
Quantum liquid crystals
Cvetković, V.

Citation
Cvetković, V. (2006, March 29). Quantum liquid crystals. Retrieved from
https://hdl.handle.net/1887/4456
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4456
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4456


Quantum Liquid Crystals

Vladimir Cvetković
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Chapter 1

Introduction

1.1 Order vs. disorder

The ability of physicists to completely enumerate the properties of physical systems is
strongly dependent on the strength of interaction among its basic constituents. For exam-
ple, the non-interacting gas is perfectly described by the ideal gas equation of state which
follows entirely from the kinematical considerations of single molecules. In real classical
gases, the weak interaction between particles implies that the proper equation of state is
not the ideal gas equation of state, but rather the ‘van der Waals’ equation

(p− an2

V 2
)(V − bn) = nRT. (1.1)

Due to the limited influence of the interparticle interaction, van der Waals could draw
the conclusion that the additional terms, with respect to the ideal gas equation of state,
correspond to the interaction among the particles, the ‘long-tail’ attractive forces and the
‘excluded volume’ hard-core repulsion. The exact origin of the interaction (dipolar forces)
was later explained by Debye. When the constituents of the same gas condense into the
liquid state, e.g. steam condenses into liquid water, the proximity of molecules results in
much stronger interactions between them. It is much harder to understand the physics
of the liquid state, based only on the premise of interacting particles, and the theoretical
understanding is limited to phenomenological theories, where a direct link between the
microscopic physics associated with individual particles and the macroscopic behaviour
of the liquid is intentionally avoided. Ultimately, the solid state of matter is completely
governed by the interaction between the molecules, while their kinetic properties appear
only as corrections to the ideal crystal state. The solid loses the knowledge about the
internal constituents to such a degree that even if a portion of molecules is removed from
a crystal in the form of vacancies, the crystal will still be in the same state. This property
of solids, that the global degrees of freedom are effectively independent from these of the
individual particles, acts as the major obstacle in the understanding of solids in terms of
loose particles.

1



2 Introduction

Nevertheless, our understanding of solids is very strong because it is based not on
the single particle approach, but rather on the approach in terms of collective fields. In a
classical solid there is a “classical wave function” Ψ0

cl. corresponding to the ground state and
the excitations are parametrized in terms of the phonon excitations. None of these carries
any information about the individual molecules. Surely, the phonons, as well as pressure
or temperature which are defined throughout all the phases, are emergent concepts. If
we would consider two-, three- or ten isolated molecules, no one could say whether the
condensation to the solid occurred or what the temperature is. The difference is that the
pressure and temperature in the gas have emerged from the collective kinetic properties,
whereas in the solid they originate in the interactions. The emergence of phonons in solids
is the more interesting feature. An observer embedded in a solid could only measure the
properties of its vacuum implied by the classical state Ψ0

cl., i.e. the vacuum excitations
dispersing linearly as phonons and he or she could hardly anticipate that there might exist
different vacua or that his/her ‘theory of everything’ inside the crystal is just an effective
theory emerging from another, more complicated, universe. This idea of emergence is
directly related to the concept of duality which will be one of the key ingredients of this
thesis. Namely, the universe of our ‘crystal embedded’ experimentalist is a very simple
one, with linear dispersing phonons acting as the unique force carrying particles, while the
crystalline defects act as massive particles, being the sources for the phonons. This physicist
does not need to have any knowledge of individual molecules, nor of strong interactions
which would make his life as a physicist tough. So, when it comes to understanding a
state of matter which is not a solid, but close to a solid with respect to the relevance of
the interparticle interaction, the ‘solid experimentalist’ will have serious advantages over
his/her colleague who uses ‘single-particle’ type of theories. At the same time, the theory
of solid is still a robust construct able to cope even with some flaw in the crystalline order,
like the mentioned vacancy disorder.

The scale based on the strength of the interactions extends between two extremes.
One extreme is the ‘gas limit’, already mentioned, which serves as a starting point for
the theories in the weak coupling regime. The other one has just been discussed: the
‘solid limit’ offers an easy description of strong coupled systems in terms of the collective
fields. Each of the limiting theories sees the vacuum and the excitations of the other
theory as a complicated mixture of its own excitations. This underlies the basic idea of
the duality: the state which is complex due to the dominant interactions compared to
the kinetic energy can alternatively be seen as the order state in terms of the collective
emergent fields, which significantly simplifies the description. There may still be a range
where interactions compete with the kinetic energy and perturbative methods starting
from either of the two limiting theories require more attention to obtain good physical
predictions.
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1.2 Correlated electrons and high-Tc superconductiv-

ity

The same hierarchy of interactions and phases as in the classical physical systems occurs
in the quantum realms, where the phases of matter are determined by the level of quantum
fluctuations, rather than by thermal disorder [1]. In the absence of any interactions, quan-
tum matter can exist in only two ‘gaseous’ states, pending the irreducible representation of
the permutation group they belong to. For bosonic systems, the symmetric representation
results in the Bose-Einstein gas which may eventually condense into the BEC condensate,
the feature originally predicted by Bose and Einstein [2, 3] and only recently experimen-
tally demonstrated [4, 5, 6, 7]. When the interactions among the constituents are much
stronger, such as in Helium-4, the Bose-Einstein gas picture requires significant modifi-
cations, as first pointed out by Landau [8], in order to describe the phase that can be
called the Bose-Einstein liquid, rather than the Bose-Einstein gas. A prominent feature of
superfluid helium is the roton minimum in the excitation spectrum which is yet another
signature of the competition between the interacting and non-interacting states of matter.
At large scales, helium shows the collective superfluid behaviour which does not reveal any
information regarding individual constituents. However, at short scales the behaviour of
its particle degrees of freedom resurfaces. The unique way to ‘patch’ the spectra of these
two worlds is through the roton minimum.

Helium-4 represents a bosonic system without Umklapp. In the bosonic systems where
Umklapp processes become relevant, the ordered- and disordered phases of matter are given
by the superfluid and the bosonic Mott-insulator. In recent years, the physics of bosonic
matter in optical lattices has flourished. A commonly studied bosonic model with relevant
Umklapp processes is the Bose-Hubbard model which will be addressed in this thesis for
the demonstrational purposes.

Fermions are particles corresponding to the antisymmetric representation of the per-
mutation group. The most obvious example of the fermionic gas is the state of electrons
in metals. Other interesting quantum fermionic states of matter are found in Helium-3,
but here we are more interested in the electronic systems which are at the focus of our
attention. In a metal, the perfect Fermi gas is never literally realized. The interactions
can be usually treated perturbatively, leading to the theory of Fermi liquid, a state whose
innate excitations (quasiparticles) are electrons ‘dressed’ with interactions.

The Umklapp processes are important for the fate of the strongly interacting state of
fermionic matter too. When the Umklapp is absent and there are no other relevant fields,
there are basically two states of matter: the Fermi liquid realized at high electron densities
and the Wigner crystal [9] which is realized in the low density limit, when electrons form a
triangular lattice. The entire scale of the electron density/interaction on the phase diagram
should be covered by either one or the other phase with a first order transition between
the two. In a recent work, Jamei et al. [10] demonstrated that this direct transition may
be obstructed if the Coulomb force is weaker than some critical value when ‘microemul-
sion’ phases of matter set in between the Wigner crystal and Fermi liquid phase. These
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intermediate phases consist of bubbles or stripes of Fermi liquid inside a Wigner crystal or
vice versa, of Wigner crystal inside a Fermi liquid.

When the weak coupling of electrons to the lattice phonons is considered, another limit
arises, namely the BCS superconductor state. The experimental discovery of the supercon-
ductivity was made by Kamerling-Onnes in Leiden almost one hundred years ago [11]. In
the next forty years the understanding of the superconductivity slowly progressed driven
by experimental discoveries, such as the Meissner effect [12] and more or less successful
theories of which the London [13] and Ginzburg-Landau phenomenological theory [14] are
worth noticing noticing. In the 1950-s, the dependence of the superconducting transition
temperature on the isotopic mass of the constituents [15, 16] pointed at the relevance of
electron-phonon interactions which soon led to the BCS theory [17] which can be consid-
ered as the first complete microscopic description of the conventional superconductivity.
This turned out to be another fundament for the development of more complete theo-
ries of interacting fermions on which theories, such as the Eliashberg [18, 19] theory of
superconductivity.

When the magnetic fields are high, the electronic matter without Umklapp processes
realizes itself in the form of the incompressible quantum Hall state of matter. The time
scale for the development of the fundamental understanding of the quantum Hall effect
was shorter than the corresponding time for the BCS superconductivity. The theory by
Laughlin [20, 21] appeared shortly after the experiments by Von Klitzing [22] and by
Tsui and Störmer [23]. There were even some approximate calculations, that preceded
the experiments, suggesting the quantization of Hall resistance [24]. From this emergent
concept, many new ideas in physics flourished, let us just mention the smectic and nematic
quantum Hall stripe phases [25, 26], the ingenious concept of composite fermions [27, 28]
and generalizations thereof like the C2F theories [29].

The presence of the Umklapp in electron systems implies, as by rule, a nontrivial
physics even in the limit of high electron densities. Examples include Mot insulators, spin
liquids, high-Tc superconductors, stripes, quantum liquid crystals, non-Fermi liquids, etc.
We are particularly interested in the high-temperature superconductors. Their discovery
by Bednorz and Müller [30] sparked a giant quest in physics which is still going on with
considerable intensity. The high-Tc superconductors are just a subclass of a broader family
of strongly correlated electron systems. In the BCS superconductors a simple canonical
transformation connects Cooper pairs and the original electrons as shown by Bogolyubov
[31]. In contrast, the adiabatic continuation between the constituting electrons and the
genuine excitations of the high-temperature superconductors appeared as a hard nut to
crack.

For almost twenty years, both theoretical and experimental physicists strove to under-
stand better the strongly correlated electron systems and particularly the unconventional
superconductivity found in these systems. An early idea which was widely accepted among
physicists refers to the application of the two-dimensional Hubbard model. The physical
arguments are reasonable: the parent compounds consist of alternating layers of rare earths
and perovskite planes. In the perovskite planes one finds a density of one missing electron
per CuO2 unit cell and in the absence of interactions this should be a metal. Experi-
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ments, however, show that these are antiferromagnetic insulators. This is well understood
in terms of the language of the Hubbard model: these are so-called Mott-insulators, which
are insulating because of the strong local Coulomb repulsions. The role of the “charge
reservoir” layers is to dope these Mott-insulators with free charge carriers in a way which
is quite similar to what is happening in simple semiconductors. While armies of men and
women produced countless publications on every possible variation of the Hubbard model,
the answer to the ultimate question of why Tc is high or even regarding the basic physics
of these electron systems is still in the air.

There were, however, many useful and fundamental results among which the presence
of stripes plays an important role in the motivation for the ideas in this thesis. Stripe order
can be imagined as follows: the magnetic coupling between the electrons in the perovskite
planes is antiferromagnetic which results in the Néel ground state for the undoped com-
pound. This state is a Mott-insulator, which cannot conduct charge due to the strong local
Coulomb potential, when the charge density is commensurate with the lattice potential.
The doping removes some electrons out of the perovskite planes, i.e. it introduces holes,
which leads to the destruction of the Néel state already at doping levels of x ≈ 0.02. At
the doping levels slightly higher than the 0.02, the introduced holes would like to delocalize
in order to reduce their kinetic energy. However, due to the antiferromagnetic interaction,
the delocalization costs energy instead of gaining it. The tendency toward the stripe for-
mation just means that the holes arrange into lines of missing charges/spins to minimize
the energy. In this respect, the stripe phase can be seen as a discommensuration of lattice
associated with the commensurate Mott-state. The first theoretical predictions of stripes
came soon after the discovery of the high-Tc superconductivity [32], with few others that
followed [33, 34]. The experimental confirmation of stripes however had to wait untill 1995
when the incommensurate charge and spin peaks were found in the neutron experiments
on the underdoped cuprates and nickelates [35, 36].

The presence of static stripes in the underdoped regime of high-Tc cuprates and some
early experiments suggesting the presence of dynamical stripes in the optimally doped
regime, led Kivelson, Fradkin and Emery [37] to suggest that the phase diagram of the
superconductivity may be understood as associated with zero temperature quantum elec-
tronic liquid crystal phases. In contrast with the classical liquid crystals where the disorder
is of thermal origin, in the quantum version it is driven by quantum fluctuations indiced
by doping. The Néel state, underdoped-, optimally- and overdoped regimes correspond
to the crystal, smectic, nematic and isotropic state of a liquid crystal as seen in Fig. 1.1.
The presence of static stripes [32, 34, 33] observed in the cuprates [35, 36, 38], and their
disordering and fractionalization [39, 40] finds a natural place in this picture.

It was demonstrated by various experiments that the previous claims are not just a the-
oretical speculation, but have a real support in strongly correlated electron systems. For
example, the incommensurable spin fluctuations associated with the stripes were found
in various neutron scattering experiments on optimally doped YBCO [41], but the signal
was present only above a certain energy gap. This means that although the static stripes
cannot exist in the superconducting phase, some notion of spatial order is still present
in the superconducting phase. The order is however transient and can persist only for
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Figure 1.1: The phase diagram of electronic liquid crystals (taken from Ref. [37]): The
temperature is on the vertical and doping on the horizontal axis. The Mott-insulator corresponds
with a) commensurate crystal; the regions with the static stripe order corresponds to b) a smectic
phase of the liquid crystal; the ‘superconducting dome’ on the phase diagram corresponds with
c) a nematic phase and the overdoped region on the phase diagram is related to d) the isotropic
phase.

relatively short times and lengths. Another relevant experiment is the scanning tunnel-
ing spectroscopy of magnetic vortex cores in BiSCO2212 by Davis et al. [42] where the
presence of a spatially ordered electron state (mutually perpendicular layers of stripes or
checkerboard) in the vortex core is observed. An interpretation could be that the ‘tran-
sient’ fluctuations become static when the superconductivity is suppressed by the external
magnetic field. Finally, recent experiment employing the neutron scattering on optimally
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doped ‘untwinned’ YBCO123 crystals [43] shows an anisotropy in the superconducting gap
which appears to be much higher than one would expect it from the anisotropy implied by
the CuO chains located between the perovskite planes.

1.3 Motivation and the main results

These ideas about liquid crystalline electronic order and the experimental signs of fluctu-
ating order in the superconducting state form the main motivation for the scope of this
thesis. The mainstream in the theory of high-Tc superconductivity is preoccupied with a
microscopic description of electrons in the cuprate planes. This approach has had only
a limited success, especially considering the amount of energy invested in it. Even the
plausible theories are fairly complicated, which is not surprising when one realizes how
distinct bare electrons and, for example, d-way Cooper pairs are, which these theories wish
to adiabatically connect. Bearing these fact in mind, the approach employed in this thesis
starts from the opposite, collective limit. We expect that in this way the handicap of the
approach by means of the individual degrees of freedom can be avoided, in analogy with
the classical solids where the interaction is dominant.

The pioneering work in this direction was presented by Zaanen, Mukhin and Nussinov
[44], where the quantum melting of a crystal is considered in terms of the dual gauge
field theories. In this thesis we take up the considerable challenge posed by this research
program. We identify several shortcomings in the original approach. By curing these,
we manage to generalize these ideas further with, as the main result, that we arrive at a
variety of predictions which can be tested experimentally, at least in principle,but it seems
also experimentally.

