therapy had
persistent circulating Treg frequencies [106], which could be analogous to a phenomenon
observed during IFNa therapy for chronic HBV infection: therapy non-responders were
characterized by an increase in CD4'CD25" T-cells and IL-10-producing cells [145]. Thus,
circulating Treg frequencies might be used as parameter of therapy response in specific

states of TB disease.
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Tregs in vaccination against tuberculosis

Even in carly life, immunoregulatory mechanisms, including Tregs, may dampen vaccine-
induced immunity [146]. We describe here how immunogenicity of TB-vaccines may be
influenced by Tregs, induced by the vaccination itself, by closely related pathogens, or
induced by unrelated pathogens (figure 1B). M. bovis BCG, the only available vaccine
against TB, is a live bacterial vaccine aimed at inducing effective T-cell responses, yet
BCQG itself also induces Tregs [5]. This ability to induce Tregs could limit its ability to
induce optimal protective immunity against TB; it is, however, conceivable that future

medicine may be able to tailor BCG-induced Tregs to regulate hyperinflammation.

Tregs induced by vaccination: M. bovis bacillus Calmette-Guérin

Bacillus Calmette-Guérin, the only licensed vaccine against TB since 1921, was derived
from virulent M. bovis by years of continuous in vitro passage. Estimates are that BCG has
been given >3 billion times since its introduction, and it is part of the WHO Expanded
Programme on Immunization (EPI). BCG was used in one of the first experiments
establishing the idea of ‘suppressor cells’ interfering with control of infection: transfer of
thymocytes from BCG-immunized rats suppressed immune responses in naive recipient rats
against new BCG infection [147]. Though BCG-vaccination induces CD4" and CD8"
effector T-cell responses in newborns [148;149] and protects them from disseminated forms
of disease, it does not induce consistent protection against pulmonary TB, especially in
adults [150]. We have previously hypothesized that one explanation for this lack of
protection is the induction of Tregs by the vaccine among various other hypotheses [5]. In a
large cohort of 5675 South-African infants who had been vaccinated at birth, stimulation of
whole blood with mycobacterial antigens at 10 weeks of age resulted in production of IFNy
or IL-10, but not both [151]. CD4'CD25" Treg cells were demonstrated in another study in
BCG-vaccinated infants, and depletion of these Treg cells resulted in lower IL-10 levels in
PPD-stimulated cell cultures [152]. IL-10-producing CD4" T-cells have been demonstrated
in previously BCG-vaccinated adult donors, and in vitro suppression of target cell

proliferation could be reversed by a blocking alL-10-antibody [153].
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CD8" Tregs are generally less studied compared to CD4" Tregs, especially in infectious
diseases [5]. We have previously studied the presence, phenotype, and suppressive activity
of CD8" Treg cells among live BCG-stimulated PBMCs of in vitro PPD-responsive donors.
Surprisingly, we found a significantly higher expression of regulatory markers on live (but
not killed) BCG-activated CD8" T-cells compared to CD4" T-cells, and there was
significant enrichment of CD8" Treg cells within the BCG-activated CD25" T-cell
compartment [154]. Also, suppressive activity was dominantly present in live BCG-
activated CDS8", but not in live BCG-activated CD4 " T-cells [154]. CD8" Treg cells isolated
from live BCG-stimulated PBMCs were enriched for expression of LAG-3 and CCL4, co-
expressed CD25 and Foxp3, and inhibited Thl cell proliferation [109]. Inhibition was
partly mediated by secretion of CCL4, which reduced Ca2'-influx early after TCR
triggering [109]. We have additionally described expression of CD39 on live BCG-
activated CD8" Treg cells, and a direct involvement of CD39 in mediating suppression by
CD8" Tregs, as both the chemical CD39 antagonist ARL 67156 and a blocking aCD39-
antibody were able to partly inhibit the suppressive activity of CD8 CD39" Tregs [155]. Of
note, CD8" Tregs could only be demonstrated in donors primed in vivo with mycobacteria,
indicating a memory recall response following in vitro BCG-stimulation. Taken together,
our work identified at least two different mechanisms by which BCG-activated CD8" Tregs
could inhibit Thl responses, via CCL4 and via CD39. Despite the above findings and
despite the fact that CD8 was originally identified as a marker of Treg cells, then coined T-
suppressor cells, pathogen-activated CD8" Tregs still remain significantly understudied
compared to CD4" Tregs. It is important to note here that in vitro stimulation with live
BCG preferentially activated CD8" Tregs [154], while stimulation with killed BCG (or

PPD) seems to activate different populations.

Tregs induced by new TB-candidate vaccines

Regulatory T-cell induction has been demonstrated in several TB-vaccine candidate trials.
After M72/AS01-vaccination of South-African healthy adults, Tregs expanded concurrently
with cytokine-producing pro-inflammatory CD4" T-cells [156]. Circulating CD4'CD25"
Foxp3™ T-cells were demonstrated after vaccination with another TB-vaccine candidate,

modified vaccinia Ankara-85A (MVAS5A). Interestingly, CD4 CD25 Foxp3" T-cells were

-46 -



Regulatory T-cells in infectious diseases and vaccination

increased in recipients with low antigen 85A-specific IFNy-responses compared to high
IFNy-responders [157]. Also, the frequency of CD4'CD25'CD39" T-cells was inversely
related to IL-17A production in vitro [139]. IL2ZRA mRNA expression on the day of
vaccination and CTLA-4 expression 2 days after vaccination inversely correlated with the
magnitude of the IFNy ELISpot response induced by MVA85A-vaccination in healthy
British adults, pointing to a possible role for Tregs very early or even before vaccination
[157]. In African infants vaccinated with MVAS85A, an early and strong innate response
was associated with enhanced IFNy ELISpot responses; thus, the authors concluded that
Treg modulation of vaccine responses could differ between populations, and that more
research is needed to explain these differences and the impact on vaccine efficacy [158].
Assessment should, however, include possible dissimilarities between long-term effects of

Tregs and early after vaccination.

Other Tregs can modulate TB-vaccine-induced responses

Regulatory T-cells induced by other microbes can likely alter immunogenicity of TB
vaccines. Exposure to environmental mycobacteria may decrease TB-vaccine efficacy
through cross-reaction of antigens [94]. Pre-existing immune responses can either ‘block’
or ‘mask’ the BCG-induced immune response, possibly explaining the decreased vaccine
efficacy of BCG in developing countries, where there is a higher prevalence of
environmental mycobacteria [159]. Another potential explanation for decreased vaccine
efficacy is induction of Tregs by environmental mycobacteria [160]. Priming mice with M.
chelonae before BCG-vaccination increased Foxp3 expression on BCG-specific
CD4°CD25" T-cells compared to non-sensitized mice, and CD4'CD25" T-cells of
sensitized mice decreased immune responses in vifro [161]. Adoptive transfer of
CD4'CD25" T-cells into naive mice suppressed IL-2 production in the lungs, and enhanced
IL-10 after BCG-vaccination [161]. Suppression after murine sensitization was reversed by
a blocking aCD25-mAb during challenge, indicating active involvement of cross-reactive
Tregs during vaccination [162].

Modulation of DC TLRs by helminth molecules leads to increased Th2 and Treg responses,
which possibly decreases vaccine efficacy in developing countries, where also the majority

of the one billion helminth-infected people live [12]. Tregs induced by helminths in
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mucosa-associated lymphoid tissue (MALT) may migrate to other sites, exerting non-
specific suppressive effects and preventing clearance of Mtb at distant sites as well [163].
Although the frequency of CD4 Foxp3 CD25™ T-cells was similar in helminth-infected
and non-infected Indonesian children, BCG-specific (and as mentioned, also Plasmodium
falciparum-specific) proliferative responses were increased after depletion of CD4"CD25™
T-cells in helminth-infected children only, pointing to differences in suppressive capacity
induced by helminth infection [11]. Deworming increased BCG immunogenicity in vivo
and was accompanied by changes in TGF-f, but notably not by changes in Th2 cytokines
[164].

Modulating the modulators: future prospects for Tregs in TB-vaccination

The ability of BCG to induce Tregs may in the future be exploited to benefit the human
host in the contexts of auto-immune and/or hyper-inflammation-related diseases. This has
been noted in a murine model of Parkinson’s disease, where protection against nerve
damage was induced by BCG-vaccination through Tregs [165]. Also in experimental auto-
immune encephalomyelitis, myelin oligodendrocyte glycoprotein-specific IFNy-producing
CD4" T-cells, and both specific and non-specific CD4'IL-17" T-cells in the CNS, were
suppressed by cerebral BCG infection [166]. Other murine studies have demonstrated
BCG-induced suppression of asthma responses and dampening of colitis [167;168]. Further
research will hopefully elucidate if and how these findings can be translated to the human
situation.

Interestingly, mucosal vaccination of macaques with a vaccine consisting of inactivated
simian immunodeficiency virus (SIV) and a live bacterial adjuvant (BCG or Lactobacillus)
generated HLA-E restricted, non-cytolytic CD8" Tregs [169]. After challenge with SIV
infection, these CD8" Tregs suppressed proliferation of infected CD4" T-cells, thereby
protecting almost all vaccinated macaques for up to 4 years after vaccination [169]. As
mentioned, in acute viral infection, Tregs could have a beneficial role to play, such as in
acute SIV/HIV infection where Tregs decrease proliferation of infected cells at mucosal
surfaces [44].

In a TB-vaccination context, however, it may be crucial to avoid excessive Treg induction

by the vaccine. Analogous to the reduced burden of TB observed in mice following
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treatment with chemical compounds inhibiting Treg and Th2 induction prior to infection
[170], a similar approach was tested in murine BCG-vaccination: chemical inhibition of
Treg induction increased BCG-mediated protection against pulmonary TB in mice and
favored central-memory T-cell induction (long-lived vaccine responses) [171]. Blocking
the IL-10-receptor with an aIL-10-receptor antibody increased BCG-induced Thl, Thl7,
innate lymphoid IFNy, and IL-17 responses in mice, leading to enhanced protection against
TB [172]. An additional, important role for IL-22 producing NK cells through lysing of
CD4" Tregs was described, and addition of IL-22 also increased Thl vaccine-induced
responses [173]. In contrast, only moderate efficacy of treatment with a blocking aCD25-
antibody on BCG-vaccine efficacy was described [174]. It is possible that blocking CD25
results in partial Treg depletion while other Treg subsets could survive during such
treatment. However, CD25 is expressed also by activated T-helper cells such that CD25-
depletion may additionally also deplete essential effector cells of protective immunity.
Regardless, even after selective deletion of all Foxp3™ cells, homeostatic expansion may
occur from a small subset of remaining Tregs [175]. Since various Treg marker-expressing
subsets exist, this points to the importance of assessing the dynamics and fluidity of various
subsets within the Treg compartment, in order to improve vaccine design by effective
modulation of Treg activity and function. Compounds inhibiting Treg induction or blocking
‘upstream’ signaling through the IL-10-receptor could improve vaccine efficacy. Other
options would include the addition of adjuvant antagonists of chemokine receptors
expressed by Tregs, as described for a CCR4 antagonist that blocked CD4" Tregs and
increased in vitro responses to MVAS85A and recombinant HBV surface antigen
vaccination [176], or the inclusion of TLR-agonists combined with agents selectively
blocking TLR-induced anti-inflammatory signaling pathways in DCs [177]. Future studies
may integrate these findings to increase TB-vaccine-induced protective immunity through
manipulation of the manipulators, and hopefully translate these findings ultimately to the

human situation.
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Concluding remarks and future directions

For many pathogens, induction, expansion, recruitment, or inhibition of Tregs has been
demonstrated. Mycobacterium leprae and Mycobacterium tuberculosis are master
manipulators of human immunity and are able to establish chronic infection among others
by activating immune regulation. The effects of Tregs impact on clinical symptoms and
performance of immunodiagnostic assays, differ in acute vs. chronic diseases and can
suppress protective immunity and vaccine immunogenicity. Importantly, this can partly be
the result of cross-suppression from Tregs induced by unrelated pathogens, possibly even
by non-pathogenic microbes. This is particularly important in endemic settings, e.g.,
settings endemic for both helminths, TB, malaria, and HIV.

Through precisely (and timely) targeted Treg manipulation, vaccine-induced protective
immunity may be enhanced. Most data are necessarily derived from murine studies, and
need to be translated to the human situation. This should also offer opportunities for new
immunotherapeutic vaccines for the treatment of inflammatory disorders, e.g., auto-immune
diseases, and for the design of vaccines aimed at interfering with acute (viral) infection.
Through manipulating the manipulators, increased immunity against infectious diseases

may be achieved.
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Abstract

Mycobacterium bovis bacillus Calmette-Guérin (M. bovis BCG), the only currently
available vaccine against tuberculosis, has been reported to induce regulatory T-cells in
humans. The activity of regulatory T-cells may not only dampen immunogenicity and
protective efficacy of tuberculosis vaccines, but also hamper diagnosis of infection of
tuberculosis, when using immune (e.g. [FNy-release) assays. Still, in settings of infectious
diseases and vaccination, most studies have focused on CD4" regulatory T-cells, and not
CDS8" regulatory T-cells. Here, we present a comparative analysis of the suppressive
phenotype and function of CD4" versus CD8" T-cells after in vitro live BCG activation of
human cells. Moreover, as BCG is administered as a (partly) live vaccine, we also
compared the ability of live versus heatkilled BCG in activating CD4 " and CD8" regulatory
T-cell responses. BCG-activated CDS8" T-cells consistently expressed higher levels of
regulatory T-cell markers, and after live BCG activation, density and (co-)expression of
markers were significantly higher, compared to CD4" T-cells. Furthermore, selection on
CD25-expression after live BCG activation enriched for CD8" T-cells, and selection on co-
expression of markers further increased CD8' enrichment. Ultimately, only T-cells
activated by live BCG were functionally suppressive and this suppressive activity resided
predominantly in the CD8" T-cell compartment. These data highlight the important
contribution of live BCG-activated CD8" Treg cells to immune regulation and emphasize
their possible negative impact on immunity and protection against tuberculosis, following

BCG-vaccination.
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Introduction

Tuberculosis (TB), one of the major global health challenges, accounted for 1.3 million
deaths in 2012. It is estimated that one-third of the world population is (latently) infected
with Mycobacterium tuberculosis (Mtb) [1]. Containment of the disease is dependent on
innate and adaptive immune responses, and though CD4" Thl (IFNy)-responses are
considered quintessential, definition of immunological correlates of protection remains
unresolved.

Active TB disease has been associated with decreases in Mtb-specific IL17A-producing
CD4" T-cells [2] and in multifunctional (IFNy'TL2 "TNFa") CD4" T-cells [3]. Conversely,
CD4" T-cells single-positive for TNFa were identified as a strong classifier of active
disease versus latent infection [4]. For Mtb-specific CD8" T-cells, a reduction in dual
IFNyTL2 "-secreting cells in active vs. latent TB [LTBI] [5], as well as changes in memory
phenotype [5:;6], have been reported. CD8"  T-cells preferentially recognized heavily
infected cells in vitro [7]; and higher Mtb-specific CD8" responses correlated with clinical
parameters of bacterial load (defined as smear-positive vs. smear-negative TB) [6].
Mtb-specific immune responses and mycobacterial growth inhibition can be suppressed by
circulating, alveolar and pleural CD4" regulatory T-cells (Treg cells) in humans [8-10].
Recently, also suppression of T-cell cytokine production and proliferation by myeloid-
derived suppressor cells in TB-patients were described [11]. Although CD8" regulatory T-
cells have been reported in TB [9] and leprosy [12,13], they remain generally understudied
compared to CD4" Treg cells [14]. CD4" T-cells producing IL-10 were shown to hamper
clinical diagnosis based on dermal reactivity to mycobacterial purified protein derivative
(PPD) in anergic TB-patients [15]. In PBMCs isolated from patients with active TB,
depletion of CD4'CD25" or CD4'CD25'CD39" T-cells increased Mtb-specific IFNy
production [8,16]. Healthy, previously BCG-vaccinated volunteers, who were vaccinated
with MVA-85A (modified vaccinia virus Ankara expressing antigen 85A), and who
exhibited relatively low responses in antigen 85A-specific IFNy ELISPOTs, had increased
frequencies of circulating CD4 CD25 Foxp3" cells, compared to high IFNy-responders
[17]. Also, MVA85A-induced production of IL17A was affected by Treg responses
[18,19]. IFNy- and IL17-responses were enhanced by addition of ARL67156 [19], a
chemical inhibitor of CD39 [20], suggesting a population of CD39" cells that actively
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dampened cytokine production. Thus, (CD4") Treg cells can negatively influence immunity
and immune dependent protection, both in natural infection and in vaccination settings.

The only currently available vaccine against TB, Mycobacterium bovis bacillus Calmette-
Guérin (M. bovis BCG), induces CD4" and CD8" T-cell responses in newborns [21-23] and
protects them from disseminated forms of disease; but it does not induce consistent
protection against pulmonary TB, especially in adults [24]. One explanation for this lack of
protection is the induction of regulatory T-cells by the vaccine [14;25], amongst other
hypotheses [26;27]. CD4'CD25" Treg cells have been found after BCG-vaccination of
newborns [28] and adults [29], and CD4'CD25 -depleted T-cell cultures resulted in lower
PPD-stimulated IL-10 levels [28]. We previously demonstrated the presence and strong
suppressive activity of CD8" Treg cells among live BCG-stimulated PBMCs of in vitro
PPD-responsive donors, which were enriched for the markers lymphocyte activation gene-3
(LAG-3) [30] and CD39 [31]. Suppressive activity of CD8" Treg cells could be reversed by
blocking CC chemokine ligand 4 (CCL-4) [30], membrane-bound TGFB (mTGFp) [32] and
CD39 [31]. Still, knowledge about CD8" regulatory T-cells is generally limited compared
to CD4" Treg cells.

Furthermore, though multiple mycobacterial-activated Treg subsets, either CD4" or CDS",
have been demonstrated in humans, no comparative studies have been performed assessing
suppressive capacity of Mycobacterium-induced CD4" vs. CD8" T-cells. In this study, we
compared the suppressive phenotype and function of human BCG-activated CD4" and
CD8" T-cells. We demonstrate significantly higher expression of regulatory markers on live
BCG-activated CD8" T-cells, compared to CD4" T-cells, and enrichment for CD8" Treg
cells within the BCG-activated CD25" T-cell compartment. Finally, suppressive Treg
activity was dominantly present in live BCG-activated CDS8", but not in live BCG-activated

CD4" T-cells, nor in killed BCG-activated T-cells.
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Materials and Methods

Ethics statement. All donors had signed consent for scientific use of blood products. Blood
products were collected anonymously, which, according to institutional ethical policy, does

not require a separate review by the Ethical Committee.

Blood samples. Anonymous buffy coats were collected from healthy adult blood bank
donors (Sanquin, Leiden). PBMCs were isolated by density centrifugation and
cryopreserved in fetal calf serum-supplemented medium according to Standard Operating
Procedure [33]. Cells were counted using the CASY cell counter (Roche, Woerden, the
Netherlands). Donors were selected on recognition of mycobacterial PPD by assessing
IFNy production in vitro. PBMCs were stimulated with 5 pg/ml PPD (Statens Serum
Institute, Copenhagen, Denmark) for 6 days and supernatants were tested in IFNy-ELISA
(U-CyTech, Utrecht, the Netherlands). Positivity was defined as IFNy production > 150
pg/ml.

Cell cultures and BCG infection. PBMCs were thawed (64% median viable cell yield)
and stimulated with Bacillus Calmette-Guerin (Pasteur). BCG was grown in 7H9 plus
ADC, frozen in 25% glycerol and stored at -80°C. Before use, bacteria were thawed and
washed in PBS/0.05% Tween 80 (Sigma-Aldrich, Zwijndrecht, the Netherlands). Infections
were done at a multiplicity of infection (MOI) of 1.5. For heatkilled BCG-stimulated cell
cultures, bacteria were inactivated at 80°C for 30 minutes. PBMCs were cultured for six
days in Iscove's modified Dulbecco's medium (Life Technologies-Invitrogen, Bleiswijk, the
Netherlands) supplemented with 10% pooled human serum. Sera were pretested in
standardized protocols; only sera were pooled that had no inhibitory activity in standard
mixed allogeneic lymphocyte cultures. IL-2 (25U/ml; Proleukin; Novartis Pharmaceuticals
UK Ltd., Horsham, UK) was added after 6 days of culture. CD4" and CD8" T-cells were
enriched by positive selection using magnetic beads (MACS, Miltenyi Biotec, Teterow,
Germany). Purity of sorts was > 97% as assessed by flowcytometry.

Restimulation of CD4" cell lines was done in 24 well plates (2 x 10° cells/w) with
aCD3/CD28 beads (Dynabeads Human T-activator, Life Technologies-Invitrogen) and I1L2
(25 U/ml). Pooled, irradiated (30 Gy) PBMCs were added as feeders (1 x 10° cells/w).
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CDS8" cell lines were restimulated in 96 well roundbottom plates (1 x 10* cells/w) with
aCD3/CD28 beads, IL2 (50 U/ml), IL7, IL15 (both 5 ng/ml, Peprotech, Rocky Hill, NJ,
USA) and pooled, irradiated (30 Gy) PBMCs added as feeders (5 x 10* cells/w). Cells were
maintained in IL2 (100 U/ml).

FACS analysis. PBMCs were incubated overnight with aCD3/28 beads, for the last 16
hours Brefeldin A (3 pg/ml, Sigma-Aldrich) was added. The following antibodies were
used for surface staining: CD8-HorizonV500 (clone RPA-T8), CD3-PeCy5 (clone UCHT-
1), CD4-PerCPCy5.5 (clone RPA-T4) (all BD Biosciences, Eerembodegem, Belgium), and
CD39-PE (clone Al; Biolegend, London, U.K.). For intracellular staining we used the
FIX&PERM® Cell Permeabilization Kit from An Der Grub BioResearch GMBH
(Susteren, The Netherlands) and the following antibodies: CCL4-FITC (clone 24006; R&D
Systems, Abingdon, UK), Foxp3-Alexa Fluor 700 (clone PCH101; eBioscience, Hatfield,
UK), CD25-allophycocyanin-H7 (clone M-A251; BD Biosciences) and LAG-3-atto 647N
(clone 17B4; ENZO Life Sciences, Antwerp, Belgium). Samples were acquired on a BD
LSRFortessa using FACSDiva software (version 6.2, BD Biosciences) using compensated
parameters.

Analysis was performed using FlowJo software (version 9.5.3, Treestar, Ashland, OR,
USA). The detailed gating strategy is demonstrated in figure 1A. Cut-off for positive
populations of interest was defined by comparison to samples of cell lines not stimulated
with BCG (Supplementary figure S1) and were similar for CD4" and CD8" T-cell
populations, as shown in figure 1A. Also, to assess differences in intrinsic frequency and
density (MFI) of Treg-cell marker expression on CD4" vs. CD8" T-cells, positive Treg
marker populations on CD4" and CD8" T-cells were compared in samples not stimulated

with BCG.

