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Chapter 4

Abstract

3D cell cultures have been widely applied for high-content screening to investigate
cellular phenotypic responses to different genetic or chemical perturbations. In or-
der to study complex micro-tissue architectures that cells develop in 3D cultures,
confocal laser scanning microscopy is often used to visualize specimens by shifting
a focal plane through their entire form. In this manner high-resolution images are
generated using point-by-point laser excitation and application of a filtering pinhole
to eliminate out-of-focus information from adjacent focal planes. However, the slow
scanning process is a major drawback so that image acquisition takes a large amount
of time, which limits its application for high-throughput screening. To overcome this,
we developed a high-content analysis pipeline that is able to perform phenotypic pro-
filing of 3D cultured micro-tissues based on automated wide-field microscopy. Image
stacks of two fluorescent channels were acquired for each well of a standard multi-well
micro plate by shifting a focal plane in z-direction. We first applied a deconvolu-
tion method to restore the image signals, which were degraded by light scattering.
Next, two novel segmentation methods were developed to define single nucleus and
multi-cellular regions, respectively. For each nuclear structure, we calibrate its di-
mension in z-direction using images of fluorescent beads with a known size. After
surface reconstruction, 3D morphological, topological features, moments and local-
ization properties were measured from the reconstructed structures. To validate our
method, we generated multiple image stacks using a confocal laser scanning micro-
scope with a high resolution objective lens. The quantification results from the two
imaging techniques were compared statistically and no significant differences were ob-
tained. Therefore, we conclude that our analysis pipeline can retrieve 3D properties
of micro-tissue structures from wide-field microscope images that are comparable to
the information extracted from confocal microscope images, but at much less cost of
imaging and computational time allowing higher throughput.
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Automated analysis pipeline for 3D surface reconstruction

4.1 Introduction

Recent advances in 3D cell cultures have provided novel insights into various aspects
of cell behavior. 3D cultures mimic spatial organization of real tissues by using
extracellular matrix (ECM) gel to re-establish physiological cell-cell and cell-ECM
interactions, and therefore enable cells to develop more in vivo like tissue architectures
[1, 2]. To investigate those complex micro-tissue structures, molecular components
of the cells are labeled with fluorescent dyes and 3D fluorescence microscopes are
used to scan specimens over their entire depth range by shifting a focal plane in z-
direction [3, 4], yielding stacks of sequential image slices and each of them contains
information of the focal plane. One of the most common 3D fluorescence microscopy is
confocal laser scanning microscopy. Although the generated images have much higher
resolution compared to conventional fluorescence microscopy, a major drawback is
that it needs to scan whole specimen point-by-point. Especially when the specimen is
thick or at micro-tissue scale, this slow scanning process not only limits the application
of confocal microscopy for high throughput experiments, but also causes a severe
bleaching problem when the screening time becomes too long. Therefore, conventional
wide-field microscopy needs to be considered as an alternative solution for high-
throughput screening of 3D cultured micro-tissues. Wide-field microscopes use an
excitation light-source to illuminate entire specimen so that the imaging speed is
dramatically increased. However, each image slice is degraded by out-of-focus signals
because the emission light that composes the image comes from the focal plane as
well as the planes above and below the focal plane. A major challenge is to recover
3D structures correctly from those low resolution images. This requires an advanced,
accurate and efficient image analysis method.

Another challenge is the phenotypic profiling of 3D cultured micro-tissues. Al-
though increased popularity of high-content screening has fueled the development of
image analysis techniques, until recently, quantification of cellular phenotypic fea-
tures is still limited to single or multiple 2D parameters [5]. Since cells are not flat
and together develop much higher levels of tissue architecture in 3D cell cultures,
it is necessary to develop an image analysis method to measure more relevant and
sophisticated 3D parameters.

Here we aimed to establish a wide-field microscopy-based high-content analysis
pipeline for the high-throughput screening of 3D cultured micro-tissues that involves
the challenges mentioned above (Figure 4.1). After fluorescent staining, images stacks
of two channels (for nucleus and microfilament signal) were collected from an auto-
mated wide-field microscope system. We first used a deconvolution technique to
enhance the quality of the image stacks by removing the out-of-focus signal. Next,
we developed two segmentation methods to define single nucleus and multi-cellular
micro-tissue regions, respectively. As defined objects appeared to be much elongated
in the vertical direction, we introduced a simple calibration method to normalize the
dimension of each individual nucleus in z-direction, using images of fluorescent beads
with known size. After 3D surface reconstructions, three categories of 3D parameters
were measured on the reconstructed nucleus and micro-tissue structures, respectively.
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Chapter 4

Figure 4.1: Overview of the proposed image analysis pipeline for high-content screening
of 3D cultured micro-tissues based on wide-field florescence microscopy.

To validate our method, we investigated human prostate cancer cells (PC3) in
a 384-well plate format after they were exposed to hepatocyte growth factor and
formed invasive micro-tissue structures in the 3D cell culture. The micro-tissues
were fixed and stained with Hoechst 33258 to visualize nuclei and with rhodamine-
phalloidin to visualize F-actin. We used a wide-field microscope system as well as
a confocal laser scanning microscope to collect image stacks from the same wells.
Subsequently, our analysis pipeline described above was applied to extract phenotypic
parameters from the image stacks acquired from the wide-field microscope. For the
image stacks that were collected by the confocal microscope, we applied automated
segmentation and the results were validated by human evaluation. Based on the
segmentation results, 3D surface reconstruction was performed with a normalization
of the nuclei in z-direction similar to the normalization of the nuclei performed for the
wide-field microscope. Next, the same phenotypic parameters were measured from the
reconstructed nuclei and micro-tissue structures, respectively. Finally, we statistically
compared the quantification results extracted by the two different microscopes. A
substantial gain in time efficiency was shown when we used our analysis pipeline
in combination with the wide-field microscope and the quantification results were
comparable to the results from the confocal microscope.