In this approach, the notion of liquid crystals appears in the context of the famous
Nelson, Halperin and Young [45, 46, 47] theory of classical melting (NHY). The aim is to
keep some residual order in the melted phase, because some residual order was measured
in the electronic liquid of cuprates. This is possible to achieve if the melting is driven
exclusively by dislocation topological defects. In that respect the melted phases can be
regarded as the quantum generalization of the NHY melting. In analogy with the liquid
crystal nematic and smectic phases, which are on a halfway between the solid and the
liquid, the ‘hexatic’ phase of NHY or the quantum melted crystalline phases, presented in
Ref. [44] and here, represent the nematic phases of a matter.

One of the important conclusions in Ref. [44] was that the charged crystal that under-
goes quantum melting transition driven by dislocation defects, develops a (unconventional)
Meissner term, i.e. it becomes impenetrable for the electromagnetic fields, which is the
exclusive trademark of superconductors. Thus, next to the experiments supporting the
claims of Kivelson et al. [37], the theory of a melted quantum solid seems as a perfect can-
didate for the liquid crystalline theory that may deliver an unconventional superconducting
state. We know that the cuprates exhibit many properties not innate to the conventional
BCS superconductors.

The results presented in this thesis treat the problem of the quantum nematic state of
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matter in a detailed manner including the physically relevant electromagnetic observables
that can be measured in experiments in order to put the theory under the test. In the
course of developing the theory, as a sideline two novel results were found. One pertains
to the duality and the possibility to measure the correlation of the disorder operators by
means of the order operators. We call the screening of the disorder correlation the ‘dual
censorship’ and show that it is not absolute, i.e. that some of the disorder operators may
show up in the order-fields correlation functions due to the dual representation of the
degrees of freedom. By investigating the critical regime, a connection between the modes
of ordered and disordered phase is established. The other result deals with the kinematical
constraint on the topological crystalline defects which is known as the glide constraint.
Given the fact that the work in this thesis rests on the dual field theory of elasticity, the
constraint had to be implemented in a strict mathematical way.The proof is presented
first in its original form, but the later additions to the proof including the higher order
corrections and the conservation laws for the topological defect currents in solids are also
given.

The key results found in this thesis may be split in two conceptual parts. The first
group of results is relevant for the electrically neutral quantum solids and their melting.
The dislocation dynamics which was absent in Ref. [44] is considered and new modes in
the elastic response function (phonon propagators) are found. The phase diagram of the
quantum solid is presented and a novel phase is predicted. From the other two phases
predicted in Ref. [44], one is recalculated with the dynamical dislocation gas, resulting
in some quite unconventional and counterintuitive properties. For the other, the claim is
made that it requires ‘beyond Gaussian’ treatment in order to encapsulate all the effects of
the dynamical condensate. The other group of results pertains to the charged media and
in that respect it is crucial since it represents a candidate theory for the electronic liquid in
cuprates. The results obtained are astonishing, unconventional and very counterintuitive.
The theory predicts magnetic and electric screening with unconventional overscreening as
one of the features and the effect that the propagation of electromagnetic photon (light)
becomes diffusive. Finally, due to the dynamical dislocation condensate in the supercon-
ducting phase, we predict the presence of additional poles in the response functions. Some
unconventional experiments are suggested that could prove or disprove the relevance of
these findings for strongly correlated electron systems.

This thesis is organized in the following way: The main part of the thesis is composed of
six chapters. Beside this introductory- and concluding chapter, two of the four remaining
chapters have more of an introductory/tutorial character, while the two other chapters
consist of mostly new results. The next chapter is aimed to accustom the reader to the
ideas associated with the duality. For that purpose, the Abelian-Higgs duality in 2+1-
dimensions is considered, both for its educative value, for explaining duality, and its actual
implementation in the remainder of the thesis. This chapter contains original results on
the ‘dual censorship’ and it closes with an overview of higher dimensional generalization
of the Abelian-Higgs duality. The third chapter introduces the other basic ingredient of
the theory, the theory of elasticity. After the basics of the theory are reviewed and the
phonon propagators are introduced as the physically relevant quantities, we proceed with
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the introduction of the description of crystalline topological defects. The final section
introduces a novel result: the formulation of the glide constraint in terms of the dynamical
defect currents.

The fourth chapter starts with the construction of the dual elasticity theory, inspired
by the work of Kleinert [48], representing the unification of the key concepts introduced
in the two previous chapters. After constructing the Ginzburg-Landau-Wilson theory for
dynamical dislocation condensate, the phase diagram of the quantum solid is discussed
with one section devoted to each specific phase. Because of some controversy regarding
some of the presented results, the last section shows that some of the ‘self-inconsistant’
results actually have a different physical interpretation and belong to a different phase than
originally anticipated, based on the input to the theory. This novel phase is characterized
by isotropy and the rotational symmetry breaking at the same time, which may seem
contradicting at first, having however some interesting physical consequences. Chapter
five applies the previously developed dual elasticity theory to a charged medium. This
involves a generalization of the dualization of elasticity, now including the EM fields. After
this has been done, the two next sections present the physically relevant EM response
functions, discussing possible experiments which require some unconventional techniques
in order to detect the weak fingerprints of the liquid crystalline order in the charged liquids.

In addition, there are three appendices to the thesis. The first presents the mapping of
the loop gas onto the GLW action, as originally developed by Kiometzis et al. [49] with one
novel addition: the arbitrary non-local inter-particle potential. The second appendix has
detailed proofs for the dynamical defect current conservation laws which were originally
published as a part of the paper on the glide constraint [50]. The final appendix discusses
the role of the symmetry in the problem. Using the irreducible representations of the
group of point symmetries of the action, degrees of freedom are separated according to
their transformation properties under the symmetry group action.

1.4 Definitions and conventions

This final part of this introductory chapter is dedicated mostly to introducing a few techni-
cal details in order to remove these from the main part of the text where they could distract
the attention of the reader. We also add a few general remarks about the imaginary time
path-integral formalism.

Let us first note that we employ by rule the imaginary time formalism with the Eu-
clidian positive signature. There are a few reasons for this. First, we are interested in
the quantum theory and in order to get the statistics of the fields in the problem right,
it is necessary, as standard text books demonstrate [51, 52], to consider a path integral
over the configuration space where the temporal direction is either compactified with ra-
dius ~/(kBT ) at finite temperatures or not compactified at zero temperature. In this way,
the braiding of the particle world-lines brings in nontrivial imaginary contributions to the
action (Berry phases), that yield the statistics of the underlying particles. Then, there is
the issue of the equivalent treatment of the temporal- and spatial coordinates and positive
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Euclidina signature, which will prove useful at some stages of the work. Nevertheless, in
most of the text we will insist on the ‘space-time puritanism’, treating temporal and spa-
tial fields on different grounds. This is often necessary, as we argue in the next chapter in
detail, because both us and our experiments are fixed in a certain reference frame which
promotes the temporal direction to a special one. Finally, when the work is finished, one
would like to have a theory which gives prediction in real time and that is possible using
an inverse Wick rotation τ → it on any desired quantity.

Most of our work will be done in the Fourier-Matsubara transformed fields. It is
useful to introduce a three-momentum pµ (we are considering only 2+1D theory) having a
temporal component equal to the Matsubara frequency pτ = ωn and other two components
proportional to the momentum q. However, there is an issue that we use different units for
the momenta and frequencies and in order to have them expressed in the same units, we
convert the momenta by q → cq. In a standard theory, the velocity c should be the velocity
of light as pointed out by Einstein. We have a different view on this problem. As it turns
out, in our work the ‘space-time isotropy’ is achieved with use of some other velocities,
like the spin-wave and the phonon velocity. Therefore, we decided not to implement the
relativistic velocity of light as the conversion velocity and instead we will note it by cl
when it becomes relevant in chapter 5. Another standard convention which is implemented
regards the Planck constant: ~ = 1.

Let us now turn to the bases defined by these momenta that, when used, greatly
simplify our work, e.g. the propagators have a (block)diagonal form. Due t the inequivalent
treatment of space and time in some segments of our problem, there are two types of
momentum basis. One is used in situations when time is separated from space components
and it is known under the name of ‘zweibeinen’ (with a third temporal direction added to
complete the space-time):

ẽL = q̂ =
q

q
= (cosφ, sinφ, 0), (1.2)

ẽT = ×q̂ =
×q

q
= (− sinφ, cosφ, 0), (1.3)

eτ = (0, 0, 1). (1.4)

Clearly, the first vector is parallel to the spatial momentum q and the next one is its ortho-
complement. Crossproduct × acts as the antisymmetric tensor rank-2 in two dimensions:
acting on a pair of vectors it produces a scalar (one could think of a vector oriented in the
temporal or ‘z’ direction); acting on a single vector it produces a vector.

When both time and space are treated equally, one uses set of three vectors – ‘drei-
beinen’. This basis is not independent of the choice for the velocity c used to convert
time and space to the same units. The relativistic three-momentum momentum defines
the linear polarized version of ‘dreibeinen’:

e0 = p̂ =
p

p
= (sin θ cosφ, sin θ sinφ, cos θ), (1.5)

e+1 = (− cos θ cosφ,− cos θ sinφ, sin θ), (1.6)

e−1 = (sinφ,− cosφ, 0). (1.7)
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Angles are defined by momentum to Matsubara frequency ratio tgθ = cq
ωn

.
This linear choice of polarizations still splits the relevant directions into purely spatial

e−1 and admixed one e+1. An alternative is the basis with helical polarizations

e± =
1√
2
(e+1 ± ie−1), (1.8)

each one being conjugate to another and admixing the spatial and temporal directions
equally.

Any tensor can be decomposed into components defined by any of the bases introduced
in the above, Eq. (1.3), Eq. (1.6) or Eq. (1.8). However, one has to be careful with the
symmetry transformational properties since these basis vectors are well defined only in
Fourier space and one should maintain the important relation of the Fourier components

A(−pµ) = A(pµ)†. (1.9)

Acting with the inversion operator (pµ → −pµ) on the unit vectors, we find that eτ , e+1

and e± are invariant while all the others change sign. Components associated with the
latter basis vectors have to acquire an additional i prefactor in order to conform with
the symmetry transformation property Eq. (1.9). Hence, a single component vector is
expanded according to

Aµ = eτ
µAτ + iẽµEAE = ie0µA0 + e+1

µ A+1 + ie−1
µ A−1 = e0µA0 + eh

µAh. (1.10)

For multiple indices, the generalization is straightforward.
Needless to say, summation over repeated indices is always assumed, unless stated oth-

erwise, and while Greek letters represent that the index may take both temporal and spatial
values, small Latin indices are reserved for spatial indices exclusively. Sometimes we wish
to stress that the indices belong to a certain basis: each basis has its own ‘reserved letters’:
We already used h for helical components and we will continue to do so, both for linear and
helical basis. When referring exclusively to spatial components of the ‘zweibeinen’ basis
(twiddled basis), letters E, F and G will be used, and when both spatial and temporal
direction have to be included, letters M andN are used.

Finally, in many places we will use projector onto spatial part of the momentum and
its orthocomplement projector. These projectors are defined as

P̂L
ij = |q̂〉〈q̂| i,j→ qiqj

q2
, (1.11)

P̂ T
ij = 1̂− |q̂〉〈q̂| i,j→ q2δij − qiqj

q2
(1.12)

in operator and matrix form respectively.
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Chapter 2

A tutorial: Abelian-Higgs duality

The concept of duality [53, 54, 55, 56, 57] has been around for a long time in the high
energy and statistical physics communities, but only in relatively recent times has its
powers become increasingly appreciated in the condensed matter community. Although
there is yet no unifying formalism that could relate all known examples of duality, the
general working mechanism of duality follows a certain pattern. Consider a general physical
system (model) described in terms of certain observables (variables, operators, fields, either
quantum or classical) and suppose that it undergoes a phase transition from an ordered into
a disordered phase. The transition is characterized by vanishing expectation values of the
initial observables and by rule, these observables become ill-defined or unpractical to work
with in the disordered phase. Initially it seems that one can say little or nothing about
the system beyond the phase transition. Fortunately, there is a way to circumvent this
problem and give a proper description for the system on the disordered side – via disorder
operators. These entities, as their name suggests, measure the amount of disorder in the
system and their eigenstates are the states whose presence indicates the disordered phase.
Accordingly, in the disordered phase, the disorder operators become well-defined and the
disordered states have the highest weights. The duality in this context simply means that
the disordered phase of the system can be viewed as the phase which experiences order
as expressed by the disorder operators. The disordered state can now be analysed using
many of the known techniques developed for ordered systems. The duality works the other
way around too: the initial operators, the ones that were ordered in the ‘ordered phase’
and became disordered in the ‘disordered’ phase, play the role of disordering agents in the
disordered phase: their reappearance implies that the order of the disorder operators is
destroyed and that the system is back in the ordered phase. Therefore, the duality makes
the meaning of words ‘order’ and ‘disorder’ relative to what one chooses as the appropriate
observables.

Let us illustrate this by a very simple (and historically the first) example of the duality,
the Kramers-Wannier duality construction for the Ising model. In terms of Ising spins, the
theory knows two phases, the ordered phase at low temperatures with all spins pointing in
the same direction and the disordered phase, experienced at high temperatures where the
average magnetization vanishes. An experimentalist equipped only with a machine capable

13
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of measuring spins would agree with the previous statement and there would be very little
to say about the disordered phase except that it appears as an entropy driven state with no
correlations whatsoever. Consider now what may happen if the same experimentalist could
build a machine that measures magnetization domain walls and their correlations instead of
spins. The experimentalist would decide that the high temperature phase appears ordered
as the domain walls are present everywhere and their correlations extend over the whole
system. The low temperature phase, on the other hand, seems disordered in terms of
domain walls. With the duality in charge, the disorder is the order in disguise and it seems
that this camouflage act is perfect.

When performing the dualization, perhaps the most difficult task is to identify the
disorder operators. In general, the dual order is carried by the topological excitations of
the direct order. In continuum field theories these topological excitations are contained in
field configurations that are singular (multivalued) and these will translate into topolog-
ical operators carrying quantized charges. It takes an infinite number of order operators
to construct a topological excitation so it seems fundamentally impossible for an ‘order
experimentalist’ to observe any kind of correlations in the disorder phase. This statement
on ‘dual censorship’ is surely correct for the Ising model in 2D where the domain wall
correlations cannot be measured by means of pure spin experiments. However, the state-
ment above is too strong as in certain cases of the duality, the disorder correlations can be
probed by means of order variables.

For our needs, we concentrate on a model that is very popular and used often as a
toy model for the dualization of a continuum field theory. It is the vortex duality in
2+1-dimensions [58, 59, 60], also known as the Abelian-Higgs duality. In the quantum
context this model may be alternatively interpreted as the Bose-Hubbard model in 2+1D
at zero chemical potential [61]. The ordered phase represents a neutral superfluid, whereas
the quantum disordered phase corresponds to a dual Meissner phase characterized by
Bose condensed vortex-particles. This incompressible state corresponds to the Bose Mott-
insulator [61].