Suppression assays. Cell lines were tested for their capacity to inhibit proliferation of a
Thl responder clone (Rp15 1-1) in response to its cognate M. tuberculosis hsp65 p3—13
peptide presented by HLA-DR3 positive, irradiated (20 Gy) PBMCs. Proliferation was
measured after three days of co-culture by addition of (3H)thymidine (0.5 uCi/well) and

incorporation was assessed after 18 hours. Background proliferation was assessed by
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adding T-cells without the peptide. Validation of this co-culture assay has been reported
previously [30-32;34].

Proliferation was divided by Th1 reporter clone proliferation in the absence of Treg cells to
obtain relative proliferation and enable analysis across experiments. Values represent
means from triplicate wells, that were subsequently averaged for repeated experiments per
donor. Demonstrated values represent pooled data from different donors. Raw data can be

provided per request.

Statistical analyses. Wilcoxon signed-rank tests were performed using GraphPad Prism
(version 6, GraphPad Software, San Diego, CA, USA) and SPSS statistical software
(version 20, SPSS IBM, Armonk, NY, USA).

Laboratory. Studies were conducted in a laboratory guided by exploratory research

principles with established Standard Operating Procedures [33].

Results

+

Heatkilled vs. live BCG-activated expression of Treg-cell markers on CD4" and CD8
T-cells

PBMCs were isolated from healthy human donors that had been selected based on their in
vitro response to mycobacterial PPD as described before [30;31;35]. The PBMCs were
stimulated with heatkilled or live BCG, and CD4" and CD8" T-cells were analysed for
regulatory T-cell marker expression after six days. Figure 1A depicts the full gating
strategy, and an example of the synchronized gating on a positive population for CD4"™ and
CDS8" T-cells, in compliance with MIATA guidelines [36]. Background expression of Treg-
cell markers was compared between CD4" and CD8" populations of samples that were not
stimulated with BCG (Supplementary figure S1); only the background expression of CCL4
on CD8" T-cells was significantly higher compared to CD4 " T-cells (median 11% vs. 2%; p
< 0.01; Wilcoxon signed-rank test) [36]. Heatkilled, as well as live BCG stimulation,
activated expression of regulatory T-cell markers on CD4" and CD8" T-cells of in vitro

PPD-responsive donors, including CD25, Foxp3, LAG-3 and CD39 (figure 1B).
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Figure 1. Heatkilled vs. live BCG-activated expression of Treg-cell markers on CD4" and CD8" T-cells.

A: Gating strategy: cells were gated on single cells, live lymphocytes, CD3* and CD4°CD8" vs. CD4'CDS".
Demonstrated is the synchronized gating on the positive population of interest for CD4'CD8 and CD8'CD4" T-
cells; here the CD25-positive population. B: Heatkilled and live BCG activate CD25 Foxp3* and LAG-3"CD39"
T-cells. Expression of regulatory T-cell markers on CD4" and CD8" T-cells of in vitro PPD-responders was
analysed by flowcytometry six days after heatkilled or live BCG stimulation. For each donor gating was compared
to samples not stimulated with BCG (demonstrated in Supplementary figure S1). Data are representative of seven

responders.
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Treg-cell marker frequency and density are increased on live BCG-activated CD8" vs.
CD4" T-cells

Heatkilled and live BCG activated a higher percentage of total CD8" T-cells, compared to
CD4" T-cells, that expressed CD25, Foxp3, CD39, LAG-3 or CCL4, depicted in figure 2A
as frequency of (CD8" or CD4") parent. Live BCG-activated CD8" T-cells exhibited
significantly increased Treg-cell marker frequencies compared to live BCG-activated CD4"
T-cells (*p < 0.05; Wilcoxon signed-rank test).

To determine cellular densities of expression of Treg-cell markers, mean fluorescence
intensities (MFIs) of positive populations were compared for BCG-activated expression of
CD25, Foxp3 and CD39. MFIs of CD25 and CD39 were significantly higher on live BCG-
stimulated CD8" T-cells, compared to CD4" T-cells (figure 2B; p = 0.02 and p = 0.03,
respectively; Wilcoxon signed-rank test), whereas MFIs of heatkilled BCG-activated CD4"
T-cells did not differ from heatkilled BCG-activated CD8" T-cells (data not shown).

Co-expression of multiple Treg-cell markers enriches for CD8", and not CD4" T-cells
Co-expression of multiple Treg-cell markers by live BCG-induced T-cells was analysed
using Boolean gating (figure 3A). A significantly higher percentage of total CD8" T-cells
was CD25 Foxp3", compared to CD4" T-cells (p = 0.02; Wilcoxon signed-rank test). Also,
the percentage of total CD8" T-cells co-expressing CD25, Foxp3, CD39, LAG-3 and/or
CCL4 in various combinations was significantly higher compared to CD4" T-cells (p <
0.01, Wilcoxon signed-rank test).

To determine the relative distribution of CD4" and CD8" T-cells within the Treg-cell
marker positive T-cells, we applied Boolean gating to the total CD3" population (figure 3B,
upper panel), and the CD8" proportion was calculated for the CD3" Boolean gates (figure
3B, lower panel). Gating BCG-activated T-cells on expression of CD25 or Foxp3, enriched
for CD8" T-cells compared to the total CD3" population (p = 0.03 and p = 0.06,
respectively; Wilcoxon signed-rank test). Increasing selection of total BCG-activated T-
cells on regulatory T-cell markers further enriched for CD8" T-cells significantly (p = 0.01
for CD25 Foxp3'CD39 LAG-3'CCL4" T-cells, Wilcoxon signed-rank test).
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Figure 2. Treg-cell marker frequency and density are increased on live BCG-activated CD8" vs. CD4" T-
cells. A: BCG induces Treg-cell marker expression on CD4" and CD8" T-cells; after live BCG stimulation the
percentage of total CD8" T-cells expressing CD25, Foxp3, CD39, LAG-3 or CCL4 is significantly higher
compared to CD4" T-cells, depicted here as frequency of CD8" or CD4" population. Differences in Treg marker
expression between heatkilled BCG-activated CD8" vs. CD4" T-cells were not significant, except for expression of
CCL4; CCL4 expression was also significantly higher on CD8" T-cells compared to CD4" T-cells in samples not
stimulated with BCG (Supplementary figure S1) (*p < 0.05, Wilcoxon signed-rank test). B: Mean fluorescence
intensities (MFIs) of CD25 and CD39 are increased on live BCG-activated CD8" T-cells as compared to CD4" T-
cells. Gating was performed as demonstrated in figure 1A. To assess differences in intrinsic intensity of expression
on CD4" and CD8" T-cells, respectively, MFIs of positive Treg marker populations in samples not stimulated with
BCG were compared; this was similar on CD4" and CD8" T-cells for MFIs of CD25, Foxp3 and CD39. Data are
representative of seven in vitro PPD-responders six days after heatkilled or live BCG stimulation (*p < 0.05;

Wilcoxon signed-rank test).
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Suppressive activity resides predominantly in live BCG-activated CD8" T-cells

T-cell lines were tested for their capacity to suppress proliferation of an unrelated CD4" T
helper-1 clone. This responder clone recognizes a cognate peptide presented in the context
of HLA-DR3 in an assay which has been previously reported and validated [30-32;34].
Heatkilled BCG-activated T-cells did not suppress proliferation of the responder clone. In
contrast, live BCG-stimulated T-cells exhibited suppressive activity towards the same
responder clone (figure 4A). CD8" / CD4" ratios of heatkilled BCG-stimulated and live
BCG-stimulated T-cell lines were 0.06 and 0.1, respectively (Supplementary figure S2),
suggesting a potential association of T-cell subset distribution with suppressive function.
We next separated live BCG-activated T-cell lines into CD4" or CD8" expressing
populations using magnetic beads (purity > 97% as assessed by flowcytometry), and tested
live BCG-activated CD4" T-cells in parallel with live BCG-activated CD8" T-cells for their
suppressive capacity. Live BCG-activated CD8" T-cells suppressed T helper-1 clone
proliferation, whereas live BCG-activated CD4" T-cells did not significantly inhibit
proliferation. Thus, suppressive activity was dominant in live BCG-activated CD8" T-cells,
compared to live BCG-activated CD4" T-cells (figure 4B; p < 0.001; Wilcoxon signed-rank
test).

Discussion

In this study, we present a comparative analysis of the suppressive phenotype and function
of BCG-activated CD4" vs. CD8" T-cells. CD8" T-cells consistently expressed higher
levels of regulatory T-cell markers compared to CD4" T-cells; also the cellular density of
expression and co-expression of these markers were significantly higher. Selection of T-
cells based on CD25-positivity after live BCG-activation also enriched for CD8" T-cells,
and further selection on co-expression of combined regulatory markers further supported
CDS8" enrichment. Suppressive Treg activity was dominantly present in live BCG- but not
heatkilled BCG-activated T-cells; finally, the suppressive activity largely resided in the
CD8" T-cell- and not the CD4 " T-cell-population.
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Multiple CD4" Treg-cell marker expressing subsets have been demonstrated in patients
with tuberculosis [9;10] and after vaccination with MVAS5A [18] and BCG [29]. We
previously demonstrated the suppressive activity of CD8 ' LAG-3"CCL4" and CD8'CD39"
Treg cells, isolated from live BCG-stimulated PBMCs; in those studies, we also observed
upregulation of these markers in the CD4" compartment [30;31]. However, also non-
suppressive, activated human CD4" T-cells may transiently upregulate Foxp3-expression
such that in vitro-induced Foxp3 expression by human CD4" T-cells is not necessarily
associated with suppressive function [37]. The co-expression of multiple Treg-cell markers
can more reliably and specifically identify human Treg cells. In the current study we found
that more stringent selection of total BCG-activated T-cells using multiple Treg cell
markers further enriched for CD8" T-cells significantly. In other work using allo-antigen
induction of Treg cells by plasmacytoid dendritic cells, also discrepant activation of CD8"
vs. CD4" Treg cells has been reported: suppressive activity was mediated by CD8 'LAG-
3'Foxp3'CTLA-4" T-cells, but not by plasmacytoid dendritic cell-induced CD4" T-cells
[38]. However, no systematic comparative studies have been performed so far comparing
suppressive capacity of Mycobacterium-induced CD4" vs. CD8" T-cells.

The type of antigen used for in vitro restimulation of specific responses may significantly
influence the results, as stimulation with live mycobacteria could activate significantly
different populations of T-cells as compared to killed mycobacteria or protein isolates like
PPD. CD4" Treg cells have been isolated from PBMCs of active TB patients through ex
vivo selection on co-expression of CD4 and CD25 [9;16;39], and have been phenotyped
after culturing PBMCs with TB-specific peptides [16] or mycobacterial PPD [9]. PPD-
stimulated PBMCs of TB patients revealed expansion of CD4'CD25Foxp3" T-cells in
active TB patients, but low numbers of CD8 CD25 Foxp3" T-cells [9]. In the current study,
we compared live and heatkilled BCG, where heatkilled BCG was considered to be a
primary stimulus for CD4" T-cells, through the MHC-II antigen presentation pathway,
resembling PPD. It is intriguing, as demonstrated here, that CD8" Treg activity is
specifically induced by live as opposed to heatkilled BCG, suggesting that the MHC-I
antigen presentation pathway is involved in the activation of these cells, and also that cross-
presentation of killed bacteria to CD8" T-cells is likely to be insufficient. We hypothesize
that BCG, as a live intracellular bacterium, is able to modify antigen presentation/

stimulation, although the mechanisms and pathways involved remain unknown at this stage.
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Figure 4. Suppressive activity resides predominantly in live BCG-activated CD8" T-cells.

Heatkilled BCG-activated and live BCG-activated T-cell lines were expanded, and live BCG T-cell lines were
enriched for CD4 or CD8 expression using magnetic beads. Suppressive capacity was tested in a co-culture assay
by titrating these T-cell lines onto a Thl reporter clone that was stimulated with its cognate peptide [30;31].
Proliferation was measured by (3H)TdR incorporation after three days. Proliferation was divided by Thl reporter
clone proliferation in the absence of Treg cells to obtain relative proliferation as described previously [30-32].
Dotted lines represent background proliferation of T-cells, in the absence of reporter clone peptide, relative to Thl
clone proliferation. A: Suppressive activity was confined to live BCG-activated T-cells, and could not be
demonstrated for heatkilled BCG-specific T-cells. Data are depicted as mean = SE of five different heatkilled
BCG-activated T-cell lines, and six live BCG-activated T-cell lines. B: Suppressive activity resides predominantly
in CD8" T-cells, and not in CD4" T-cells (mean + SE of CD4" and CD8" T-cell lines of three donors, tested in at
least two independent assays; Wilcoxon signed-rank test, p < 0.001).
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The relatively long persistence of BCG as a live intracellular bacterium in the human body
after vaccination, as opposed to other vaccines, may be responsible for inducing increased
CDS8" (regulatory) T-cell responses over time, compared to CD4 " T-cells. Dendritic cells in
the skin could optimally cross-present [40] extracellular fragments of BCG after
vaccination, further adding to CD8" T-cell priming by late cross-presentation. Additional
research is needed to clarify the BCG-specific induction of Treg cells in vivo and to
compare the magnitude and persistence of CD4 " and CD8" T-cells prospectively, both early
after BCG-vaccination as well as at later time points.

Studies analysing immune responses induced by Mtb-infection, TB disease or BCG-
vaccination, may have largely overlooked the presence and role of CD8" Treg cells, which
may be surprising, considering the initial identification of suppressor cells as CD8" T-cells
[41], and the early cloning of CD8" suppressor T-cells in mycobacterial disease [12;13].
Immune based diagnosis of TB infection, such as tuberculin skin tests and IFNy-release
assays (IGRAs), vaccine immunogenicity, and perhaps also vaccine induced protection
could all be negatively impacted upon by Treg activity [15-17]. More research into the
induction and activity of Treg cells, and comparative analyses of subsets, could be
important to optimal vaccine design as well as a better understanding of correlates of
protection. Our study highlights the important contribution of live BCG-activated CDS8"
Treg cells to immune regulation, and emphasizes the possible negative impact of human

CDS8" regulatory T-cells on immunity to mycobacterial infection and vaccination.
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Supplementary figure S1. Treg-cell marker expression in samples not stimulated with BCG. Positive
populations for Treg-cell markers were defined by comparison with not BCG-stimulated samples for each donor.

In the latter samples, only CCL4 expression was significantly higher on CD8" T-cells, compared to CD4" T-cells.
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Supplementary figure S2. CD8" : CD4" ratio after expansion of T-cell lines. Heatkilled and live BCG-activated
T-cell-lines were expanded and CD4" and CDS8" frequencies were assessed by flowcytometry. The median pre-

expansion CD8" : CD4" ratio was 0.3.
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Abstract

Regulatory T (Treg) cells can balance normal tissue homeostasis by limiting inflammatory
tissue damage, e.g. during pathogen infection, but on the other hand can also limit
protective immunity induced during natural infection or following vaccination. Because
most studies have focused on the role of CD4" Treg cells, relatively little is known about
the phenotype and function of CD8" Treg cells, particularly in infectious diseases. Here, we
describe for the first time the expression of CD39 (E-NTPDasel) on Mycobacterium-
activated human CD8" T-cells. These CD8 CD39" T-cells significantly co-expressed the
Treg markers CD25, Foxp3, lymphocyte activation gene-3 (LAG-3), and CC chemokine
ligand 4 (CCL4), and suppressed the proliferative response of antigen-specific CD4" T
helper-1 (Thl) cells. Pharmacological or antibody mediated blocking of CD39 function
resulted in partial reversal of suppression. These data identify CD39 as a novel marker of
human regulatory CD8" T-cells and indicate that CD39 is functionally involved in
suppression by CD8" Treg cells.
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Introduction

Mycobacterium tuberculosis was responsible for 1.4 million deaths in 2010 and is estimated
to have infected one-third of the world population [1]. There is extensive evidence
suggesting that M. tuberculosis strongly modulates the immune response, both innate and
adaptive, to infection, with an important role for regulatory T (Treg) cells [2]. In mice, M.
tuberculosis infection triggers antigen-specific CD4" Treg cells that delay the priming of
effector CD4" and CD8" T-cells in the pulmonary lymph nodes (LNs) [3], suppressing the
development of CD4" T helper-1 (Th1) responses that are essential for protective immunity
[4]. Thus, these CD4" Treg cells delay the adequate clearance of the pathogen [5] and
promote persisting infection.

M. tuberculosis - as well as Mycobacterium bovis bacillus Calmette-Guérin (BCG) - have
been found to induce CD4" and CD8" Treg cells in humans [6-8]. CD4" and CD8" Treg
cells are enriched in disseminating lepromatous leprosy lesions, and are capable of
suppressing CD4" Th1 responses [9;10]. Naive CD8 CD25  T-cells can differentiate into
CD8'CD25" Treg cells following antigen encounter [11]. In M. tuberculosis-infected
macaques, IL-2-expanded CD8'CD25Foxp3™ Treg cells were found to be present
alongside CD4" effector T- cells in vivo, both in the peripheral blood and in the lungs [12].
In human Mycobacterium-infected LNs and blood, a CD8" Treg subset was found
expressing lymphocyte activation gene-3 (LAG-3) and CC chemokine ligand 4 (CCLA4,
macrophage inflammatory protein-1B). These CD8 LAG-3"CCL4" T-cells could be isolated
from BCG-stimulated PBMCs, co-expressed classical Treg markers CD25 and Foxp3, and
were able to inhibit Thl effector cell responses. This could be attributed in part to the
secretion of CCL4, which reduced Ca2" flux early after T-cell receptor triggering [8].
Furthermore, a subset of these CD8 CD25 LAG-3" T-cells may be restricted by the HLA
class-Ib molecule HLA-E, a non-classical HLA class-I family member. These latter T-cells
displayed cytotoxic as well as regulatory activity in vitro, lysing target cells only in the
presence of specific peptide, whereas their regulatory function involved membrane-bound
TGF-B [13]. Despite these recent findings, the current knowledge about CD8" Treg cell
phenotypes and functions is limited and fragmentary when compared with CD4 " Treg cells

[6:14].
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CD39 (E-NTPDasel), the prototype of the mammalian ectonucleoside triphosphate
diphosphohydrolase family, hydrolyzes pericellular adenosine triphosphate (ATP) to
adenosine monophosphate [15]. CD4" Treg cells can express CD39 and their suppressive
function is confined to the CD39'CD25'Foxp3” subset [16;17]. Increased in vitro
expansion of CD39" regulatory CD4" T-cells was found after M. tuberculosis specific
‘region of difference (RD)-1" protein stimulation in patients with active tuberculosis (TB)
compared with healthy donors. Moreover, depletion of CD25'CD39" T-cells from PBMCs
of TB-patients increased M. tuberculosis specific IFNy production [18]. CD39 expression
on CD8'CD25 Foxp3" Treg cells has been described in simian immunodeficiency virus
infection [19], but has not been studied in mycobacterial infections in humans.

ATP and other nucleotides can induce an array of intercellular signals, depending on the
receptor subtype and pathways involved [20]. In damaged tissues, ATP is released in high
concentrations, and functions as chemoattractant, generating a broad spectrum of pro-
inflammatory responses [21]. ATP can also trigger mycobacterial killing in infected
macrophages [22-24], can stimulate phagosome-lysosome fusion through P2X7 receptor
activation [25], and can drive Th17 cell differentiation in the murine lamina propria [26]. In
a study focusing on the novel M. tuberculosis vaccine MVAS85A, a drop in extracellular
ATP consumption by PBMCs from subjects 2 weeks after vaccination corresponded with a
decrease in CD4'CD39" Treg cells and a concomitant increase in the co-production of IL-
17 and IFNy by CD4" T-cells [27]. Further hydrolysis of adenosine monophosphate by
ecto-5"-nucleotidase (CD73) generates extracellular adenosine [20], which modulates
inflammatory tissue damage, among others by inhibiting T-cell activation and multiple T-
cell effector functions through A2A receptor-mediated signaling [28].

BCG, the only currently available vaccine for TB, fails to protect adults adequately and
consistently from pulmonary TB [29], and part of this deficiency may be explained by
induction of Treg cells by the BCG-vaccine [7;30;31]. In this study, we have used live BCG
to activate CD8" Treg cells, and demonstrate that these CD8" T-cells express CD39, and
co-express the well-known Treg markers CD25, Foxp3, LAG-3, and CCL4. Finally, we
describe involvement of CD39 in suppression by CD8" T-cells.
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Materials and Methods

Blood samples. Anonymous buffy coats were collected from healthy adult blood bank
donors that had signed consent for scientific use of blood products. PBMCs were isolated
by density centrifugation and cryopreserved in fetal calf serum supplemented medium.
Cells were counted using the CASY cell counter (Roche, Woerden, the Netherlands).
Recognition of mycobacterial PPD was tested by assessing IFNy production in vitro.
PBMCs were stimulated with 5 pg/mL PPD (Statens Serum Institute, Copenhagen,
Denmark) for 6 days and supernatants were tested in IFNy ELISA (U-CyTech, Utrecht, the
Netherlands). Positivity was defined as IFNy production > 150 pg/mL.

Cell cultures. PBMCs were cultured in Iscove’s modified Dulbecco’s medium (Life
Technologies-Invitrogen, Bleiswijk, the Netherlands) supplemented with 10% pooled
human serum. BCG (Pasteur) was grown in 7H9 plus ADC, frozen in 25% glycerol and
stored at -80°C. Before use, bacteria were thawed and washed in PBS/0.05% Tween 80
(Sigma-Aldrich, Zwijndrecht, the Netherlands). Infections were done at an MOI of 1.5. IL-
2 (25 U/mL; Proleukin; Novartis Pharmaceuticals UK Ltd., Horsham, UK) was added after
6 days of culture.

Restimulation of cell lines was done in 96-well round-bottom plates (1 x 10° cells/w) with
aCD3/CD28 beads (Dynabeads Human T-activator, Life Technologies-Invitrogen), 1L-2
(50 U/mL), IL-7, and IL-15 (both 5 ng/mL, Peprotech, Rocky Hill, NJ, USA); pooled,
irradiated (30 Gy) PBMCs were added as feeders. Cells were maintained in IL-2 (100
U/mL).

FACS analysis. T-cell lines were incubated overnight with aCD3/28 beads, for the last 16h
Brefeldin A (3 pg/mL, Sigma-Aldrich) was added. Following the labeling with the violet
live/dead stain (VIVID, Invitrogen), the following antibodies were used for surface
staining: CD3-PE-Texas Red, CD14- and CD19-Pacific Blue (all Invitrogen), CD4-PeCy7,
CD8-HorizonV500, CD73-PerCPCy5.5 (all BD Biosciences, Eerembodegem, Belgium),
and CD39-PE (Biolegend, London, UK).

For intracellular staining, we used Intrastain reagents (Dako-Cytomation, Heverlee,
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Belgium) according to the instructions of the manufacturer and the following antibodies:
CCL4-FITC (R&D Systems, Abingdon, UK), Foxp3-Alexa Fluor 700 (eBioscience,
Hatfield, UK), LAG-3-atto 647N (ENZO Life Sciences, Antwerp, Belgium), CD25-
allophycocyanin-H7 (BD Biosciences), and IL-10-allophycocyanin (Miltenyi Biotec,
Teterow, Germany). Samples were acquired on a BD LSRFortessa using FACSDiva
software (version 6.2, BD Biosciences) and analyzed using FlowJo software (version 9.5.3,

Treestar, Ashland, OR, USA).