4.2 Results

4.2.1 Method development for 3D surface reconstruction

4.2.1.1 Deconvolution

A major disadvantage of wide-field microscopy is that each generated image slice
contains out-of-focus signals. According to the optical principles, this blurring effect
is mainly caused by light scattering and can be formulated by a point spread func-
tion (PSF). One way to eliminate this blurring effect is deconvolution. It computes
the PSF based on the optical principles and then deconvolves microscope images
with that PSF so that the process of image degradation is inversed and the image
quality is improved. There are many methods available for calculating the PSF.
In this project, we used Huygens Software (http://www.svi.nl/HuygensProducts) to
compute a theoretical PSF that is based on the microscope model and microscope
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Automated analysis pipeline for 3D surface reconstruction

parameters (Table S4.1). First, the signal-to-noise ratio was estimated on randomly
selected sample images. This ratio was relatively high (> 80), and considering the
time efficiency we used a fast maximum likelihood estimation algorithm [6] for the
image restoration (see examples before and after deconvolution in Figure 4.2a-4.2h).
A large extent of out-of-focus signals was removed and the the signal-to-noise ratio
was enhanced for both Hoechst stained nuclei channel and rhodamine stained F-actin
channel.

Figure 4.2: An example of deconvolution results for both Hoechst stained nuclei channel
and rhodamine stained F-actin channel. For the Hoechst stained nuclei channel, we cropped
a part of an original image stack and showed its maximum intensity projection (MIP) on (a) xy-
plane and on (b) yz-plane. After deconvolution of this image stack, we showed the MIP of the
same part of image stack on (c) xy-plane and on (d) yz-plane. For the rhodamine stained F-actin
channel, we showed the MIP of corresponding part of image stack before deconvolution (e-f) and
after deconvolution (g-h). The scale bar represents 50µm.
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4.2.1.2 Segmentation for each individual nucleus

Before segmentation, a 2D median filter with kernel size 3 × 3 pixels was applied
on each slice to reduce systemic noise. Next, a Rolling Ball algorithm [7] was ap-
plied to correct for uneven illumination in the background. As a rule of thumb, the
rolling ball radius should be at least as large as the radius of the largest object in
the image. Here, the average nuclear radius equals about 8 pixels, thus the radius of
the rolling ball was defined at 15 pixels. To segment individual nuclei, a 2D water-
shed masked segmentation method [8, 9] was extended to its equivalent 3D version.
First, a 3D watershed algorithm [10, 11] was applied to divide image stacks into 3D
compartments each of which contains one nucleus. Subsequently, K-means cluster-
ing [12, 13] was applied within each compartment to refine nuclear regions (Figure
4.3a). As the watershed segmentation is sensitive to signals of discrete intensity that
may cause artificial local maximum and an over-segmentation problem, images were
first convolved with a Gaussian filter (kernel size 3×3 pixels) to remove noises before
using watershed segmentation. Once 3D watersheds were obtained, the preprocessed
images prior to Gaussian convolution were used to apply K-means clustering [8, 9].

4.2.1.3 Segmentation for multi-cellular micro-tissue structures

A novel segmentation method was developed to define multi-cellular structures on the
image stacks with relatively low resolution. Due to the low NA, deconvolution cannot
remove all the out-of-focus signal from each image slice. Moreover, we observed that
the level of sharpness varied over different slices. It is not feasible to calculate a
global threshold for the whole image stack. Instead, a segmentation method which
dynamically calculates a threshold intensity value for each slice according to the
estimation of its sharpness level was developed.

To estimate the sharpness level for each image slice, we firstly calculated the
magnitude of the gradient (GM) for each pixel using a 2D Sobel filter [14]. A sim-
ple sharpness metric SL of a certain slice was then defined as the average gradient
magnitude (Equation 4.1).

SL(s) =

∑
p∈sGMp

ns,GM>0
(4.1)

where s indicates the sth slice of an image stack and p indicates each pixel of slice s.
ns means number of pixels of which GM > 0 in slice s. This is based on the principle
that sharper images should have much more intensity variation, and thus the SL
would be relatively higher. In contrast, blurred images contain more out-of-focus
regions where intensity varies more smoothly which results in an SL that would be
decreased.

In blurred images where there are much more out-of-focus regions than in-focus
regions (though the intensity of our-of-focus regions are still lower than that of in-
focus regions) the conventional K-means clustering cannot work properly as it is based
on the assumption that the intensity variations in the foreground and background are
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equal. In order to take into account the difference in variation between foreground
and background, we modified the conventional K-means clustering method [12] to
adjust the threshold for each image slice with the SL. It iteratively updated a new
threshold Ti as:

Ti =
k

SL
×mf (Ti−1) + (1− k

SL
)×mb(Ti−1) (4.2)

where i represents ith iteration. mf (T ), mb(T ), represents the average foreground
intensity and background intensity when the threshold is T . k is a rational number
and can be defined empirically according to the signal-to-noise ratio of image stacks
and is often consistent through the whole screening process. The iterations terminate
when the changes |Ti − Ti−1| become sufficiently small. Actually, we can rewrite
Equation 4.2 to

k

SL
=

Ti −mb(Ti−1)

mf (Ti−1)−mb(Ti−1)
(4.3)

which indicates that k
SL can determine the proportion of background intensity varia-

tion in the total intensity variation of an image slice. For the conventional K-means
clustering method k

SL = 1
2 . After being incorporated with SL , the blurred image

slice with smaller SL would increase the proportion of background intensity variation,
and thus the corresponding threshold value would be higher. Figures 4.3b-4.3d show
segmentation results of two image slices obtained from the same image stack but
with different sharpness levels. Although in Figure 4.3c there are out-of-focus regions
with high intensity value, due to high k

SL , these regions are defined as background,
whereas the in-focus regions with lower intensity in Figure 4.3d are recognized as
foreground.

