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Abstract

This chapter aims to define the characteristics of an optimal training set for the
automated segmentation of short-axis left ventricular magnetic resonance (MR)
images in clinical practice, using an Active Appearance Model (AAM). We
investigated the segmentation accuracy by varying the size and composition of the
training set (i.e., the ratio between pathologic and normal ventricle images, and the
vendor dependence). The accuracy was assessed using the degree of similarity and
the difference in ejection fraction between automatically detected and manually
drawn contours. Including more images in the training set results in a better
accuracy of the detected contours, with optimum results achieved when including
200 to 250 images. Using AAM-based contour detection with a mixed model of 
80% normal and 20% pathologic cases provides good segmentation accuracy in
clinical routine. Finally, this work shows that it is essential to define different AAM
models for images from different MRI systems. A model defined on a sufficient
number of images with the correct distribution of image characteristics achieves
good results in clinical routine.

4.1 Introduction 

Cardiac magnetic resonance (MR) imaging is playing an increasingly important
role in anatomic and functional assessment of the cardiovascular system. An 
accurate delineation of the endocardial (endo) and epicardial (epi) boundaries is 
important to quantify left ventricular (LV) function. Manual segmentation requires
expert knowledge and is a time-consuming procedure, which limits the routine
clinical use of cardiovascular MR. Moreover, manual segmentation is observer-
dependent and therefore is associated with considerable inter- and intra-observer
variability [1]. Various automated contour detection techniques have been
developed to overcome the disadvantages of manual contour drawing, but clinically
available systems still require too much user-interaction.

An automated contour detection method should incorporate a priori knowledge, 
including information about the cardiac shape as well as information about the
image characteristics, which depend on the pulse sequence and the MR hardware
used (MR vendors, coils, etc). The widely recognized effectiveness of statistical
models stems from their ability to segment images of anatomic structures by
exploiting constraints derived from the image data together with a priori 
knowledge about the location, size, and shape of the structures of interest. These
constraints are derived from training data using manually drawn contours. Active
Appearance Models have been introduced as a powerful technique for modeling
images of anatomic objects and has been successfully used in a variety of
automated medical image segmentation applications [2-4]. 

The AAM segmentation procedure consists of 2 different phases, a training phase
and a matching phase: 
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�� For training an AAM, a data set of manually annotated example images is
used in which all expert drawn contours should have the same point 
distribution. Using principal component analysis (PCA) a statistical model 
is constructed, representing the observed shape variations in the training
data. After extracting a shape-free pixel intensity patch for all example 
images, PCA is applied on these texture vectors, resulting in a model 
describing the observed pixel intensity variations. Concatenation of both
statistical models and another PCA results in an AAM. Additionally, this
model learns the relationship between model parameters and the residual 
errors, induced by known perturbations on single model parameters. 

�� The matching (detection) phase attempts to find the best fit of the model to
the data in a new image. Matching to an image involves finding the model
and pose parameters, which minimize the difference between the image
and a synthesized model example, projected onto the image.
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An elaborate description of model training and matching can be found in [2] and
[5]. Despite promising preliminary results in cardiovascular MR [6-9], the 
validation and definition of optimal settings of such an algorithm are still very
challenging. Whereas in the cardiac MR case, large variations in shape
characteristics are seen due to the spectrum of pathologies [10], the assessment of 
the current segmentation techniques remains still narrowed on image data sets
obtained from healthy subjects and/or small populations of images [1,5,8,11].
Moreover, in clinical practice a wide range of acquisition protocols coexists,
resulting in MR images with large texture variations [12,13]. The evaluation of
AAM-based techniques has not yet provided conclusions on the definition of the
optimal constitution of the training set. For instance, it has not been studied
whether image data from multiple pathologies should be used to define a model, or
whether image data from different vendors should be included in a single model, or
vendor-specific models should be used. 

Therefore, the purpose of this study was to define the composition of the training
data set, from which an AAM is constructed that performs optimally in clinical
practice. This model should provide good segmentation results for images acquired
by scanners of any vendor, it should be able to cope with the entire range of
relevant pathologies as seen in short-axis MR examinations, and it should be able
to deal with possible poor image quality, induced either by acquisition or by
pathology. Three different questions were addressed in this work: 

�� What is the optimal number of images to be included in the training set? 