Cell sorting. CD8" cells were enriched by positive selection using magnetic beads (MACS,
Miltenyi Biotec). Cells were fluorescence-activated cell sorted (FACS) by BD FACSArialll
cell sorter using CD39-PE (Biolegend). Purity of all cell sorts was > 97% as assessed by
flow cytometry.

Suppression assays. Cell lines were tested for their capacity to inhibit proliferation of a
Thl responder clone (Rpl5 1-1) and its cognate M. tuberculosis hsp65 p3—13 peptide,
presented by HLA-DR3 positive, irradiated (20 Gy) PBMCs as APCs in a co-culture assay
that has been previously reported [8;32]. Proliferation was measured after 3 days of co-
culture by addition of 0.5 pCi/well and (3H)thymidine incorporation was assessed after 18
h. Values represent means from triplicate wells.

For the CFSE-labeling assay, the Rp15 1-1 Thl-responder clone was labeled with 0.005
uM of CFSE and the irrelevant, isogenic T-cell clone (R2F10), with different peptide
specificity and HLA-DR2 restriction, with 0.5 uM of CFSE, similar in design to previously
described [13]. After 16h of co-culture with 5x10* CD8'CD39" T-cells, the p3-13 peptide
(50 ng/mL) and HLA-DR3 positive APCs, cells were harvested and stained for CD3, CD4,
and CDS. CFSE intensity was measured on a BD LSRFortessa using FACSDiva software

and analyzed using FlowJo software.

Blocking experiments. ARL 67156 trisodium salt hydrate (Sigma-Aldrich) was added to
the well in 150 uM and daily during the 3 days of co-culture. Anti-CD39 monoclonal
antibody BY40/OREG-103 (Orega Biotech, Ecully, France) was added to the well at the
first day of co-culture at a final concentration of 10 pug/mL, as was the IgG1 isotype control

(R&D Systems). Values represent mean + SE from triplicate wells.
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Suppressive capacity of CD8'CD39" T-cells was independent of original proliferation of
the Thl clone, as tested by reducing the cognate peptide concentration in the co-culture
assays. Reversal of suppression was calculated in proportion to original clone proliferation
in the absence of Treg cells, since ARL and anti-CD39 monoclonal antibody interfered
directly with Thl clone proliferation signals in the CD39 pathway, as demonstrated by
reduced (3H)thymidine incorporation after 3 days. Percentage blocking was calculated after
natural logarithmic transformation, and inhibition of proliferation in the presence and
absence of blocking agents was calculated and expressed as percentage [8]. Raw data can

be provided per request.

Statistical analyses. Mann-Whitney tests and Wilcoxon signed-rank tests were performed
using GraphPad Prism (version 5, GraphPad Software, San Diego, CA, USA) and SPSS
statistical software (version 20, SPSS IBM, Armonk, NY, USA).

Results

Live BCG activates CD39 expression on CD4" and CD8" T-cells

We isolated PBMCs from healthy human donors and stimulated these PBMCs with live
BCG [8]. Flow cytometric analysis was performed after 6 days (the full gating strategy is
shown in Supplementary figure S1, in compliance with the most recent MIATA guidelines
[33]). CD39 was expressed on T-cells of donors that responded to purified protein
derivative (PPD) in vitro, but not on T-cells from PPD non-responsive donors or on
unstimulated cell lines (figure 1). CD39 and CD25 were co-expressed on both CD4" and
CDS8" T-cells from PPD-responsive donors after stimulation with live BCG (figure 1).
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Figure 1. Live Mycobacterium bovis BCG activates CD4"'CD39* and CD8'CD39" T-cells. Flow cytometric

analysis of CD39 and CD25 expression on CD8" and CD4" T-cells of in vitro PPD-responders and non-responders
6 days after live M. bovis BCG stimulation. Gating was performed as shown in Supplementary figure S1. Data are

representative of five PPD-responders and five non-responders.

CD8'CD39" T-cells specifically co-express Treg-cell markers

CD8'CD39" T-cells co-expressed the Treg-cell markers CD25, LAG-3, CCL4, and Foxp3
(figure 2A). There was no co-expression of CD39 with CD73, consistent with other studies
on human Treg cells [34] (data not shown). Gating CD8" T-cells on Foxp3 and LAG-3 [8]
demonstrated that the majority of these cells also expressed CD39 as well as CD25 (figure
2B). Boolean gating was used to analyze expression of multiple markers on single cells
(figure 2C). A significantly higher percentage of CD3°CD8'CD4 T-cells from PPD-
responders expressed CD39 as compared with non-responders (p = 0.03; Mann-Whitney
test). The CD8'CD39" T-cells from responders significantly co-expressed CD25, LAG-3,
CCL4, and/or Foxp3 as compared with non-responders and this difference was highly
significant for the CD8" T-cells that were CD39'CD25'LAG-3"CCL4 Foxp3" (p = 0.02 -
0.03 and p = 0.0079, respectively; Mann-Whitney test). The majority of the
CD3'CD8"CD4 T-cells co-expressed CD25, LAG-3, CCL4, and/or Foxp3 in combination
with CD39, such that CD39 appears to be a preferential marker of CD8" Treg cells

expressing multiple Treg-associated markers (p = 0.0625; Wilcoxon signed-rank test).
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Figure 2 (4 and B). CD39 expression is associated with Treg-cell markers on CD8" T-cells. A: Flow
cytometric analysis of CD8" T-cells for a selection of Treg markers in a PPD-responder 6 days after live
Mycobacterium bovis BCG infection. Gating was performed as shown in Supplementary figure S1. CD8"CD4
gate consisted of at least 10 000 cells. Data are representative of five donors and four experiments performed. B:
CDS8" T-cells that express Foxp3 and LAG-3 (left) also express CD25; the majority of these also express CD39
(right).

- figure continues on next page -
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Figure 2 (continued). CD39 expression is associated with Treg-cell markers on CD8" T-cells. C: Combined
analysis of individual Treg markers. Expression of individual markers was combined using Boolean gating and
data are expressed as the percentage of CD3'CD8'CD4™ T-cells that express these markers. Data are shown of five
PPD-responders in gray boxes versus five non-responders in open boxes, 6 days after live M. bovis BCG infection
and are representative of four experiments. Boxes: 25™-75™ percentiles; line at median; whiskers: minimum to

maximum (¥*p < 0.05; **p < 0.01; Mann-Whitney test).

CD8"CD39" T-cells suppress CD4" Th1 responses

To determine the possible suppressive function of CD39" T-cells, CD39-positive and
negative T-cell populations were FACS-sorted and tested for their capacity to inhibit the
activity of an unrelated CD4 " Thl responder clone, recognizing a cognate peptide presented
in the context of HLA-DR3 [8;32]. CD8'CD39" T-cells, purified to > 97% purity, indeed
suppressed the proliferative response of (cloned) CD4" Thl cells in response to peptide in
the context of HLA-class II. This suppressive activity was strongly enriched in the
CD8'CD39" T-cell population as compared with CD8 CD39" T-cells and unsorted CD8" T-
cells (figure 3A). Flow cytometric analysis of sorted T-cell lines demonstrated enrichment
for LAG-3, CD25, Foxp3, and CCL4 in the CD8"CD39" compared with the CD8'CD39 T-
cells (figure 3B).
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Figure 3. Mycobacterium bovis BCG-induced CD8'CD39" T-cells suppress antigen-specific proliferation of
(cloned) CD4" Th1 cells. A: CD8" T-cells of PPD-responders were enriched after BCG stimulation by positive
selection using magnetic beads and FACS-sorted on CD39 expression. Their potential suppressive capacity was
tested in a co-culture assay by titrating CD8'CD39" T-cell lines, CD8'CD39™ T-cell lines, or unsorted bulk CD8"
T-cell lines (containing on average 75% CD8'CD39" T-cells) onto a Thl reporter clone that was stimulated with
its cognate peptide. Proliferation was measured by (3H)TdR (where TdR is thymidine) incorporation after 3 days.
Proliferation was divided by Thl reporter clone proliferation in the absence of Treg cells to obtain relative
proliferation (Wilcoxon signed-rank test, p < 0.001). Dashed lines represent background proliferation of the
different CD8" T-cell subsets (at the indicated CD8" T-cell concentrations) relative to Thl reporter clone
proliferation. Data are depicted as mean + SE of three cell lines. B: Flow cytometric analysis demonstrating
enrichment for Treg-cell markers in CD39-sorted CD8" T-cell lines, compared with CD39°CD8" T-cell lines. (A,

B) Data are shown from one representative experiment out of three performed.
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Blocking CD39 results in partial reversal of suppression by M. bovis BCG-stimulated
CD8'CD39" T-cells

CD8'CD39" T-cells preserved their expression of CD39 ( > 99%), as well as of other Treg-
cell markers, including CD25, Foxp3, and CCL4 (Supplementary figure S2) following
further in vitro expansion. We next tested the ability of ARL 67156 trisodium salt hydrate
(ARL) and the anti-CD39 monoclonal antibody BY40/OREG-103 to reverse the
suppressive activity of CD8 'CD39" T-cells. ARL is an ATP analog that can bind to, but is
not hydrolysable by, CD39 [35], and has been used to inhibit the suppressive activity of
CD4'CD25'CD39" cells [27]. Here, ARL partially reversed the capacity of CD8'CD39" T-
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Figure 4. Blocking CD39 by the chemical CD39 antagonist ARL 67156 trisodium salt hydrate (ARL) results
in partial reversal of suppression by Mycobacterium bovis BCG-stimulated CD8"CD39" T-cells. CD8"CD39"
T-cells, with previously demonstrated T-cell inhibitory capacity, were expanded using aCD3/CD28 beads, and
suppression assays were performed by titrating these CD8"CD39" T-cell lines onto a Th1 reporter clone stimulated
with its cognate peptide as described in the legend of figure 3A. ARL was added daily in 150 uM and proliferation
was measured as (3H)TdR (where TdR is thymidine) incorporation after three days. The response was calculated
by dividing cognate-peptide-induced proliferation with unstimulated values after natural logarithmic
transformation. To obtain a relative response, the response for each Treg concentration was normalized for
proliferation in the absence of Treg cells (100%). Reversal of suppression was calculated by dividing relative
responses in the presence or absence of ARL (14 - 47% reversal of suppression; p = 0.023; Wilcoxon signed-rank
test) as previously described [8]. Data represent mean + SE for three independent CD8'CD39" T-cell lines tested

in two experiments on the same standardized Th1 reporter clone.

-96 -



CD39 as a marker of BCG-activated CD8" Tregs

cells to suppress the proliferative responses of the Thl responder clone (14 - 47% reversal
of suppression; in three cell lines; p = 0.023; Wilcoxon signed-rank test) (figure 4).

Suppression by the CD8 CD39" T-cells was also (partially) reversed by the anti-CD39
blocking monoclonal antibody BY40/OREG-103 [36;37] (0 - 35% reversal of suppression;
in four experiments; p = 0.005; Wilcoxon signed-rank test) (figure 5); further supporting
the direct functional involvement of CD39 in suppression mediated by CD8'CD39" Treg

cells.
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Figure 5. Suppression mediated by CD8"CD39" T-cell lines is partly reversed by an anti-CD39 monoclonal
antibody BY40/OREG-103. CD8'CD39" T-cells were expanded using aCD3/CD28 beads and suppression assays
were performed by titrating these CD8*CD39" T-cell lines onto a Thl reporter clone stimulated with its cognate
peptide. Proliferation values were divided, after natural logarithmic transformation, by Thl reporter clone
proliferation values obtained in the absence of Treg cells, in order to obtain relative proliferation. Inhibition of
proliferation in the presence and absence of anti-CD39 monoclonal antibody was calculated and expressed as
percentage (0 - 35% reversal of suppression; p = 0.005; Wilcoxon signed-rank test). Data represent mean + SE for

four cell lines in four independent experiments.
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To exclude that suppressive activity by CD8 CD39" T-cell lines was due to lysis rather than
active suppression of the CD4" Thl responder clone, the Thl responder clone and an equal
number of cells of an irrelevant T-cell clone were labeled with low and high doses CFSE,
respectively, and were added in equal numbers to the co-culture assay, identical to
previously described [13]. After 16h, before division of the Thl responder clone occurs, the
percentages of responder and irrelevant T-cell clone without CD8'CD39" T-cells were
similar to the percentages of responder and irrelevant T-cell clone with the addition of
CD8'CD39" T-cells (Supplementary figure S3), indicating that in these co-culture assays,
inhibition of responder cell proliferation by CD8CD39" T-cells is not the result of
cytotoxicity.

Discussion

In this study, we describe for the first time the expression of, and a functional role for,
CD39 on human pathogen activated CD8" Treg cells. CD8'CD39" T-cells from PPD-
responsive individuals specifically co-expressed the known classical Treg-cell markers
CD25, Foxp3, LAG-3, and CCL4. To assess if CD39 expression was merely a marker of
CD8" Treg cells or was directly involved in the CD8'CD39" T-cells’ suppressive activity,
we purified CD8'CD39" T-cells, and showed that they were strongly enriched for
suppressive activity and the expression of Treg markers, and that both the chemical CD39
antagonist, ARL, as well as a blocking anti-CD39 antibody were able to partly inhibit the
suppressive activity of CD8'CD39" T-cells. Altogether these data indicate that CD39 is a
marker for regulatory CD8" T-cells and that CD39 contributes functionally to the
suppression mediated by human CD8 'CD39" T-cells.

Both ARL as well as the blocking anti-CD39 antibody only partly inhibited suppressive
activity, indicating that also other mechanisms may contribute to suppression. We
previously demonstrated the expression of LAG-3 and the functional involvement of CCL4
in immune regulation by BCG-activated CD8" Treg cells. In the current study, > 43% of
CD8'CD39" T-cells also expressed CCL4, while we did not find any expression of IL-10

on these T-cells.
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CD8" Treg cells have been described in human Mycobacterium-infected LNs [8] and
lepromatous lesions [9;10], demonstrating that CD8" Treg cells are present at the site of
disease and suggesting a potential role for these cells in disease pathogenesis. In line with
our previous studies showing that BCG activated CD8" Treg cells in PPD-responsive
individuals, but not in donors that did not recognize PPD in vitro [8], also in the current
study CD8'CD39" Treg cells were confined to PPD-responders, suggesting that these cells
originated from preexistent antigen-specific memory T-cells. We have previously
hypothesized that Treg cells could contribute to the relative failure of BCG-vaccination in
conferring protection against pulmonary TB in adults [6].

In TB, recent results have suggested a role for Th17 cells both in protection and pathology.
IL-17 producing CD4" T-cells in the lung, induced by BCG-vaccination, were associated
with protective immunity to TB in mice [2;38]; interestingly, in human tuberculous pleural
effusions, the number of CD4'CD39" Treg cells was inversely related to the number of
Th17 cells, and CD39" Treg cells suppressed the differentiation of naive CD4" cells into
Th17 cells [39]. Frequencies of CD4'CD39" T-cells correlated negatively with TL17A
responses in stimulated PBMCs after MVA85A vaccination [40]. Stimulation of PBMCs in
the presence of the CD39 chemical antagonist ARL 67156 increased coproduction of IL-17
and IFNy by CD4" T-cells, 1 and 2 weeks after MVASS5A vaccination [27]. Whether
CD8'CD39" T-cells are associated with IL-17 responses and/or protection needs further
investigation.

In this article, we describe for the first time a functional role for CD39 on human BCG-
activated CD8 CD39" Treg cells. We show that CD39 expression marks a CD8" Treg-cell
subset, which co-expresses LAG-3, CD25, Foxp3, and CCL4, and that CD39 may play a
direct role in exerting CD8" Treg-dependent suppression. CD8 'CD39" Treg cells represent
a new player in balancing immunity and inflammation in host defense against

mycobacteria, and possibly contribute to (lack of) vaccine-mediated protection.
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Supplementary figures
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Supplementary figure S1. Gating strategy. Studies were conducted in a laboratory guided by exploratory
research principles with established Standard Operating Procedures (SOP): cells were isolated and cryopreserved
according to SOP'. Cells were thawed (78% median viable cell yield) and stimulated with live BCG for six days in
medium supplemented with pooled human serum (pretested in standardized protocols; only sera were pooled that
had no inhibitory activity in standard mixed allogeneic lymphocyte cultures). Demonstrated is the gating strategy
used for flowcytometric analysis at day 6: cells were gated on single cells, violet-live/dead-CD14-CD19-negative,
CD3" and CD8'CD4 vs. CD4'CDS".

['Van Dissel JT et al. Vaccine 2010;28(20):3571-81. doi: 10.1016/j.vaccine.2010.02.094.]
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Supplementary figure S2. Expression of regulatory T-cell markers in restimulated CD8"CD39"* T-cell lines.
CD8'CD39" T-cells were expanded using aCD3/CD28 beads and analyzed for expression of regulatory T-cell
markers by flowcytometry. Gating was similar for both plots and performed as shown in Supplementary figure S1.
97% Of the restimulated CD8'CD39" T-cells expressed CD25 (left) and 43% of restimulated CD8'CD39" T-cells
co-expressed CCL4 and Foxp3 (right). These cells did not express IL-10. Data are representative for three
CD8'CD39" T-cell lines.

- 104 -



CD39 as a marker of BCG-activated CD8" Tregs

Co-culture in the absence
of CD8'CD39" T cells
44.2 55.5

T-responder T-irrelevant

#1 #2 #3
Co-culture with 5 x 104
CD8*CD39* T cells
49.6 50.1 46.3 535 483 515
k A % f i
T-responder  T-irrelevant T-r d T-irreleva T-r d T-irrel

Supplementary figure S3. Inhibition of Thl-responder cell proliferation is not the result of lysis by CD8" T-
cells. The Thl-responder clone Rp15 1-1 was labeled with 0.005 uM of CFSE, and another, isogenic T-cell clone,
with a different peptide specificity and HLA-DR restriction, with 0.5 uM of CFSE [13]. Both cells were then co-
cultured in equal numbers with the CD8CD39" T-cell lines in the presence of the peptide (50 ng/ml) recognized
by the responder clone Rp15 1-1 in the context of HLA-DR3" APCs. After 16 hours CFSE intensity was measured
by flowcytometry. The percentages of responder and irrelevant T-cells without CD8'CD39" T-cells were similar to
the percentages of responder and irrelevant T-cells with the addition of 5 x 10* CD8"CD39" T-cells, the highest
concentration used in our co-culture experiments; thus indicating that the responder clone is not lysed by the BCG-

activated CD8"CD39" T-cells.
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Abstract

Mycobacterium bovis bacillus Calmette-Guérin (BCG), the only currently available vaccine
against tuberculosis, induces variable protection in adults. Immune correlates of protection
are lacking, and analyses on cytokine-producing T-cell subsets in protected vs. non-
protected cohorts have yielded inconsistent results. We studied the primary T-cell response,
both pro-inflammatory and regulatory T-cell responses, induced by BCG-vaccination in
adults. Twelve healthy adult volunteers, who were tuberculin skin test (TST)-negative,
QuantiFERON test (QFT)-negative, and BCG-naive, were vaccinated with BCG and
followed up prospectively. BCG-vaccination induced an unexpectedly dichotomous
immune response in this small, BCG-naive young adult cohort: BCG-vaccination induced
either gamma interferon-positive (IFNy") interleukin 2-positive (IL2") tumor necrosis factor
a-positive (TNFa") polyfunctional CD4" T-cells concurrent with CD4IL17A" and
CDS8'TFNy" T-cells, or, in contrast, virtually absent cytokine responses with induction of
CDS8" regulatory T-cells. Significant induction of polyfunctional CD4 TFNy'IL2 " TNFa" T-
cells and IFNy production by peripheral blood mononuclear cells (PBMCs) was confined to
individuals with strong immunization-induced local skin inflammation and increased serum
C-reactive protein (CRP). Conversely, in individuals with mild inflammation, regulatory-
like CD8" T-cells were uniquely induced. Thus, BCG-vaccination either induced a broad
pro-inflammatory T-cell response with local inflammatory reactogenicity or, in contrast, a
predominant CD8" regulatory T-cell response with mild local inflammation, poor cytokine
induction, and absent polyfunctional CD4" T-cells. Further detailed fine mapping of the
heterogeneous host response to BCG-vaccination using classical and non-classical immune
markers will enhance our understanding of the mechanisms and determinants that underlie
the induction of apparently opposite immune responses, and how these impact the ability of

BCG to induce protective immunity to TB.
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Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the second greatest
infectious cause of death worldwide after HIV, accounting for 1.3 million deaths in 2012
[1]. The only available vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG),
protects infants from disseminated forms of TB, but has insufficient and inconsistent
efficacy in protecting adults from pulmonary TB [1;2]. A vaccine preventing active
pulmonary TB, the contagious form of the disease, would greatly impact the epidemic [3],
and a better understanding of vaccine-induced mechanisms of protection is essential in
developing new surrogate endpoints [4].

Both CD4" Thl (IFNy") cells and CD8" T-cells are critical for protection against TB [5].
Specifically, CD4" IFNy'IL2 " TNFa' polyfunctional T-cells have been proposed as correlate
of vaccine-induced protective immunity in murine infection models [6]. In infants, BCG-
vaccination induced specific cytokine expression in CD4" and CD8" T-cells [7-9],
including IFNyTL2'TNFa" polyfunctional CD4" T-cells [10]. However, there was no
relation between the presence of such cells and the development of TB during follow-up
[11].

In adults, BCG-vaccination induced CD4" IFNy" responses [12-14] as well as IFNy- and
TNFa-secreting CD8" T-cells with cytotoxic activity [15]. However, data on induction of
polyfunctional T-cells by BCG-vaccination in adults have been conflicting [16;17]. In one
report, the induction of polyfunctional CD4" T cells was similar in magnitude in BCG-
vaccinated infants and adults; however, when induction was analyzed as the proportion of
polyfunctional versus single-cytokine-producing T-cells, the proportion of polyfunctional
CD4" T-cells was larger in children than in adults [16]. Further, studies on latent
(controlled) versus active TB in adults yielded variable results on changes in mono- and
triple-cytokine producing T-cell subsets [18;19], such that it was suggested that
polyfunctional T-cells are also present in active TB disease and that these cells are not a
surrogate marker of protection against TB in humans [19;20].

Another explanation for the inconsistent protection induced by BCG against TB in adults is
induction of regulatory T-cells (Tregs) by mycobacteria, which can dampen pro-
inflammatory responses [21]. In that context, we reported that live BCG triggers the

specific activation of CD8" (but not CD4") Tregs from peripheral blood mononuclear cells
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(PBMCs) of mycobacterial purified protein derivative (PPD)-responsive adults [22], while
others found that BCG-vaccination induced CD4" Tregs in newborns [23] and adults [24].
Here, in a small, well-defined cohort of previously BCG-naive adults, we studied the
induction of multiple cytokine-producing as well as regulatory T-cell subsets following

BCG-vaccination.