4.2.1.4 3D surface reconstruction and normalization of nuclei in z-direction

Our 3D surface reconstruction consists of two important steps: 1) 3D labeling which
assigns a label to each foreground pixel so that pixels with the same label define
one single object; 2) 3D reconstruction which generates a geometrical 3D model for
each labeled object. For the Hoechst stained nuclei channel, 3D watershed already
created compartments for each single nucleus. Foreground pixels identified in the
same compartment were assigned with the same object label. For 3D labeling of
the multi-cellular micro-tissue structures, we applied a sequential labeling algorithm
based on 18-connected connectivity as follow: suppose one foreground pixel with coor-
dinates (x, y, z) has already been labeled as l, 18 neighboring pixels with coordinates
(x, y, z±1), (x±1, y, z±1), (x, y±1, z±1), (x±1, y, z), (x, y±1, z), (x±1, y±1, z)
are pushed into a first-in-last-out stack to be assessed later. Every time one pixel is
removed from the beginning of the stack. If this pixel is a foreground pixel, label l is
assigned to the pixel and its 18 neighbors are pushed into the stack. The labeling of
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Figure 4.3: Segmentation results for both Hoechst stained nuclei channel and rho-
damine stained F-actin channel. (a) Segmentation result of one cropped image slice (decon-
volved) for the Hoechst stained nuclei channel. Red marks the contour of the segmentation result.
(b) Segmentation result for the corresponding image (deconvolved) from the rhodamine stained F-
actin channel. (c) A deconvolved image slice with low sharpness level, from the same stack. White
boxes mark the regions which are out-of-focus but with high intensity. Red marks the contour of
the segmentation result. (d) A deconvolved image slice with higher sharpness level than (c). White
box marks the region which is in-focus but has lower intensity than the regions marked in (c). The
segmentation result is shown in (b). The scale bar represents 50µm.

object l is finished when the stack is empty and a new labeling process l + 1 starts
when an unsigned foreground pixel is found.

3D reconstruction is a process of constructing 3D geometrical models by trian-
gularization of 3D surface area and connecting mesh of surface triangles based on
foreground voxels (pixels transform to voxels by calibrating z-sampling size). Here,
we applied the marching cube algorithm [15] for surface reconstruction of both nuclei
and micro-tissue structures. Figure 4.4 shows an example of reconstructed nuclei and
micro-tissue structure. We observed that both nuclei and micro-tissues were elon-
gated in z-direction (Figure 4.4b, 4.4d). This can be caused by two reasons: one is
due to the low NA which significantly degrades the imaging vertical resolution and
the other one is the spherical aberration caused by refractive index mismatch be-
tween the objective immersion medium (Air/1.0) and cell culture medium (Collagen-
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Figure 4.4: 3D reconstruction result for nuclei and multi-cellular micro-tissue struc-
tures. (a-b) 3D reconstructed nuclei in xy- and xz-direction, based on the same image stack as
shown in Figure 4.3. (c-d) 3D reconstructed multi-cellular structures in xy- and xz-direction.

Matrigel/1.36). This elongation artifact was partially corrected by the deconvolution
process; however, it still affects the reconstruction results so that the obtained 3D
geometrical models do not resemble the correct object size in z-direction. To solve
this problem, we developed a normalization method to calibrate the dimension of
nuclei in z-direction according to the images of fluorescent beads with a known size.
Blue fluorescent-labeled microspheres (Molecular Probes) with a 10µm diameter were
used, as this size was close to the diameter of a nucleus. We firstly embedded the
microspheres into the medium which we used to culture the PC3 cells. Subsequently,
images were collected using the same microscope according to the parameters shown
in Table S4.1. After deconvolution, we investigated the intensity profile of the beads
in x-, y-, z-direction. Figures 4.5a and 4.5b show the same image slice through the
middle plane of a bead and Figure 4.5c shows the intensity profile along the lines
indicated in Figure 4.5a and 4.5b. These figures clearly show that in both x- and
y-direction the diameter of the beads is ~ 10µm when we set the intensity thresh-
old as 1.4E + 04 (Figure 4.5c). With the same intensity threshold, the diameter of
the bead in z-direction is 150.17µm (Figure 4.5d, 4.5e). We measured beads located
at different positions in several image stacks and obtained an average diameter of
150µm in z-direction, indicating that the spherical beads appeared to have a diame-
ter in z-direction equal to 15 times their diameter in x-, y-direction. According to this
result, we corrected the elongation effect of a nucleus by normalizing the coordinates
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of nuclear foreground voxels as follows:

Step 1: Calculate the centroid (Cx, Cy, Cz) for each foreground voxel (xp, yp, zp)
with label l:

Cx =

∑
p∈l xp

nl
, Cy =

∑
p∈l yp

nl
, Cz =

∑
p∈l zp

nl
(4.4)

where p indicates a foreground voxel assigned with label l . nl represents number of
voxels assigned to l.

Step 2: Normalize z coordinate for each voxel with a factor of 1
15

zcalibratedp =
zp − Cz

15
+ Cz (4.5)

Figure 4.5f shows the reconstructed nuclei after correction of the elongation ar-
tifact. Compared to Figure 4.4b which was generated from the same part of image
stacks before correction, nuclei appear much more spherical in shape and this is more
consistent with our expectation, while the distance between nuclear centroids is not
affected. However, this normalization method is not suitable for the micro-tissue
structures obtained from the rhodamine stained F-actin images because of their ir-
regular shapes and sizes. We found that beads with different orders of magnitude
(size) were elongated by different factors using the same microscope and medium.
Normalizing all micro-tissue structures according to one factor would cause incorrect
reduction of the elongation effect.