On the ordered side, the excitation spectrum consists only of XY magnons. When
on the ‘dual side’, the excitations of the Mott-insulator are massive degenerate doublets
corresponding to particle and hole states (see Fig. 2.1). However, using the dual description
of the XY model, one finds one Higgs (amplitude) mode (irrelevant for the case of strong
type-II transitions) and two massive photons. As it will turn out, linear combination of
these two photons become the massive particle and hole excitations. Furthermore, with
the help of a simple expression relating the order and dual propagators (Zaanen-Mukhin
relation, Eq. (2.55)), we will demonstrate that the correlations of the dual order can in
principle be measured by means of order operators circumventing the principle of the ‘dual
censorship’.

This connection between the order and disorder based on the concept of duality seemed
to have been overlooked for quite a while and it was presented in a paper (co-authored with
Zaanen) [62]. In that paper, whose main ideas are part of this chapter, special attention
was given to the critical regime of the Abelian-Higgs model. This is a necessity since
the model in 2+1D is below its upper critical dimension and its critical state is strongly
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interacting. We present the complete description of this critical state (due to Hove and
Sudbø [63]) and derive the Green’s functions (superfluid velocity-velocity propagators) in
the critical regime relying on the dual critical propagators. Surprisingly, the transversal
and longitudinal dual photons appear to be quite different even though they are governed
by the same anomalous dimension, again reflecting the rather different status of ‘order’
(transversal) and ‘disorder’ (longitudinal) when measured through velocity correlators.

In our work on the disordering of elastic solids, this model plays a central role as the
theory of elasticity can also be dualized and the dual model is by construction equivalent
to the dual XY model with additional (Burgers) flavors. The nature of topological defects
in an elastic medium is far richer than that of a simple dual model and the aforementioned
duality works only if the topological defects driving the duality are limited only to dislo-
cations. That state of matter corresponds precisely with the nematic phase of the elastic
media as described in the introductory chapter and resting on the fact that ‘dual censor-
ship’ is violated in the Abelian-Higgs duality, the properties of the ‘dislocation disordered’
solid, i.e. nematic phases, will be investigated later.

This chapter is organized in the following way: in the first section we review the XY
model used as a playground for the Abelian-Higgs duality. Consequently, we perform the
dualization where the main step is the introduction of dual gauge fields [60]. The disor-
dering operators, vortices in this case, couple to gauge fields. We will devote the second
section to finding an effective theory describing the disorder operator dynamics. The third
section analyses Green’s functions of the model and calculates them (to Gaussian order)
both in the ordered and the disordered phase. The disordered phase Green’s functions
can be found only after the Zaanen-Mukhin relation is derived from the Legendre trans-
formation in the same section. In this third section we also invoke different gauge fixings
which can shed light on the physical interpretations of the gauge field degrees of freedom.
The next section presents novel results for the critical regime of the Abelian-Higgs model.
The critical response is used to patch the excitation spectrum between the ordered and
the disordered side of the model. Finally, the last section speculates on extensions to
higher dimensions based on some existing work [64] and suggests where the lessons of the
2+1-dimensional case might be used.

2.1 Vortex duality

The system of interest is the well-known Bose-Hubbard model in 2+1D at vanishing chemi-
cal potential [61]. Due to many interesting applications there is a vast amount of literature
about this model [53, 61, 63, 65, 66, 67, 68]. A short exposition of the dualization procedure
can be found in a paper by Zee [59].

The model is defined on a bipartite 2D lattice and in phase representations its Hamil-
tonian is

Ĥ =
1

C

∑
i

n2
i − J

∑
〈ij〉

cos(φi − φj); (2.1)
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Figure 2.1: The excitations in the weak/strong coupling limits of the Bose-Hubbard model
at zero chemical potential: The Goldstone boson (second sound) with linear dispersion (c) is
associated with the superfluid (phase ordered) state (a) at weak coupling. In the strong coupling
limit (b) a doublet of massive ‘excitons’ are found with gap ∆ (d) corresponding to propagating
unoccupied and doubly occupied sites, which can be alternatively understood at q → 0 as the ±1
angular momentum eigenstates of an O(2) quantum rotor.

ni and φi are the number and phase operators on site i, satisfying the commutation relation
[ni, φj] = iδij. The first and second terms in Eq. (2.1) represent the charging and Josephson
energy respectively. When the coupling constant g̃ = 2/(JC) is small, the Josephson
energy will dominate and the phase is ordered at zero temperature, while the excitation
spectrum consists of a single Goldstone mode (phase mode or second sound) shown in
Fig. 2.1a, c. On the other hand, when g̃ is large the phase is quantum disordered while the
number operator condenses such that ni = 0 modulo local fluctuations, signaling the Mott-
insulator. It is worth noticing that there are no finite temperature phase transitions as the
partition function is a smooth function of the temperature [69]. Of central interest is the
excitation spectrum of the Mott-insulator. In the rotor language [1], the ground state of the
Mott-insulator is the angular momentum singlet while the lowest lying excitations consist
of a doublet of propagating M = ±1 modes characterized by a zero-momentum mass gap
(Fig. 2.1d). In the Bose-Hubbard interpretation these have a simple interpretation in the
strong coupling limit (g̃ →∞) as bosons added (M = +1) or removed (M = −1) from the
charge-commensurate state (Fig. 2.1b), while their delocalization in the lattice produces
a twofold degenerate dispersion due to the charge conjugation symmetry of the model
Eq. (2.1).

We leave the propagator related questions aside for now as we first wish to establish a
connection between the original Bose-Hubbard model written in the Lagrangian formalism
and its dual counterpart that will turn out to be the Maxwell EM theory in 2+1D. To do so,
we expand the cosines and take the continuum limit, and obtain the effective long-distance
action density (Lagrangian)

LXY =
1

2g

[
1

c2ph
(∂τφ)2 + (∇φ)2

]
=

1

2g
(∂µφ)2. (2.2)
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The coupling constant g is proportional to the original coupling constant g̃. The spin-wave
velocity is given by the ratio of the stiffness and compression moduli c2ph = ρs/κs and set to
1 in the last step to express time in units of length τ ′ → cphτ . This velocity is supposed to
have the status of the ‘velocity of light’ in the theory. It is left implicit that the phase field
is compact, φ = φ + 2π. The phase variable φ is our order operator and it is well defined
as long as g � 1 since its fluctuations are strongly suppressed. The resulting state of
matter is a superfluid. On the other hand, in the limit g � 1 the phase can freely fluctuate
so it averages to zero. In the disordered phase, the phase φ is not a well-defined object
(multivaluedness) and it is better if we can substitute it with a (universal) field that has
well-defined values in both phases. The Hamiltonian strong-coupling regime of Eq. (2.1)
suggests that the number operator ni becomes well-defined in the Mott-insulating phase.
This is correct, but the number operator is not defined in the ordered phase, thus it is not a
universal field either. Besides, the ‘dual’ action has to be expressed in terms of topological
operators of the original model and these will originate in the phase degree of freedom.

When one deals with a compact U(1) field, the standard trick is to split the phase field
φ into a smooth and a multivalued part [70]

φ = φsm + φMV . (2.3)

φsm is a non-compact (unbounded) field describing the smooth (non-topological) fluctu-
ations of the phase variable. φMV enumerates the topological defects corresponding, in
this U(1) case, with vortices only. The vorticity is characterized through the non-trivial
quantized circulation acquired by the multivalued field∮

dφMV = 2πN. (2.4)

N is the (integer) winding number of the encircled area, being invariant under the group
of all smooth transformations of the phase.

Villain obtained quite accurate predictions for the disordered phase by taking the path
integral over the vortex charges Ni and treating the smooth part as a non-compact field
[71]. As we mentioned before, the aim of the duality is to remove the ill-defined phase field
φ and instead use the omnipotent dual operators. There are a number of different methods
to construct the dual theory having, naturally, the same outcomes. We use the one that
utilizes the Legendre transformation of the action (based on Ref. [60]). An alternative
approach is to employ Hubbard-Stratanovich fields taking the role of dual variables (see
Ref. [44]).

Let us begin by writing the partition function corresponding to the action density
Eq. (2.2):

Z =

∫
Dφ e−

R
dd+1xµLXY [φ,∂φ]. (2.5)

The action density is a functional of the phase field φ and its derivatives ∂µφ, and at first
we wish to get rid of these derivatives. Conjugate fields are introduced, playing the role of
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momenta

ξµ = −i ∂LXY

∂(∂µφ)
= − i

g
∂µφ. (2.6)

In a neutral superfluid, the fields ξµ have the physical intepretation of supercurrents. The
temporal component ξτ is conjugate to the time derivative of the phase and, henceforth,
corresponds to the number density. Notice that we work in the Euclidian space-time with a
conventional prefactor −i in the definition Eq. (2.6) [60]. In the real-time duality formalism
this factor is usually omitted. Inverting Eq. (2.6), phase field derivatives are expressed in
terms of the momenta (and eventually phase φ). Using these, we construct the Hamiltonian
density

HXY [φ, ξµ] = −iξµ∂µφ(φ, ξµ) + LXY [φ, ∂µφ(φ, ξµ)] =
g

2
ξµξµ. (2.7)

which is by construction a functional of the phase field φ and its conjugate momenta ξµ.
Our intention is to recover relevant physical quantities from the partition function which is
now defined as the integral over all the paths in phase space (φ, ξµ). However, the weighting
in a partition function is never given by the Hamiltonian, but rather by the dual action

Z =

∫
DφDξµ e−

R
dd+1xνLdual . (2.8)

To obtain the dual action (density) we have to ‘undo’ the Legendre transformation in
Eq. (2.7)

LXY,dual = HXY + iξµ∂µφ. (2.9)

The last term is treated differently in this step as we do not wish to return to an action
which is a function of the phase field φ. Therefore, the derivatives ∂µφ are not reexpressed
in terms of momenta ξµ, but instead split into the smooth and the multivalued part as
in Eq. (2.3). The smooth part can be first integrated by parts iξµ∂µφ → −iφ∂µξµ and
then integrated out producing the momentum conservation law (continuity equation of the
superflow)

∂µξµ = 0. (2.10)

The momentum conservation law is a direct consequence of the translational symmetry of
the action. The Euler-Lagrange varying principle gives

∂µξµ = ∂µ
∂L

∂(∂µφ)
=
∂L

∂φ
= 0. (2.11)

The speciality of the 2+1-dimensional model is that a divergenceless vector field obeying
conservation law Eq. (2.10) can be written as the curl of another vector field

ξµ = εµνλ∂νAλ. (2.12)
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This vector field Aµ has the property of an U(1) gauge field. The physical variable mo-
mentum ξµ as well as any other physically relevant quantity stays unchanged if we perform
a gauge (also referred to as gradient) transformation

Aµ → Aµ + ∂µα(xν), (2.13)

where α(xν) is an arbitrary smooth scalar function. The vector field Aµ is called the dual
gauge field and after the construction is complete, it will play the role of gauge potentials
in the dual Maxwell theory.

That the dual theory has to do with the Maxwell theory becomes clear directly after
the definition Eq. (2.12) is inserted back into the dual action Eq. (2.9). The term with the
singular part of the phase field is partially integrated with respect to the gauge field

iξµ∂µφMV = iεµνλ∂νAλ∂µφMV → iAλελνµ∂ν∂µφMV = iAλJλ. (2.14)

The minimally coupled topological current is

Jλ = ελνµ∂ν∂µφMV = ελνµ∂ν∂µφ. (2.15)

This is the vorticity current enumerating the density of singularities, as well as their kine-
matic currents. Indeed, the temporal current component (charge density) integrated over
some area gives the vorticity (number of vortices N) of that area∫

dxdy Jτ =

∫
dxdy ετab∂a∂bφ =

∮
dxa ∂aφ =

∮
dφ = 2πN. (2.16)

The spatial components Ji represent kinematical vortex currents. These can be thought of
as the product of topological charge and the velocity of the defect. The vortex current is
conserved

∂µJµ = εµνλ∂µ∂ν∂λφ ≡ 0. (2.17)

If we introduce the field strengths in the usual way Fµν = ∂µAν−∂νAµ, the Hamiltonian
part Eq. (2.7) will play the role of Maxwell dynamical term and we arrive at the total
dualized action Eq. (2.9))

LXY,dual → LEM = g
4
FµνFµν + iJµAµ. (2.18)

This construction shows that vortex particles described by the current density Jµ act
as sources for the gauge field Aµ and the latter plays the role of electromagnetic gauge
potential carrying force between the ‘charged’ vortices. Conversely, one can view the
Maxwell theory of electromagnetism (at least in 2+1D) as a description of the ordered
phase of an XY model in disguise.
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2.2 The disorder field

For any small but finite coupling constant g, closed loops of vortex-antivortex pairs will
appear in the system. By increasing the charging energy in the starting model Eq. (2.1),
i.e. by increasing the coupling constant g, the characteristic size of the loops increases. At
the critical value of coupling gc the size diverges and the system turns into a dense system
of strongly interacting vortex lines. According to Eq. (2.18) these lines behave precisely like
the world-lines of electrically charged particles. The unbinding transition and formation
of a dense tangle of world-lines is something we are familiar with: the system becomes an
Anderson-Higgs superconductor in terms of vortex charges [72, 73].

The Anderson-Higgs superconductor follows from the effective Ginzburg-Landau-Wil-
son action [60] describing the tangle of electrically charged particles. This is the last piece
in the complete dual description of the model Eq. (2.1), the dynamics of the dual gauge
fields is already recovered in Eq. (2.18) and we repeat here the famous proof from statistical
physics [60, 74, 75] that a gas of bosonic particles in d dimensions (or equivalently gas of
loops in d+1 dimensions with the extra dimension interpreted as time) can be mapped
onto the GLW action.

We now give one version of the proof for the ‘free bosons – GLW action’ mapping based
on Ref. [44]. Let us start with a single vortex. It behaves as a random walker in the system
with action proportional to the length of its world-line. The loop has to be closed because
the vorticity is conserved or in other words, a vortex in a superfluid cannot be created out
of nothing. A relativistic treatment means that the time direction is made equivalent to
the spatial directions. There is precisely one velocity cV that yields an isotropic space-
time configuration space by τ ′ → cV τ . The space-time is ‘isotropic’ when a contribution
of a world-line segment of length ∆x is equal to that of a line segment that extends for
∆τ = ∆x/cV in a temporal direction. If ε is the ‘action cost’ per loop length, then the
total action of a single loop is given by the relativistic expression

LV = ε

∮
ds
√
ẋµẋµ = ε

∮
ds
√
c2V τ̇(s)τ̇(s) + ẋ(s) · ẋ(s). (2.19)

One could ask why we do not employ the ‘non-relativistic’ action for a boson particle (stan-
dard kinetic energy term L ∼ m

2
(∂τx)2)? The reason is that the initial action Eq. (2.2)

is relativistic, i.e. invariant under ‘Lorentz boosts’ where the phase velocity cph plays the
role of light velocity. If vortices inherit their dynamical properties exclusively from the
Lagrangian Eq. (2.2) and if the temperature is precisely zero (this ensures that the con-
figuration space is truly relativistic), the resulting effective theory of defects must also be
invariant under the relativistic boosts. It is well known from special relativity that the
length of a particle world-line as given in Eq. (2.19) is invariant under boost transforma-
tions (with the velocity cV used as the light velocity in the boosts) and that it defines
the ‘Lorentz-invariant’ action [76]. Thus, for a zero temperature relativistic XY model,
the vortex velocity cV is identical to the phase velocity cph and as we will argue later this
degeneracy in velocities is necessary in order to connect the spectrum of the dual Maxwell
theory to that of the Bose-Hubbard Mott-insulator as we did [62].
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Even if there were another mechanism responsible for the dynamics of the vortices,
or if the temperature were finite (implying the compactified time axis), the underlying
theory ultimately has to reflect the dynamics of the vortices by having some other, vortex
propagation, velocity cV in place of the phase velocity as the only difference. In the case of
the BCS superconductor [17] the velocity associated with the condensate is proportional
to Fermi velocity vF [77, 78]. As a consequence, the electric and magnetic screening in
a superconductor, although originating in the same superconducting gap ∆, have highly
discrepant characteristic lengths. The magnetic sector (the transversal photon) is governed
by the light velocity c and the London penetration length is λL = c/∆. This length is many
orders of magnitude larger than the electric screening length λe ∼ vF/∆.