Materials and Methods

Participants. Dutch volunteers were recruited via posters in the university library. All
volunteers were screened for tuberculosis by anamnesis (history of TB disease or
treatment), by a tuberculin skin test (TST; negative < 5mm), and by the QuantiFERON-TB
gold in-tube test, according to the manufacturer’s specifications. Included volunteers (n = 6
males, n = 6 females; median age 24 years (interquartile range (IQR) 23-25 years); median
weight 70 kg (IQR 67-80 kg); all Dutch, all Caucasian) had not been vaccinated with BCG
at any time prior to entering the trial (anamnestic, presence of scar, or on a vaccination
card), were never treated for TB disease and had negative TST and QuantiFERON test
results. In addition, they did not receive any live vaccination at < 4 weeks prior to BCG-
vaccination. Volunteers were excluded who were pregnant or not generally healthy, who
had fever or received antibiotic treatment < 2 weeks prior to enrollment, or who were
treated with immune modulating drugs < 3 months prior to enrollment; all volunteers tested

negative for HIV at screening.

Procedures. Participants were vaccinated with the live-attenuated BCG Danish strain 1331
(Statens Serum Institute, Denmark) by intradermal injection in the upper arm and were
followed up prospectively: at 2 weeks prior to vaccination, at day of vaccination, at 1, 3 and
7 days after vaccination, at 4, 8§ and 12 weeks after vaccination and at 1 year after
vaccination. During follow up the injection site was inspected and photographed, and
adverse events were recorded using a standardized case report form. Venous blood samples
were collected in heparin-containing vacutainers for whole-blood stimulation assays and for
PBMC isolation and cryopreservation according to standard operating procedures. Serum

was collected from serum tubes after blood coagulation and stored at -80°C.
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Calculation of skin inflammation score. Signs of inflammation by visual inspection of the
vaccination site and symptoms recorded in volunteer diaries were documented on
standardized case report forms and photographed at 4, 8 and 12 weeks after vaccination.
The local reaction was scored by two researchers (M.C.B. and C.P.) independently, with
one point per sign of inflammation: redness of > 1 cm, swelling of > 1 cm, pus discharge
and ulceration, pain, and regional lymph node enlargement (> 90% consensus;
disagreements were solved by mutual reexamination of case report forms, photographs and
volunteer diaries). The inflammation score was calculated as the cumulative scores of

weeks 4, 8, and 12 after vaccination.

C-reactive protein enzyme-linked immunosorbent assay. The serum samples of all pre-
vaccination and post-vaccination visits were thawed, and the C-reactive protein (CRP)
concentration was measured using a standardized, highly sensitive, CRP human enzyme-
linked immunosorbent assay (ELISA) according to the instructions of the manufacturer

(Abnova, Heidelberg, Germany).

Whole-blood live BCG-stimulation. Bacillus Calmette-Guérin (Pasteur) was grown in
7H9 plus ADC, frozen in 25% glycerol and stored at -80°C. Before use, bacteria were
thawed and washed in phosphate-buffered saline (PBS)/0.05% Tween 80 (Sigma-Aldrich).
Then, 1 ml of heparinized blood was added within 1h of blood collection to Sarstedt
microtubes (Sarstedt B.V., Etten-Leur, the Netherlands), containing 0.9 x 10° CFU
(calculated multiplicity of infection (MOI) of 3), and anti-CD28 and anti-CD49d antibodies
as co-stimulants (1 pg/ml, BD Biosciences, Eerembodegem, Belgium) [25] and
immediately incubated at 37°C. Staphylococcal enterotoxin B (SEB) (final concentration 5
pg/ml; Toxin Technology, Sarasota, FL, USA) and unstimulated samples were used as
controls. After 3 h, Brefeldin A (10 pg/ml; Sigma-Aldrich, Zwijndrecht, the Netherlands)
and Monensin (1:1000; BD Biosciences) were added and samples were transferred to a
water bath set at 37°C and programmed to switch off after 12h. Samples were harvested the
next morning, using EDTA (2mM; Sigma-Aldrich), fixed and erythrocyte-lysed using a
fluorescence-activated cell sorter (FACS)-lysing solution (BD Biosciences), and

cryopreserved in fetal calf serum with 10% dimethyl sulfoxide (DMSO) [25].
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Cell cultures and BCG infection. PBMCs were thawed, and cells were counted using the
CASY cell counter (Roche, Woerden, the Netherlands). Infections were done at an MOI of
1.5. SEB (final concentration 2 pg/ml; Toxin Technology) and unstimulated samples were
used as controls. PBMCs were cultured in 24-well plates (2 x 10%w) for 6 days in Iscove's
modified Dulbecco's medium (Life Technologies-Invitrogen, Bleiswijk, the Netherlands)
with 10% pooled human serum. For flow cytometric analysis PBMCs were incubated for
the last 16h with aCD3/28 beads (Invitrogen) and Brefeldin A (3 pg/ml; Sigma-Aldrich).
Lymphocyte stimulation assays were performed using PBMCs (0.5 x 10%w in 48-well
plates) and stimulation with 5 pg/ml PPD (Statens Serum Institute, Copenhagen, Denmark)
at 37°C, 5% CO,. Phytohemagglutinin (PHA) (final concentration 2 pg/ml; Remel Europe)
and unstimulated samples were used as controls. After 7 days, supernatants were collected
and an IFNy-ELISA (U-CyTech, Utrecht, the Netherlands) was performed.

Direct IFNy-enzyme-linked immunosorbent spot (ELISpot) assays were performed at 1
year post-vaccination: 250,000 freshly isolated PBMCs were added in AIMV (synthetic
non-human serum supplemented) medium (Invitrogen) to 96-well ELISpot plates
(Millipore, Bedford, MA, USA), that were pre-coated with anti-IFNy-antibody (1-D1K; 5
pug/ml; Mabtech, Stockholm, Sweden) and blocked with AIMV. PBMCs were stimulated
overnight with PHA (2 pg/ml), PPD (5 pg/ml) or an antigen 85B (Ag85B) peptide pool (1
pg/ml) in triplicate [26]. For detection, biotinylated anti-IFNy-antibody (0.5 pg/ml;
Mabtech), streptavidin-alkalic phospatase conjugate (1:1000 dilution in 1% bovine serum
albumin (BSA)-PBS; Mabtech IFNy-ELISpot kit reagent) and a SigmaFast NBT/BCIP
substrate (Sigma-Aldrich) were used. Positivity for vaccine take [27] was defined as an
increase of > 100% of the average count in PPD-stimulated wells compared to unstimulated

controls and at least 5 spots more than in unstimulated controls [28].

Flow cytometry. Fixed whole-blood samples were thawed and stained in batches. Surface
staining included CD3-Brilliant Violet 570 (clone UCHT1), CD19-Pacific Blue (clone
HIB19), CD56-Brilliant Violet 421 (clone HCD56) (all Biolegend, London, U.K.), CD14-
Pacific Blue (clone TiiK4) and CD4-PE-Texas Red (clone S3.5) (both Life Technologies-
Invitrogen); and CD8-HorizonV500 (clone RPA-TS8), CD45RA-allo-phycocyanin (APC)-
H7 (clone HI100) and CD62L-Brilliant Violet 605 (clone DREG-56) (all BD Biosciences).
For intracellular staining IL17A-FITC (clone eBio64DEC17; eBioscience, Hatfield, UK),
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IFNy-Alexa Fluor 700 (clone B27), TNFa-APC (clone 6401.1111), IL4-PE (clone
3010.211), and CD69-PeCy5 (clone FN50) (all BD Biosciences); and IL.2-Brilliant Violet
650 (clone MQ1-17H12), IL10-Pe-Cy7 (clone JES3-9D7) and IL13-PE (clone JES10-5A2)
(all Biolegend) were used in permeabilization solution (Fix&Perm cell permeabilization kit,
An Der Grub BioResearch GMBH, Susteren, the Netherlands).

The stimulated PBMCs were labelled with violet LIVE/DEAD stain (Vivid, Invitrogen) and
surface stained with CD3-Brilliant Violet 570 (clone UCHT1), CD19-Pacific Blue (clone
HIB19), CD56-Brilliant Violet 421 (clone HCDS56), and CD39-PE (clone Al) (all
Biolegend, London, U.K.); CD14-Pacific Blue (clone TiiK4) and CD4-PE-Texas Red
(clone S3.5) (both Life Technologies-Invitrogen); and CD8-HorizonV500 (clone RPA-TS;
BD Biosciences). Cells were fixed and permeabilized using the Fix&Perm cell
permeabilization kit. For intracellular staining the following antibodies were used: CC
chemokine ligand 4 (CCL4)-fluorescein isothiocyanate (clone 24006; R&D Systems,
Abingdon, UK), Foxp3-Alexa Fluor 700 (clone PCH101; eBioscience), lymphocyte
activation gene (LAG)-3-atto 647N (clone 17B4; ENZO Life Sciences, Antwerp, Belgium),
and CD25-allophycocyanin-H7 (clone M-A251; BD Biosciences).

Samples were acquired on a BD LSRFortessa using FACSDiva software (version 6.2, BD
Biosciences) with compensated parameters. Analysis was performed using FlowJo software
(version 9.5.3, Treestar, Ashland, OR, USA) and gates were synchronized per donor for all
visits and for both CD4" and CD8" T-cell subsets, using the comparison with unstimulated

samples and SEB as controls.

Statistical analyses. GraphPad Prism (version 6, GraphPad Software, La Jolla, CA, USA)
and SPSS statistical software (version 20, SPSS IBM, Armonk, NY, USA) were used for
Wilcoxon signed-rank tests and Mann-Whitney tests. To correct for paired resp. unpaired
multiple testing, Friedman tests followed by Dunn’s multiple comparisons tests, and
Kruskal-Wallis tests followed by Dunn’s multiple comparisons tests, respectively, were

used. Only values significant after multiple testing correction are demonstrated.

Study approval. Approval was obtained from the Medical Ethical Committee (registration
number P 12.87) of the Leiden University Medical Center, the Netherlands. Each

participant signed written informed consent prior to inclusion.
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Results

Participants

Twelve healthy adults (TST-negative, QuantiFERON-negative) were vaccinated with BCG
(n = 6 males, n = 6 females; median age 24 years (IQR 23 - 25 years); all Caucasian). Ex
vivo IFNy-ELISpot assays were performed 1 year post-vaccination to determine the
Mycobacterium-specific immunity [29]: all recipients tested positive except for one, who
nevertheless demonstrated high BCG-induced IFNy-responses in flow cytometric analysis

(Supplementary figure S1).

Local reactogenicity is variable and corresponds with serum CRP and PPD-induced
IFNy production

T-cell responses as well as BCG-vaccine induced local skin reactions varied strongly
between individuals. At 4, 8 and 12 weeks post-vaccination, inflammatory symptoms were
scored for redness, swelling, ulceration and pus discharge, pain and regional lymph node
enlargement. A cumulative skin inflammation score was then calculated (further described
in the Materials and Methods). Representative photographs of low- and high-inflammation
skin lesions are shown in figure 1A. Participants were subdivided into a low (n = 6) and a
high (n = 6) responder group (referred to as low and high skin inflammation responders,
respectively) based on skin inflammation scores using the median cumulative skin
inflammation score of 7 as a cut-off (figure 1B).

Since serum CRP has been used previously to study vaccine-induced inflammation [30-32],
we determined CRP concentrations by a highly sensitive ELISA. Serum CRP
concentrations 3 and 7 days post-vaccination correlated with the cumulative skin
inflammation score (R* = 0.76 at both visits using nonlinear regression, day 7 results shown
in figure 1C, left). In high skin inflammation responders, serum CRP was significantly
higher 7 days post-vaccination, compared to low skin inflammation responders (p = 0.03;
figure 1C, right). CRP concentrations at baseline were not different between high and low

inflammation responders.
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We assessed the in vitro IFNy production by ELISA after PPD stimulation of PBMCs for 7
days. The PBMCs of high skin inflammation responders produced more IFNy than low skin
inflammation responders 4 and 8 weeks post-vaccination (p = 0.026 and 0.002, resp.). IFNy
production was significantly induced at 8 and 12 weeks post-vaccination compared to pre-
vaccination in high skin inflammation responders (both p = 0.031), but not in low skin
inflammation responders (figure 1D). Prior to BCG-vaccination, IFNy production was not

significantly different between high vs. low skin inflammation responders.

A B

12 weeks after BCG vaccination: Cumulative scores of skin lesions:

Vaccinee A: Vaccinee B:

low responders high responders,
L] L3 | 1

N (donors)

0
123456 78 9101112

Skin Inflammation Score

Figure 1. BCG-vaccination induces highly variable local inflammation that corresponds with serum CRP
and IFNy production. A: Photographs of low versus high degrees of skin inflammation at the vaccination site 12
weeks after BCG-vaccination (left photograph, cumulative inflammation score of 3; right photograph, cumulative
inflammation score of 11). B: Signs of inflammation of the vaccination lesion were recorded, and a skin
inflammation score was calculated as the cumulative scores of 4, 8, and 12 weeks after vaccination. This divided

recipients into 6 low and 6 high responders around a median skin inflammation score of 7.
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Figure 1 (continued). BCG-vaccination induces highly variable local inflammation that corresponds with
serum CRP and IFNy production. C: Serum samples of volunteers were collected at all visits for CRP ELISA.
The serum CRP concentrations at day 7 after vaccination correlated with the cumulative skin inflammation scores
(R* = 0.76 using nonlinear regression; left); high skin inflammation responders had significantly higher CRP
values than low responders 7 days after vaccination (6 individuals in each group, with line at median; p = 0.03,
Mann-Whitney test; right). D: PBMCs were stimulated with PPD, supernatants were harvested after 7 days, and
IFNy production was measured by ELISA. IFNy production by PBMCs of high, compared to low skin
inflammation responders was significantly higher at 4 and 8 weeks post-vaccination, and IFNy production was
significantly induced only in comparison to that at pre-vaccination in high skin inflammation responders (6
recipients in each group, line at median; Mann-Whitney test for comparison between groups, Wilcoxon signed-

rank test for within-group testing).

CD4'IFNy'IL2'TNFa” T-cells and CDS8'IFNy" T-cells are induced in high
inflammation responders

Whole-blood samples from pre-vaccination and at 4, 8, 12 weeks and 1 year after
vaccination were stimulated directly ex vivo with live BCG for 16h. The gating strategy is

shown in Supplementary figure S2A, and the representative flow cytometric analyses of co-

-116 -



Divergent pro-inflammatory or regulatory T-cell responses after BCG-vaccination

expression of cytokines in CD4" T-cells with negative and positive controls are shown in
Supplementary figure S2B, compliant with MIATA (minimal information about T-cell
assays)-guidelines [33].

BCG-vaccination induced significant IFNy-expression in CD4" T-cells, but only in high
inflammation responders (p = 0.031, at 4 and 12 weeks post-vaccination) and not in low
inflammation responders (figure 2A, left graphs). Polyfunctional CD4 TFNy'TL2 TNFa' T-
cells were significantly induced in BCG-recipients, but a division of the high versus low
inflammation responders revealed that the proportion of CD4 TFNy TL2 TNFa" T-cells was
significantly increased in the high versus low inflammation responders (p = 0.015, p =
0.048, and p = 0.041 at 4, 8, and 12 weeks after vaccination, resp.), but it was almost absent
in the latter group. Thus, significant induction of CD4 TFNy'IL2"'TNFa" T-cells was
confined to high inflammation responders (figure 2A, right graphs).

The majority of IFNy, TNFo and/or IL2-expressing CD4" T-cell subsets of high
inflammation responders peaked at 8 weeks post-vaccination (Supplementary figure S3A).
Single-, double- and triple-cytokine-producing CD4" T-cell subsets consisted
predominantly of effector cells at 4, 8 and 12 weeks post-vaccination (Supplementary
figure S3B).

CD4'IL17A" T-cells were induced significantly post-vaccination, but only in high
inflammation responders (figure 2B). Similarly, significant induction of IFNy-expression in
CD8" T-cells was confined to high inflammation responders (figure 2B). No polyfunctional
CD8" T-cell responses could be detected (data not shown). CD4 " T-cells did not co-express
IL17A and IFNy (representative graph in Supplementary figure S2B). IL17A-expression
correlated with IFNy-expression in CD4" T-cells at 4, 8 and 12 weeks post-vaccination
(figure 2C upper graphs; R” 0.86, 0.94, and 0.83, resp., using nonlinear regression). IFNy-
expression in CD8" T-cells highly correlated with IFNy-expression in CD4 " T-cells (figure
2C lower graphs; R? 0.98, 0.85, and 0.99 at 4, 8, and 12 weeks post-vaccination, resp.,
using nonlinear regression), thus revealing a broad pro-inflammatory response induced by
BCG-vaccination in high inflammation responders. No induction of IL10- or IL4/IL13-
expression was observed in CD4" T-cells in low or in high inflammation responders (figure
2D).

The association between skin inflammation score and induction of CD4" cytokine co-

expression was further substantiated by segregating vaccinees based on induction versus no
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induction of polyfunctional CD4 TFNy IL2 " TNFa' T-cells instead of local inflammation
scores. This revealed an increased total skin inflammation score in vaccinees with induction
of CD4" polyfunctional T-cells, compared to vaccinees with no polyfunctional CD4 " T-cell
induction (n = 7 cytokine-responders versus n = 5 non-responders, including in the latter
group a low skin inflammation responder with a skin inflammation score of 6; p = 0.037,
Mann-Whitney test; Supplementary figure S4A). The differences in the CRP concentration
7 days after vaccination did not reach statistical significance in cytokine-responders vs.

non-responders (Supplementary figure S4B; p = 0.078, Mann-Whitney test).
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Figure 2. BCG-vaccination induces a pro-inflammatory cytokine response, predominantly in high skin
inflammation responders. A: BCG-vaccination induces IFNy" and IFNy IL2"TNFa" CD4" T-cells (upper graphs)
in whole blood following BCG-stimulation for 16h, but the frequency of polyfunctional CD4" IFNy'IL2 TNFo," T-
cells is significantly increased in high, compared to low, skin inflammation responders, and the induction of CD4"
IFNy" and polyfunctional CD4" IFNy IL2"TNFo" T-cells is only significant in high, not in low, skin inflammation
responders (lower graphs); n = 6 recipients in each group. Horizontal lines indicate median; Mann-Whitney test

for comparison between groups, Wilcoxon signed-rank test for within-group testing.
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Figure 2 (continued). BCG-vaccination induces a pro-inflammatory cytokine response, predominantly in

high skin inflammation responders. B: CD4'IL17A" T-cells and CD8 TFNy" T-cells are significantly induced

in high skin inflammation responders. C: Expression of the pro-inflammatory cytokines IL17A in CD4" T-

cells and of IFNy in CD8" T-cells both highly correlate with IFNy-expression in CD4" T-cells, as determined by

nonlinear regression. (Data are shown for all recipients at 4, 8, and 12 weeks after vaccination; whole-blood

BCG-stimulation for 16h). Values of 0 were not plotted. D: In CD4" T-cells, neither IL4/IL13 nor IL10 was

significantly induced in any responder group following whole-blood BCG stimulation for 16h.
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Figure 3. Treg markers on CD8" T-cells, but not on CD4" T-cells, are activated by in vitro live BCG-
stimulation of PBMCs of vaccinees 8 weeks after vaccination. A: Flow cytometric analysis of (co-)expression
of Treg markers CD25, CD39, and Foxp3 on CD4" and CD8" T-cells in unstimulated PBMCs and PBMCs
stimulated for 6 days with live BCG. The gating strategy was similar as that described in Supplementary figure
S2A, with the addition of a LIVE/DEAD vivid stain. B: Treg markers on CD8" but not CD4" T-cells were
significantly activated 6 days after in vitro live BCG stimulation, compared to unstimulated PBMCs, at 8 weeks
post-vaccination. On CD4" T-cells, only expression of CD25 was significantly different from unstimulated
samples (box-whiskers of all individuals, with line at median; whiskers minimum (min) to maximum (max)). C:
Co-expression of Treg markers is significantly activated by live BCG on CD8" but not CD4" T-cells 8 weeks after
BCG-vaccination (box-whiskers of all individuals, with line at median; whiskers min to max) (*p < 0.05; **p <

0.01; ***p <0.001; Wilcoxon signed-rank test).
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CDS", but not CD4" T-cells express regulatory markers after live BCG stimulation in
vitro

PBMCs were stimulated for 6 days with live BCG to assess the expression of the regulatory
markers CD25, Foxp3, CD39, lymphocyte activation gene-3 (LAG-3) and CCL4
(macrophage inflammatory protein-1f) by FACS-analysis [22;34;35] (gating strategy in
Supplementary figure S2A). BCG-induced expression of Treg markers on CD4" and CD8"
T-cells was then compared to that on unstimulated control samples at 8 weeks post-
vaccination, the peak response (figure 3A). Expression of the single Treg markers CD25,
Foxp3, CD39, LAG-3 and CCL4 was significantly induced on CD8" T-cells by in vitro live
BCG stimulation 8 weeks post-vaccination (p < 0.01 for CD25, Foxp3 and CCL4; p <
0.001 for CD39 and LAG-3). In contrast, on CD4" T-cells only CD25 was significantly
induced by BCG stimulation (p < 0.05) (figure 3B).

We then analysed co-expression of Treg markers using Boolean gating with synchronized
gates on a per-donor basis for both CD4" and CD8" T-cells [22]. Co-expression of Treg
markers was significantly induced on CD8" but not CD4" T-cells by in vitro live BCG
stimulation 8 weeks post-vaccination (figure 3C; p < 0.001). On CD4" T-cells, no
expression of CD25 Foxp3'CD39" was induced in either high or low inflammation

responders (Supplementary figure S5).

CD8"'CD25"CD39 'Foxp3™ T-cells increase post-vaccination only in low inflammation
responders

We then compared Treg markers on CD8" T-cells post- and pre-vaccination; figure 4A
displays a representative flow cytometric analysis of induction of CD25'CD39" co-
expression and expression of Foxp3 on CD25°CD39" CD8" T-cells from a low skin
inflammation responder. Compared to pre-vaccination, BCG-vaccination significantly
induced CD8'CD25'Foxp3'CD39" T-cells as well as CD8'CD25 Foxp3'CD39 LAG-
3"CCL4" T-cells, but only in low inflammation responders (figure 4B; p = 0.031 at 8 weeks
post-vaccination; p = 0.031 at 4 and 8 weeks post-vaccination, resp.). In contrast, in high
inflammation responders, the expression of CD25Foxp3'CD39° or CD25Foxp3"
CD39'LAG-3"CCL4" on CD8" T-cells post-vaccination did not differ from the patterns

pre-vaccination (figure 4B).
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Figure 4. BCG-vaccination induces CD8*CD25"CD39 Foxp3* T-cells in low inflammation responders.

A: Representative flow cytometric analysis of co-expression of the Treg markers CD25 and CD39 on CD8" T-cells
of a recipient with a low degree of skin inflammation (upper graphs), and the percentage of CD8 'CD25°CD39" T-
cells expressing Foxp3 (lower graphs; black overlay of CD8*CD25'CD39" T-cells over total CD8" T-cells), 6 days
after live BCG stimulation of PBMCs. B: Treg markers are significantly induced by BCG-vaccination on PBMCs
stimulated with live BCG for 6 days, but only on CD8" T-cells from low inflammation responders. The frequency
of Treg markers remained constant pre- and post-vaccination on CD8" T-cells from high inflammation responders.
Depicted are CD25'Foxp3'CD39" co-expression (upper graphs) and CD25 Foxp3'CD39'LAG-3'CCL4" co-

expression (lower graphs) on CD8" T-cells of low responders (left) versus high responders (right) (box-whiskers

of 6 individuals in each group, with line at median; whiskers min to max; Wilcoxon signed-rank test).
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Of interest, CD8'CD25 Foxp3'CD39" T-cells and CD8'CD25Foxp3'CD39 LAG-
3'CCL4" T-cells were still significantly increased 1 year post-vaccination in low
inflammation responders (for both p = 0.031), suggesting that BCG-vaccination can induce
long-term imprinting of CD8" Treg phenotypes in individuals with low inflammation

following vaccination.