4.2.2 Phenotype measurement

4.2.2.1 Phenotype measurement for individual nuclei

Parameters to profile the phenotype of each individual nucleus can be categorized in
three classes: morphological parameters, localization parameters and image moment
parameters (Table 4.1). Morphological parameters include a series of shape properties
and are measured from the reconstructed 3D geometrical models. In addition to the
basic shape properties such as volume and surface, we computed a convex hull [16]
and the best-fit ellipsoid [17] for each nucleus, and relative geometrical parameters
were measured, for example the volume of the convex hull and semi-axis of the best-fit
ellipsoid. Localization parameters estimate the nuclear density by calculating distance
between pairs of nuclear centroids. Moment parameters include centroid coordinates
and Eigenvalues calculated by Eigen decomposition of the covariance matrix of voxel
coordinates. To calculate Eigen decomposition, all coordinates were normalized by
moving centroid to origin according to Equation 4.6. Furthermore, we measured the

inertia tensor matrix
Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

for each nucleus l [17], according to the parallel

axis theorem (Equation 4.7-4.12) [18] :
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Figure 4.5: Normalization of nuclei in z-direction. (a-b) Image slices through the middle of
one fluorescent bead in x- and y-direction. (c) The intensity profiles along the lines indicated in (a)
and (b). Red dash line represents the intensity profile in x-direction and black solid line represents
the intensity profile in y-direction. (d-e) A xz-plane through the middle of the same bead as in (a)
and (b) and corresponding intensity profile. (f) 3D reconstruction for nuclei in xz-direction after
normalization. The reconstruction result of the same image stacks before normalization is shown in
Figure 4.4b.
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x′p = xp − Cx, y′p = yp − Cy, z′p = zcalibratedp − Cz (4.6)

Ixx =
∑
p∈l

(y′2p + z′2p +
yScale2 + zScale2

12
) (4.7)

Iyy =
∑
p∈l

(x′2p + z′2p +
xScale2 + zScale2

12
) (4.8)

Izz =
∑
p∈l

(x′2p + z′2p +
xScale2 + yScale2

12
) (4.9)

Ixy =
∑
p∈l
− (x′p × y′p) (4.10)

Ixz =
∑
p∈l
− (x′p × z′p) (4.11)

Iyz =
∑
p∈l
− (y′p × z′p) (4.12)

where xScale, yScale and zScale equal the sampling size in x-,y-,z-direction. Sub-
sequently, principle axes I1, I2, I3 were computed by the Eigen decomposition of the
inertia tensor matrix.

4.2.2.2 Phenotype measurement for multi-cellular micro-tissue network

In the 3D cell cultures, the invasive cancer cells spontaneously develop elongated and
branched micro-tissue structures that are interconnected to form a complex network.
To investigate the organization of those networks, we quantified the phenotypic prop-
erties based on whole image stacks. For the morphological profiling, we calculated the
total size, volume and surface (Table 4.2) of all reconstructed multi-cellular structures
found in one image stack (One example of reconstructed multi-cellular structure is
shown in figure 4.6a). In addition, morphological parameters used to describe geo-
metrical properties of whole micro-tissue networks (Table 4.2) were calculated. The
convex hull of a micro-tissue network (Figure 4.6c) was constructed using the Quick-
Hull algorithm after assigning all foreground voxels of the stack with one object label.
For image moment parameters, Eigenvalues and principle axes were calculated based
on the coordinates of all foreground voxels. In addition to morphological parameters
and image moment parameters, we also quantified topological features for each multi-
cellular structure, based on a topological skeleton (Figure 4.6b) computed by a 3-D
thinning algorithm [20]. Every voxel that was part of the skeleton was labeled with
different categories according to their 18-connected neighbors; voxels with one, two or
more than two skeleton voxels in neighbor were respectively labeled as “End-point”,
“Slab-point” or “Junction-point”. Next, the properties of the skeleton were calculated
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based on the category of skeleton voxels, for example, the number of End-points and
the branch length which is defined as the Euclidian distance between two adjacent
skeleton voxels over all voxels on the skeleton. Finally, sum of those properties (Ta-
ble 4.2) were calculated over all reconstructed multi-cellular structures in the image
stack.

Morphological Parameters for each nucleus

Size: Number of foreground voxels assigned to a nucleus

Volume: Volume of a nucleus calculated by summarizing the volume of triangular pyramids
that compose the 3D geometrical model.

Surface: Surface of a nucleus calculated by summarizing the area of triangles that compose the
surface of the 3D geometrical model.

Width: Width of the 3D bounding rectangular box for a nucleus

Height: Height of the 3D bounding rectangular box for a nucleus

Thickness: Thickness of the 3D bounding rectangular box for a nucleus

Sphericity [19]: Compactness measure. Sphericity = π
1
3×(6×Volume)

2
3

Surface

SAV: Surface to volume ratio. SAV = Surface
Volume

Volume of convex hull: Convex hull was calculated using QuickHull algorithm [16]

Surface of convex hull

Solidity: Solidity = Volume
Volume of convex hull

Major axis: Length of the longest radius of the best-fit ellipsoid. The best-fit ellipsoid was
calculated based on a least-square optimization algorithm according to a ImageJ plugin
BoneJ [17]

Median axis: Length of the middle radius of the best-fit ellipsoid

Minor axis: Length of the shortest radius of the best-fit ellipsoid

Mass of the best-fit ellipsoid: Mass = 4
3
× π ×Major axis×Median axis×Minor axis

Moments of inertia of the best-fit ellipsoid:
Iellipsoidxx = 1

5
×Mass× (Median axis2 +Minor axis2)

Iellipsoidyy = 1
5
×Mass× (Major axis2 +Minor axis2)

Iellipsoidzz = 1
5
×Mass× (Major axis2 +Median axis2)

Localization Parameters

Average distance to other nuclear centroids

Moments Parameters

Centroid(Cx, Cy, Cz), this is used to calculate Eigen decomposition.