The velocity cV is alternatively implied by the (relativistic) Klein-Gordon equation for
the bosonic vortex field. A bosonic field has to obey equation of motion [79].

0 = (∂2
µ +m2)Ψ =

(
1

c2V
∂2

τ + ∂2
i +m2

)
Ψ. (2.20)

The collective field Ψ is the wave function of a single or multiple bosons and it relates to
(bosonic) matter currents via

Jµ = i
2

[
(∂µΨ)Ψ−Ψ∂µΨ

]
. (2.21)

These currents must obey the current conservation law

0 = ∂µJµ = i
2

[
(∂2

µΨ)Ψ−Ψ(∂2
µΨ)

]
(2.22)

and this will be the case if we use the velocity cV to convert time to length in the definition
(2.21) for the static charge

Jτ = i
2

1
c2V

[
(∂τΨ)Ψ−Ψ∂τΨ

]
. (2.23)

After this interlude on the velocities, let us now return to a partition function corre-
sponding to one loop/random walker. For convenience, consider the problem on a (hyper-
)cubic lattice with spacing a (which acts as a necessary cut-off). Note that the discretisation
in the temporal direction is implied as ∆τ = a/cV . A single loop of length aN is a random
walker which returns to its initial position (loop has to be closed). Knowing that the ac-
tion is proportional to the world-line length, we can write the partition function of a single
defect loop as

Z1 =
∑
xµ,N

CN(xµ, xµ)

N
e−εaN . (2.24)

The length N of the loop can run from zero to infinity, but longer loops will be exponen-
tially suppressed. The denominator factor N ensures that each loop is counted only once
and CN(xµ, yµ) is the number of loops of length N running from xµ to yµ. The problem of
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finding CN is equivalent to the diffusion problem in a d + 1 = D-dimensional embedding
space. The number of possible loops is determined from the recursion relation

CN(0, xµ) =
∑
aµ

CN−1(0, xµ − aµ). (2.25)

The vector aµ points toward nearest neighbours where the particle was present in the
previous step (time (N − 1)∆τ). The ‘diffusion’ equation Eq. (2.25) is easier to solve in
Fourier-transformed form

CN(pµ) =

∫
dxν CN(xµ)e−ipµxµ = CN−1(pµ)

∑
aµ

e−ipµaµ . (2.26)

The boundary condition C0(0, xµ) = δ(xµ) together with Eq. (2.26) implies a solution

CN(pµ) = [P (pµ)]N (2.27)

where we introduced the ‘sum of cosines’ P (pµ), often seen in problems on cubic lattices.
At large distances (small wavelengths) it can be expanded up to quadratic order

P (pµ) =
∑
aµ

e−ipµaµ = 2D − a2pµpµ +O(p4). (2.28)

In the partition function Eq. (2.24), the solution Eq. (2.27) together with expansion

identity
∑∞

N=1
xN

N
= − ln(1− x) yields the partition function

Z1 = −
∑
pµ

ln
[
1− P (pµ)e−εa

]
. (2.29)

The grand canonical partition function of a gas of non-interacting loops is obtained by
exponentiation of the single loop partition function

Ξ = eZ1 =
∏
pµ

1

1− P (pµ)e−εa
≡
∏
pµ

[G0(pµ)]−1. (2.30)

The same product of the propagators is, on the other hand, reproduced if we perform a
Gaussian integration over the complex fields Ψ

Ξ =

∫
DΨDΨ e−

1
2

R
dxνΨ(xµ)G0(xµ)Ψ(xµ). (2.31)

The inverse propagator in the coordinate space with the continuum limit becomes the
bosonic (Klein-Gordon) propagator

G0(xµ)−1 = (a2e−εa)
[
−∂µ∂µ +m2

]
, (2.32)
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with the ‘mass’ defined by

m2 =
eεa − 2D

a2
. (2.33)

The stability of the ground state with no vortices present (vacuum) depends on the
sign of the mass Eq. (2.33). When the energy/action costs of vortices are high, they can
be present only as bound pairs in the system. This is reflected in positive mass term
Eq. (2.33). On the other hand, if energy cost ε is small, the meandering entropy of vortex
world-lines can overcome it and the defects proliferate. This is seen through the mass term
Eq. (2.33) that becomes negative. The transition between the two phases occurs when at
critical value of coupling constant

εc =
1

a
ln
[
2D + a2m2

]
. (2.34)

When the vortices condense one has to regulate the density of the vortex tangle (average
number of vortices per volume). This is solved by a short-ranged repulsion term ω|Ψ|4
which represents a ‘steric’ repulsion between the world-lines. In the appendix A we treat a
problem of non-relativistic diffusion based on results by Kiometzis et al. [75], generalizing
their findings to a system of random walkers with an arbitrary repulsion potential between
them. As it turns out, the two-body repulsion can always be mapped to a Ψ4 term.

The Gaussian part of the random walker action Eq. (2.32) and the ‘steric’ repulsion
together yield the action describing systems such as the vortices in the Abelian-Higgs
duality. This action is precisely the Ginzburg-Landau-Wilson Ψ4 action

LGLW = 1
2
|∂µΨ|2 + 1

2
m2|Ψ|2 + ω|Ψ|4, (2.35)

so we have a proof that vortices can be mapped onto a GLW action.
The ordered and disordered phases of the XY model Eq. (2.2) have other names, based

on the vortex duality and their interpretation in terms of the standard Maxwell theory.
The ordered (superfluid) phase of the XY model is called Coulomb (vortex vacuum) and
it is characterized by massless gauge fields Aµ. On the other hand, the disordered (Mott-
insulating) phase is interpreted as a superconductor in the dual theory and it is also called
the dual Higgs phase. The Higgs phase is a fully gapped (incompressible) superconductor
unless there are additional constraints on gauge fields or currents that can interfere with
the Higgs mechanism.

The vacuum state of the Higgs (vortex-condensed) phase is determined by the minimum
of the static potential between vortices (last two terms in Eq. (2.35)). The absolute value
of the GLW order parameter field is

Ψ0 =

√
−m2

4ω
, (2.36)

and it represents the vortex tangle density at which the energy gains through further
proliferation of vortices are exactly compensated by their repulsion. Fluctuations in the
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Higgs field amplitude can be ignored (strong type-II superconductor limit). The phase of
the complex field, on the other hand, appears as the physical degree of freedom and if the
bosons (vortices) were not interacting with the gauge fields, this degree of freedom would
correspond to the Goldstone mode of the broken global U(1) symmetry [80].

The above picture is, however, not complete as we still need to find the role of coupling
between the vortices and the gauge fields in the GLW action Eq. (2.35). To do so, we again
analyse a single vortex excitation. At this point we have to go back to 2+1D duality for the
reasons that originate in geometrical structure of defects. Namely, the vortex defects are
point particles (tracing world-lines in the imaginary direction) only in the 2+1D Abelian-
Higgs model. In any higher dimension of the embedding space, the vortices become lines,
branes, etc. and action Eq. (2.35) is not applicable anymore. Later, in section 2.5 we will
analyse higher-dimensional Abelian-Higgs duality and review problems associated with the
dimensionality of vortex excitations in higher dimensions.

Let us parametrize the vortex world-line as xµ(s′) where the parameter s′ runs from 0
to s and the boundary condition xµ(s) = xµ(0) is imposed in order to have a closed defect
loop. This vortex excitation carries vortex current, expressed in terms of path xµ(s′) as

Jµ(xν) = 2πNδµ(xν). (2.37)

The winding number of the vortex is N . The line-delta function is defined as the
tangent of the world-line path, i.e.

δµ(xν) =

∮ s

0

ds′ ∂s′xµ(s′)
∏
ν

δ [xν − xν(s
′)] . (2.38)

The current conservation law Eq. (2.17) can be easily demonstrated using total derivative
identities

∂µJµ = 2πN∂µ

∮ s

0

ds′ ∂s′xµ(s′)
∏
ν

δ [xν − xν(s
′)]

= 2πN

∮ s

0

ds′ ∂s′xµ(s′)δ′ [xµ − xµ(s′)]
∏
ν 6=µ

δ [xν − xν(s
′)]

= 2πN

∮ s

0

dδ [xµ − xµ(s′)]
∏
ν 6=µ

δ [xν − xν(s
′)] ≡ 0. (2.39)

The definition of the vortex current Eq. (2.37) can be substituted in the minimal cou-
pling term of the action to obtain the coupling of a single vortex line to gauge degrees of
freedom

SAJ = i

∫
dxν Aµ(xν)Jµ(xν) = i

∫
dx Aµ(xν)

∮ s

0

ds′ ∂s′xµ(s′)δ [xν − xν(s
′)]

= i

∮ s

0

ds′ ∂s′xµ(s′)Aµ(xν(s
′)) = i

∮
dxµAµ(xν). (2.40)
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This tells us that a vortex behaves as a free particle moving in the gauge field potential
Aµ. The canonical momentum immediately follows as

Pµ = pµ + Aµ = i∂µ + Aµ, (2.41)

which in turn implies that instead of the regular derivatives in the Ginzburg-Landau-Wilson
action Eq. (2.35), one should use the covariant derivatives ∂µ − iAµ. The total action,
including both the dynamic Maxwell term and the Ginzburg-Landau-Wilson action of the
vortex condensate is

LEM,full = g
4
FµνFµν + 1

2
|(∂µ − iAµ)Ψ|2 + 1

2
m2|Ψ|2 + ω|Ψ|4 (2.42)

corresponding to the partition function

Z =

∫
DAµDΨDΨ F(Aµ,Ψ,Ψ) e−

R
dxµ LEM,full . (2.43)

An alternative way to deduce the minimal coupling Eq. (2.41) in the GLW action
Eq. (2.42) is related to the fact that vortices behave as charged particles in an electro-
magnetic field governed by the potentials Aµ. It is well-known that, in order to preserve
gauge invariance of the action, the hopping in the EM field must change the phase of the
wave function by iAµdxµ (i.e. the Wilson loop [55]). This adds to the standard phase
change which equals ipµdxµ, so the standard derivative has to be replaced by the covariant
derivative Eq. (2.41).

The Maxwell part of the action Eq. (2.42) is invariant under the gradient transforma-
tion Eq. (2.13). The same holds for the second, GLW part of the action provided that
the transformation of the gauge fields is accompanied by the change in the phase of the
collective bosonic field Ψ(xν) → Ψ(xν)e

iα(xν). In order to keep the integration only over
physically distinct configurations, i.e. to avoid redundant configurations implied by the
arbitrariness of the gradient function, we restrict the path integral only to one particular
choice of the gradient function, that is to one particular gauge fix. The gauge fix is implied
by a constraint F that acts both on the gauge fields and the phase of the bosonic field.
In the next section, some particular choices will be made for the gauge fix, pending the
content of the problem. The gauge fix is usually chosen in such way to either simplify the
work or to give valid interpretations to physical results of the theory. However, regardless
of the choice of the gauge fix, the physical results must always be the same.

The most important consequence of the coupling between the disorder field and the
gauge field is that the global phase symmetry of the disorder field Ψ has changed into a
local (gauge) symmetry. The complex phase mode in the disordered phase is therefore
not a Goldstone mode. Instead, it plays the role of the vortex condensate sound as will
become clear in the next section. In the Higgs/Meissner phase, the complex phase degree
of freedom will be represented by a gapped EM photon and eventually the spectrum of
the incompressible Mott-insulator will be recovered. It should be noted that, in contrast
to a popular belief, a gauge symmetry cannot be broken [81] and the order carried by this
phase is in fact the topological order [82, 83]. Accordingly, we never call the phase with
massive gauge fields the phase with the broken gauge symmetry. Instead, it is referred to
as the Higgs phase of the gauge theory.
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2.3 Green’s functions, the Zaanen-Mukhin relation

and the ‘dual censorship’

Our toy model, the XY spin model given by Eq. (2.2), is formulated in terms of spins
and one would like to think of the excitations in the model as magnons (at least in the
ordered phase). On the other hand, in the previous section we hopefully managed to
convince the reader that the model can alternatively be view as a Maxwell theory with
photons as the primary degrees of freedom. The duality presented in the previous section
can be utilized only when we are able to express the propagators of the original XY model
in terms of photon propagators. It seems that until recently a direct relation between
the order propagators and the dual propagators was not established. In Ref. [44] such a
relation (Zaanen-Mukhin) was derived for the case of elastic propagators and their dual
counterparts (and we will use it in later chapters). In a follow up paper [62] (together
with Zaanen), the Zaanen-Mukhin relation was used to address the Green’s functions of
the XY model, showing that the dual censorship between the order and disorder phase
is not absolute as in the case of Kramers-Wannier duality. In other words, even when
the system is in the disordered XY phase, it is possible to observe correlations of the
topological disorder operators by means of order operators. In this section these matters
are reviewed, the Zaanen-Mukhin relation is derived, the spectrum of the model is found
in both ordered and disordered phase and a link with the strong coupling expansion of
the model is established. The dual gauge fields are given the status of physical degrees of
freedom by imposing appropriate gauge fixes for each separate phase.

Let us begin our exploitation of the XY model by asking the most natural physical
question: what are the Green’s functions, i.e. XY phase propagators of the model? The
time has a specific role in these matters. For example, despite the ‘relativistic’ form of the
XY action Eq. (2.2), in the ‘Josephson junctions’ action Eq. (2.1) time had a specific role,
different from the spatial components. This is true for most other physical applications of
the XY model, as well as for other physical theories like the elasticity theory introduced
later. Any finite temperature, although not at the focus of our attention, isolates the time
direction from the spatial counterparts by its compactification. One should not forget
how much relativistic our experiments are. Namely, all our laboratories and machines are
static only in a specific reference frame and their ‘world-lines’ define a preferred direction
in space-time which is observed (by a machine or a person sitting next to it) as the time
direction in that frame of reference. Therefore, measurable quantities involving spatial
components of fields usually have different status from their ‘temporal’ counterparts. In
this section the superfluid velocity is put forward as the experimentally relevant observable
of the model and we calculate its correlation functions. The superfluid velocity is related
to gradients of the phase field from the model Eq. (2.2). Based on the arguments presented
here, we are interested only in the spatial superfluid velocities (∂iφ) whereas the temporal
component (∂τφ) is left out.