Discussion

In this study, we describe high inter-individual variability in T-cell cytokine and regulatory
responses following BCG-vaccination of BCG-naive healthy young adults in a setting
where TB is not endemic. The unexpectedly dichotomous T-cell response consisted of
either concurrent induction of IL2-, TNFa- and IFNy- co-expressing polyfunctional CD4"
T-cell subsets, CD4'IL17A" T-cells, and CDS'IFNy" T-cells in high inflammation
responders, or an almost absent cytokine response accompanied by the induction of CD8"
regulatory T-cells in low inflammation responders. We quantified local reactivity by
classical clinical symptoms of inflammation and found that the total skin inflammation
score correlated with serum CRP early post-vaccination. Significant induction of
IFNy TL2 "TNFa -polyfunctional CD4" T-cells was confined to high inflammation
responders, while the induction of regulatory-phenotype CD8 CD25'CD39 Foxp3” and
CD8'CD25 Foxp3'CD39'LAG-3'CCL4" T-cells was confined to low inflammation
responders.

In theory, this study could have been limited by the description of T-cell responses based
on the skin inflammation score, since dividing high and low skin inflammation groups
using the median as cut off dichotomizes the described response. However, the dichotomy
was also based on the induction of polyfunctional CD4 TFNy TL2 " TNFa" T-cells, and this
revealed a significantly increased total skin inflammation score in vaccinees with CD4"
polyfunctional T-cells, compared to vaccinees with no polyfunctional CD4" T-cell
induction. Thus, it is unlikely that the described variability in responses is caused by a

dichotomized representation, and this further affirms the relation between skin reactivity
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and cytokine responses. Further, the opposing immune responses and phenotypes were
observed within a relatively small cohort. Variability in BCG-immunogenicity has been
ascribed to differences in pre-existing anti-mycobacterial responses in endemic vs. non-
endemic settings [36;37], the presence of helminth infections [38], variations in the BCG-
vaccine strain [39;40], and host genetic factors [41]. In addition, timing of sampling and
technical variability may influence detection of cytokines [42;43]. This cohort, though
small, was uniform in terms of age, genetic background, BCG-vaccine strain (Danish strain
1331), sampling and testing, in a setting not endemic for TB or helminth infections. This
excludes the above-mentioned possible confounders, and points to an unexpectedly large
variation in adult human primary BCG-vaccine induced immune responses.

Importantly, we confirmed vaccine take at 1 year post-vaccination by IFNy-ELISpot, which
was positive for both high and low inflammation responders. IFNy-ELISpot has been
described as the most sensitive assay for detecting long-term vaccine responses [29] and is
used in TB-vaccine trials to describe the magnitude of vaccine-induced immunity.
However, a sole reliance on IFNy-ELISpot would disregard variability in other assays,
thereby not fully capturing possible correlations between variation of the human immune
response and vaccine-induced protection. The etiology of this variation remains unknown,
but its unravelling could contribute significantly to a better understanding of BCG and
related TB-vaccine induced immunity.

The height of the in vitro cytokine response in BCG-vaccinated infants was associated with
scarring of the BCG-vaccination site, but only in response to mycobacterial antigens, not
unrelated antigens [44]. Also, cell-mediated immunity, as assessed by a leukocyte
migration inhibition test, correlated with infant local skin reactivity 8 weeks after BCG-
vaccination, but not with TST-conversion after vaccination [45]. The absence of an
association between BCG-induced TST-conversion and immunity against TB has been
confirmed in various populations [46]. Here, induction of cytokine responses was confined
to recipients with high skin reactivity, suggesting that a simple phenotype like vaccine-
induced skin inflammation might be used as a marker of strong pro-inflammatory T-cell
induction in adults. The skin inflammation score was associated with serum CRP
concentration 7 days post-vaccination, thus the absence of an increase in CRP early post-
vaccination might be used as an indicator of absent pro-inflammatory T-cell responses at

later time-points.
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Interference of CD4" Tregs with effector immunity has been described in active TB
[47:48]. Following MVA-85A-vaccination circulating CD4'CD25 Foxp3" T-cells were
increased in recipients with low antigen 85A-specific IFNy-responses compared to high
IFNy-responders [28], and MVA-85A-induced CD4" Tregs inhibited 1L17A-production in
vitro [49]. Interestingly, IL10-producing CD8" Tregs were described in TB-patients anergic
to intradermally injected PPD [50]. Thus, Tregs can interfere with inflammatory and
specific antigen-induced cytokine responses. We previously reported in vitro activation of
CD8" (but not CD4") Tregs by live BCG, both phenotypically and functionally, in
mycobacterially-sensitized but not PPD-unresponsive donors [22;34;35]. These BCG-
activated CD8" Tregs expressed CD25 and LAG-3 and inhibited Thl-responses through
secretion of CCL4 [35]; in addition, we reported CD8 CD39" Tregs which utilized CD39 to
suppress Thl proliferation [34]. Here, we found that CD8'CD25'CD39 Foxp3" and
CD8'CD25 Foxp3'CD39'LAG-3'CCL4" T-cells were induced following BCG-
vaccination. Interestingly, the frequency of CD8" T-cells with these Treg phenotypes was
significantly increased only in comparison to that at pre-vaccination in low inflammation
responders with low to absent cytokine responses, suggesting an inverse relation between
the induction of CD8" Tregs and BCG-induced skin inflammation with T-cell cytokine
production.

In murine leishmaniasis, cytokine-producing polyfunctional T-cells were inversely
correlated with lesion size after (dermal) challenge [6]. In dermal BCG-challenge models in
humans, vaccination-induced IFNy-ELISpot-responses were inversely correlated with PCR
quantification of BCG-load in biopsy specimens of the challenge site [S1]. The PCR
quantification method was suggested as a measure of pathogen clearance, possibly
reflecting some degree of protective immunity, which might be used in human TB-vaccine
trials. Based on the current study, it will also be relevant to assess the presence of pro-
inflammatory vs. regulatory T-cells in skin vaccine or challenge lesions and to further
validate the modulation of skin inflammation and/or pathogen clearance by CD8" Tregs in
relevant models. Of note, in low inflammation responders CD8 CD25 Foxp3'CD39" T-
cells were still significantly increased at 1 year post-vaccination, suggesting that BCG-
vaccination can induce long-term imprinting of a CD8" Treg phenotype with a significant

memory component. Further work is needed to assess their precise longevity.
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In conclusion, our results show an unexpectedly dichotomous host response to BCG-
vaccination in a cohort of BCG-naive adults. It will be important to assess these divergent
outcomes in settings where TB is endemic in order to determine the impact of these highly
variable outcomes on protective efficacy against TB. The use of classical inflammation
markers as non-classical indicators of vaccine-induced pro-inflammatory responses might
be a simple means to assist in assessing BCG-induced phenotypes, even in small cohorts.
Further detailed fine mapping of the heterogeneous host response to BCG-vaccination using
classical and non-classical immune markers will enhance our understanding of the
mechanisms and determinants that underlie the induction of apparently opposite immune

responses and how these impact the ability of BCG to induce protective immunity to TB.
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Supplementary figure S1. IFNy-ELISpot results at 1 year after vaccination. Ex vivo IFNy-ELISpot assays
using freshly isolated PBMCs were performed 1 year after vaccination to verify vaccine-induced immunity. The
person that lacked positive response by ELISpot demonstrated high IFNy-responses in flow cytometric analysis,

indicating vaccine take for this person.
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Supplementary figure S2. Gating strategy and cytokine expression. S2A, gating strategy: for flow cytometric

analysis of fixed whole blood samples, cells were gated on single cells, lymphocytes, CD3" vs. CD14-CD19-
CD56-negative, and CD8'CD4 vs. CD4°CDS8". For PBMCs six days after live BCG-stimulation, a violet-

live/dead-stain was added prior to extracellular staining and cells were gated on CD3" vs. (live/)dead-CD14-

CD19-CD56-negative. S2B, expression of cytokines in CD4" T-cells: cytokine production by CD4" T-cells after

overnight live BCG-stimulation of whole blood; also depicted are unstimulated and SEB controls. No co-

expression was observed of IFNy and IL17A.
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Supplementary figure S3. CD4" cytokine-producing subsets and memory compartment in high skin
inflammation responders. Supplementary S3A, CD4" cytokine-producing subsets; whole-blood samples
stimulated with live BCG for 16 hours and subsequent intracellular cytokine staining: almost all BCG-induced
CD4" cytokine-producing subsets peaked at 8 weeks after vaccination. CD4" cytokine-producing subsets of high
skin inflammation responders at 4, 8 and 12 weeks after vaccination were compared with pre-vaccination (*p <

0.05 in Friedman with Dunn’s multiple comparison test).
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Supplementary figure S3 (continued). CD4" cytokine-producing subsets and memory compartment in high
skin inflaimmation responders. Supplementary S3B, memory compartments of CD4" cytokine-producing
subsets: the majority of single-, double- and triple-cytokine producing T-cells are effector cells, in whole-blood
samples stimulated with live BCG for 16 hours. Pie chart representation of the proportion of effector (CD69"),
effector memory (CD69'CD45RA'CD62L), central memory (CD69CD45RACD62L") and naive (CD69
CD45RA'CD62L") CD4" T-cells for different cytokine-producing subsets as derived by Boolean gate analysis.
Only populations of > 50 cells were included for analysis with a minimum of 3 donors per visit. Effector cell
proportions were not significantly different between cytokine-producing subsets or between visits (p < 0.05

deemed significant, Kruskal-Wallis with Dunn’s multiple comparisons test).
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significantly higher in vaccinees with induction of CD4" polyfunctional T-cells, compared to vaccinees with no
induction of CD4" polyfunctional T-cells (threshold for CD4" T-cell induction set at change from pre-vaccination
larger than the highest pre-vaccination value; 7 responders vs. 5 non-responders in each graph with line at median;

Mann-Whitney test).
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Supplementary figure S5. CD25'CD39'Foxp3"* expression on CD4" T-cells as ratio BCG-stimulated : non-
stimulated. Co-expression of CD25, Foxp3 and CD39 on CD4" T-cells (on day 6 following PBMC stimulation
with or without live BCG) was analyzed as the ratio BCG-stimulated : non-stimulated. BCG-vaccination did not
induce significant induction compared to pre-vaccination of CD4'CD25 Foxp3'CD39" T-cells (A); also, dividing
recipients in high vs. low inflammation scores did not reveal any significant induction of Treg marker expression
on CD4" T-cells as compared to pre-vaccination (B) (dot plots with line at median for all recipients (A; n = 12)
and recipients divided by skin inflammation score (B; 6 individuals in each group); significance considered as p <

0.05 in Friedman with Dunn’s multiple comparisons test).
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Abstract

In cancer and chronic infectious diseases, immune checkpoint-blockade of inhibitory
receptors can enhance T-cell immunity. In tuberculosis (TB), a chronic infectious disease,
prolonged antigen exposure can potentially drive terminal T-cell differentiation towards
functional ‘exhaustion’: in human TB T-cells express PD-1 (programmed cell death
protein-1) and CTLA-4 (cytotoxic T-lymphocyte-associated protein 4). However, in murine
TB not PD-1 but rather killer cell lectin-like receptor subfamily-G1 (KLRGI1) was a
superior indicator of terminal T-cell differentiation. We therefore compared expression of
KLRGI1, PD-1 and CTLA-4 on T-cells in different stages of human TB, and also analyzed
their induction following BCG-vaccination. KLRG1, PD-1 and CTLA-4 expression were
highest on in vitro BCG-stimulated CD4" T-cells following recent TB-treatment; KLRG1
and PD-1 expression on CD4" T-cells in active - but not latent - TB were only slightly
increased compared to healthy donors. BCG-vaccination induced KLRG1 expression on
BCG-stimulated CD8" but not CD4" T-cells, while neither PD-1 nor CTLA-4 expression
increased. KLRG1-expressing CD8" T-cells exhibited markedly decreased proliferation,
whereas PD-1" T-cells proliferated after in vitro BCG stimulation. Thus, we demonstrate
the presence of increased KLRG1-expressing T-cells in TB-treated individuals, and present
KLRGI1 as a marker of decreased human T-cell proliferation following BCG-vaccination.
These results expand our understanding of cell-mediated immune control of mycobacterial

infections.
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Introduction

Based on the tuberculin skin test (TST), it is estimated that one-third of the world
population is latently infected with Mycobacterium tuberculosis (Mtb), the bacterium
causing tuberculosis (TB) [1]. Among latently infected (HIV-negative) individuals 3 - 10%
will develop active TB during their life-time [1;2], but it is not yet clear what determines
the loss of immune control resulting in active disease versus latent, contained infection
[3;4]. In chronic viral infections and cancers many studies have reported the existence of T-
cells expressing inhibitory receptors, also called terminally differentiated or ‘exhausted’ T-
cells, which are thought to be impaired in their proliferative capacity and/or function
(referred to also as the chronic (infection) phenotype) [5]. Signaling through inhibitory
receptors, such as PD-1 (programmed cell death protein 1; CD279) and CTLA-4 (cytotoxic
T-lymphocyte-associated protein 4; CD152) diminishes the response of activated T-cells
[6]; and blocking of ligand-receptor interactions through monoclonal antibodies to re-
activate and enhance the lymphocyte response has received great attention as
immunotherapy in cancer [7]. The clinical impact of this immune checkpoint blockade,
especially with oPD-1-, aCTLA-4-, oPDL1- and oPDL2- antibodies, or combinations
thereof, has already been demonstrated in cancer patients, and to a lesser extent in patients
with chronic infectious disease ([8;9], clinical trials of both are summarized in [5]).

PD-1 has been extensively described as inhibitory marker on CD8" as well as CD4 " T-cells
in human chronic viral infections such as chronic HIV, hepatitis B (HBV) and hepatitis C
(HCV) infection [10-13]. Also on CD4" and CD8" T-cells from patients with pulmonary
TB, increased expression of PD-1 compared to healthy donors has been described [14;15].
In vitro blocking with antibodies against PD-1 or it’s ligands enhanced production of IFNy,
IL2 [14] and IL17 [15], inhibited apoptosis of IFNy-producing T-cells [14] and enhanced
Mtb-stimulated degranulation of CD8" T-cells [16]. In addition, increased expression of
CTLA-4 (on regulatory T-cells) has been reported in patients with active TB [17], as well
as in latently infected individuals [18;19], compared to healthy donors.

However, in murine TB infection not PD-1 but rather expression of KLRGI (killer cell
lectin-like receptor subfamily G member -1) marked terminally differentiated CD4" T-cells,
which had a short life span and high T-bet expression [20-22]. KLRG1 is expressed on
murine and human NK-cells and antigen-experienced CD4" and CD8" T-cells [23].
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Ligation of KLRG1 with cadherins (ubiquitously expressed cell adhesion molecules [24])
triggers inhibitory signaling through decreased AKT (Ser473) phosphorylation [25], which
is reversible through blocking KLRG1-ligand interaction [26]. In contrast to other chronic
murine infection models, murine Mtb-specific PD-1" T-cells were found to be proliferative,
whereas KLRG1" effector T-cells were reduced in their proliferative capacity; and
following adoptive transfer in Mtb-infected mice, donor CD4PD1'KLRG1™® T-cells
downregulated PD-1 expression, but increased KLRGI1 expression [20]. Moreover,
decreased protective efficacy against TB-challenge by ESAT-6 specific KLRG1" T-cells,
compared to ESAT-6 specific PD-1" T-cells, following murine adoptive transfer was
recently demonstrated [21]. Only adoptive transfer into Mtb-infected but not uninfected
mice steered differentiation of PD-1" into KLRG1" T-cells [20;21], indicating that exposure
to mycobacterial antigen is essential in steering towards terminal differentiation.

Thus, KLRGI1 has been described as a key inhibitory marker of non-proliferating cells
during murine Mtb infection; also after murine BCG-vaccination CD4" and CD8" T-cells
upregulated KLRG1 expression [27]. In human mycobacterial infection, the existence of
KLRGI1" T-cells has been suggested, but not compared to relevant control groups or
complemented with functional data [28]. Here, we compared expression of KLRG1, PD-1
and CTLA-4 on human T-cells in different stages of TB infection, and assessed
mycobacterial induction of these cellular phenotypes in humans by comparing expression
before and after BCG-vaccination of BCG-naive healthy adult volunteers. In addition, we
compared the proliferative capacity of KLRG1-expressing and PD-1-expressing T-cells
following BCG-vaccination. We found increased expression of KLRG1, PD-1 and CTLA-4
in individuals that had recently been treated for TB, and minor increased expression in
active TB patients. BCG-vaccination significantly induced CD8'KLRG1" T-cells, which
unlike CD8 PD-1" T-cells, were markedly reduced in their proliferative capacity. Thus, we
demonstrate for the first time KLRG1 as marker of non-proliferating T-cells following

BCG-vaccination in humans.
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Materials and Methods

Patients and participants. This study was approved by the Ethical Committee of the L.
Spallanzani National Institute of Infectious diseases ((INMI); approval number 10/2010)
and the Medical Ethical Committee of the Leiden University Medical Center, the
Netherlands (registration number P 12.87). Written informed consent was obtained from all
participants in the study. All blood bank donors had signed consent for scientific use of
blood products.

In this study, active pulmonary TB was sputum culture confirmed and patients were
enrolled within 7 days of starting treatment. Cured-TB subjects were patients who had
completed 6 months of treatment for culture-positive pulmonary TB and who resulted
sputum culture-negative during treatment. These patients were evaluated after therapy
completion (median time post-treatment 8 + IQR 2.5 - 13.5 months). Latent Mtb infection
was defined based on a positive response to QuantiFERON-TB gold in-tube test (QFT-IT)
(Qiagen, Hilden, Germany) in healthy subjects without radiological signs of active disease
[29]. Demographic and epidemiological information was collected at enrolment (Table 1).
QFT-IT-negative contacts and healthy volunteers, as well as healthy adult blood bank
donors (Sanquin blood bank, Leiden) that tested negative for recognition of mycobacterial
PPD in vitro, were used as controls. PPD-reactivity was tested by stimulation of PBMCs
with 5 pg/ml PPD (Statens Serum Institute, Copenhagen, Denmark) for 6 days and
supernatants were tested in [IFNy-ELISA (U-CyTech, Utrecht, the Netherlands). Negativity
was defined as I[FNy-production < 150 pg/ml.

For the study on the BCG-vaccination of Dutch volunteers, the recruitment occurred via
posters in the university library. Included volunteers (6 males, 6 females; median age 24 +
IQR 23 - 25 yrs) were healthy, and had not been vaccinated with BCG at any time prior to
enrolment, or with any live vaccination four weeks or less prior to BCG-vaccination.
Volunteers were screened for TB by anamnesis, by tuberculin skin test (negative < Smm)
and by QFT-IT test. All patients and participants tested negative for HIV at screening and

were not treated with immune-modulating drugs prior to enrolment.

Procedures. BCG-vaccination with the live-attenuated BCG Danish strain 1331 (Statens

Serum Institute) was by intradermal injection in the upper arm. Volunteers were followed at
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two weeks prior to vaccination, at four, eight and twelve weeks and at one year after
vaccination. Venous blood samples of patients and participants were collected for PBMC
isolation by ficoll density centrifugation. PBMCs were cryopreserved in 10% DMSO and

20% fetal calf serum-supplemented medium.

Cell cultures and BCG-infection. PBMCs were thawed, counted (CASY cell counter,
Roche, Woerden, the Netherlands) and in vitro infected with BCG. PBMCs were infected at
a multiplicity of infection (MOI) of 1.5 - 3 and cultured in 24 well plates (2 x 10°/w) for six
days in Iscove's modified Dulbecco's medium (Life Technologies-Invitrogen, Bleiswijk, the
Netherlands) with 10% human serum (pooled serum from blood bank donors, pretested for

inhibitory activity) in an incubator at 37°C with 5% CO, [30;31].

Flow cytometry. Stimulated PBMCs from TB patients, individuals with latent TB,
individuals treated for TB, and healthy donors were labelled with violet live/dead stain
(VIVID, Invitrogen) and surface stained with CD3-Brilliant Violet 570 (clone UCHT1),
CD19-Pacific Blue (clone HIB19), KLRG1-Pe-Cy7 (clone 2F1/KLRG1) (all Biolegend,
London, U.K.); CD56-Alexa 700 (clone B159), CD8-HorizonV500 (clone RPA-T8), PD-1-
PerCp-Cy5.5 (clone EH12.1) (all BD Biosciences, Eerembodegem, Belgium); CD14-
Pacific Blue (clone TiiK4) and CD4-PE-Texas Red (clone S3.5) (both Life Technologies-
Invitrogen). Cells were fixed and permeabilized using FIX&PERM® Cell Permeabilization
Kit (An Der Grub BioResearch GMBH, Susteren, the Netherlands). For intracellular
staining CTLA-4 (cytotoxic T-lymphocyte protein 4; CD152)-PeCy5 (clone BNI3; BD
Biosciences) was used.

Stimulated PBMCs from BCG-vaccinated participants were labelled with violet live/dead
stain (VIVID) after incubation for the last 16 hours with aCD3/28 beads (Invitrogen) and
Brefeldin A (3 pg/ml, Sigma-Aldrich, Zwijndrecht, the Netherlands). PBMCs were surface
stained with CD3-Brilliant Violet 570 (clone UCHT1), CD19-Pacific Blue (clone HIB19),
CD56-Brilliant Violet 421 (clone HCD56), KLRG1-Pe-Cy7 (clone 2F1/KLRGI1) (all
Biolegend, London, U.K.); CD14-Pacific Blue (clone TiiK4), CD4-PE-Texas Red (clone
S3.5) (both Life Technologies-Invitrogen); CD8-HorizonV500 (clone RPA-T8) and PD-1-
PerCp-Cy5.5 (clone EHI2.1) (both BD Biosciences). Fixation, permeabilization and

intracellular staining were performed as described above. Samples were acquired on a BD
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LSRFortessa using FACSDiva software (version 6.2, BD Biosciences). Analyses were
performed using FlowJo software (version 9.5.3, Treestar, Ashland, OR, USA). Gates were
defined per donor for CD4" and CD8" T-cell subsets (and for all visits after vaccination)
using unstimulated samples and SEB (Toxin Technology, Sarasota, FL, USA)-stimulated

samples as controls.

CFSE proliferation assays. Stimulated PBMCs from BCG-vaccinated participants were
harvested, labelled with 5 uM of CFSE, and cultured in 96 well plates (I x 10°/w) in
Iscove's modified Dulbecco's medium (Life Technologies-Invitrogen) with 10% pooled
human serum. PHA (Remel Europe) was used as a positive control for proliferation of
CFSE-labelled cells. After 6 days cultures were harvested and stained with KLRG1-Pe-Cy7
(clone 2F1/KLRG1) and CDS56-Brilliant Violet 650 (clone HCDS56) (both Biolegend,
London, U.K.); CD14-Pacific Blue (clone TiiK4), CD4-PE-Texas Red (clone S3.5) (both
Life Technologies-Invitrogen); CDS8-HorizonV500 (clone RPA-T8), PD-1-Alexa 647
(clone EH12.1) and CD3-PeCy5 (clone UCHTI1) (all BD Biosciences). Samples were
acquired on a BD LSRFortessa using FACSDiva software. Analyses were performed using

FlowJo software (version 9.5.3, Treestar).