Eigenvalue from Eigen decomposition: λ1, λ2, λ3

Principle axes: I1, I2, I3

Table 4.1: Phenotypic parameters measured for each nucleus.
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Morphological Parameters

Total size: Number of foreground voxels in an image stack

Total volume: Sum of the volume of all micro-tissue structures within an image stack

Total surface: Sum of the surface of all micro-tissue structures of an image stack

Thickness: Thickness of a 3D bounding rectangular box for micro-tissue network

Sphericity: Sphericity(binary image stack) = π
1
3×(6×Total volume)

2
3

Total surface

SAV: SAV(binary image stack) = Total surface
Total volume

Volume of convex hull of micro-tissue network

Surface of convex hull of micro-tissue network

Solidity: Solidity(binary image stack) = Total volume
Volume of convex hull

Topological Parameters

Total number of End-point, Junction-point, Triple-point and Quadruple-point:
Triple point is one kind of junction point which has 3 skeleton voxels in neighbor .
Quadruple point is one kind of junction point which has 4 skeleton voxels in neighbor.

Total number of branches:Branch is defined as the part of skeleton between junction
points, end points, or junction point and end point

Total length of all branches

Moments Parameters

Centroid of a micro-tissue network, which is used to calculate Eigen decomposition

Eigenvalue from Eigen decomposition: λ1, λ2, λ3

Principle axes of a micro-tissue network: I1, I2, I3

Table 4.2: Phenotype parameters measured for multi-cellular micro-tissue network.

4.2.3 Validation by comparison to the confocal laser scanning mi-
croscope results

To validate our method, we imaged the same fields of multiple wells using both the
wide-field microscope and a confocal laser scanning microscope with a higher reso-
lution and magnification objective (Table S4.2). The quantification results obtained
from the confocal microscope were used to evaluate the quantification results obtained
from our analysis pipeline in combination with the wide-field microscope. As image
files generated by the confocal microscope were too large (4.05GB for each channel
per well) to perform image processing on whole image stacks, we randomly cropped
segments from each channel of confocal image stacks and the same fields of image
stacks were cropped from the wide-field microscope image stacks (Figure 4.7). For
the Hoechst stained nuclei channel, five image segments were generated including 125
nuclei, while ten image segments were generated for the rhodamine stained F-actin
channel.

Image analysis on the wide-field microscope images was performed using our
pipeline (Figure 4.7b, 4.7d). To define individual nuclei and multi-cellular structures
correctly in the confocal microscope image stacks, we performed automated segmen-
tation methods and then the segmentation results were validated by visual inspection.
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Figure 4.6: Morphological properties for micro-tissue structure and network. (a) Surface
of a micro-tissue structure, and (b) corresponding skeleton. (c) Convex hull of a micro-tissue network
which contains the structure shown in (a).

Before segmentation, we applied the rolling ball algorithm (radius = 50) and a me-
dian filter (kernel size 3×3 pixels) to the image stacks, to remove uneven background
illumination and image noise. To segment individual nucleus, we performed Otsu seg-
mentation method [22] on each image slice and then used a 2D watershed to divide
connected nuclei (Figure 4.7c). Over-segmentation was corrected manually. For the
segmentation of the rhodamine channel images, we applied a log K-means clustering
algorithm, which firstly transformed images by taking the natural logarithm and then
performed K-means clustering to define multi-cellular micro-tissue structures (Figure
4.7e). A sequential labeling algorithm based on 18-connected neighbor pixels was
used to label each nucleus and micro-tissue structure after segmentation. Similar to
the correction of elongated nuclei in the wide-field microscope images, we imaged
blue fluorescent-labeled microspheres with a 10µm diameter for the calculation of a
normalization factor using the same confocal microscope settings as for imaging the
micro-tissues (Table S4.2). A normalization factor 1

5 was obtained for the confocal
microscope and then used to calibrate dimensions of nuclei in z-direction. Finally, we
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Figure 4.7: Comparison of wide-field microscope images with confocal microscope im-
ages. (a) A cropped segment of an original image slice obtained from the wide-field microscopy and
Hoechst stained nuclei channel. A part of segment (white box) is magnified 5× to provide a clear
perception of resolution. (b) The same image part after deconvolution. Red marks the contour of
segmentation result. (c) The same field was cropped from an image slice obtained by the confocal
microscope, and the contour of segmentation result is presented in red. (d) A cropped segment
of a deconvolved image slice with segmentation result for rhodamine stained F-actin channel. (e)
Corresponding region and segmentation result from the confocal microscope image. The unit of the
scale bar is µm.

reconstructed nuclei and micro-tissue structures (Figure S4.1) based on the marching
cube algorithm, and the phenotypic parameters (Table 4.1-4.2) were measured for
those reconstructed structures from the confocal microscope.

4.2.3.1 Comparison of the quantification results of nuclei obtained from
the wide-field microscope images and confocal microscope images.

We firstly compared the number of nuclei obtained by applying our image analysis
pipeline to the wide-field microscope images with the manual counting of nuclei in
the confocal microscope images (Table 4.3). Although the low resolution of the wide-
field microscopy affected segmentation so that a slightly higher number of nuclei was
detected using our automated method, the difference was not significant. Next we
calculated a two-sample KS test for each of the parameters presented in Table 4.1
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Cropped segments Number of nuclei

(Wide-field)

Number of nuclei

(Confocal)

Segment 1 8 8

Segment 2 14 14

Segment 3 21 20

Segment 4 28 26

Segment 5 63 57

p− value of two-sample KS test > 0.9

Table 4.3: Comparison of number of nuclei between confocal microscope images and
wide-field microscope images.