�� What is the optimal mixture of images from healthy and pathologic cases in 
the training set?

�� Is it necessary to construct separate models for different vendors, or is it
sufficient to construct a model based on data from multiple vendors?
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4.2 Materials and Methods

4.2.1 Study Population

Clinical short-axis MR imaging studies were obtained from 8 institutions using MR
equipment from 3 different MR vendors. All examinations were performed using a 
steady-state free-precession (SSFP, 256 x 256 field of view) imaging protocol on a
1.5 Tesla MR system. The inclusion of data from different institutions guarantees
sufficient wide range of variation in imaging protocols and patient population. MR
images of 207 LV short-axis examinations (105 from vendor 1, 35 from vendor 2,
and 67 from vendor 3) formed the database we used in this study. To differentiate
between normal and pathologic cases, we used the criteria proposed by Rominger
et al. [14], defining an ejection fraction (EF) between 54% and 75% combined with
an LV mass between 79 and 137 gram, as normal [15]. The histograms presented in
Figure 4.1 illustrate the distribution of EF and LV mass of the population studied.
Following these criteria, 98 subjects were considered normal and 109 pathologic.

4.2.2 Slice Labeling and Manual Contour Tracking

Endocardial and epicardial contours were manually traced in the end-diastolic
(ED) and end-systolic (ES) phases excluding papillary muscle and trabeculations
from the myocardial wall. A reference point was placed in each image at the
posterior junction of the right ventricle free wall with the septum, which was used
to establish registration between images. For the AAM experiments the images at
the most basal and most apical slice level were excluded to avoid extreme shape
and texture variations in the AAM model.

4.2.3 Assessment of the Segmentation Quality

To evaluate the quality of the AAM image segmentation, 2 different metrics were
used: the degree of similarity and the EF calculation. The degree of similarity is 
defined as the percentage of points that is similar between 2 contours [16]: 
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where d is the distance between each pair of corresponding points on the manually
drawn contour and the automatically detected contour, N is the number of sample
points per contour (N = 25 for the presented experiments), and T is a distance 
threshold [17]. Pairs of corresponding points are assumed to be similar if the 
distance does not exceed a certain threshold value T (For the presented
experiments T was set to T = 2 mm). 
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Figure 4.1: Histograms related to the population of MR examinations included in this study. Figure
A displays the ejection fraction distribution in the study population. Figure B displays the distribution of 
ED mass within the study population. These 2 graphs illustrate that the study population contains
sufficiently different image characteristics to give a proper representation of the data seen in clinical
routine.

The ejection fraction is an important clinical parameter. Evaluation of the
difference between the manually derived EF and the automatically derived EF
should indicate the clinical relevance of the contour detection using AAMs [18]. 

4.2.4 Inter-Observer Study

To rate the quality and clinical relevance of the automatic segmentation results
obtained by the AAM, we produced inter-observer variability measures based on 
manual image analysis for comparison. Two observers independently segmented
24 randomly chosen MR examinations manually (50% pathologic and 50% normal,
distributed equally between different vendors). The difference in EF and in degree
of similarity were computed using only the contours in the ED and ES phase, and
slices comprising the section between apex and base. These differences were used
as a gold standard in the following studies, presenting the results in a more clinical
context.

4.2.5 Optimal Number of Training Images

This study aims at the assessment of the minimal number of data needed to train a 
model to give good segmentation results. The 2D AAM algorithm used a model
shape defined on 25 points equidistantly sampled for both the epicardial and
endocardial contours. Ninety-nine percent of variation in shape, texture, and
appearance were kept in the defined models to guarantee a proper description of 
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the variation observed in the training data set [4]. A stepwise increase (from 23 to 
298) of the number of randomly chosen training data from a set of normal 
examinations from a single type of MR scanner was used to define different models
that were used to automatically segment an independent set of 194 images with
similar characteristics. We analyzed the measurements using a regression analysis.