The claims in the previous paragraph are true for most of the physically relevant ques-
tions, like the outcomes of the human-devised experiments. Nevertheless, there are still
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some situations left where the ‘relativistic’ nature of the action should be appreciated and
where time and space have to be treated on equivalent footing. This will certainly be the
case when the elastic theory is utilized to recover the emerging theory of gravity [84, 85],
but also in cases of loop gas formulation (appendix A), introduction of true topological
defects and many other technical details that are resolved straightforwardly in the ‘rel-
ativistic’ interpretation. Signifying the importance of both cases, both relativistic and
non-relativistic versions of the physical variables will be defined. However, due to the
special direction of time in the rest frame of experiments, the non-relativistic versions will
receive the full treatment and they will be in charge when it comes to interpretation of ex-
perimental observables. The difference in status of order and disorder correlations probed
by means of order operators has much to do with the special role of the time direction.

The first natural order observable to consider should be the XY phase φ, but since it
becomes ill-defined in the disordered phase, we take the superfluid three-velocity

vµ(x) = ∂µφ(x) (2.44)

as the natural, ‘primitive’ observable of the orderly side. In the ordered phase, the mo-
mentum space velocity-velocity propagator is proportional to the phase-phase propagator,
〈〈vµ|vν〉〉q,ω = qµqν〈〈φ|φ〉〉q,ω and the latter suffices to calculate the order parameter prop-
agator 〈〈eiφ|eiφ〉〉 (e.g., Ref. [61]). In the disordered phase, φ itself becomes multi-valued
and meaningless, but vµ continues to be single-valued and meaningful.

In the phase-ordered state the theory Eq. (2.2) is Gaussian and the velocity propagator
is easily computed by adding the external source term to the Lagrangian,

L [Jµ] = LXY + Jµ∂µφ, (2.45)

followed by taking the functional derivative of the generating functional

〈〈vµ|vν〉〉 =
1

Z

∂2Z[Jµ]

∂Jµ∂Jν

∣∣∣∣
Jµ=0

. (2.46)

The non-relativistic propagator measured in condensed matter experiments represents only
the subset of components of the relativistic propagator Eq. (2.46) with spatial indices:
〈〈vi|vj〉〉. In the phase ordered state of the XY model one can integrate the Gaussian
Goldstone fields in Eq. (2.45) with the result,

Z[Jµ] =
∏
pµ

√
2πg

p2
e

g
2
Jµ

pµpν

p2 Jν . (2.47)

and the propagators follow immediately from the identity Eq. (2.45). The relativistic and
non-relativistic versions are respectively,

〈〈vµ|vν〉〉 = g
pµpν

p2
, (2.48)

〈〈vi|vj〉〉 = g
c2phq

2

ω2
n + c2q2

PL
ij , (2.49)
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denoting the three-momentum by pµ = (ωn, cphq) and the spatial part of the momentum by
q. The longitudinal projection operator Eq. (1.11) is defined in the introductionary chapter.
There is just one propagating degree of freedom in the system and it can be thought of as
a XY magnon which is the Goldstone mode of the broken global U(1) symmetry.

Of course, the above procedure no longer works in the absence of the phase conden-
sate. At any finite disorder there are configurations present containing topological defects
(vortices), which are ignored in the path integral Eq. (2.47) but these are easily handled
in the language of the dual disorder field theory. There is, however, one important step to
be made that we already announced: the dual theory is expressed in terms of dual (gauge)
fields and we need to make a connection between the dual and the original Green’s func-
tions. Although one might be tempted to think that, due to the linear relation Eq. (2.6),
the propagators differ only by a prefactor, the nature of the Legendre (or alternatively the
Hubbard-Stratanovich) transformation yields a different identity. Begin with the action
Eq. (2.45) and repeat the dualization as given in section 2.1. Interestingly, the conjugate
momenta acquire an additional term from the external source current term Eq. (2.45)

ξµ = − i
g
∂µφ− iJµ. (2.50)

When this identity is used in place of Eq. (2.6) to substitute derivatives ∂µφ, the Hamilto-
nian density Eq. (2.7) acquires additional terms

HXY = g
2
ξµξµ − g

2
JµJµ + igJµξµ. (2.51)

The double derivative of the partition function yields

∂2Z[Jµ]

∂Jµ∂Jν

∣∣∣∣
Jµ=0

=

∫
DξµDφ

∂2

∂Jµ∂Jν

e
R

dxν

“ g
2
JµJµ−igJµξµ−

g
2

ξµξµ−iξµ∂µφ
”∣∣∣∣
Jµ=0

(2.52)

=

∫
DξµDφ (gδµν − g2ξµξµ) e

R
dxν

“
−g

2
ξµξµ−iξµ∂µφ

”
(2.53)

= Z
(
gδµν − g2〈〈ξµ|ξν〉〉

)
, (2.54)

which implies the following exact relationship between the velocity and the supercurrent
propagators

〈〈vµ|∂νφ〉〉 = gδµν − g2〈〈ξµ|ξν〉〉. (2.55)

Because ξµ = εµνλ∂νAλ this implies that in fact the phase velocity/spin wave propagator is
proportional to a linear combination of the physical photon propagators of the dual gauge
disorder-field theory. This implies that the poles of the magnon and photon propagator
have to coincide and this has to be because both describe the same physics. However, the
pole strengths might be quite different reflecting the ‘dual relativity principle’: pending
the use of either order or disorder ‘tools’ one might get a very different view of the same
underlying reality. The result Eq. (2.55), first derived in Ref. [44], shows that at least in the
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Abelian-Higgs case, the two observers should actually agree more on what they see than
one could have expected a-priori. The key is that although the vortex condensate falls prey
to dual censorship, the observer equipped with the ‘orderly measuring machines’ can still
learn much about the dual world because he/she can probe the dual photons according to
Eq. (2.55).

Let us exercise these notions in the simple case of the phase ordered state. We know the
answer (the Goldstone mode, Eq. (2.48), we know the dual side (Maxwell theory, FµνF

µν),
and we know how these relate (the ‘Zaanen-Mukhin’ relation, Eq. (2.55). It is indeed a
straightforward exercise.

Although the dynamics is fully relativistic, the questions of relevance to condensed
matter experimentalists are not relativistic: only the spatial components of the propagator
are measurable (Eq. (2.49)). This makes it convenient to use the Coulomb gauge fix. The
Maxwell action in momentum-Matsubara frequency space becomes, including the external
sources Jext.

µ ,

LEM = g
2

(
A†

τ ,A
†)( q2 −iωn〈q|

iωn|q〉 ω2
n1̂ + c2phq

2P̂ T

)(
Aτ

A

)
+ iJext.

τ Aτ + iJext. ·A†.(2.56)

where we have explicitly indicated the time (Xτ ) and space (X) components of the gauge
fields and currents. The bra and ket in the gauge field propagator represent rows and
columns qi, respectively.

Provided that we choose a gauge fix F that does not act on the temporal component
Aτ , the temporal component can be integrated out. This yields the usual Lagrangian with
Coulomb interactions between static sources,

LEM = 1
2g

J†τJτ

q2
+ g

2

(
ω2

n + c2phq
2
)
A†P̂ TA +

+i(JL −
iωn

q
Jτ )A

†
L + iJP̂ TA†. (2.57)

The longitudinal component AL is unphysical (its source is iωnJτ −qJL → ∂τJτ +∂iJi = 0)
and it should be removed by the Coulomb gauge

0 = ∂iAi = −qAL. (2.58)

We end up with two propagators for the gauge fields, as it should in 2+1D. We find one
dynamical photon,

〈〈A†
i |Aj〉〉 =

P T
ij

g(ω2
n + c2phq

2)
. (2.59)

and a propagator taking care of the Coulomb interactions between the static sources,

〈〈A†
τ |Aτ 〉〉 =

1

gq2
(2.60)
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This is of course textbook electromagnetism, but be aware of the twist in the interpretation.
The outcome is: the theory is carrying a ’Goldstone photon’ (AT , Eq. (2.59)) and it can
mediate as well interactions between static vortices (Aτ , Eq. (2.60)).

Although a relativity textbook issue, let us make an observation on the seemingly
paradoxical nature of the Coulomb gauge fix. At this point one might object that the
Coulomb law given by the first term of the action Eq. (2.57) violates the causality of
the standard Maxwell electrodynamics. First of all, in imaginary time formalism there
is no causality issue as the disorder is just represented via path integral over all possible
configurations, including the ones that would correspond to motions with velocities greater
than that of light when imaginary time is rotated to real time. However, disregarding the
contribution to the action from the thermal disorder, one finds, after rotation to the real
time, term ρ2

q2 . Interpreting this naively, an appearance of a charge at a certain point in
the system would be immediately detectable in the whole system, rendering the causality
principle invalid. However, the appearance of the charge (spontaneous or not) is strictly
forbidden due to the current conservation law Eq. (2.17). The direct violation by inserting
extra charges is therefore not possible. Nevertheless, one might consider a rearrangement
of charges that would be detected instantaneously, due to a change in dipole, quadrupole,
octupole, etc. potentials. Such a process is in fact used for radio transmission. All antennae
play the role of oscillating dipoles. Due to the oscillating charge, a current occurs coupling
to the transversal electromagnetic field. It is these photons, travelling at the velocity of
light, that transport information from site to site. The dipole and higher order potentials
on the other hand cannot be detected instantaneously due to the advanced potentials in
the actions that cancel their strength.

We are now in the position to evaluate the ’Zaanen-Mukhin’ relation Eq. (2.55). For
this purpose, we are only interested in the spatial components of the supercurrents ξµ. The
supercurrent propagator is easily found by using the definition Eq. (2.12), and the results
for the gauge field propagators Eqs. (2.59, 2.60). We find for its spatial components,

〈〈ξ†i |ξj〉〉 =
1

g

[
ω2

n

ω2
n + c2phq

2
PL

ij + P T
ij

]
. (2.61)

Using now the Zaanen-Mukhin relation Eq. (2.55),

〈〈vi|vj〉〉 = gδij − g2〈〈ξi|ξj〉〉 = g[PL
ij + P T

ij ]− g

[
ω2

n

ω2
n + c2phq

2
PL

ij + P T
ij

]

= g
c2phq

2

ω2
n + c2q2

PL
ij . (2.62)

After this long detour, we indeed have managed to recover the spin wave propagator
Eq. (2.49)!

The lesson following from this simple exercise is that the dual photon language is in
a way more complete than the description in terms of phase fields, in the sense that the
gauge fields keep track in an explicit way of both the capacity of the medium to propagate
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Goldstone bosons and the fact that it mediates interactions between its topological excita-
tions. The Zaanen-Mukhin relation filters out the Goldstone sector from the ’omnipotent’
dual gauge sector, keeping its topological side (the Coulomb propagator, requiring vortex
sources) completely hidden from the eye of the ’orderly’ observer.

Surely, this dual route is a rather inefficient way to derive the propagator of a Goldstone
mode. This changes drastically in the phase disordered state. Resting on the fact that
the dual gauge theory is now governed by order, precise information on the second sound
propagator can be extracted with barely any extra investments. The only other option is
the strong coupling expansion in the Hamiltonian language and this becomes very tedious
at intermediate couplings.

The phase disordered state corresponds to the Higgs phase of the gauge theory Eq. (2.42),
corresponding to the state where vortex loops have blown up and the vortices have Bose-
condensed. As a consequence, the bosonic disorder field Ψ = |Ψ0|eiφV acquires a finite ex-
pectation value. This theory is fully relativistic, as we explained, and this vortex condensate
is literally like the U(1) Higgs phase of high energy physics [86]. It will turn out to be quite
convenient for the interpretation of the results to consider a non-relativistic extension of
the theory characterized by a condensate velocity cV , which is different from the spin-wave
velocity cph, entering the time components of the covariant derivatives ∼ 1

cV
(∂τ − iAτ ).

Let us employ the usual unitary gauge, corresponding to fixing the condensate phase
φV = 0. The finite expectation value of the disorder field results in the familiar Higgs term
in the action

LHiggs = 1
2
|Ψ0|2

[
1

c2V
AτAτ + AiAi

]
. (2.63)

The only specialty is the velocity cV . In high energy physics this is the light velocity while
in the non-relativistic condensates of condensed matter physics cV is the sound velocity (in
BCS theory ∼ vF [72, 73, 77, 78]), which is vanishingly small compared to the light velocity
with the consequence that one can get away with a time independent Ginzburg-Landau
theory.

We now follow the same route as in the case of the ordered phase. Adding the Higgs
term the Lagrangian becomes,

Lfull = g
2

(
Aτ

A

)†( q2 + Ω2

c2V
−ωn〈q|

−ωn|q〉 (ω2
n + Ω2)1̂ + c2phq

2P̂ T

)(
Aτ

A

)
+ iJτA

†
τ + iJ ·A†.(2.64)

We introduced a convenient notation for the Higgs gap Ω, defined by

Ω2 =
|Ψ0|2

g
. (2.65)

Since the gauge has already been fixed, the temporal components Aτ can be safely
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integrated out,

Lfull = g
2
A†
[
Ω2(ω2 + c2V q

2 + Ω2)

c2V q
2 + Ω2

P̂L + (ω2
n + c2phq

2 + Ω2)P̂ T

]
A +

iJext.

[
1̂− c2V q

2

c2V q
2 + Ω2

P̂L

]
A† + 1

2g

Jext.†
τ Jext.

τ

q2 + Ω2

c2V

. (2.66)

The external currents Jext.
µ are separated from the internal ones (disorder currents) as they

do not have their own dynamics and are rather controlled from the outside (by experi-
mentalists). From the way these currents couple to the gauge fields we can interpret the
external source fields physically as infinitesimal test charges or currents associated with
the experiment. The last term corresponds to the interactions between the static vortices
which are now short-ranged. The interest is in the dynamics of the gauge fields itself.
As before, we find a transversal photon AT characterized by a spin-wave (second sound)
propagator which has acquired a Higgs mass. In addition, we find an extra longitudinal
photon (the first term) which is now physical. This is also characterized by the same Higgs
mass but it is propagating at the condensate velocity, showing that it represents the phase
rigidity of the dual superconducting matter sector.

The propagators for the gauge fields are easily determined from the inverse of the full
action Eq. (2.64). The superfluid current propagator is decomposed into longitudinal and
transversal parts ξL,T (parallel and perpendicular to the momentum q respectively) and
the propagators are found to be

〈〈ξL|ξL〉〉 = 1
g

ω2
n

ω2
n + c2phq

2 + Ω2
, (2.67)

〈〈ξT |ξT 〉〉 = 1
g

ω2
n + c2V q

2

ω2
n + c2V q

2 + Ω2
. (2.68)

Using now the Zaanen-Mukhin relation 2.55 and the momentum propagators Eq. (2.67 -
2.68), we obtain the result for the non-relativistic propagator for the superfluid velocity in
the disordered phase,

〈〈vi|vj〉〉 = g

[
c2phq

2 + Ω2

ω2
n + c2phq

2 + Ω2
PL

ij +
Ω2

ω2
n + c2V q

2 + Ω2
P T

ij

]
. (2.69)

The spectral response from this propagator is plotted on Fig. 2.2b.
The longitudinal (first) term represents, as before (Eq. (2.62)), the correlations asso-

ciated with the smooth part of the phase field : this is literally second sound (or the XY
spin-wave) acquiring a mass associated with the disappearance of the superfluid rigidity at
large lengths and times. We notice that in the static limit (ωn → 0) the longitudinal part
becomes a constant, signaling that even at the shortest distances superfluid correlations
have disappeared. This makes sense: when vortices populate the whole system, then any
long-living correlation is destroyed even between two neighboring sites when one waits long
enough.
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Figure 2.2: Spectral functions associated with the superfluid velocity-propagator, com-
puted on the Gaussian level using the dual theory . These results should be accurate deep
inside the ordered and disordered phase. (a) The ordered (superfluid) phase: the second sound
pole of Fig. 2.1c is recovered as it should. (b) The disordered (Mott insulating) phase: we used
here a condensate velocity (cV ) which is half the phase velocity cph for the mere purpose to make
visible the different behaviors of the strength of the second sound (higher branch) and dual (vor-
tex) condensate (lower branch) poles. In reality these velocities are the same and the modes are
degenerate. For q → 0 the pole strengths of the two modes are the same, while they are governed
by the same Higgs mass, and they can be combined in the ±1 helicity modes as expected from
the strong coupling expansion in the Hamiltonian formalism (Fig. 2.1d). However, for increasing
momentum the condensate pole gradually loses strength while the second sound pole becomes
more and more like the ‘orderly’ result of (a), reflecting that at distances short compared to the
dual London penetration depth the medium ‘rediscovers’ the order.