(Figure 4.8a), except for the size and principle axes which are highly dependent on the
image resolution and number of foreground voxels. The result shows that for most
parameters no significant difference (α = 0.01) was obtained comparing the quan-
tification results of wide-field microscope images with confocal microscope images.
In the end, we investigated the Pearson product-moment correlation coefficient for
each parameter (Figure 4.8b) and obtained significant correlation (p− values < 0.01
for the hypothesis of no correlation) for most of parameters, further validating that
by using our image analysis pipeline for the nuclear channel we are able to obtain
comparable quantification results from the wide-field microscope images as from the
confocal microscope images with relatively higher resolution. Figure 4.8c shows the
scatter plot of volume for each nucleus measured from the two microscope techniques.

4.2.3.2 Comparison of the quantification result of micro-tissue networks
obtained from the wide-field microscope images and confocal mi-
croscope images

Due to the different resolutions of the two microscopes and the fact that we did
not calibrate the dimension of micro-tissue structures in z-direction, morphological
parameters obtained from those two different image modalities cannot be compared
directly to each other using KS tests. Nevertheless, the topological parameters that
are independent of calibration result, such as the number of branches, should be
comparable. Therefore, we firstly investigated the topological parameters using both
Pearson’s correlation and the two-sample KS test, and the result is presented in Table
4.4, which clearly shows a high correlation and no significant difference between the
results obtained from two images modalities. We found that for most test segments,
slightly more branches were detected from the confocal microscope images than from
the wide-field images although the differences were not significant. We presume that
this is due to the higher resolution of confocal microscope images so that more subtle
details were preserved (Figure 4.9a).

Next, we calculated Pearson’s correlation for each of the parameters that are pre-
sented in the Table 4.2. Figure 4.9b shows the coefficients for all parameters of which
each has a high value, indicating the quantification results of multi-cellular micro-
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Figure 4.8: Comparison of the quantification results of the nuclei obtained from the
wide-field microscope images and the confocal microscope images. (a) The result of the
two-sample KS tests, comparing the quantification result between wide-field microscope and confocal
microscope for the Hoechst stained nuclei channel. (b) Pearson’s correlation coefficient between
the quantification result from the wide-field microscope images and the results from the confocal
microscope images. * represents p − value > 0.01 under the hypothesis that two data samples are
not correlated. (c) The scatter plot of volume for each nucleus. x-axis represents the value from
wide-field microscope images and y-axis represents the corresponding value from confocal microscope
images.
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cropped segments
#End #Junction #Triple #Quad. #Branches

WF CF WF CF WF CF WF CF WF CF

Segment 1 88 88 75 68 65 64 1 1 157 146

Segment 2 147 157 82 95 66 82 9 8 203 223

Segment 3 45 51 39 36 35 33 2 1 80 82

Segment 4 57 74 21 35 14 33 2 1 58 91

Segment 5 106 132 70 76 55 67 9 4 163 181

Segment 6 65 80 44 56 41 51 3 1 107 115

Segment 7 56 57 31 37 27 33 3 3 77 85

Segment 8 111 128 77 79 66 68 5 7 175 186

Segment 9 38 53 34 34 37 31 2 0 71 76

Segment 10 83 94 72 80 62 72 3 4 151 168

Pearson’s correlation 0.98 0.95 0.91 0.77 0.97

Two-sample KS-test p− value 0.98 0.98 0.31 0.31 0.68

Table 4.4: Comparison of topological parameters between the wide-field microscope
and the confocal microscope for micro-tissue structures. “#” means “number of”; “End”,
“Junction”, “Triple” and “Quad.” mean “end point”, “junction point”, “triple point” and “quadruple
point”, respectively.

tissue structures obtained from the wide-field microscope images are comparable to
the quantification results obtained from the confocal microscope images. Figure 4.9c
and 4.9d show the scatter plots of the total volume and total surface of the micro-
tissue network for each image segment, calculated from the two techniques.

4.2.3.3 Comparison of the time efficiency between the wide-field micro-
scope and confocal microscope

Due to the slow scanning process, the confocal microscope requires more imaging
time compared to the wide-field microscope, and therefore limits its application in
high-throughput screening where time efficiency is an important consideration. To
quantitatively illustrate this point, we compared the image acquisition time between
the confocal microscope and the wide-field microscope that were used in this study.
For the BD Pathway wide-field microscope system, approximately 150 seconds were
required to collect a two channel image stack from one well, while our Nikon confocal
microscope took 6 hours to capture the same area of one well. Due to this large
amount of imaging time, severe bleaching was observed in the last image slices as
well as in neighboring wells. Besides, larger image files were generated when we used
higher magnification of objective for the confocal microscope, and this increased the
computational time and required more computer memory to perform image analysis.

We also recorded the image acquisition time for the BD Pathway microscope
system with the same settings as in Table S4.1, but now with laser scanning confocal
mode: 105 minutes were required to collect a two channels of image stack from one
well which compares very unfavorable to the image acquisition time in the wide-field
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Figure 4.9: Comparison of the quantification result of the micro-tissue networks recon-
structed from the wide-field microscope images and the confocal microscope images.
(a) One crop of the same field from a wide-field microscope image slice and a confocal microscope
image slice. The white box high lightens the regions with different level of details. The unit of
the scale bar is µm. (b) Pearson’s correlation coefficient between the quantification result from the
wide-field microscope images and from confocal microscope images. * represents p − value > 0.01
under the hypothesis that two data samples are not correlated. (c) The scatter plot of total volume
and (d) the scatter plot of total surface of micro-tissue network for each image segment. For both
(c) and (d), x-axis represents the value from wide-field microscope images and y-axis represents the
corresponding value from confocal microscope images.
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mode (150 seconds).