4.2.6 Impact of the Normal versus Pathologic Ratio 

In clinical practice, shape characteristics vary mainly with the pathologies.
Therefore, in this study we analyzed the impact on the accuracy of the 
segmentation when varying the distribution between pathologic (P) and normal (N)
examinations in the training data. A fixed number of 180 images were included in
the training set, which approximates the number that was defined by the outcome
of the previous experiment. Three experiments were realized. The first one 
consisted of defining a model on a 50% N – 50% P distribution training data. The
accuracy of segmentation using such a model was tested on 3 different matching
sets (one described with a 50% N – 50% P distribution, the other with a 80% N –
20% P distribution, and the last with a 20% N – 80% P distribution). The second
and third experiments consisted of repeating the first experiment with models
defined on a 80% N – 20% P and 20% N – 80% P distribution training set,
respectively.

4.2.7 Impact of the Distribution of Acquisition Systems

The main cause of texture variation can be attributed to the MR system or to the 
pulse sequence used [19,20]. Therefore, we also studied the impact on the
segmentation accuracy of including images from different vendors in the training
set. We created 4 different models: 3 were vendor specific and 1 was created on a 
mixed population. We performed the automatic segmentation on different sets of
images corresponding to different vendors. The “mixed model” was trained on a 
population of images where all 3 vendors were equally represented. Based on the
limited availability of MR images, the models were trained on a set of 76 images
defined using 50% N and 50% P examinations and matched on an independent set
of 76 images showing the same image characteristics.

4.3 Results 

4.3.1 Inter-Observer Study

The inter-observer variability in EF, based on manual contour tracing, was 4.5% ± 
2.8%, which is in agreement with previously published results [21]. The degree of 
similarity between contours drawn by the 2 experts is summarized in Table 4.1.
These values will be used as reference values for the degree of similarity and EF.

60



ED epi ED endo ES epi ES endo

Degree of Similarity 84 % 84 % 81 % 74 % 

Table 4.1: Inter-observer variability in the degree of similarity between two observers.
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Figure 4.2: Influence of the number of images included in the training on the averaged degree of 
similarity (Averaged over results for the ED and ES phases, for the endo and epicardial contours).
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Figure 4.3: Average difference between and standard deviation of the EF calculated using the 
automatically and manually drawn contours versus the number of images in the training set.

4.3.2 Optimal Number of Training Images

Figures 4.2 and 4.3 illustrate how the quality of AAM contour detection is 
influenced by the number of images included in the training set. As expected, the
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degree of similarity significantly increases with an increasing number of images in
the training set (P < 0.05 in all the regressions except the variation in ED 
endocardial contours). The best estimation from Figures 4.2 and 4.3 of the minimal
number of images to be included in the training set was around 200 to 250 images.
This was supported by the data given in Table 4.2, which shows optimal values for
ED at 199 training images and for ES at 232 training images, while including more
training images results in only marginally different values. Table 4.2 also points out
that the accuracy of the endo contour segmentation is better than the one of the epi
contour segmentation and that the quality of the automated segmentation is better
for ED than for ES images. In agreement with these observations, Figure 4.3 shows 
a slight but non-significant (P = 0.72) decrease in the deviation in EF with the
increase in the number of images in the training set.

ED Phase ES Phase Average

nr of images endo epi endo epi

23 74.26 51.03 35.69 16.53 44.38

33 67.59 56.35 44.32 34.75 50.75

66 72.64 62.35 46.22 36.68 54.47

99 71.99 59.14 45.02 36.52 53.17

132 76.91 66.43 50.45 44.56 59.59

166 70.42 60.26 43.92 36.35 52.74

199 79.88 71.35 50.59 42.12 60.99

232 78.05 70.99 55.05 47.54 62.91

265 70.71 63.05 51.75 45.7 57.80

298 76.59 67.6 47.59 41.09 58.22

Table 4.2: Influence of number of images included in the training set on the degree of similarity for
the endocardial and epicardial contours in the ED and ES phases.