The second, transversal term is the interesting one: we indeed find a second mode
and although it has the same mass as the gapped second sound it propagates with the
condensate velocity. It is of course the longitudinal photon reflecting the dynamics of
the dual superconducting vortex matter. In order for the superfluid velocity correlator
to acquire a non-zero transversal component it is actually a requirement that the phase
field becomes non-integrable. This becomes clear by inspecting the transversal part of the
supercurrent Eq. (2.68),

ξT = −ieT
i ξ

i = −eT
i

∂i(φsm + φMV )

g
(2.70)

= −1
g
eT

i

(
iqeL

i φsm + ∂iφMV

)
= −1

g
eT

i ∂iφMV ,

where the smooth part has disappeared since it makes no sense to have derivatives in the
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transversal direction for the case of smooth fields.

Let us analyse the result Eq. (2.69) in more detail. The velocity cV has done its job in
establishing that the transversal poles of Eq. (2.69) are indeed due to the superconducting
vortex matter. Now we can analyse the special case of the relativistic zero-temperature
XY model where the vortex condensate velocity is the same as the spin-wave velocity
cV = cph ≡ c. In this setup, the longitudinal and transversal modes become degenerate as
they should because of the degeneracy associated with the n = ±1 excitons, trivially seen in
the Hamiltonian formalism. A different issue is the pole strength of the second sound (IL)
and condensate poles (IT ) as measured by the velocity-velocity correlator, characterized
by the ratio,

IL
IT

= 1 +
c2q2

Ω2
(2.71)

Giving this a minute of thought this makes a perfect sense. First, at q = 0 both modes
at real frequency ω = Ω have the same weight. It follows from the Hamiltonian formalism
that at wavelengths large compared to the London length the excitons correspond with
the helicity ±1 eigenstates of the angular momentum of the O(2) quantum rotors. The
supercurrents have the status of canonical momenta and should therefore be combined in
currents with definite helicity ξ±1 ∼ ξL ± iξT . The implication is obvious: at q → 0 the
longitudinal and transversal poles of the velocity propagator should have the same strength
because all what exists in this limit is the helicity eigenstates.

What is changing at smaller distances? The characteristic momentum scale is of course
the inverse dual London penetration depth qL ' 1/λL = Ω/c and from Eq. (2.71) it follows
that at larger momenta the strength of the dual condensate pole decreases quadratically
in momentum relative to that of the second sound pole. Within the confines of this
Gaussian treatment this makes again sense. At these short times and distances one enters
a regime where one is probing mainly the phase ordered matter forming the background
in which the vortices move. This matter is the same stuff as the fully phase ordered
matter and accordingly it should carry the same Goldstone excitation. Eq. (2.69) tells
how to interpolate between the disorder physics at q → 0 with its number eigenstates
and the phase ordered regime at large momenta: the dual condensate pole loses its weight
gradually, in fact in the same way as the Higgs mass loses its influence on the dispersion.

How to interpret the results Eq. (2.67 - 2.68) in terms of the dual EM fields? From the
definition of the conjugate momenta in terms of the dual gauge fields Eq. (2.12) it follows
that these momenta represent strengths of 2+1D EM fields: the spatial indices correspond
to electric field components (Ei = ετijξj) and the temporal component is simply a (scalar)
magnetic field (B = ξτ ). Therefore, the propagators may also be interpreted as field
permeabilities of the medium. The presence of gaps means that both electric and magnetic
fields are screened and that the medium is in the Meissner phase. The implications of
the vortex dynamics (ballistic objects with characteristic propagation velocity cV ) also
has an EM corresponding phenomenon: a discrepancy in the London and the electric
screening lengths. This result was first obtained by Anderson through a RPA diagrammatic
expansion [87] added on a top of the classical, non-relativistic (cV →∞) BCS condensate
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[17]. Without the RPA corrections taken into account, the (classical) condensate could
not screen the electric field, apart from the inherited Fermi liquid screening [72, 73, 88].
With the proper velocity taken in the Higgs term, the RPA diagrammatic contributions
are in Gaussian order, reproduced and the appropriate screening length related to the
superconducting gap is recovered.

Another physical quantity measurable by means of dual operators, is the longitudinal
conductivity that can be extracted from the Kubo formula [51]. The Higgs phase of the
dual XY model Eq. (2.42) has a conductivity equal to

σL = ωn
ω2

n + c2V q
2 + Ω2

ω2
n + c2V q

2
. (2.72)

In the case of the ordered phase (Ω → 0), the conductivity is the one associated with the
vacuum of the Maxwell electromagnetism: σL = ωn → iω. The disordered phase is, on the
other hand, an ideal conductor as the conductivity Eq. (2.72) diverges in the appropriate
limit (q → 0, then ωn → 0) [51].

Let us finally consider what would happen if one decides to use some other gauge fix,
different from the unitary one. The complex field phase φV is now a real degree of freedom,
and in order to get the gauge field propagator that has to be used in the Zaanen-Mukhin
relation Eq. (2.55), we have to remove that degree of freedom by Gaussian integration.
What is recovered is a superior version of the unitary Higgs term Eq. (2.63) which is valid
with any arbitrary gauge fix choice. The two versions differ by the gauge variant part

LHiggs,gauge.inv. = LHiggs − 1
2
|Ψ0|2

∣∣∣ 1
c2V
∂τAτ + ∂iAi

∣∣∣2
ω2

n + c2V q
2

= 1
2
|Ψ0|2Aµ

[
δµν −

pµpν

p2

]
Aν . (2.73)

The velocity used in the last version of Higgs term is the vortex velocity cV (also note
p2 = ω2

n + c2V q
2). This form of the Higgs term is sometimes found in textbooks under

the name of the “gauge invariant Higgs term”. Inspection of the numerator of the gauge
variant part shows that the Higgs term Eq. (2.63) is valid not only under the unitary gauge
fix, but also if the Lorentz gauge fix with the vortex velocity cV is chosen

0 = 1
c2V
∂τAτ + ∂iAi. (2.74)

Later, when working with the Higgs phase of the dual elastic theory, we’ll utilize a gauge
fix of that kind; the calculation is simplified and the physical outcomes may be traced back
to interpretations obtained in this simple Maxwell theory.

2.4 Dual view on the critical regime

We are not done yet. We have implicitly assumed up to this point that the fields are
non-interacting. Modulo perturbative corrections this would have been fine in dimensions
above the upper critical dimension but the Abelian-Higgs model in 2+1D is below its upper
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critical dimension duc = 3 + 1D. One has now to be cautious with considerations like the
one in the previous section. Upon exceeding the scale Ω one does not re-enter the ordered
phase but instead one enters the quantum critical regime which has no longer to do with
order or disorder but has acquired an identity of its own due to the strongly interacting
nature of the critical point. Away from the critical coupling, the order (second sound) and
dual order (longitudinal and transversal photons) excitations discussed so far still make
sense because they will appear as bound states pulled out from the low energy side of the
continuum of critical modes, with a pole-strength and binding energy diminishing upon
approaching the critical coupling. The missing link at this point is the appearance of the
continua of critical modes as picked up by the velocity propagator. After some preliminaries
we will derive their form resting on the large body of knowledge on the 3D XY critical
state. These critical continua turn out to behave in a quite surprising way, with the second
sound and condensate contributions showing a completely different behavior away from
q = 0 (see Fig. 2.3a,b). We will subsequently focus in on the detailed way the quasiparticle
poles (second sound, the excitons) develop as function of the distance from the critical
point, making the case that the critical continua have to be as they appear in order to be
consistent with the quasiparticle poles.

In order to describe the system close to and right at criticality, we introduce renor-
malized parameters and critical exponents. The role of reduced temperature is taken by
the quantity ε = g−gc

gc
, which is the reduced coupling constant. If ε < 0 or ε > 0, we

approach the quantum critical point at gc from the ordered and disordered side, respec-
tively. Depending on whether we approach the critical point from the order or disorder
side, the system will scale either to the stable fixed points associated with phase order and
non-interacting second sound (g = 0) or with non-interacting rotors (g = ∞). The reduced
coupling constant ε is therefore a relevant operator with scaling dimension yε > 0. Another
relevant field, which plays the role of the magnetic field in the standard scaling analysis,
is the external source field Jµ. Since it is relevant at the transition, its scaling dimension
is also positive yJ > 0.

The model we consider is relativistic, with dynamical critical exponent z = 1, and
its critical behaviour will coincide with that of the 3D XY-model. We use the state of
the art for the exponents, based on analytic methods (high-temperature expansion [89],
vortex-loop scaling [90], one-loop renormalization group [91]) as well as numerical results
from Monte Carlo simulations [63, 92, 93]. The critical exponent η for the order parameter
propagator 〈eiφje−iφi〉 has been studied in great detail [61, 94, 95, 63, 68, 96]. However,
our interest is in the velocity correlation function Eq. (2.49) which is not straightforwardly
related to the vertex correlator. Instead, we will use the knowledge of the scaling dimensions
of the dual field ηA to derive the form of the velocity propagator in the critical regime.

Let us first analyse the model and its propagators right at the critical point g = gc.
The exponent ηA is usually defined as the critical exponent of the gauge fields correlation
function right at the critical point g = gc, i.e. 〈〈AA〉〉 ∝ 1/p2−ηA . To be consistent with
the literature [63, 91], we have to change the gauge fix from ‘our’ Coulomb/unitary gauge
fix to the Lorentz gauge fix (∂µAµ = 0, i.e. the vector potential is purely transversal). In
this gauge fix, the gauge field can be projected onto a 3D linearly polarized basis (defined
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as e0 = p
p
, e−1 = −eT and e+1 = e−1 × e0). The component A0 is set to zero by the

gauge fix, with only the space-time transversal components of the fields being physical.
The spatially transversal photon (second sound) degree of freedom AT is now represented
by A−1. The remaining component A+1 that admixes the Coulomb and the longitudinal
photons plays the role of the vortex phase degree of freedom in this particular gauge fix.
On the Gaussian level of the previous sections, the propagators for the gauge fields within
the Lorentz gauge fix become degenerate and are given by

〈〈A†
h|Ah′〉〉 = ρs

δh,h′

ω2
n + c2q2 + Ω2

. (2.75)

In the Coulomb phase one finds the same propagator with a vanishing gap, Ω = 0. The
indices take ‘transversal’ values h, h′ = ±1. The coupling constant in the prefactor is
expressed in terms of the superfluid stiffness ρs = 1/g which is a quantity which does
renormalize. It follows that the residues of the quasi-particle poles (order/disorder excita-
tions) are also renormalized which would not be the case if the prefactor would correspond
to the bare coupling g. The overall prefactor in the expression for the velocity propagators
corresponds to g2

bρs in this scheme. The g2
b is the bare critical coupling since the relation

between the dual and original propagators Eq. (2.55) is an exact relation from the Legen-
dre transformation, which is also valid in the critical regime. Accordingly, both the second
sound of the ordered side and the excitons of the disordered side lose their pole strength
approaching the critical point and this is governed by the renormalization of the superfluid
density ρs which we will deduce starting from the known critical behaviour of the dual
gauge field propagators.

Herbut and Tešanović [91] analysed the charged XY model which is equivalent to the
dual action Eq. (2.42). From their expression for the β-function governing the renormal-
ization of the electrical charge, it follows that at the fixed point

0 = ê20(D − 4 + ηA). (2.76)

Assuming that the charge scales to a finite value ê0, it follows that ηA = 4 − D ≡ 1.
The same result was obtained by Hove and Sudbø[63], using Monte-Carlo to determine
the exponent ηA from the vortex correlations at the critical point. They introduced a
relation between the correlation function of the vortex tangle G(p) and the dual gauge
field propagator,

〈A†A〉 =
2β

p2
(1− 2βπ2G(p)

p2
) (2.77)

valid for the case of the uncharged original/charged dual action. Notice that in Ref. [63] h
is used for the dual gauge fields and A for the original gauge fields. At the critical point the
vortex correlator is given by limp→0 2βπ2G(p) = p2−C3(g)p

2+ηA + . . . and using Eq. (2.77)
it follows that

p2〈A†A〉 = C3(g)p
ηA + . . . . (2.78)
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According to their numerical simulation, Eq. (2.78) shows a linear behaviour and Hove and
Sudbø[63] conclude that ηA = 1.

The critical propagator of the dual gauge fields, Eq. (2.78), can be used to establish the
form of the velocity propagator Eq. (2.49) in the critical regime. Comparing Eq. (2.78) with
our form of the gauge field propagator Eq. (2.75), and bearing in mind the degeneracy, we
conclude that each field component propagator corresponds to one half of the propagator
Eq. (2.78),

〈〈A†
hAh′〉〉 =

C3

2
pηA−2δh,h′ + . . . . (2.79)

We can now use again the universal Zaanen-Mukhin relation Eq. (2.55) to obtain the
velocity propagator

〈〈vi|vj〉〉 ∼ PL
ij

[
−ω2

n

p2−ηA
+ . . .

]
+ P T

ij [pηA + . . .] (2.80)

right at g = gc. This is the first main result of this section. The dots represent constant
terms with no imaginary parts as well as short distance corrections. At least deep in the
critical regime the Wick rotation to real time is simple [1] because scale invariance implies
that Euclidean propagators are power laws, turning into branch cuts in real frequency.
With ηA = 1, right at the criticality, the spectral function has two quite different branch
cuts in the longitudinal and the transversal channels

Im〈〈vi|vj〉〉L ∼ θ(ω2 − c2q2)
ω2√

ω2 − c2q2
, (2.81)

Im〈〈vi|vj〉〉T ∼ θ(ω2 − c2q2)
√
ω2 − c2phq

2, (2.82)

and we sketch both pieces of the velocity correlator in Fig. 2.3a. θ(x) is the Heaviside unit
step function.

This is quite an unexpected result. At q = 0 we find both spectral functions to be
simply proportional to frequency, a simple behavior which of course originates in ηA = 1.
Upon increasing momentum, the ‘sound’ and ‘condensate’ spectral functions start to behave
very differently near the threshold ω = cq although at large ω they merge together again.
The sound part shows the usual [1] divergence ω2/(ω − cq)2−ηA ∼ ω2/(ω − cq) while the
condensate piece behaves like (ω2 − c2q2)ηA/2 =

√
ω2 − c2q2. The degeneracy of the two

contributions at q = 0 rings a bell: at infinite wavelength it should be that the critical
fluctuations are eigenstates of rotor angular momentum, ‘equalizing’ the condensate and
sound contributions as we found for the propagating excitations. To better understand
why these contributions should become different at finite momenta, we should first analyze
in more detail what happens with the quasiparticle poles close to the critical point.