4.2.3.4 Assessment of different sampling step sizes in z-direction

Theoretically, increasing the sampling frequency in z-direction would improve the
image vertical resolution, however, it would also affect the time efficiency because
more image slices are required for imaging the same size of specimen. To find a bal-
ance between image quality and time efficiency, we investigated the effect of different
z-sampling step sizes on the quantification results. Ten wells of image stacks were
resampled with different sampling step sizes in z-direction (10µm, 15µm, 20µm) us-
ing the wide-field microscope system settings. The same resampling sizes were also
applied to image the 10µm blue fluorescently labeled beads, in order to normalize the
dimension of nuclei in z-direction. Next, our image analysis pipeline was applied to
reconstruct 3D models for nuclei and micro-tissue network respectively, and finally the
quantification results were evaluated by comparison to the quantification results ob-
tained from the confocal microscope images. To our surprise, for the Hoechst stained
nuclei channel the optimal performance was not always obtained with the smallest
z-step size (5µm). Two-sample KS tests showed (Figure S4.2a) that the z-step size of
10µm and 5µm provided the closest results to the quantification results obtained from
the confocal microscope images. The total number of nuclei obtained from the stacks
with z-step size of 10µm and 15µm was closer to the number of nuclei from confocal
microscope images, than from stacks with z-step size 5µm (Figure S4.2b). Similarly,
according to the Pearson’s correlation coefficient (Figure S4.2c) z-step size 10µm and
15µm provided higher correlations with the results from confocal microscope images
than z-step size 5µm. We presumed this is due to the fact that the segmentation error
was enhanced when the sampling frequency is too high and more image slices were
analyzed. With the sampling size increased to 20µm, the difference of quantification
results between wide-field microscopy and confocal microscopy was enlarged: 8 out
of 21 parameters had significant difference based on the two-sample KS test (Figure
S4.2a) and 7 parameters had correlation coefficient <0.5 (Figure S4.2b).

For the rhodamine stained F-actin channel, we measured the Pearson’s correlation
coefficient for different z-step sizes (Figure S4.3). The results showed that when the
z-sampling step size was increased from 5µm to 15µm, quantification accuracy was
decreased, however, not to a big extent except for the parameter Thickness. When the
z-sampling size increased to 20µm, more parameters (SAV and number of quadruple-
points) have a much lower Pearson’s correlation coefficient. Considering the fact that
a z-sampling size of 15µm is much more time efficient than z-sampling sizes of 5µm
and 10µm while still providing quantification results comparable to the results of
the confocal microscope images for both fluorescence channels, the z-sampling size of
15µm seems optimal for our future high-throughput screening of 3D cultured micro-
tissues.

103



Chapter 4

4.3 Discussion and conclusions

In this study, we developed an automated image analysis pipeline for 3D surface
reconstruction and phenotype profiling of 3D cultured micro-tissues, suitable for high-
content and high-throughput screening. It first applies a deconvolution technique to
enhance the image quality by removing out-of-focus effects. Subsequently, two 3D
segmentation methods were developed to identify individual nuclei and multi-cellular
regions. Based on the segmentation results, a simple and efficient 3D reconstruction
method was used to model the 3D structures of nuclei and multi-cellular micro-tissue
structures. For nucleus surface structure, we performed a correction of dimension in z-
direction to recover the nucleus from the elongation artifacts. Finally, 3D phenotypic
parameters were measured directly on the reconstructed structures, including 3D
morphological parameters, localization parameters, 3D topological parameters and
moments.

This study intends to develop an image analysis pipeline to extract sufficient
phenotypic characteristics from the conventional wide-field microscope, in order to
achieve a high-content analysis. Granted, using fluorescence microscopy with higher
resolution, for example confocal microscopy, would be greatly beneficial, yet due to
their complexity, the applicability is often limited in throughput. In this study, we
compared the imaging efficiency between a confocal microscope and a wide-field mi-
croscope. To image the same field of view in a well, the confocal microscope required
up to 40 times more of image acquisition time compared to the time needed for the
wide-field mode. Recently, more advanced microscopy techniques such as spinning
disc confocal microscopy were made available for high-content screening. However,
these techniques are too expensive to be widely available. Therefore, developing im-
age analysis methods that are able to distill information from conventional microscope
images would be a reasonable solution.

We have provided statistical evidence that by using this image analysis pipeline
the quantification results obtained from the wide-field microscope are not significantly
different from the results extracted from the confocal microscope. This achievement
does largely rely on the image preprocessing including deconvolution, the segmenta-
tion algorithms and the reconstruction method. The most computational expensive
part is deconvolution. It takes ~45 seconds to process one image stack on a server
which is equipped with 16 Intel(R) Xeon(R) model E5530 processors and 24GB of
RAM in total. The rest of our image analysis pipeline was performed on an Intel Core
i7-2600 model with 16GB of RAM and a 64-bit Windows 7 operation system. Our
complete image analysis of wide-field microscope image stacks for one 384-well plate
takes approximately computational time of 1150 minutes. This time is slightly longer
than the image acquisition time for one 384-well plate in wide-field mode. Consid-
ering the very significant benefit in image acquisition time, wide-field microscopy, in
combination with our image analysis pipeline, has a substantial advantage in time
efficiency over confocal microscopy, and we do not regard the time efficiency of our im-
age analysis as an important bottleneck in the whole high-content screening pipeline,
nor do we regard the minor differences between quantification results from wide-field
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microscope and from confocal microscope as a major drawback.
In this study, we also investigated the effect of different z-sampling step sizes on

the quantification results, in order to establish a balance between the image analysis
accuracy and imaging time efficiency. Surprisingly, we found that the smaller step size
is not necessary providing better quantification results, suggesting an oversampling
problem which not only increases image acquisition time, computational complexity
and image storage capacity, but also degrades the quantification result. Therefore,
finding the optimal z-sampling size is crucial for high-content analysis of 3D cultured
micro-tissues.