Analyses. Using GraphPad Prism (version 6, GraphPad Software, La Jolla, CA, USA)
Mann-Whitney tests were used for non-paired samples; Kruskal-Wallis with Dunn’s
multiple test correction was used for non-parametric unpaired comparisons between more
than 2 groups. Wilcoxon signed-rank tests were used for paired samples, after correction for

paired multiple testing by Friedman with Dunn’s multiple comparisons tests.

Results

Expression of the inhibitory markers KLRGI1, PD-1 and CTLA-4 after in vitro
stimulation of PBMCs

PBMCs were isolated from patients with active TB (n = 11); individuals with latent TB
infection (n = 13); successfully treated cured-TB subjects (» = 15; median time post-

treatment 8 + IQR 2.5 - 13.5 months); and healthy donors (z = 16). All samples from active
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TB patients were collected within the first week of treatment. Further demographic and

clinical characteristics of the subjects enrolled in this study are displayed in Table 1.

HD" LTBI Active TB Cured TB Total p-value
Enrolled subjects 6" 13 11 15 45
36 36 37 33 35
Median age (IQR) 0.95"
(26-51) (28-48) (30.5-44.5) (25-49.5) (28-48)
Female gender (%) 2(33) 11 (85) 2 (18) 10 (67) 25 (65) 0.006*
Origin N (%) 0.09”
Western Europe 4(67) 8 (62) - 5(33) 17 (38)
Eastern Europe 1(17) 3(23) 8(73) 5(33) 17 (38)
Asia - - 1(9) - 1(2)
Africa - 1(8) 19 3 (20) 5(10)
South America 1(17) 1(8) 1(9) 2 (13) 5(10)
BCG N (%) 0.015”
Vaccinated 3(50) 5 11 (100) 10 (67) 29 (64)
Unvaccinated 3 (50) 8 0(0) 5(33) 16 (36)

Table 1. Demographic and clinical characteristics of the subjects enrolled in the study.

Footnotes: TB: Tuberculosis; LTBI: Latent Tuberculosis Infection; IQR: Interquartile range; BCG: Bacillus
Calmette-Guérin. *Additional healthy donors were included in the study: anonymous samples were obtained
from the Dutch blood bank, therefore no information was available in terms of age, sex, origin and BCG

status.'Kruskal-Wallis test; > Chi-square test.
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PBMCs were stimulated with live M. bovis BCG (BCG) and analyzed for expression of
KLRGI, PD-1 and CTLA-4 after six days. The gating strategy for flowcytometric analysis
is shown in figure 1A and B, and is compliant with recent MIATA guidelines [32].
Activation of CD4" and CDS8" T-cells was evaluated by calculating the CD4" or CD8"
frequency of CD3" parent as CD4" : CDS8" ratio; this was similar between groups (data not
shown). Positive populations of KLRG1, PD-1 and CTLA-4 expression by CD4" and CD8"
T-cells were defined by comparison with unstimulated samples (figure 1B), and gates were

similar per donor for CD4" and CD8" T-cells.
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Figure 1. Expression of KLRG1, PD-1 and CTLA-4 after in vitro stimulation of PBMCs. A: Gating strategy
for flowcytometric analysis of PBMCs six days after in vitro stimulation with live BCG. Cells were gated on
single cells, lymphocytes, violet-(live/)dead- CD14- CD19- CD56-negative, CD3", and CD4°CD8" vs. CD8'CD4".
B: Positive populations for KLRG1, PD-1 and CTLA-4 expression were defined by comparison with unstimulated
samples, as demonstrated for expression of KLRG1, PD-1 and CTLA-4 on CD4" T-cells six days after BCG
stimulation of PBMCs of a cured-TB patient.
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Highest expression of KLRG1, PD-1 and CTLA-4 is found on CD4" T-cells in TB-
treated individuals

The expression of KLRGI following six day in vitro BCG stimulation was significantly
increased on CD4" T-cells from cured-TB individuals (p = 0.030 between groups in
Kruskal-Wallis test with Dunn’s multiple test correction; p = 0.018 for cured-TB
individuals compared to healthy donors in Mann-Whitney test; figure 2A). The frequency
in BCG-stimulated samples relative to the frequency in unstimulated samples (expressed as
the ratio BCG : non-BCG) was compared between groups. This demonstrated a trend
towards an increased ratio of KLRG1 expression on CD4" T-cells and CDS8" T-cells from
cured-TB subjects, compared to healthy donors (p = 0.019 and p = 0.024 resp., Mann-
Whitney test), but this was not significant after multiple test correction (figure 2A).

There was an interesting trend towards an increased frequency of CD4 ' KLRG1" T-cells in
active TB patients - and not in individuals with latent TB infection - compared to healthy
donors (p = 0.020, Mann-Whitney test, not significant following multiple test correction).
On CD8" T-cells KLRG1 expression was not significantly different in individuals with
active or latent infection compared to healthy donors (figure 2A).

A similar pattern was observed for PD-1: distinctly increased expression on CD4" T-cells in
cured-TB subjects (p = 0.039 between groups in Kruskal-Wallis test with Dunn’s multiple
test correction; p = 0.017 for cured-TB individuals compared to healthy donors in Mann-
Whitney test); and a trend towards an increased ratio (BCG : non-BCG) of CD4" T-cells
and CD8" T-cells expressing PD-1 in cured-TB subjects compared to healthy donors (p =
0.015 and p = 0.010 resp., Mann-Whitney test; not significant following multiple test
correction; figure 2B). Similarly, in patients with active TB disease CD4" T-cells - but not
CDS8" T-cells - exhibited a trend towards increased expression of PD-1 compared to healthy
donors (p = 0.031, Mann-Whitney test; not significant following multiple test correction).
In cured-TB subjects the frequency of CTLA-4-expressing CD4" T-cells was highest also
(p = 0.017 between groups in Kruskal-Wallis test with Dunn’s multiple test correction; p =
0.002 for cured-TB individuals compared to healthy donors in Mann-Whitney test; figure
2C). CD8" T-cells in cured-TB individuals exhibited a trend towards an increased
frequency and ratio of CTLA-4 expression compared to healthy donors (p = 0.014 and p =
0.019 resp., Mann-Whitney test; not significant following multiple test correction; figure

2C). In latently infected individuals but not in active TB patients, the frequency of CTLA-4
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-expressing CD4" T-cells was moderately increased (p = 0.025, Mann-Whitney test; not

significant following multiple test correction; figure 2C).
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Figure 2. Increased expression of KLRG1, PD-1 and CTLA-4 on T-cells from cured-TB patients. Expression
of KLRG1, PD-1 and CTLA-4 was highest on six day BCG-stimulated CD4" T-cells from cured-TB subjects.

There was a trend towards an increased BCG : non-BCG ratio (as frequency in BCG-stimulated samples relative

to the frequency in unstimulated samples) of KLRG1 and PD-1 expression on CD4" and CD8" T-cells, and of

CTLA-4 expression on CD8" T-cells, in cured-TB subjects compared to healthy donors. Active TB patients

exhibited slightly increased expression of KLRG1 and PD-1 on CD4" T-cells. Data are shown as scatter plots with

line at median for 11 patients with active TB, 13 individuals with latent TB infection, and 15 cured-TB subjects,

compared with 16 healthy donors (Mann-Whitney tests; ‘indicates not significant following Kruskal-Wallis test

with Dunn’s multiple test correction).
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Four out of 13 latently infected individuals received preventive therapy with isoniazid, but
no trend or significant association was observed between preventive therapy and expression
of KLRGI, PD-1 or CTLA-4. In addition, in cured-TB subjects no association was
observed between inhibitory marker expression and either time post-treatment (median 8§ +

IQR 2.5 - 13.5 months) or age (median 33 £ IQR 25 - 49.5 yrs) (data not shown).

BCG-vaccination induces expression of KLRG1 on CD8" T-cells in BCG-naive
healthy adults

To assess the mycobacterial induction of inhibitory molecules on human T-cells, we
compared the cellular expression of the above markers before and after BCG-vaccination of
healthy adult volunteers. Only among CD8" T-cells a significantly increased frequency of
KLRGI1-expressing cells was found, at 4, 8 and 12 weeks post-vaccination compared to
pre-vaccination baseline (p = 0.006 in Friedman test with Dunn’s multiple test correction; p
=0.001, p = 0.002, p = 0.009 in Wilcoxon signed-rank tests resp. 4, 8 and 12 weeks post-
vaccination compared to pre-vaccination; figure 3A), following in vitro-stimulation with
BCG. Also KLRGI expression relative to unstimulated cells (ratio BCG-stimulated :
unstimulated) was significantly induced on CD8" but not CD4" T-cells compared to pre-
vaccination (p = 0.050 in Friedman test with Dunn’s multiple test correction; p = 0.016 and
p =0.007, 4 resp. 8 weeks after vaccination in Wilcoxon signed-rank tests; figure 3A). One
year after vaccination, the frequency and relative expression of CD8 ' KLRG1" T-cells had
returned to pre-vaccination values (figure 3A).

Remarkably, BCG-vaccination did not induce expression of either PD-1 nor CTLA-4 on in
vitro BCG-stimulated CD4" or CD8" T-cells compared to pre-vaccination in cells in vitro
stimulated with BCG; also the expression of PD-1 and CTLA-4 on CD4" and CD8" T-cells
relative to unstimulated cells (ratio BCG-stimulated : unstimulated) did not increase
compared to pre-vaccination baseline (relative expression of PD-1 and CTLA-4 on CD4"

and CD8" T-cells demonstrated in figure 3B and C).
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Figure 3: BCG-vaccination induces KLRG1 expression on CD8" T-cells in BCG-naive healthy adults.

A, upper panels: KLRG1 expression is significantly induced on CD8" T-cells, but not on CD4" T-cells, after BCG-
vaccination of healthy adults 4, 8 and 12 weeks after vaccination (stimulated samples compared to pre-vaccination
in Friedman test with Dunn’s multiple test correction followed by Wilcoxon signed-rank test). A, lower panels:
KLRGI! expression relative to unstimulated samples (ratio BCG-stimulated : unstimulated) is significantly
increased on CDS8", but not on CD4" T-cells, 4 and 8 weeks after vaccination (compared to pre-vaccination in
Friedman test followed by Wilcoxon signed-rank test). Results from 12 vaccinees as box-whiskers (line at median,
whiskers min. - max.), or as dot plot (line at median), resp., at pre-vaccination, at 4, 8 and 12 weeks, and 1 year
after vaccination. B, C: Neither PD-1 nor CTLA-4 expression is significantly induced on CD4" or CD8" T-cells
after BCG-vaccination, neither as frequency nor as relative to unstimulated samples (ratio BCG-stimulated :
unstimulated), compared to pre-vaccination. Results are shown as ratios for BCG-stimulated : unstimulated for

PD-1 (B) and CTLA-4 (C) expression on CD4" and CD8" T-cells for 12 vaccinees (dot plots, line at median).
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KLRG]1 expression marks CD8" T-cells with reduced proliferation

To evaluate possible functional consequences of KLRGI induction on CD8" T-cells
following BCG-vaccination, we studied the proliferative capacity of CD8" T-cells,
CD8'KLRG1" T-cells, and CD8PD-1" T-cells after vaccination. Following 6 day in vitro
BCG stimulation, cells were CFSE-labelled and after another six days stained and analyzed
by flowcytometry. BCG-activated CD8'KLRG1" T-cells displayed markedly reduced
proliferation compared to the total CD8" population and compared to PHA-stimulation
induced CD8" T-cell proliferation (representative overlay histograms of cell proliferation
12 weeks after vaccination displayed in figure 4A and B). In contrast, the PD-1" fraction of
CDS8" T-cells displayed enhanced proliferative capacity compared to the total CD8"
population (figure 4B displays proliferation of total CD8" T-cells, CD8 PD-1" T-cells and
CDS'KLRGI1" T-cells of the same donor 12 weeks after vaccination).
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Figure 4. BCG-stimulated CD8'KLRG1"* T-cells show reduced proliferation compared to CD8"PD-1" T-
cells. A: In vitro BCG-stimulated cells of BCG-vaccinated donors were CFSE-labelled after 6 days, and after
another 6 days stained for flowcytometric analysis (gated on single cells, lymphocytes, CD14-CD56-negative,
CD3",and CD4'CDS8" vs. CD8°CD4"). Figure 4A displays representative overlay histograms of cell proliferation of
CDS8" T-cells (shaded light grey) and the PHA-stimulated control cell line (also gated on CD8"; shaded dark grey)
of a BCG-vaccinated donor 12 weeks after BCG-vaccination. B: KLRGI expression on BCG-activated CD8" T-
cells denotes cells with reduced proliferative capacity in a CFSE proliferation assay: overlay histogram with CD8"
T-cells (shaded light grey) as in (A); also cell proliferation of CD8'KLRG1" T-cells (black line) and of CD8 PD-

1" T-cells (grey line) are shown.
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Relative cellular proliferation was then obtained by dividing total CD8" CFSE intensity by
CD8'KLRG1" and CD8PD-1" CFSE intensity. At 4, 8 and 12 weeks after BCG-
vaccination the relative cell proliferation of CD8 KLRGI' T-cells was significantly
decreased, while CD8'PD-1" relative T-cell proliferation was significantly increased,
compared to the total CD8" population. Thus, these data indicate that KLRG1 expression
identifies non-proliferating CD8" T-cells after BCG-vaccination, whereas CD8 PD-1" T-
cells are proliferating (figure 4C; p < 0.001 for CD8' KLRG1" and CD8 PD-1" T-cells at all

depicted visits, Wilcoxon signed-rank test against the theoretical ratio of 1).
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FIGURE 4 (continued). BCG-stimulated CD8'KLRG1* T-cells show reduced proliferation compared to
CDS8'PD-1" T-cells. C: The relative cell proliferation of CD8'KLRG1" T-cells is decreased, whereas the relative
cell proliferation of BCG-activated CD8'PD-1" T-cells is increased after BCG-vaccination compared to pre-
vaccination baseline; scatter plots with line at median 4, 8 and 12 weeks post-vaccination (resp. 6, 6 and 5 BCG-
vaccinated donors) are shown. To obtain cell proliferation relative to total CD8" T-cell proliferation, the geometric
mean of CFSE intensity of CD8" T-cells was divided by the geometric mean of CD8'KLRG1", or CD8"PD-1" T-
cells; and the relative cell proliferation of CD8'KLRGI" and CD8 PD-1" T-cells was tested against the theoretical

median of 1 (Wilcoxon signed-rank tests).
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Discussion

In this study, we studied and compared expression of KLRGI1, PD-1 and CTLA-4 on
human T-cells in different stages of TB-infection/disease and assessed mycobacterial
induction of these markers in humans. Expression of KLRGI1, PD-1 and CTLA-4 was
increased most on in vitro BCG-stimulated T-cells of cured-TB subjects, and expression of
KLRG1 and PD-1 was mildly increased on CD4" T-cells in active TB patients, compared to
healthy donors. BCG-vaccination of BCG-naive adults induced KLRGI expression on
CD8" T-cells, and CD8'KLRG!" T-cells had - in contrast to CD8'PD-1" T-cells - a
markedly reduced proliferative capacity.

We found the highest expression of KLRG1, PD-1 and CTLA-4 on T-cells from cured-TB
individuals. In contrast, others have reported a decrease of PD-1 expression during TB-
therapy in humans and mice, and of KLRG1 expression in mice [15;33]. Also in contrast to
our observation of a mild increase in KLRG1 and PD-1 expression in active disease, others
have reported no modulation of PD-1 expression during active TB [34]. However, in South-
African active TB patients the proliferative capacity of CD4" and CD8" T-cells was
impaired compared to latently infected individuals [35], which may suggest that continued
antigen exposure could drive a progressive loss of T-cell functionality associated with
progression to active disease. Interestingly, in these South-African TB patients the
impairment in the proliferative capacity of Mtb-induced T-cells was not restored during or
months after treatment [36].

In murine Listeria and vaccinia infection models, CD8 ' KLRG1" T-cells exhibited reduced
proliferative capacity but optimal cytolysis and infection control compared to KLRG1™ T-
cells [37]. However, in murine Mtb-infection KLRG1", IL-2-secreting central memory T-
cells exhibited optimal infection control [38]. We did not assess the cytokine-secreting
capacity of KLRG1" T-cells, but in murine Mtb-infection KLRG1 expression was generally
inhibitory, and KLRG1”" mice had both increased pulmonary CD4" T-cell IFNy production
and survived longer following Mtb infection [39]. Indeed, murine PD-1"KLRG1™ T-cells
exhibited increased polyfunctionality compared to PD-1'KLRG1" T-cells [20-22].

The high expression of inhibitory markers in recently cured-TB individuals could be
explained as a consequence of antigen presence following antibiotic treatment. In murine

LCMYV, demethylation of the promotor region of the PD1-encoding gene (Pdcdl) was

152 -



KLRGI1" vs. PD-1" inhibitory T-cell responses

stable after viral titers had fallen below detection levels [40]; also in HIV-elite controllers
or long-term treated individuals such demethylation was persistent [41]. After HCV
infection, PD-1 was equally expressed on HCV-specific T-cells from individuals that had
cleared infection and from chronic HCV patients [42], suggesting a stable phenotype
independent of the pathogen load (reviewed in [5]). Also in our study, the expression of
PD-1 on T-cells from TB-treated individuals may be thus explained as an epigenetically
conserved and stable phenotype independent of antigen exposure. Longitudinal studies with
prolonged follow up times will be needed to establish the kinetics of these possibly
epigenetically regulated phenotypes.

Importantly, it was recently demonstrated that in murine TB, PD-1-expressing T-cells have
stable memory-like properties: these cells sustain a T-cell pool in the absence of antigen
and expand after re-exposure; then they partly differentiate into KLRG1" T-cells [21]. PD-1
(as well as CTLA-4) is ubiquitously expressed on immune cells [7;13], and PD-1" T-cells
probably represent a highly heterogeneous T-cell pool in TB [43]. PD-1 serves as an
important brake on immune cells [7], illustrated by the reported lethal immunopathology
following Mtb infection of PD-1"7" mice [44;45]. In the light of their polyfunctionality and
protective capacity [21], PD-1" T-cells - at least in murine TB - could thus be proliferating
precursors that maintain long-term responses against TB, differently from the role of PD-1"
T-cells in other infection models [43]. In these murine TB-models KLRG1 is a powerful
marker of terminal differentiation and functional exhaustion compared to PD-I1.
Furthermore, it was suggested that after TB-treatment the presence of pro-apoptotic T-cells
indicated a deregulated memory component, enhancing host susceptibility towards
recurrent disease [30]. Future research should delineate whether in human TB the
expression of KLRGI (or PD-1) is a risk factor towards disease progression, and whether
KLRGT1 rather than PD-1 indicates functional exhaustion. Due to the cross sectional design
of our study, it remains unclear whether in Mtb-infected humans PD-1" T-cells differentiate
into KLRG1" T-cells and whether antigen re-exposure is involved.

We found that BCG-vaccination induced KLRG1, but not PD-1 or CTLA-4 expression on
T-cells. Also in murine BCG-vaccination expansion of KLRG1" but not PD-1" T-cells was
observed [27], and T-cells from BCG-vaccinated individuals did not express PD-1 [46], in
contrast with latently infected individuals [14;46;47]. Importantly, in Mtb-infected mice
intravascular effector T-cells exhibited high KLRG1 expression, and only KLRG1™ T-cells
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were capable of entering the lung parenchyma to mediate protective immunity [48]. Lung
tissue-resident KLRG1™ Th1 cells expressed high levels of PD-1 compared to intravascular
effector T-cells, as well as CTLA-4 [48;49]. We thus cannot exclude that following
vaccination PD-1" and CTLA-4" T-cells could have expanded at the inflamed skin
vaccination site, while BCG-induced KLRG1" T-cells would be sequestered in the
circulation. It is conceivable that KLRGI expression following BCG-vaccination could
represent impaired protective efficacy in terms of decreased migratory potential.

We found increased KLRG1 expression on CD4" T-cells, and a slight enhancement in the
ratio of KLRG1-expressing CD4" T-cells and CD8" T-cells, in cured-TB subjects compared
to healthy donors. Interestingly, after BCG-vaccination we only found specific induction of
KLRGI expression on CD8", but not CD4" T-cells. Rapid early clonal proliferation of
CD8" T-cells has been demonstrated after antigen encounter [50], whereas clonal CD4" T-
cell expansion occurs in response to repeated antigen stimulation, as during the course of
infection and perhaps not sufficiently following a single vaccine dose, or due to specific
immunomodulating properties of live BCG [50]. In contrast, high antigen exposure during
active TB disease and antigen release induced by chemotherapy could trigger clonal
expansion of KLRG1-expressing CD4" T-cells in TB-treated individuals. M. bovis BCG
lacks the RD1-region that is present in Mtb, however it is unlikely that differences in the
cytosolic processing of mycobacterial antigens account for the differences in CD4 ' KLRG1"
and CD8'KLRGI1" T-cell frequencies between the TB and BCG-vaccinated cohorts in this
study: RD1-deficient bacteria generally induce lower, and not higher CD8" T-cell activation
[51]. Moreover, TB8.4-specific CD8" T-cell clones were as activated by Mtb-infected DCs
as by DCs infected with RD1-mutant Mtb strains [52].

We demonstrated proliferating CD8'PD-1" T-cells vs. non-proliferating CD8 KLRG1" T-
cells following human BCG-vaccination, analogous to murine TB-vaccine models [22;53].
In murine BCG-vaccination KLRG1 expression on CD4" and CD8" T-cells increased
during contraction of the immune response, which inversely correlated with proliferation,
cytokine production, and immunity against TB-challenge [27;38]. In human HCV-
infection, increased KLRG1 expression and decreased IL2-production by CD4" T-cells was
found in HBV-vaccine non-responders, compared to HBV-vaccine responders, and in vitro
KLRG1 blocking increased Akt (Ser473) phosphorylation, cell proliferation and IL-2
production [54]. In our study the frequencies of circulating CD8'KLRG1" T-cells returned
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to baseline one year post BCG-vaccination. Future studies should determine whether the
observed KLRG1" T-cell expansion impacts a (neo)antigen vaccine response, whether
blocking the KLRG! signaling would enhance the vaccine response, and whether
expression of KLRGI (in any phase of the response) leads to a deregulation in the vaccine-
induced (central) memory formation.