To analyse the behavior of the quasiparticle poles in the ordered- and disordered phase
close to the critical coupling, we need hyperscaling. Although one has to be careful [97, 98],
recent numerical simulations [93] show that there is none or a very small violation of
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hyperscaling for 3D XY. Let us first repeat the standard hyperscaling arguments applied
to the velocity-velocity propagators. We denote the propagators of the gauge field in real
space as GA(x, ε). They are generated by the term JhAh in the action and this external
source term of the gauge fields Jh plays a role similar to a magnetic field. It is a relevant
field with scaling dimension yJ . Hyperscaling requires that such fields act on a block of
bd+1 points in space-time, treated as a single variable. After a scale transformation, the
new propagator is related to the original one by

GA

(r
b
,J ′
)

=
∂2

(∂J ′)2
lnZ[J ] ∼ b2(d+1)

λ2
J

G(r,J ) (2.83)

where λJ = eyJ is the scaling factor of the external source field for the gauge fields.
Repeating the scale transformation n times in the vicinity of the critical point, we

obtain

GA(r, ε) =
λ2n
J

b2n(d+1)
G(r/bn, λn

ε ε), (2.84)

with the scaling factor λε = eyε associated with the reduced coupling constant. Choosing n
such that (λε)

nb = const, it follows from Eq. (2.84) that the propagator behaves universally
on both sides of the critical point as

GA(r, ε) ∝ |ε|
2
yε

(d+1−yJ )Φ±(r/|ε|−
1
yε ). (2.85)

The functions Φ± are universal functions associated with the ordered and disordered sides
of the critical regime, and given in terms of G(r, const). The denominator in its argument
is the correlation length that diverges at the critical point with exponent ν, implying the
familiar relation ν = 1/yε. The relation of the ‘magnetic field’ exponent yJ to the scaling
exponent ηA follows when we set ε = 0 in Eq. (2.84),

yJ =
d+ 3− ηA

2
→ 2 (2.86)

using the known value ηA = 1. Together with the relation for ν, Eq. (2.85) can be written
as

GA(r, ε) ∝ |ε|ν(d−1+ηA)Φ±(r/|ε|−ν) (2.87)

→ |ε|2νΦ±(r/|ε|−ν). (2.88)

This is just the familiar result that the behaviour of the correlation function close to the
critical point is governed by the exponents ν and η (with η = 1 in the present case), and
the crossover functions Φ±.

Let us first approach the critical point from the disordered side, i.e. ε→ 0+. This phase
is characterized by the gap Eq. (2.65), which we can call (compare Ref. [1]) ∆+ = Ω. This
gap is proportional to the inverse correlation length of the vortex tangle ξ = c/Ω. Upon
approaching the critical point, both the correlation length vanishes and the gap diverges
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with characteristic exponent ν as ξ ∝ ε−ν and ∆+ ∝ εzν , where z is the dynamical exponent
which equals one in this specific (relativistic) case. The 3D XY correlation length exponent
ν = 0.66 − 0.67 ≈ 2

3
according to a large body of work [89, 90, 92, 93]. Given that there

are two dynamical fields in the problem (AT and the vortex phase field phase φV ) one
could be tempted to think that there are two correlation lengths in the problem, but this is
not the case. The problem is effectively Lorentz invariant, consistent with numerical work
[63, 67, 68, 95] and an argument [94] linking it to the anomalous dimension of the gauge
field ηA [63, 91].

The scaling dimension of the superfluid density can be deduced from Eq. (2.75). After
Fourier transformation to space-time, the Gaussian propagator Eq. (2.75) behaves like

〈〈A†
h′|Ah′〉〉 = ρs

1

xd−1
Ψ+(

x

ξ
) (2.89)

= ρsξ
−(d−1)Φ+(

x

ξ
) (2.90)

= ρsε
ν(d−1)Φ+(

x

ξ
). (2.91)

Comparing it with the hyperscaling form for the gauge field propagator Eq. (2.85) we
conclude that the superfluid density scales as

ρs ∝ |ε|ν(2−ηA) → |ε|ν (2.92)

at the disordered side of the critical point.
We have now arrived at a point where we can determine the behaviour of the two

quasi-particle poles upon approaching the critical point from the disordered side. Using
Eq. (2.80), the fact that g → g2

bρs and the scaling of both ρs and Ω, we conclude that the
vortex-condensate pole ∼ P T has a strength proportional to ρsΩ

2 ∝ ε2zν+ν(2−ηA) → ε3ν ,
vanishing upon approaching the critical point with an exponent 3ν ≈ 2 while its strength
disappears in the critical continuum as indicated in Fig. 2.3b. Turning now to the second
sound pole ∼ PL, we observe that at long wavelength (q → 0) its strength behaves exactly
like the condensate pole. This has to be because eventually, at large enough distances, one
should recover the fact that these excitons correspond to the exact rotor angular momentum
eigenstates. However, for increasing momenta the term in the numerator ∼ c2q2 takes over,
and the strength of the large momentum second sound pole is scaling more slowly to zero
upon approaching the critical point, governed now by the superfluid density exponent
ν(2 − ηA) ∼= 2

3
. This is of course not different from what we found on the Gaussian level,

with the second sound pole overtaking the condensate pole when the vortex condensate is
‘losing its grib’, governed by the Higgs mass Ω.

To complete the picture, let us finally consider what happens with the second sound pole
approaching the critical point from the ordered side. This is straightforward: as before,
we should substitute g → g2

bρs in the Gaussian result Eq. (2.49) and ρs ∼ |ε|ν because
ρs renormalizes in the same way on both sides of the transition [99]. In other words, the
strength of the second sound pole on the ordered side coincides with its behavior at large
momenta on the disordered side.



2.4 Dual view on the critical regime 41

I

ωq1<q2<q3<q4

QC
crossover crossover

II

ω ω

Τ

ggc
ε<0 ε>0

a) b)

Figure 2.3: The spectral functions at and near the critical point: a) The spectral functions
associated with the second sound (solid lines) and condensate (dashed lines) pieces of the velocity
propagator in the critical regime for various momenta (Eq. (2.82)). At q = 0 both critical
continua become degenerate and linear in ω reflecting the simple correlation function exponent
ηA = 1 associated with the dual gauge fields. However, at finite momenta it is seen that the
second sound continuum diverges at threshold while the condensate piece is actually suppressed,
although both continue to be governed by the same scaling dimension. At finite momenta this
different behavior of the critical continua has to be present in order for them to be consistent
with the momentum dependence of the pole strengths of the propagating disorder excitations
appearing at the moment one moves from the critical coupling. b) Cartoon of the appearance of
the second sound (solid lines) and dual condensate (dashed lines) contributions to the velocity
spectral functions at finite momentum in the close vicinity of the quantum critical point, both
on the ordered (left) and disordered (right) side. Although the critical continua are expected to
have a very similar appearance, on the ordered side only a second sound pole is found. However,
on the disordered side the system scales to dual superconducting order with the effect that one
finds both a propagating second sound and condensate excitations with strengths governed by
the XY correlation length exponent. However, the way their pole strengths develop as a function
of momentum tracks the Gaussian result shown in Fig. 2b and it turns out that the momentum
dependence of the critical continua is just of the right kind to be consistent with the behavior of
the disorder poles.

Not surprisingly, we have found that the ‘order poles’ behave quite like the results we
found on the Gaussian level in the previous sections except that renormalized mass scales
and quasiparticle residues have to be used, all governed by the same correlation exponent ν
because ηA ‘magically’ drops out. We can now use this knowledge to comprehend why the
critical continua of Fig. 2.3a behave the way they do. We already argued that at energies



42 A tutorial: Abelian-Higgs duality

far away from the threshold ω = cq the second sound and vortex condensate pieces picked
up by the velocity correlator merge in the same linear I ∼ ω behavior. At finite q the
differences between the two are large near the threshold. With the knowledge regarding
the behavior of the quasiparticle poles at hand, this now makes sense. ρs being a relevant
operator, its influence at high energies is small while growing when times get longer. A
bit away from the critical point, it takes over at a length ∼ ξ where the system gets under
control of the stable fixed points at zero or infinite coupling, which are also in charge of
protecting the quasiparticle poles. Surely, the quasiparticles close the critical point can be
viewed as bound states pulled out of the critical continuum due to the effect of the relevant
operators (Fig. 2.3b). However, because of the way the latter scale, the quasiparticles are
formed from the low energy end of the critical continuum. What does this mean for our
velocity propagator, ‘watching’ the true critical excitations through the ‘duality filter’? We
derived some clear rules for how the weights should be distributed over the quasiparticles:
the condensate and sound poles of the disordered state should have equal weight at q = 0,
but the former should lose its weight rapidly for increasing momentum. Inspecting now
the low energy end of the critical continua for various momenta we see this rule also at
work (Fig. 2.3a)! We notice that this ‘weight-matching’ of the critical continua and the
quasiparticle poles is to an extent even quantitative. For this purpose we inspect the
pole strength ratio Eq. (2.71) close to the critical point. For fixed q, due to the gap in
the denominator, we learned already that the ratio diverges like ∼ q2/ε2ν . However, the
prefactor of the second sound pole strength is proportional to q2. Comparing it with the
ratio of the spectral responses right at the critical point and near threshold (ω ≈ cq)(

IL
IT

)
gc

=
ω2

ω2 − c2q2

ω≈cq−→ q2 × “divergent part”. (2.93)

We find a perfect match – the strengths of the spin-wave and the condensate excitations
are proportional to the strengths of their respective critical continua where they have their
’origin’.

Surely, this does not explain everything, and to a degree Eq. (2.82) is a result which
stands on its own. However, given the simple integer ηA exponent, it appears to us to be a
unique analytical form which obeys the general requirements of scale invariance and Wick
rotation, having at the same time the right form to be consistent with the evolution of the
spectral weights in the quasiparticle poles.

2.5 Abelian-Higgs duality in higher dimensions

It appears that the content of this chapter up to this point has answered all relevant ques-
tions concerning the Abelian-Higgs duality in 2+1D. If we were only after the theory of
high Tc superconductivity as realized in quasi-2D cuprate planes, the previously given for-
malism would suffice. There are, however, many other applications that require a different
spatial dimension. Let us just name few: our embedding space is three-dimensional and
one would like to know the theory dual to XY model in three or more dimensions. A direct
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consequence would be a generalization of the quantum dislocation melting, as presented
in this thesis, to 3+1-dimensional elastic media. Finally, one would like to address how
the complete elastic theory in higher dimensions could relate to the models of emergent
gravity.

Unfortunately, until the present day, only some futile attempts to construct the Abelian-
Higgs duality in 3+1D or more dimensions have been undertaken. The shortcoming of
the Abelian-Higgs duality as presented before, is that it works as a completely closed
formalism only in 2+1D (or classical 3D). At first, the geometrical properties of the theory
and constraints do not allow mapping to the standard Maxwell theory. Although this
problem seems not to be of great importance, the main obstacle comes from the geometrical
structure of the defects and our subsequent inability to construct the second-quantized
action equivalent to the GLW action Eq. (2.35). This section will therefore only present
the current state of matter hoping that in the near future a breakthrough can be achieved.

The vortices of the XY model Eq. (2.2) are point-like defects only in two spatial dimen-
sions. As the dimensionality increases, the dimensionality of the vortex manifold increases
accordingly. In three spatial dimension vortices become lines, in four they are sheets and
in general, in d-dimensional medium, vortex excitations, i.e. set of singular points of the
phase φ correspond to d − 2-branes. This result is implied by the beautiful theorem due
to Hopf stating that all but one homotopy groups of U(1) are trivial [100]

πm [U(1)] =

{
Z, m = 1
1, m 6= 1

. (2.94)

Each homotopy group has a physical interpretations: π0 counts how many disconnected
subspaces exist in the configuration space and for the U(1) group the trivial homotopy
group means that all the configurations for the phase are smoothly connected. Nontrivial
π0 would mean that different regions of the system could end in different disconnected
vacua with domain walls (of dimensionality d− 1) between them acting as the topological
operators.

For us, the homotopy group π1 is of importance as the only nontrivial homotopy group
of U(1). What Eq. (2.94) means is that one can make loops inside the XY parameter space
by winding the phase by an arbitrary integer number. That is, if one puts a phase field
on a closed loop (i.e. xµ(s) with xµ(0) = xµ(L)), after one circulation around the loop,
a multiple of 2π is collected by the phase (i.e. φ(xµ(0)) = φ(xµ(0)) + 2πm although we
describe the same point in space). Given that any value of the phase from 0 to 2π can be
taken as a vacuum of the XY model, it follows that a path can exist in a system around
which a nontrivial circulation of the phase is recorded. Such paths cannot be smoothly
removed from the system because they encircle a singularity in the phase field. We already
know that the singularity of the XY model is represented by a vortex, but from Eq. (2.94)
it follows that a vortex is a manifold of dimension d− 2, just as mentioned before.

Higher homotopy groups πm≥2 work in the same way except that a nontrivial config-
uration on a closed m-sphere is considered. If any other homotopy group πm had been
nontrivial, it would imply the existence of topological defects (sets of singular points) that
are d−m− 1-dimensional manifolds.
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Forgetting the geometrical structure of the vortices for a moment, let us try to gener-
alize the Abelian-Higgs dualization to a 3+1D XY model first. The part which precedes
introduction of the dual gauge fields Eq. (2.12) is identical to the 2+1D duality: con-
jugate momenta are given by ξµ ∼ ∂µφ/g and the original and ordered propagators are
connected by the Zaanen-Mukhin relation Eq. (2.55). The difference arises when the su-
percurrent conservation law Eq. (2.10) is invoked in order to define dual gauge fields. The
four-dimensional curl can be constructed by means of an antisymmetric tensor contracted
with an antisymmetric rank-2 dual gauge field

ξµ = εµνρλ∂νAρλ. (2.95)

The gauge transformations leaving the physical fields unchanged are defined by a four-
component gradient function gµ:

Aµν → A′
µν = Aµν + ∂µgν − ∂νgµ. (2.96)

One should notice that there is a redundancy in the space of gradient functions. Two
transformations gµ and g′µ differing only by a smooth function gradient g′µ = gµ + ∂µΛ
produce the same gauge transformation Eq. (2.96).

In the current duality mapping, we can go one step further and consider coupling of the
conjugated momenta to singular configurations of the phase. In analogy with Eq. (2.14),
we find a minimal coupling of antisymmetric gauge fields Eq. (2.95) to defect currents:

iξµ∂µφMV → iAµνεµνρλ∂ρ∂λφMV = iAµνJµν . (2.97)

The two antisymmetric indices in the current Jµν reflect that that the defect world-
sheet has two tangent directions. If one of the indices is temporal (say the first one), then
the component Jτi corresponds to static density of vortex lines extending in the i direction.
When both indices are spatial, the component Jij is simply the current (charge times the
velocity) in the i direction of the vortex lines stretching in the j direction minus the current
in the j direction of the i-direction stretching vortex lines (due to antisymmetry in indices).
Current components with both indices identical do not exist since sliding of a vortex along
its line has no physical consequences and cannot be observed.