4.3.3 Impact of the Normal versus Pathologic Ratio 

Figures 4.4 and 4.5 display the impact of using a model defined on a set of images
for the automatic segmentation of images with different characteristics. Figure 4.4
shows that the highest segmentation accuracy is obtained using the 80% N – 20% P
model regardless of the segmentation population. The overall best average degree
of similarity was observed when applying the 80% N – 20% P model to 80% N –
20% P data. Similarly, Figure 4.5 shows that the minimum difference between EF is
obtained when using a model that describe a mixed population of 80% normals and 
20% patient studies.
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4.3.4 Impact of the Distribution of Acquisition Systems 

Tables 4.3 and 4.4 illustrate the impact of using models from different scanners on
the accuracy of the segmentation. In particular, this study demonstrates that the
highest accuracy of segmentation (70% in the ED phase and 50% in the ES phase)
is obtained using a model defined on a population with the same texture
characteristics as the matching population of image. In terms of segmentation
performance, a mixed model resulted in lower accuracies (maximally 54% in ED
phase and 41% in ES phase). These observations were convincing for vendor 1 and
vendor 2 data, however, considerably lower degrees of similarity were found for
vendor 3 data, in which rather poor image quality was observed.
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Figure 4.4: Average degree of similarity between automated segmentation results and manually
defined gold standard (ED and ES phase, endocardial and epicardial contour) when using different
models on different matching populations.
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Figure 4.5: Average difference in ejection fraction between automatically detected and manually
drawn contours when using different models on different matching populations.
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ED degree of similarity Matching population

Model Vendor-1 Vendor-2 Vendor-3

Vendor-1 70±27 57±28 43±28

Vendor-2 60±28 58±33 39±31

Vendor-3 52±22 44±21 34±26

Mixed 54±29 50±29 50±29

Vendor - Mixed 16% 8% -16%

Table 4.3: Average degree of similarity (%) and standard deviation observed in the segmentation of
the ED phase using models trained on images from different vendors. The segmentation accuracy is
lower when vendor 3 images/model are concerned.

ES degree of similarity Matching population

Model Vendor-1 Vendor-2 Vendor-3

Vendor-1 50±31 34±30 22±32

Vendor-2 43±29 42±33 21±31

Vendor-3 40±31 26±30 15±30

Mixed 41±30 32±30 27±27

Vendor - Mixed 9% 10% -12%

Table 4.4: Average degree of similarity (%) and standard deviation observed in the segmentation of
the ES phase using models trained on images from different vendors. The segmentation accuracy is
lower when vendor 3 images/model are concerned.

4.4 Discussion 

Domain knowledge about the geometrical properties of cardiac structures is an
important feature for segmentation in medical images. So far, a strong focus was 
put on the development of new segmentation methods using statistical models. By 
fitting a model to image data, cardiac surface positions can be predicted with a high
accuracy [6,8,20,22,23]. Potentially such a model can be used to automate a large
range of diagnostic and therapeutic applications in cardiac medicine [24]. For the 
application of such a model in the context of automatic segmentation of cardiac
image data, practical issues need to be addressed. The goal of this study was to 
analyze whether AAM-based segmentation could be used in clinical routine. For
this, we analyzed the impact of the definition of the training set on the accuracy of 
the automatic segmentation.
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4.4.1 Optimal Number of Training Images 

When comparing a model that was trained on 23 images with a model that was
trained on approximately tenfold more data, an improvement of the degree of 
similarity of 6% and 20% could be observed for ED endo en ED epi (both at n=199),
respectively. Similar experiments resulted in an increase of the degree of similarity
of 19% for ES endo and 31% for ES epi (both at n=232), respectively. This indicates
that increasing the number of data included in the training set improves the AAM
contour detection. Given that including even more images (n > 199 for ED, n > 232 
for ES) does not substantially improve or deteriorate the degree of similarity, a 
minimal amount of training data should be determined at approximately 200 to
250 images. This is supported by the results for the difference in ejection fraction
(Figure 4.3), showing the best results for the three models with the highest amount
of training images (n=232, n=265 and n=298). 
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tIn addition, the accuracy measured with the degree of similarity in the endo
contour detection is higher than in the epi contour detection. This could be
explained by the intensity gradient between external tissue and the myocardial wall
being weaker than the gradient between the blood pool and the myocardial wall.
Thus, the border of the endo contour has a clearer definition, and as a consequence
is delineated more robustly than the epi border. The promising endo contour
detection results suggest that the presence of papillary muscles or trabeculations
does not affect the performance of the AAM. This was supported by visual 
inspection. Furthermore, the non-significant variation in the degree of similarity
measured in the endo contour detection showed that the endo contour detection is 
less dependent on the number of images included in the training set than the epi 
contour detection.
The measurement in this study displayed significant increase in the degree of
similarity with the number of images defining the model and non-significant
decrease in the difference in EF between automatically detected and ground truth
contours. From this, we conclude that including numerous images in the training
set to define the AAM’s model does not matter when the clinical study focuses only
on EF measurements, whereas it does have a big impact when analyzing border
displacement measurements (wall thickness measurement).
The design of analyzing the optimal number of images to be included in an AAM
had some limitations. To facilitate the process of training a model, we narrowed the
analysis to only examination of healthy ventricles in the training set. Thus, we
limited the variation in LV shape, and possibly artificially reduced the minimally
required number of images. This experiment stressed that an AAM model can be
described using at least 200 to 250 images from normal examinations, and we
expect that more images should be included in the training set for covering all
shape change variations in routine clinical practice. 