In conclusion, we demonstrate increased expression of KLRGI1, PD-1 and CTLA-4 in
individuals that had recently been treated for TB, and we describe for the first time - to the
best of our knowledge - the induction of non-proliferating KLRG1" CD8" T-cells following
BCG-vaccination in humans. Future research should delineate whether inhibitory marker
expression leads to an increased susceptibility towards developing disease or a lack of
vaccine-induced protective efficacy. Immune checkpoint inhibition studies will hopefully
answer the question whether KLRG1-blockade is clinically feasible, safe and effective in

helping to induce better protection against TB.
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Conclusions and Discussion

General conclusions

There is no effective vaccine against pulmonary TB in adults. The only currently available
TB-vaccine, M. bovis BCG, reduces the risk of severe TB in infants, but protection against
pulmonary TB in adults is highly variable and only limited. This thesis aimed to identify
cellular responses that may account for the variable efficacy of BCG-vaccination, by
assessing the induction of regulatory, pro-inflammatory and inhibitory marker-expressing
T-cell subsets by M. bovis BCG in adults.

Many pathogens induce, recruit and expand regulatory T-cells that act at the interface of
human host and pathogen in immunity against diseases and following vaccination (Chapter
2). Besides ‘specific’ suppression, also heterologous suppression can impact on (vaccine-
induced) immunity. M. tuberculosis induces Tregs, and CD4' Tregs were also
demonstrated in M. bovis BCG-vaccinated infants and adults. CD8" Tregs are less studied -
and often even overlooked - compared to CD4" Tregs, especially in infectious diseases and
vaccination. BCG-induced CD4" Tregs had been reported, but no comparative analysis of
BCG-activated CD4" vs. CD8" Tregs existed.

We studied the induction of CD4" and CD8" Tregs following in vitro M. bovis BCG-
stimulation of PBMCs isolated from PPD-reactive healthy human donors. Next, we
compared suppressive activity of live vs. heatkilled BCG-stimulated T-cells, and compared
suppressive activity of live BCG-stimulated T-cell subsets (Chapter 3). We found that live
BCG-stimulation induced a regulatory T-cell phenotype that consisted predominantly of
CDS8", and not CD4" T-cells. Expression, co-expression, and expression level of regulatory
markers was higher on BCG-activated CD8" T-cells compared to CD4" T-cells, and
selection of T-cells on co-expression of regulatory markers indeed enriched for CD8" T-
cells. Heatkilled BCG-activated T-cells were not suppressive, while in contrast live BCG-
activated T-cells suppressed proliferation of Thl-cells. The suppressive activity of live
BCG-activated T-cells was mediated predominantly by CD8" Tregs, and not by CD4" T-
cells.

CD39 (E-NTPDasel) has previously been described as a functionally active marker of
mycobacteria-induced CD4" Tregs, but has not been studied on mycobacteria-activated
CD8" Tregs. Chapter 4 demonstrates specific CD39-expression on CD8" T-cells following
live BCG-activation of PBMCs from PPD-responsive donors. CD8" T-cell lines sorted on
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CD39-expression were highly enriched in expression of (other) regulatory markers. Only
CD8'CD39" T-cells, but not CD8'CD39™ T-cells suppressed proliferation of Thl cells, and
blocking of CD39 resulted in partial reversal of suppression by CD8 CD39" T-cells. This
demonstrates the functional involvement of CD39 in mediating suppression by in vitro live
BCG-activated CD8" Tregs.

We then assessed - prospectively - the induction of primary pro-inflammatory and
regulatory T-cell responses by BCG-vaccination of TST-negative, QuantiFERON test-
negative, and BCG-naive healthy adults (Chapter 5). The primary immune response
following BCG-vaccination was unexpectedly dichotomous: we found either induction of
IFNy'IL2'TNFa" polyfunctional CD4" T-cells concurrent with CD4'IL17A" and
CD8'IFNy" T-cells, or virtually absent cytokine responses. Vaccine-induced skin
inflammation correlated well with serum CRP early after vaccination, and induction of
polyfunctional CD4" T-cells and IFNy production by PBMCs was confined to high skin
inflammation responders. Treg induction by BCG-vaccination was also assessed.
Analogous to the predominant activation of CD8" Tregs following in vitro BCG activation
of PBMCs from PPD-responders in Chapter 3, we found induction of the regulatory
phenotype only within the CD8" T-cell compartment, and did not find any significant
induction of CD4" Tregs following live BCG-stimulation. In notable contrast to
polyfunctional CD4" T-cell induction, the induction of CD8" Tregs compared to pre-
vaccination was confined to low skin inflammation responders. Thus, following BCG-
vaccination highly variable and opposing immune responses were found already within a
small adult cohort, in a non-TB endemic region.

Recent studies in murine TB-vaccine models discovered a relation between expression of
PD-1 or KLRGI and vaccine-induced protective efficacy against TB. In these murine TB-
models KLRG1 was a more powerful marker of terminal differentiation and functional
exhaustion compared to PD-1, however the induction of KLRGI1 expression on human T-
cells in response to mycobacteria had not been investigated yet. We found that following
BCG-vaccination of BCG-naive adults, KLRG1 expression on CD8", but not CD4" T-cells,
significantly increased compared to pre-vaccination (Chapter 6). Neither PD-1 nor CTLA-
4 expression increased on CD4" or CD8" T-cells. KLRGI-expressing CD8" T-cells
exhibited markedly decreased proliferation, whereas PD-1" T-cells proliferated after in

vitro BCG-stimulation, analogous to murine TB-vaccine models. In patients with active TB
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disease, we observed a mild increase of KLRG1 and PD-1 expression on CD4" T-cells.
However, KLRG1, PD-1 and CTLA-4 exhibited highest expression on CD4" T-cells of
individuals recently treated for TB, which may be a consequence of persistent antigen
release during antibiotic treatment. Thus, we have demonstrated induction of non-
proliferating KLRG1" CD8" T-cells following BCG-vaccination in humans; future research
should delineate whether inhibitory marker expression indicates a lack of vaccine-induced
protective efficacy.

This thesis addressed BCG vaccine-induced immunity against mycobacteria, and has
characterized three important cellular immune responses that are induced by M. bovis BCG
in human adults. Firstly, M. hovis BCG induces CDS8", but not CD4" regulatory T-cells, in
human adults. We additionally demonstrated that CD39 is functionally involved in
mediating suppression by these BCG-activated CD8' Tregs. Secondly, the pro-
inflammatory response induced by BCG-vaccination was unexpectedly dichotomous: either
the induction of polyfunctional CD4" T-cells, that was confined to vaccinees with high
inflammation of the skin vaccine lesion, or virtually no induction of cytokines with a
concomitant induction of CD8" Tregs. Thirdly, non-proliferating KLRG1" CD8" T-cells
were induced following BCG-vaccination in humans, and expression of this inhibitory T-
cell marker may possibly be associated with a lack of vaccine-induced protective efficacy.

Thus, BCG-vaccination induced highly variable and opposing T-cell responses.

M. bovis BCG modulates immunity against M. tuberculosis

This thesis demonstrates that BCG, a live bacterial vaccine against TB, induces highly
variable pro-inflammatory responses, as well as CD8" regulatory T-cell responses
(Chapter 3, 4 and 5). Mycobacteria are master manipulators of the immune system and
employ a myriad of mechanisms to induce immune regulation (Chapter 2). Major
virulence factors were lost by in vitro passaging of M. bovis to obtain M. bovis BCG, but M.
bovis BCG clearly shares regulatory-inducing capacities with Mtb. Mycobacteria activate
tolerizing DCs and anti-inflammatory macrophages [1], that produce IL-10 and induce
Tregs [2;3]. In return, Tregs could further limit the pro-inflammatory response by

suppressing APC activation [4]. It is however unknown which exact mechanisms are
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employed by M. bovis or M. bovis BCG to induce Tregs; and the evaluation in this thesis
did not extent to assessment of these mechanisms.

BCG-induced innate signaling pathways could lead to Treg induction, however another
highly interesting aspect of innate immunity, for which evidence of the effect of BCG-
vaccination is increasing, is the induction of trained immunity by M. bovis BCG. Trained
immunity is a state of long-term and increased responsiveness of monocytes to secondary
infections, associated with epigenetic alterations that affect both intracellular signaling and
cell metabolism [5;6]. It can be induced by pathogens or vaccination with live microbes
such as M. bovis BCG, measles or yellow fever [5]. This is important, since BCG-induced
trained immunity could be partly responsible for the protection against TB mediated by
BCG-vaccination in infants, and could further account for the heterologous, ‘non-specific
effect’ of BCG-vaccination in protecting infants against unrelated infectious diseases, as
well as the protective effect of intravesical BCG-therapy in bladder cancer [7-9].

What constitutes vaccine-induced (T-cell mediated) protective immunity against TB is not
clear; and so far no specific TB biomarker or correlate of protection has been found in
either infants or in the adult population. CD4" polyfunctional T-cells have been proposed as
correlate of vaccine-induced protective immunity [10], and in infants these cells are
induced by BCG-vaccination [11]. However, during follow up the presence of such cells
was not associated with the development of or protection against TB [12]. The impact of
the BCG-induced regulatory T-cell response, as demonstrated in this thesis, on vaccine-
induced immunity against TB remains unknown. Future research should delineate the

impact of the regulatory response, as well as the mechanisms that are causing it.

BCG-vaccination induces predominantly CD8" Tregs, and not CD4"
Tregs

CD4" and CD8" Tregs have been demonstrated in murine and human infection with M.
tuberculosis and M. leprae (Chapter 2). Here we found in comparative analyses that
following live M. bovis BCG-stimulation CD8" but not CD4" Tregs were activated in
human adults (Chapter 3 and 5). M. tuberculosis actively modulates phagosome-lysosome

fusion, autophagy and antigen presentation in the macrophage [13], yet Mtb and M. bovis
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BCG could differ in their intracellular lifestyle and antigen presenting pathways. Induction
of CD8" T-cell responses requires access to the MHC-I antigen processing pathway;
translocation of mycobacteria from the phagosome into the cytosol, cross-priming by DCs,
or alternative antigen presenting pathways would provide this access. In one study
translocation of Mtb into the cytosol was dependent on secretion of ESAT-6 and CFP-10,
as part of the ESX-1 secretion system which is encoded in region of difference 1 (RD1)
[14]. The same study demonstrated that BCG did not translocate into the cytosol [14]. Since
the genomes from all BCG strains lack RD1, this questions how BCG could induce CD8"
T-cell responses, which it does, as described in this thesis.

It was noted previously [15] that cytosolic Mtb could be due to atypical cell death instead
of translocation from the phagosome, and that in vivo murine and human studies - though
limited in number - so far only observed Mtb in membrane-bound organelles. Furthermore,
various cytosolic and vacuolar pathways enable mycobacterial antigen to enter MHC-I
presentation pathways without a requirement for escape from the phagosome [15]. At least,
escape of bacilli into the cytosol is not essential in inducing CD8" T-cell responses.
Following intradermal vaccination, BCG is present relatively long as a live (intracellular)
bacterium in the human body. Live BCG bacilli are transported into the draining lymph
node by dendritic cells, macrophages and neutrophils [16]. Prolonged antigen availability
could increase CD8" T-cell responses through optimal cross-presentation by dendritic cells
(Chapter 3 and 5). In addition, extracellular fragments of BCG could be cross-presented
and CD8" T-cells could be induced [17].

Interestingly, in vitro stimulation of PPD-responsive PBMCs with heatkilled BCG did not
induce either CD4" or CDS8" Tregs (Chapter 3). BCG may need to be present as a live
bacterium to modulate - through so far unknown mechanisms - towards tolerance.
Interestingly, the phagosome membrane containing live BCG was found to have pores
permissive of molecules up to 70 kDa; but only viable and not formalin-killed BCG was
associated with permeability of these membranes [18]. Therefore, live BCG may actively
employ mechanisms to enter antigen into MHC-I presentation pathways. Also in our cell
cultures, the ratio of CD4" : CD8" T-cell expansion was increased following heatkilled
BCG-stimulation (Chapter 3).

So far, CD4'CD25" Tregs have been identified - in TB disease and after BCG-vaccination -
by in vitro PBMC stimulation with mycobacterial PPD, TB-specific peptides or freeze-
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dried BCG in culture with antibiotics [19-21]. This may have overlooked the induction of
CD8" Tregs by live BCG bacilli. Since BCG is administered as a (partly) live vaccine, the
possible negative impact of CD8" Tregs on BCG-vaccine mediated immunity may be larger

than previously thought.

Host factors in the heterogeneous pro-inflammatory response following

BCG-vaccination

The primary immune response following BCG-vaccination in TST-negative,
QuantiFERON test-negative, BCG-naive healthy adults, was unexpectedly found to be
highly heterogeneous. Previous reports on induction of polyfunctional CD4" T-cells by
BCG-vaccination had also yielded variable results; but here, we demonstrate high
variability of BCG-vaccination-induced pro-inflammatory cytokines, and an inverse
relation with a CD8" regulatory response, within one cohort (Chapter 5). To detect BCG-
induced immune responses, we used short-term live BCG-stimulation of whole blood,
followed by fixation, cryopreservation, and intracellular cytokine staining. This whole
blood assay (WBA) has previously been optimized for assessment of immunogenicity in
TB-vaccine trials [22]. It has been qualified as precise, robust and operator-independent,
furthermore the detection of cytokines is independent of the duration of cryopreservation
[23]. Importantly, we confirmed vaccine ‘take’ one year after vaccination by IFNy-
ELISpot: a standardized and sensitive assay to detect long-term mycobacterium-specific
immune responses [24]. The variation in immunogenicity assessed by live BCG-whole
blood stimulation was furthermore reflected in the heterogeneous IFNy production of PPD-
stimulated PBMCs of vaccinees at 4, 8 and 12 weeks after vaccination. Cytokine
responders and non-responders were evenly distributed among vaccination days and
gender; furthermore all participants were Caucasian, and ranges of age and weight were
small. We therefore concluded that the observed heterogeneous response reflected true
inter-individual variation.

What causes a pro-inflammatory response in some individuals, and a predominantly
regulatory response in others, is probably partly attributable to M. bovis BCG-vaccine

immunomodulation, and partly intrinsic to the individual that is vaccinated; the relative
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contribution of these factors and their mechanism of interaction is yet unclear. Our cohort
was too small for meaningful genetic analyses, but in larger cohorts it would be highly
informative to correlate heterogeneity of immune responses with host specific allelic
variations, homo- vs. heterozygosity for specific HLA loci, and to single nucleotide
polymorphisms (SNPs) in HLA genes, immune receptors and signaling molecules. It is
likely that polymorphisms also exist for regulatory cytokines and regulatory receptors /
surface markers. Thus, in larger cohorts an assessment of genetic variation in regulatory
molecules should be included.

In infectious diseases, lessons on immune pathways can be drawn from major immune
deficiency syndromes such as the extreme susceptibility to mycobacteria caused by
mutations in e.g. genes encoding IFNy- and IL12-receptors [25]. However, genetic variants
in the general population may also regulate susceptibility towards infectious diseases
including TB, HIV and malaria [26;27]. A striking example that also genetic variation in
regulatory responses can be involved in susceptibility towards infectious disease, comes
from two ethnic groups living in one area in Burkina Faso: the Fulani people are relatively
resistant to P. falciparum-caused malaria compared to the Mossi people; this is associated
with reduced CTLA4 and FOXP3 expression compared to Mossi [28]. In addition, the risk
of developing malaria in Kenyan adults is related to Treg frequencies [29]. Antibody serum
levels induced by measles-vaccination were associated with HLA-I and -II variation [30],
and antibody levels induced by both measles- and rubella-vaccination correlated with
cytokine- and cytokine receptor SNPs (including IL12B, IL12RB1, IL2, and IL10) [30;31].
In infant BCG-vaccination, Toll-like receptor (TLR) polymorphisms correlated with the
amplitude of the IFNy response in BCG-stimulated whole blood 10 weeks after vaccination
[32].

Major lessons can be drawn from the TB-vaccine candidate MVAS8SA in infants and adults.
Even though no enhanced protection against TB was observed following MVASSA-
booster- compared to placebo-vaccination of previously BCG-vaccinated children, analysis
of the variation within this large cohort provides valuable insights into host and vaccine
immune mechanisms. In South-African infants, positive responses to antigen 85A (Ag85A)
in IFNy ELISpot 28 days after MVA85A-vaccination were associated with expression of
genes enriched in innate cells [33]. This was in contrast with the MVAS85A-induced

immune response in British adults: there, not pre-vaccination inflammatory pathways, but

-169 -



Chapter 7

pre-vaccination expression and early (day 2) induction of regulatory pathways were
inversely related with the IFNy ELISpot response [34]. In another study, high pre-
vaccination TGF-B1 serum levels correlated with low Ag85A-specific IFNy ELISpot
responses for up to 4 months after MV A85A-vaccination [35]. The authors concluded that
different pathways are involved following vaccination of infants vs. adults, or African vs.
British individuals.

Immunogenetics can reveal important vaccine-induced immune pathways, and possibly in
the future predict vaccine outcomes. High- and low cytokine responders of the BCG-
vaccinated cohort in this thesis (Chapter 5) did not significantly differ in either cytokine-
or regulatory marker expression before vaccination. It is however possible that minor
genetic variations in inflammatory or regulatory-related genes were decisive in expansion
of pro-inflammatory vs. regulatory cells. This may have been in interplay with intrinsic

immunomodulatory capacities of the M. bovis BCG-vaccine.

Classical, regulatory and clinical markers of immunity

There is no ultimate TB biomarker or correlate of protection; also CD4 " polyfunctional T-
cells were found to be not associated with immunity against TB. However, new surrogate
endpoints of protection may be found by deciphering vaccine-induced cellular profiles and
mechanisms of (in vitro) protection [36]. This would both accelerate vaccine trial
evaluation, as well as enhance the statistical power of small(er) cohorts [37]. As described
in the previous section, the induction of a regulatory response, inversely related to a pro-
inflammatory response, was also reported following MV A85A-vaccination of British adults
[34]. Furthermore, vaccination of South African adults with the candidate TB-vaccine
M72/AS01 induced pro-inflammatory, but also regulatory responses [38]. This suggests
that assessment of regulatory responses in relation to deep immune phenotyping could
assist in the search for protective correlates in future TB-vaccine trials.

In Chapter 4 we reported for the first time expression of CD39 on human BCG-activated
CD8" Tregs. A murine cancer model has yielded mechanistic insights into the pivotal role
of the ectonucleotidases CD39 and CD73 in differentiation of suppressive vs. non-

suppressive Th17 cells: differentiation in the context of IL-6 and TGF-f activated Stat3 and
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Gfi-1, which bound to promotor regions of CD39 and CD73 and activated their expression.
These Th17 cells were suppressive through production of adenosine and promoted tumour
growth following adoptive transfer, whereas Th17 cells generated with IL-1f3, IL-6, and IL-
23 did not express ectonucleotidases and were not suppressive [39]. In human TB pleurisy,
CD39" Tregs isolated from pleural effusion inhibited in vitro differentiation of naive T-
cells into Th17 cells through TGF-B [40]. Also - as reviewed in Chapter 2 - combined
action of Mtb and CD39" Tregs within the granuloma can induce a macrophage type 1
towards type 2 switch. CD39-expressing Tregs may thus be a pivotal player in hampering
protective immunity against TB through several mechanisms.

Following murine BCG-vaccination, production of IL-17 by pulmonary CD4" T-cells
correlated with protection against TB challenge [41]. In humans, the MV A85A -vaccination
induced CD39-expression on CD4" T-cells correlated negatively with IL17A-responses in
stimulated PBMCs [42:43]. In Chapter 4 we demonstrated functional involvement of
CD39 on CD8" T-cells in mediating suppression of CD4" (IFNy") Thl cells. We did not
assess the relation of CD39-expression with Th17 differentiation or IL17 production.
Future studies should determine whether CD8'CD39" Tregs impair BCG-induced
protection against TB, and whether (CD8")CD39" Treg frequency or activity could be used
as a correlate of (impaired) protection. Yet, it is unknown if vaccination-induced cellular
subsets are stable or may transdifferentiate into other subsets.

Markers of inflammation that are ‘classical’ in clinical medicine, could be used as ‘non-
classical’ indicators of vaccine-induced immunity. The skin inflammation score (and CRP
assay) described in Chapter 5 do not represent specific correlates, however the vaccine-
induced skin reactogenicity likely represents inflammation as a result of multiple
underlying immune mechanisms. The in vitro pro-inflammatory cytokine response in BCG-
vaccinated infants and in BCG-revaccinated British adults also correlated with scar
formation of the BCG-vaccine lesion [44;45]. It is highly interesting that scar formation in
infants has also been associated with the non-specific protective effects of BCG-vaccination
[46]. BCG-induced TST-conversion was not associated with protection against TB [47]. In
Chapter 5 we identified two types of primary opposing immune responses following BCG-
vaccination in BCG-naive individuals: a pro-inflammatory response or a regulatory T-cell
response, which correlated with the skin inflammation score. Follow-up of skin reactivity

and/or scar formation may possibly provide insight into protective immunity, and may
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assist in identification of various responses and mechanisms, including innate immunity.

Any potential correlate of vaccine-induced protection will need to be validated in
sufficiently powered clinical vaccine trials [36]. Yet, in the absence of any protective TB-
vaccine, potentially valuable information of protective activity could be obtained from in
vitro functional estimates of mycobacterial control such as growth inhibition, and the
recently developed human BCG-challenge model with intradermal injection of BCG bacilli

followed by skin biopsy [45;48].

Expression of inhibitory receptors by T-cells

Continued effector T-cell function and proliferation of T-cells are essential to maintain
control of Mtb [49]. However, studies on chronic viral infections such as HIV, hepatitis B
and hepatitis C, as well as on tumours, have shown how continued antigen exposure
exhausts T-cell function [50]. This is marked by expression of inhibitory receptors and
impaired proliferative capacity, and is associated with diminished T-cell mediated control
of infection [50]. Persistent Mtb infection could potentially exhaust the T-cell response in a
similar way, impairing T-cell mediated immunity. There is currently no evidence that
mycobacteria actively manipulate towards terminal T-cell differentiation (as is the case for
induction of Tregs). Since BCG persists relatively long in the human body following
vaccination, we have hypothesized (Chapter 6) that BCG - besides actively inducing CD8"
Tregs - by its prolonged presence may also steer T-cells towards terminal differentiation.

In Chapter 6 we described the induction of CD8'KLRG1" T-cells following BCG-
vaccination of human adults, which exhibited markedly impaired proliferative capacity.
Interestingly, in Mtb-infected mice only KLRG1™ T-cells were able to enter the lung
parenchyma, while KLRG1" T-cells were contained intravascularly [51]. Thus, the
upregulation of terminal differentiation markers following vaccination may be associated
with impaired vaccine-induced protection, deregulated memory, or decreased migratory
potential. Considering the specific association of KLRG1 expression with loss of T-cell
mediated immune control in murine TB [52;53], this has potential impact on the study of
vaccine-induced immune correlates of protection in humans.

KLRG]1 expression was significantly induced on CD8", but not CD4" T-cells. Given the
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predominant CD8" regulatory response induced by M. bovis BCG (Chapter 3 and 5), it is
important to note that BCG-induced CD8 KLRG1" T-cells were not enriched for regulatory
markers compared to the total CD8" T-cell population. Also no relation was observed
between expression of KLRG1 on CD8" T-cells and the skin inflammatory response or the
induction of polyfunctional CD4" T-cells, such that these seem to be independent
phenomena following BCG-vaccination. Interestingly, also CD8'PD-1" T-cells were not
enriched for the regulatory phenotype. PD-1 is ubiquitously expressed on various immune
cells, including Tregs, yet PD-1 ligation of Tregs causes their expansion and activation,
while PD-1 ligation on other cells serves as a brake in the immune response [54]. PD-1
ligation is actively exploited by Mtb to inhibit effector immunity and to expand Tregs ([55];
Chapter 2). In addition, and not mutually exclusive, PD-1 expressing cells may have a dual
role in that they could also maintain long-term immune responses during persistent Mtb
infection [49].