4.4 Methods

4.4.1 Cell culturing

Human prostate cancer cells (PC3) were cultured and exposed to hepatocyte growth
factor (HGF) in a mixture of collagen type IV and laminin-rich basement membrane
extract (Matrigel) for 4 days in 384-well high content imaging microplates. 72 hours
after seeding, the cultured micro-tissues were fixed and stained with Hoechst 33258
and rhodamine-phalloidin to visualize nuclei and F-actin, respectively.

4.4.2 Image acquisition

For each well of a 384-well plate, two stacks of 152 xy epi-fluorescence image slices (16-
bit) were collected from two fluorescence channels respectively, using a BD Pathway
855 automated microscope in wide-field mode. The gel was imaged through its entire
depth (z-direction) and each image captured approximately 75% of the area of the
well.

The confocal microscope images which were used to validate the accuracy of
our image pipeline were collected using a Nikon Eclipse Ti confocal laser scanning
microscope. For each well, two stacks of 71 xy epifluorescence image slices (16-bit)
were generated. In order to capture whole well, each image slice was stitched by 9
images (3 images in a row and 3 images in a column), each of which captured one
physical position of the well.

4.4.3 Software

For image analysis, ImageJ plugins (Java) were developed in-house, including a plugin
to program a tcl script that can call the Huygens Core (http://www.svi.nl/HuygensCore)
to run a batch process of a WideField deconvolution function in 384-or 96-well for-
mat, a plugin to perform segmentation, reconstruction and phenotypic quantification,
and a plugin to compose obj files that contain vertex coordination of surface trian-
gles. Meshlab (http://meshlab.sourceforge.net/) was used to visualize 3D geometrical
models of reconstruction results.
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Supplementary figures

Figure S4.1: Comparison of reconstructed nuclei and micro-tissue structures based on
the wide-field microscope images and the confocal microscope images. For the Hoechst
stained nuclei channel, the reconstruction results of the same field of a well based on (a) the wide-field
microscope image and (b) the confocal microscope image. The corresponding original images are
shown in Figure 4.7a and 4.7c. For the rhodamine stained F-actin channel, the reconstruction results
from (c) the wide-field microscope image and (d) the confocal microscope image. The corresponding
original images are shown in Figure 4.7d and 4.7e.
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Figure S4.2: Comparison of the quantification results of the nuclei obtained from the
different z-sampling step sizes with the results from the confocal microscope images.
(a) The result of two-sample KS test, comparing the quantification results of different z-sampling
step sizes to the results from the confocal microscope images for the Hoechst stained nuclei channel.
For the confocal microscope images, the z-sampling step size is 5µm. For the wide-field microscope
images, different sampling sizes are colored in different shades of grey. *: p − value < 0.01. (b)
Comparison of the total number of nuclei obtained from 5 test segments between the wide-field
microscope and the confocal microscope. (c) Pearson’s correlation coefficient between each of the
quantification result from the wide-field microscope images with different z-sampling step sizes and
the results from the confocal microscope images. Red * represents p − value > 0.01 under the
hypothesis that two data samples are not correlated.
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Figure S4.3: Comparison of the quantification results of the micro-tissue network ob-
tained with different z-sampling step sizes and the results from the confocal microscope
images. For the rhodamine stained F-actin channel, the Pearson’s correlation coefficient between
the quantification result from the wide-field microscope images with different z-sampling step sizes
and the results from the confocal microscope images. For the confocal microscope, the z-sampling
step size is 5µm. For wide-field microscope, different sampling sizes are colored in different shades of
grey. * represents p− value > 0.01 under the hypothesis that two data samples are not correlated.

110



Automated analysis pipeline for 3D surface reconstruction

Supplementary tables

Objective type BD Pathway Olympus 4XUPLAPO

Plan-Apochromat

* Numerical aperture(NA) 0.16

Magnification 4×

* Lens refractive index 1.00 (Air)

* Medium refractive index 1.00 (Air)

* Hoechst excitation wavelength / bandwidth 380 nm/10nm

* Hoechst emission wavelength / bandwidth 435 nm/LP

* Rhodamine excitation wavelength / bandwidth 555 nm/28nm

* Rhodamine emission wavelength / bandwidth 645 nm/75nm

* Sampling size in x-,y-direction 1.60 µm

* Sampling size in z-direction 5 µm

Size of image stack (x,y) 1344× 1024 pixels

Table S4.1: The parameters of the wide-field microscope to acquire image stacks. LP
refers to low-pass filter. The parameters used for Huygens deconvolution software are marked with
*.

Objective type Nikon Plan Fluor 10X DIC L N1

* Numerical aperture(NA) 0.3

Magnification 10×

* Lens refractive index 1.00 (Air)

* Medium refractive index 1.36

* Hoechst excitation wavelength / bandwidth 405 nm

* Hoechst emission wavelength / bandwidth 450 nm/50nm

* Rhodamine excitation wavelength / bandwidth 561 nm

* Rhodamine emission wavelength / bandwidth 595 nm/50nm

* Sampling size in x-,y-direction 0.63 µm

* Sampling size in z-direction 5 µm

Size of image stack (x,y) 5530× 5530 pixels

Table S4.2: The parameters of the confocal laser scanning microscope.
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