4.4.2 Impact of the Normal versus Pathologic Ratio 

A difference in degree of similarity up to 15% was noticed when matching a model
describing a particular shape variation on images with different characteristics, and
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matching a model defined on the same image characteristics. This experiment
stressed the importance of using a suitable model for a population of images used.
The accuracy seemed to be reduced when using an equally mixed model. 
Although there is a significant improvement of the accuracy of the contour
detection when optimizing the population distribution in the training set, the
difference in EF measurements (10%) still remained high compared with the inter-
observer variability (4.5%). The results show a noticeable discrepancy between EF
calculated from detected contours and from reference contours, which can be the 
consequence of either an average poor detection or the presence of few contour
outliers. In fact, the EF is sensitive to a single contour detection failure for a single
image, whereas the degree of similarity measurement still remains high. The high 
degree of similarity of the corresponding contours (~70%) associated with a
standard deviation (~20%) leads to the conclusion that the presence of few outliers
or detection failure did not affect the degree of similarity because of the larger
number of samples included in this measure compared with the EF quantification
quantity (the degree of similarity relies on the number of contour data, whereas the
EF relies on the number of examinations).
Regarding short-axis MR segmentation, using a model of 80% normals and 20%
patients appeared to be the best choice.

4.4.3 Impact of the Distribution of Acquisition Systems 

Several inherent problems appear in cardiac MR image segmentation. The change
in image contrast [20], the non-uniform nature of the MR signal intensity
introduced by noise, physiological factors, and non-uniform radio frequency fields
[19] are major challenges when designing and implementing a reliable automated
contour detection algorithm.
It was observed that the data from vendor 3 was of relatively poor image quality,
mainly due to radio frequency pulse inhomogeneity artifacts. It is expected that
Active Appearance Models in which vendor 3 training data was incorporated, were
possibly deteriorated. When mutually comparing the results for vendor 1 and 
vendor 2, it is proven that vendor specific models provide better results than when,
for example, a vendor 2 model is used to analyze vendor 1 data, or vice versa.
Differences in performance can amount to 10% degree of similarity.
Given the poor image quality of the vendor 3 data, it is difficult to assess the 
performance of the mixed model. However, averaging the values in the bottom
rows of Tables 4.3 and 4.4, results in a positive score for the vendor specific Active
Appearance Model results. These findings, combined with the results of the mutual
comparison of vendor 1 and vendor 2, shows the need for the application of vendor 
specific AAMs in clinical practice. In general, poor quality images should evidently
not be incorporated in the training data set of an Active Appearance Model.
Due to the availability of image data, this study was designed on only 76 MR images
as a training set. Therefore, the overall performance in terms of degree of similarity
values is lower than the values reported in the other two experiments. These
findings are in correspondence with the results presented in section 4.3.2 and
discussed in section 4.4.1. 
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4.5 Conclusions 

It was demonstrated that AAM-based contour detection can be used in cardiac MR
imaging studies in clinical practice. Defining an appropriate training set of at least
200 to 250 data sets is a crucial step towards obtaining high quality results of the
AAM-based segmentation. Furthermore, the best training set distribution of
images from normal and pathologic ventricles seems to be 80–20%. Finally, in case 
MR scanners from multiple vendors are used, it is essential to define different
models for each of the vendors. The inclusion of low quality images in the training
set should be avoided.
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