Only CD8'CTLA-4" T-cells were enriched for the regulatory markers Foxp3, CD25 and
CD39 following BCG-vaccination (Chapter 6); indeed, these cells partially mimicked the
pattern observed for the CD8'CD25 Foxp3'CD39" phenotype as described in Chapter 5.
The mean fluorescence intensity of CTLA-4 expression on CD8" T-cells was slightly
increased eight weeks post-vaccination, and this was confined to low inflammation
responders. CTLA-4 is expressed on a variety of cells, including Treg cells, and CTLA4 is
a Foxp3 target gene in mice [54]. Tregs modulate APCs by CTLA-4-mediated trans-
endocytosis of CD80 and CD86, which depletes co-stimulatory receptor expression on
APCs [56]. Tregs have multiple and highly adaptable other modes of suppression [57]; vice
versa not all CTLA-4 expressing T-cells are Tregs [58]. In any case, its active involvement
in APC modulation, and the numerous associations with the Treg phenotype and function
that have been reported in infectious diseases (Chapter 2), provide a rationale for the
enrichment in regulatory markers that we observed.

It is interesting that immune checkpoint blockade of ligand-receptor interaction thus can not
only enhance pro-inflammatory effector immunity, but can simultaneously also decrease
Treg function and proliferation [54]. In addition, intriguing interactions between Tregs and
terminally differentiated (exhausted) T-cells have been described: in murine LCMV
infection models CTLA-4" Tregs preserved the exhausted state of antigen-specific CD8" T-

cells through B-7 modulation, depleting the APC of costimulatory molecules in the face of
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continued antigen presence [59]. Depletion of Tregs reactivated T-cell function, but
additional PD-L1 blockade was needed to control viral load [59]. In murine retroviral
infection, both Treg depletion and blocking inhibitory receptors (PD-1 and TIM-3)
decreased viral load, however combination therapy was superior in achieving sustained
reduction [60]. Trials of combination checkpoint blockade in individuals with metastasized
melanomas demonstrated synergy and improved control of tumour progression compared to
monotherapy [61]. This provides new rationale for combined immunotherapy: modulation
of two different pathways, regulatory and exhausted, could be optimal to resurrect immune
control of chronic infection. Also (vaccine-induced) immunity against TB may be enhanced
by combined immunotherapy; future studies will hopefully answer the question whether
this would indeed result in improved protective immunity and whether this is clinically

feasible and safe.

Concluding remarks

The (1) induction of CD8'CD39" regulatory T-cells, that partly suppress via CD39, the (2)
variability of the primary pro-inflammatory response with either induction of CD4"
polyfunctional Thl cells or CD8" Tregs, and (3) the induction of CD8'KLRG1" T-cells
with impaired proliferative capacity by BCG-vaccination in humans, represent a novel
network of inter-related immune responses, that may all impact on vaccine-induced
protective immunity against TB. Though the induction of CD4" Tregs has been
demonstrated in TB, following vaccination with BCG or candidate TB-vaccines, M. bovis
BCG-induced CD8" Tregs have been overlooked as significant modulators of immunity in
TB and TB-vaccine studies. In addition, alternative indicators such as skin reactivity and
CRP were found that could assist in future analysis of vaccine-induced immune responses.
Basic research into vaccine-induced pro-inflammatory, regulatory and terminally
differentiated cellular responses thus provides novel immune markers and uncovers new
mechanisms regulating vaccine-induced immunity, with significant repercussions for
protection. This could guide vaccine design and provide a basis for immunotherapy options

- as are now emerging in cancer medicine - to optimize immune control of tuberculosis.
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Nederlandse samenvatting

Algemene inleiding

Op dit moment bestaan geen effectieve vaccins tegen de drie grootste - en dodelijkste -
infectieziekten op aarde: HIV/AIDS, tuberculose (TB; TBC) en malaria. TB, in mensen en
dieren, wordt veroorzaakt door bacterién van het ‘Mycobacterium tuberculosis complex’,
een groep nauw-verwante bacterién met een gedeelde voorouder van naar schatting drie
miljoen jaar oud. Tot deze groep behoren o.a. Mycobacterium tuberculosis (M.
tuberculosis; Mtb), Mycobacterium africanum en Mycobacterium bovis (M. bovis). De
meest voorkomende veroorzaker van TB in mensen, M. tuberculosis, is ongeveer 70.000
jaar geleden ontstaan in vroege menselijke populaties in Afrika. In het Europa van de
Middeleeuwen steeg de incidentie van TB — ook bekend als ‘de tering’, ‘the white plague’
of ‘consumption’ - tot epidemische proporties; en er is geen ander pathogeen dat in de
wereldgeschiedenis zoveel slachtoffers heeft geéist. Pas laat 19° eeuw werd Mitb
geidentificeerd door Robert Koch als het pathogeen dat TB veroorzaakt; vanaf 1944 werden
antibiotica ontdekt tegen TB. Naar schatting is op dit moment een-derde van de
wereldbevolking latent geinfecteerd met Mtb. Bij latente infectie zijn levende, niet- of
nauwelijks delende bacterién aanwezig in het menselijk lichaam, maar deze worden onder
controle gehouden door het immuunsysteem. Latent geinfecteerde mensen vertonen dan
ook geen klinische tekenen van infectie, maar hebben een risico op reactivering van 3-10%
gedurende het leven. In mensen met HIV is dit risico 5-10% per jaar; en TB is de
belangrijkste doodsoorzaak onder HIV-patiénten. Hoewel in de Westerse wereld de TB-
incidentie dramatisch is afgenomen, is, door de HIV-epidemie en de toenemende
antibiotica-resistentie, TB nog altijd een zeer groot probleem in ontwikkelingslanden,
oostelijk Azi€ en de voormalige Sovjet Unie. Per jaar sterven ten minste 1,5 miljoen
mensen aan TB, waarvan 95% in ontwikkelingslanden.

Mpycobacterium bovis bacillus Calmette-Guérin (M. bovis BCG) is het enige beschikbare
vaccin tegen TB. M. bovis BCG is aan het begin van de 20e eeuw geisoleerd door het
kweken van M. bovis, de verwekker van TB in koeien, op een mengsel van glycerine, gal
en aardappel-extract, door Albert Calmette en Camille Guérin. Sinds de eerste vaccinatie in

1921 is BCG ten minste drie miljard maal toegediend, meer dan enig ander vaccin. BCG
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wordt, als onderdeel van het Expanded Programme on Immunization van de World Health
Organization, in vrijwel alle ontwikkelingslanden met hoge TB-prevalentie binnen 24 uur
na de geboorte toegediend. BCG-vaccinatie beschermt pasgeborenen en jonge kinderen
tegen gedissemineerde vormen van TB, maar biedt onvoldoende en zeer wisselende
bescherming tegen open (actieve) long TB op volwassen leeftijd. Een effectief TB-vaccin
zou juist bescherming moeten bieden tegen open long TB, de besmettelijke vorm van de
ziekte, en dit zou grote impact hebben op de TB-epidemie. Hoewel nieuwe vaccins worden
ontwikkeld en getest, zijn op dit moment nog geen nieuwe vaccins beschikbaar.

Een van de grootste uitdagingen is te definiéren wat beschermende immuniteit tegen TB
precies inhoudt en hoe dit door vaccinatie moet worden geinduceerd. Succesvolle vaccins
tegen infectieziekten induceren ‘normaliter’ een antilichamen titer, echter door de
voornamelijk intracellulaire levensstijl van Mtb moet een succesvol TB-vaccin - evenals
succesvolle HIV- of malaria-vaccins - ook effectieve T-cel immuniteit induceren. Er bestaat
echter nog geen gouden standaard voor wat een beschermende T-cel respons op vaccinatie
tegen deze drie dodelijke infectieziekten precies inhoudt. Een effectieve, door een TB-
vaccin geinduceerde immuunrespons zal minimaal de inductie van CD4" T-helper (Th)-1
cellen omvatten; daarnaast zijn in muizenstudies vaccin-geinduceerde polyfunctionele
(simultaan IFNy-, IL2- en TNFa-producerende) CD4 " T-cellen aangetoond die correleerden
met bescherming tegen TB. Echter, in jonge kinderen correleerde de frequentie van deze
polyfunctionele CD4" T-cellen na BCG-vaccinatie niet met het risico op het ontwikkelen
van TB. Meer basaal onderzoek naar de vaccin-geinduceerde T-cel respons is essentieel om
de immuun respons en beschermende immuniteit te definiéren, als rationele onderbouwing
voor de ontwikkeling van een nieuw TB-vaccin. Daarnaast kunnen door het onderzoeken
van vaccin-geinduceerde cellulaire profielen mogelijk nieuwe correlaten van bescherming
tegen TB worden gevonden, en beschikbaarheid van zulke correlaten zou de evaluatie van
nieuwe TB-vaccins uitermate faciliteren en versnellen.

Mycobacterién hebben zich door co-evolutie met de menselijke soort ontwikkeld tot
meester manipulators van het immuunsysteem. Regulatoire T-cellen (Tregs) zijn T-cellen
die de pro-inflammatoire respons onderdrukken en essentieel zijn voor immuun
homeostase, het voorkomen van auto-immuniteit en bescherming van weefsels tegen
destructie door geprolongeerde immuun responsen, zoals bij chronische infectie. Deze

regulatoire T-cellen worden echter ook door Mtb actief geinduceerd en ge€xpandeerd,
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waarmee Mtb het immuunsysteem in essentie manipuleert om in het lichaam te kunnen
blijven voortbestaan. Er bestaan verscheidene hypotheses rondom de matige effectiviteit
van het M. bovis BCG-vaccin, waaronder inductie van Tregs door BCG zelf. CD4" Tregs
zijn eerder aangetoond in kinderen na BCG-vaccinatie; echter, CD8" Tregs worden veel
minder bestudeerd — of zelfs over het hoofd gezien — in vergelijking met CD4" Tregs,
vooral in het kader van infectieziekten en vaccinatie. Er zijn dan ook geen vergelijkende
analyses van de impact van CD4 " vs. CD8" Tregs op de immuun respons of effectiviteit van
het BCG-vaccin. Ook is weinig bekend over het suppressieve arsenaal waarmee CD8"
Tregs de activiteit van andere cellen kunnen onderdrukken.

Daarnaast komt toenemend het belang naar voren van de expressie van inhiberende markers
door functioneel ‘uitgeputte’ T-cellen in immuniteit; zo wordt in recente immuun-
therapeutische doorbraken in de oncologie, blokkade van deze inhiberende markers
(receptoren) al ingezet om uitgeputte T-cellen weer opnieuw te activeren zodat ze de tumor
effectief kunnen opruimen. Naar aanleiding van deze successen wordt ook toenemend de
betekenis onderzocht van expressie van inhiberende markers, zoals KLRG1 en PD-1, door
T-cellen in de immuun respons tegen TB. In TB-vaccin studies in muizen vertonen T-cellen
die KLRGI tot expressie brengen een significant lagere activiteit, in de vorm van verlaagde
cel proliferatie en productie van pro-inflammatoire cytokines. Dit werd niet gevonden voor
T-cellen die PD-1 tot expressie brachten. De expressie van KLRG1, maar niet PD-1, door
T-cellen is in deze studies dus geassocieerd met een verminderde vaccin-geinduceerde
bescherming tegen TB. De expressie van KLRG1 op humane cellen na BCG-vaccinatie is
voorheen echter niet onderzocht.

Er bestaan derhalve meerdere, mogelijke verklaringen voor de zeer matige effectiviteit van
BCG-vaccinatie op de volwassen leeftijd. Onderzoek naar de BCG-geinduceerde cellulaire

respons in volwassenen is dan ook essentieel om deze mechanismen op te helderen.

Dit proefschrift
In dit proefschrift zijn verschillende cellulaire responsen geidentificeerd die een verklaring
zouden kunnen bieden voor de matige en inconsistente effectiviteit van BCG-vaccinatie in

bescherming tegen TB. Ten eerste door de inductie van CD4" en CDS8" regulatoire T-cellen
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door BCG te onderzoeken, ten tweede door de primaire T-cel respons op BCG-vaccinatie,
zowel pro-inflammatoir als regulatoir, te onderzoeken en ten derde door specificke
expressie van inhiberende markers, met name KLRGI1, door humane T-cellen na BCG-
vaccinatie te onderzoeken.

Hoofdstuk 2 begint met een literatuur overzicht van de inductie en expansie van Tregs
door bacterién, virussen en parasieten en het effect van Tregs op de effector immuniteit
tegen pathogenen. Tregs functioneren op het grensvlak tussen mens en pathogeen in
immuniteit tegen infectie en ziekte, en na vaccinatie: zij beschermen de weefsels tegen
buitensporige inflammatie, maar verhogen het risico op persistentic van het pathogeen en
daarmee de ontwikkeling van een chronische infectie. Tregs medi€ren niet alleen specifieke
suppressie, maar kunnen ook de immuunrespons tegen niet-gerelateerde pathogenen, of de
respons op niet-gerelateerde vaccinaties (heteroloog) onderdrukken. Mycobacterién,
waaronder M. tuberculosis en M. leprae (de veroorzaker van lepra), behoren tot de oudste
pathogene bacterién ter wereld en hebben zich ontwikkeld tot meesterlijke modulators van
de immuunrespons om in het menselijk lichaam te kunnen voortbestaan. Het merendeel van
de mycobacteri€le infecties komt voor in gebieden die ook endemisch zijn voor andere
virale, parasitaire of bacteri€le infecties; het is dus belangrijk de effecten van Tregs niet
slechts homoloog, maar ook in heterologe (modellen van) infecties en vaccinaties te
bestuderen.

Door anderen is de inductie na M. bovis BCG-vaccinatie van CD4" Tregs aangetoond;
echter er bestond geen vergelijkende analyse van inductie van CD4" vs. CD8" Tregs door
M. bovis BCG. In hoofdstuk 3 is de inductie van CD4" vs. CD8" Tregs vergeleken door
cellen, afkomstig van gezonde bloeddonoren die in vitro immuunreactief waren tegen
mycobacterién, te stimuleren met levend M. bovis BCG. Het was verrassend dat levend
BCG-stimulatie met name CD8" Tregs, in tegenstelling tot CD4" Tregs induceerde. De
expressie, co-expressie, en de mate van expressie van regulatoire cel markers was
consistent hoger op CD8" T-cellen in vergelijking met CD4 " T-cellen; vice versa verrijkte
het selecteren van T-cellen op regulatoire markers voor CD8", en niet CD4" T-cellen.
Vervolgens vergeleken we de capaciteit van T-cellen, na stimulatie met levend BCG vs.
geinactiveerd BCG, voor het mediéren van suppressie. Alleen T-cellen, die gestimuleerd
waren met levend BCG, onderdrukten de proliferatie van andere cellen. Dit is belangrijk

omdat BCG als (partieel) levend vaccin wordt toegediend; door in vitro te testen met
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geinactiveerd BCG worden dus belangrijke suppressieve eigenschappen van (levend) BCG-
gestimuleerde T-cellen gemist. Suppressiec na levend BCG-stimulatie werd inderdaad
gemedieerd door CD8" Tregs, en niet door CD4" T-cellen.

Er is weinig bekend over de manier waarop deze CD8" Tregs suppressie uitoefenen op
andere cellen. CD39 (E-NTPDasel) is een enzym aan de oppervlakte van de cel, dat door
omzetting van nucleotides cellen in de omgeving kan remmen. CD39 is dan ook eerder
bestudeerd op CD4" Tregs, maar niet op CD8" Tregs na BCG-stimulatie. In hoofdstuk 4
wordt aangetoond dat CD39 tot expressie komt op CD8" Tregs na stimulatie met levend
BCG. Het sorteren van CD8" T-cellen op CD39-positiviteit verrijkte significant voor
andere regulatoire T-cel markers; bovendien oefenden alleen CD8'CD39" T-cellen, en niet
CD8'CD39" T-cellen, suppressie uit op T-helper 1 cellen. Het toevoegen van een CD39-
antagonist, alsmede toevoegen van een CD39-blokkerend antilichaam, maakte deze
suppressie deels ongedaan. CD39 komt dus niet alleen tot expressie op BCG-geactiveerde
CD8" Tregs, maar is ook functioneel betrokken bij het mediéren van suppressie door
CD8'CD39" Tregs.

In hoofdstuk 5 is prospectief de primaire inductie van pro-inflammatoire en regulatoire T-
cellen door BCG-vaccinatie in gezonde volwassenen onderzocht. Deze volwassenen waren
niet eerder gevaccineerd met BCG en testten negatief voor TB (anamnestisch, in Mantoux-
en in QuantiFERON-testen). Hoewel het cohort bijzonder homogeen was in demografische
kenmerken, was de primaire immuunrespons op BCG-vaccinatie verrassend heterogeen:
deze bestond uit ofwel een brede inductie van pro-inflammatoire CD4" en CD8" T-cellen,
waaronder IFNy TL2 " TNFa" polyfunctionele CD4" T-cellen, ofwel uit een vrijwel afwezige
cytokine respons. Aangezien ook de mate van ontsteking van de vaccinatielaesie op de huid
zeer variabel was, werd deze gekwantificeerd in een ‘skin inflammation score’, gebaseerd
op klassieke klinische kenmerken van ontsteking. Deze skin inflammation score correleerde
met de CRP (C-Reactive Protein) concentratie, een bepaling in het serum die onderdeel is
van een klinische routine om ontsteking in het lichaam vast te stellen. Tot dusver werden
echter ontstekingsparameters van de vaccinatielaesie, of bepalingen van het serum CRP,
vrijwel niet ingezet om cellulaire responsen op vaccinatie te onderzoeken. De studie in
hoofdstuk 5 toont aan dat de inductie van een pro-inflammatoire cytokine response door
BCG-vaccinatie alleen plaatsvindt in personen met een hoge mate van BCG-geinduceerde

huidontsteking.
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Daarnaast is in hoofdstuk 5 de inductie van Tregs door BCG-vaccinatie onderzocht.
Analoog aan de activatie van CD8", maar niet CD4" Tregs na in vitro BCG-activatie van
humane cellen beschreven in hoofdstuk 3, vonden we ook na BCG-vaccinatie in dit cohort
alleen inductie van CD8" maar niet CD4" Tregs. In contrast met de inductie van pro-
inflammatoire responsen in personen met een hoge mate van huidontsteking, was de
inductie van een CDS8" regulatoire respons beperkt tot personen met geen tot lage
huidontsteking. Concluderend leidt BCG-vaccinatie tot een zeer variabele, en zelfs
dichotome primaire cellulaire respons binnen één cohort; daarbij functioneren de mate van
huidontsteking door vaccinatie en de CRP-concentratie in serum als indicatoren van de
cellulaire vaccin-respons.

Het belang van expressie van inhiberende markers, zoals KLRG1 en PD-1, door T-cellen
voor vaccin-geinduceerde immuniteit tegen TB werd, zoals besproken, aangetoond in
recente studies in muizen. Hoofdstuk 6 toont voor het eerst expressie van KLRG1 op
humane CD8" T-cellen na BCG-vaccinatie. Deze CD8 ' KLRG1" T-cellen vertoonden na in
vitro BCG-restimulatie een lage proliferatieve activiteit, in tegenstelling tot proliferatie van
PD-1" T-cellen. Om het belang van deze markers in immuniteit tegen TB verder te
onderzoeken, werd de expressie van KLRGI, PD-1, alsmede CTLA-4, vergeleken tussen
patiénten met actieve TB, individuen met latente TB, patiénten na afloop van hun
behandeling tegen TB en gezonde controles. Hoewel in actieve TB-patiénten expressie van
deze inhiberende markers op CD4" T-cellen mild verhoogd was in vergelijking met
gezonde mensen, was de expressie nog hoger op CD4" T-cellen na behandeling tegen TB.
Dit is mogelijk een gevolg van de grote hoeveelheid eiwitten, peptides en andere immuun-
stimulerende stoffen die uit geinfecteerde weefsels vrijkomen tijdens en na antibiotische
behandeling. Meer onderzoek is nodig om de betekenis van met name KLRG1-expressie, in

vergelijking met PD-1-expressie, door T-cellen vast te stellen voor immuniteit tegen TB.

Concluderend en toekomst perspectief
In dit proefschrift is de cellulaire immuun respons van volwassen mensen op BCG
onderzocht, waarbij drie belangrijke cellulaire responsen zijn geidentificeerd. Dit betreft ten

eerste de inductie van CD8" en niet CD4" Tregs, door levend M. bovis BCG. Deze CD8"
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Tregs bleken CD39 te expresseren op het cel oppervlak; bovendien werd de functionele
betrokkenheid van CD39 in het uitoefenen van suppressie door BCG-geactiveerde CDS"
Tregs aangetoond. Ten tweede demonstreerden we een onverwacht dichotome respons op
BCG-vaccinatie: er was ofwel inductie van een pro-inflammatoire respons met
polyfunctionele CD4" T-cellen in personen met een hoge mate van huidontsteking van de
BCG-vaccinatielaesie en circulerend CRP, ofwel een virtueel afwezige cytokine respons
met daarbij inductie van CD8" Tregs en een lage tot afwezige huidontsteking en CRP. Ten
derde toonden we aan dat BCG-vaccinatie CD8 ' KLRG1" T-cellen induceert met een lage
proliferatieve activiteit. Expressie van deze inhiberende T-cel marker zou, zoals aangetoond
in recente studies in muizen, geassocieerd kunnen zijn met een gebrek aan immuniteit tegen
TB.

De inductie van CD8" Tregs, de variabiliteit van de pro-inflammatoire respons die
tegengesteld is aan de inductie van CD8" Tregs, en de inductie van KLRG1"™ T-cellen met
beperkte proliferatie-activiteit, door BCG-vaccinatie in mensen, duidt op een netwerk van
gerelateerde immuun responsen die mogelijk impact hebben op de beschermende
effectiviteit van BCG-vaccinatie tegen TB. Dit is belangrijk gezien de beperkte effectiviteit
van BCG als TB-vaccin, en een beter begrip van deze immuun mechanismen is essentieel
om betere TB-vaccins te kunnen ontwerpen in de nabije toekomst, alsmede om vaccins te
kunnen selecteren en prioriteren voor (verdere) klinische ontwikkeling. Ontsteking van de
BCG-vaccinatielaesie en CRP-concentraties in serum na vaccinatie kunnen hierbij dienen
als alternatieve indicatoren van de cellulaire respons op vaccinatie. Dit basale onderzoek
naar vaccin-geinduceerde regulatoire, pro-inflammatoire en inhiberende responsen onthult
dus nieuwe factoren en mechanismen van vaccin-geinduceerde immuniteit en immuun
regulatie, met potentieel belangrijke implicaties voor het ontwerpen van effectieve vaccins
tegen TB, en mogelijk andere belangrijke infecties zoals HIV en malaria. Dit kan rationeel

vaccin-ontwerp en -evaluatie ondersteunen in de strijd tegen tuberculose.
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