For a single (closed) vortex world-sheet defined by xλ(s, t), the currents are defined
in the same manner as for point-like vortices Eq. (2.37). This time, the antisymmetric
sheet-delta function is introduced

δµν(xλ) =

∮
dsdt (∂sxµ∂txν − ∂sxν∂txµ) δ [xλ − xλ(s, t)] (2.98)

leading to the definition of the current

Jµν(xλ) = 2πNδµν(xλ), (2.99)

where N is the winding number of the vortex line.
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Vortex currents are conserved in the following sense

0 = ∂µJµν (2.100)

which trivially follows from the identity on the sheet delta function

0 = ∂µδµν(xλ). (2.101)

This one is checked in analogy with Eq. (2.39) using the properties of total derivative (the
vortex world-sheet has no edges!).

The minimal coupling of a single vortex world-sheet to the gauge fields is accordingly

SAJ =

∮
Aµν(xλ)dxµdxν . (2.102)

At this point we are stuck. In contrast with the minimal coupling of point-particles
Eq. (2.40), the minimal coupling Eq. (2.102) has no corresponding GLW-like action, trans-
lating into a covariant derivative of an order parameter field. Such an effective action does
not exist yet for strings and although some works on phase transitions of strings (crum-
pling) have been presented in the past, these relate to a structural transition of strings
rather than to the transition between a vacuum with no strings at all and a dense packed
tangle os strings.

One of the problems associated with the formulation of the second-quantized string
action (analogous to GLW) is related to the ‘natural’ (Lorentz-invariant) way of defining
the action in terms of the surface of a world-sheet (a moving string draws a sheet behind).
This is precisely the Nambu-Goto action for strings but when one wants to average over
the all possible disorder configurations, singularities that cannot be removed are brought in
the action. Namely, while ‘spiky’ trajectories of particles were possible but exponentially
suppressed by the loop-length action Eq. (2.19), there are many ‘spiky’ surfaces extending
to infinity with finite surface measure. A trivial example is a funnel (generalized Gabriel’s
horn) defined by

zα = x2 + y2 (2.103)

where −2 < α < 0.
Since we cannot give a valid description of the 3+1D ‘Higgs’ phase of the XY model

Eq. (2.1), let us at least tackle the problem from the ordered side. In analogy with the
Coulomb gauge fix employed for the ordered phase of 2+1D XY model, we separate the
temporal component from the other gauge field components. The components to be in-
tegrated out are Aτ±, while the longitudinal static current AτL has no propagator and it
falls prey to one of the gauge fixing conditions. The resulting ‘Coulomb’ action is

LEM = 1
g

J†τ+Jτ+ + J†τ−Jτ−

q2
+ g(ω2

n + c2phq
2)A†

+−A+− + i2J+−A
†
+−. (2.104)
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All of the longitudinal components ALµ have been fixed by a generalized Coulomb gauge
fix

0 = ∂iAiµ = −qALµ. (2.105)

The static interaction between segments of vortex loops is governed by the Coulomb law
(the first term of Eq. (2.104)). One should note, however, that charges can exist only as
strings, not as point particles, and also that the sign of the ‘Coulomb’ force depends on the
relative orientation of the strings. The force law in the three-dimensional case is reminiscent
of the Ampere law for closed current loops. The remaining gauge field component A+−
works as the ‘transversal photon’ and carries the physical Goldstone mode – XY magnon
which is the unique excitation of the XY model.

The generalizations of the Abelian-Higgs duality can be continued in this manner to an
arbitrary dimensional XY model. The difference is that both the gauge fields and defect
densities acquire an extra index per increased dimension. Defects, being d−2-branes, have
their densities given in terms of antisymmetric brane (manifold) delta function

δµ1...µd−1
(xν ,Σ) =

∮
Σ

ds1 . . . dsd−1εi1...id−2
∂si1

xµ1 . . . ∂sid−2
xµd−2

δ[xν − xν({s})]. (2.106)

In the XY ordered (Coulomb) phase, the Coulomb gauge fix yields the physical correspon-
dence of gauge degrees of freedom and physical observables. All fields components with a
temporal index will be non-dynamical and result in the Coulomb force law between defect
branes. There is always precisely one dynamical degree of freedom, namely the gauge field
component with all the transversal indices. It is massless, propagates with velocity cph and
obviously represents the XY magnon in this, dual formulation of the model.



Chapter 3

Elasticity and its topological defects

The basics of the theory of elasticity are easy to understand thanks to our everyday en-
counter with solids. The roots go back to Hook, who was the first to realize a simple
mathematical law relating a force acting on a spring and its deformation. With later
additions, the whole field developed into what seems to be the first emergent physics the-
ory – the theory describing elastic properties of a solid is universal and independent of
microscopic details. The only allowed microscopic detail that may enter the elasticity the-
ory is the point group of the lattice symmetries. Its effects are represented by an elastic
response which is dependent on the relative orientation between crystal facets and the
applied force or stress. Even this detail is vanishing in a solid like a piece of steel where
the “self-averaging” yields a perfectly isotropic elastic energy.

When the forces exerted on a solid become sufficiently large, the crystalline constituents
may stray away from their equilibrium positions and the resulting deformations are said
to be plastic. When this happens, the simple ‘Hooke’ laws become invalid. The plastic
deformations of solids are closely related to the elastic topological defects, but this was
not realized until the 1930s. At that time, the existing models of plastic deformation in
solids (based on “sliding planes”) predicted stress values needed for plastic deformation
that were some four orders of magnitude higher than the experimentally observed ones
[48]. Roughly simultaneously, Orowan [101, 102], Polanyi [103] and Taylor [104] realized
that plastic deformations occur due to development of dislocation defects, analysed at the
beginning of the century by Volterra. A complete new field in material science developed,
largely driven by importance of the defects in metallurgy. For instance, cold working as
known for millennia is the process where dislocation defects are ‘inserted’ in the solid in
order to improve its stiffness, but the theory behind it is relatively new.

From the theoretical point of view, it has long been recognized that the energy-entropy
balance of the topological defects was responsible (via deconfinement) for the melting
processes [70, 105, 106, 107, 108, 109, 110, 111, 112, 113]. Topological defects often display
sharp dynamical imprints and when present in low concentrations as in standard solids,
they play an important factor in determining the plastic properties of the medium. In
glasses, an extensive configurational entropy of these defects [114] (from which ensuing
restrictive slow dynamics might follow [115, 116, 117, 118]) may be sparked. In recent
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years, attempts were made to lift defect dynamics from the classical realms to the quantum
theory [44] aiming at a description of quantum (electronic) liquid crystals [37] and other
phases [37, 44]. The electronic constituents favor, in a certain parameter regime, the
formation of a crystal-like stripe pattern which may then be perturbed, through a cascade
of transitions, to produce a rich variety of phases. Such stripe patterns are observed in the
high-temperature superconductors and other oxides [35, 36] and in quantum Hall systems
[119]. Defects naturally alter the local electronic density of states allowing for spatial (and
temporal) inhomogeneities of electronic properties [120, 121, 122]. Following the general
notion that melting occurs by the condensation of topological defects (e.g. [70]), we may
naturally anticipate that the study of topological defects is pertinent to the understanding
of quantum phase transitions between various zero-temperature states.

There is yet another, ‘modern’, view of the elastic theory, which reformulates the theory
in terms of differential geometry [123, 124, 125]. This conception will become convenient
in this section for certain proofs, but its true power lies in the connection of the elasticity
theory to gravity (at least in 2+1D), as has been shown in some recent works [84, 85].
It has only recently been recognized that the presence of defects in a crystal and the
subsequent quantum ‘melting’ can lead to an unconventional superconductor state that
will be presented in chapter 5 as one of the central results of this thesis [44].

We shall interpret the theory of elasticity as a literal quantum theory formulated in a
Euclidian path integral formalism. The first section of this chapter deals with the elastic
potential, shared by both classical and the more interesting quantum crystals. Our primary
interest lies in elasticity in two spatial dimensions. However, to get a more general view,
we present the basic linear and second order gradient elasticity in a form applicable to
an arbitrary d-dimensional elastic medium. In the second section the complete theory of
elasticity is given via its path integral formulation. Green’s functions (phonon propagators)
are introduced and we evaluate them in the ‘smooth-only field’ approximation and leave
the dual description for later chapters. In the next section we are interested in elastic
defects, where we will pay special attention to dislocation and disclination defects. The
Weingarten theorem that leads to definitions of the defect densities and the conservation
laws for these densities, is shown in its dimension independent form (the original proof was
devised only for the 3D elastic medium). In the final section we take care of an important
dynamical constraint on the dislocation dynamics, the “glide constraint”. This constraint
was known for some time in metallurgy, but only recently new results were presented
(coauthored with Nussinov and Zaanen) where the constraint was formulated in a form
applicable to field theories of elasticity [50]. This constraint can be proven in many ways
and we give two natural paths for its formulation, but in the end it is naturally rooted
in the conservation of the crystalline bulk material and has a special importance for the
compressional properties of the solid. We give the basic, linearized version and later discuss
the more general expression that may improve the field theory by allowing the inclusion of
interstitial excitations.
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3.1 The potential energy of an elastic medium

The elastic theory of solids is built on the premise that every constituent (atom, molecule,
vortex, etc.) of a solid has its own equilibrium position [126]. The equilibrium configuration
is determined by the global minimum in the interaction energy between the particles.
This principle is violated for example when entropy of disordered configurations starts to
compete with the energy of the solid (the melting process) or if the system relaxes and
locks itself in a local minimum of its potential energy (like in glasses). If a relatively small
force is applied to a solid, all of the constituents displace, but still do not move far away
from their equilibrium positions and the mutual spatial arrangement is unaffected. This
condition is necessary in order to have purely elastic forces in the system.

When a defect is subjected to a deformation, the relative positions between the con-
stituents change, resulting in a slightly higher interaction energy. This change in energy
is responsible for the elastic response of solids. Assuming that the potential is a smooth
function of inter-particle distance, the effective elastic energy emerges from the microscopic
theory losing all knowledge regarding the detailed nature of the constituents.

Suppose that a constituent with the equilibrium position R0 finds itself in a new po-
sition R = R0 + u after an elastic deformation. The vector u defines the (crystalline)
displacement. In practice, each particle has its own displacement. However, when we work
with systems where the lattice constant (or more generally the average interparticle dis-
tance) is sufficiently small, we are allowed to coarse-grain the displacements and define the
displacement field on a (continuum) real space. In order to have a well-defined continuum
field theory, the displacements have to be finite, so it is a necessary condition that the
crystalline displacements are large as compared to the lattice constant (u� a).

The total potential energy V can be expanded in small displacements. Since it is a
function of multiple arguments (relative positions)

∆Rij = Ri −Rj = (R0
i + ui)− (R0

j + uj) ≡ R
(0)
ij + uij, (3.1)

the expansion will depend only on relative displacements uij ≡ ui − uj and not on the
displacements alone. The zeroth-order term in the expansion is just the equilibrium en-
ergy of the solid and it plays no role in the elastic theory. Terms linear in the relative
displacements are strictly forbidden as their presence would imply uncompensated forces
acting on the constituents and the equilibrium position would not be a minimum of the
potential energy as assumed. We are interested in the second order terms, written as

V(2) = 1
2

∂2V
∂Ra

ij∂R
b
kl

ua
iju

b
kl. (3.2)

These terms will contain all the relevant contributions to the potential energy. The third
and higher order terms in the expansion contain the interaction physics which becomes
relevant beyond the Gaussian order, i.e. for processes such as scattering of the crystalline
excitations (phonons). These processes cause the dressing of the phonon propagators lead-
ing to their finite lifetime and eventually may render the ground state of the solid unstable.
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Such effects are not of interest to us since a) the stability of solids is well established and
is robust up to a certain level of disorder or external stress, and b) the quantitative predic-
tions rest on free parameters such as compression and shear rigidities, but in experiments
concerning phonons we measure only their ‘dressed’ values.

Let us analyse what kind of elastic energy terms arise from the Gaussian part, Eq. (3.2).
The relative displacements have to be expanded in a series

ua
ij = ua

i − ua
j = R

(0)m
ij ∂mu

a +
R

(0)m
ij R

(0)n
ij

2
∂m∂nu

a + . . . (3.3)

As it will be explicitly demonstrated at the end of this section, the higher derivatives
become relevant only when elasticity is considered at small distances, while these terms
become irrelevant in the long wavelength limit. Therefore, we keep only the first-derivative
term in Eq. (3.3) to recover the familiar linearized elastic energy.

Using the expansion Eq. (3.3) and the Gaussian potential energy Eq. (3.2), the following
potential energy functional is obtained

e(x) = 1
2

∂2V
∂Ra

ij∂R
b
kl

R
(0)m
ij R

(0)n
kl ∂mu

a∂nu
b ≡ 1

2
∂mu

aCmnab∂nu
b. (3.4)

Partial derivatives of the displacement field (∂nu
a) are called strains. The second derivatives

of the microscopic potential V are collected in the tensor Cmnab, which is known as the
elastic tensor of the solid. Therefore, regardless of the microscopic details reflected in the
potential V , the effective theory of elasticity has a rather universal status which qualifies
it as a theory dealing with faithful emergence.

The elastic tensor Cmnab has in total d4 elements in a d-dimensional solid. However, due
to symmetries of space-time as well as due to the symmetries implied by the lattice (point
symmetry group), only a few will be independent. The universal property of the elastic
energy is that (at least in the linear order) it cannot depend on a local rotation since a pure
rotation does not change the relative spacings between the crystalline constituents. This
property is deeply wired into the invariance of the model under global rotations and will be
elegantly formulated in terms of the Ehrenfest constraint [126] when the dual stress repre-
sentation of the model is obtained. Due to this requirement, the potential energy Eq. (3.4)
has to be independent on the local rotation operators, expressed as antisymmetrized strain
components

ωa,b = 1
2

(
∂au

b − ∂bu
a
)
. (3.5)

Hence, the potential energy only depends on the symmetrized strains, which are sometimes
simply called ‘strains’ in the literature

wa,b = 1
2

(
∂au

b + ∂bu
a
)
. (3.6)

This leads to an alternative way of writing the potential elastic energy as

e(x) = 1
2
wi,jcij,klwk,l. (3.7)
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The constants cij,kl are naturally related to the elements of the elasticity tensor Cmnab

and the number of independent elements must be equal. To count them let us consider
a d dimensional solid: there are M = d(d + 1)/2 symmetrized strains; this number im-
plies M(M + 1)/2 = [d(d+ 1)(d2 + d+ 2)] /8 independent coupling constants. For a two-
dimensional solid there may be up to 6 independent elements, in three and four dimensions
21 and 55 independent elements are possible, respectively.

These numbers reduce further when point group symmetries of the crystals are taken
into account. As a first example, let us consider a three-dimensional solid and collect all
the symmetrized strains in one column ua = (w1,1, w2,2, w3,3, 2w1,2, 2w1,3, 2w2,3). The elastic
energy is expressed via yet another version of the elastic tensor, which is the conventional
one from material science

e(x) = 1
2
uacabub. (3.8)

The triclinic three-dimensional lattice, being the one with the lowest possible symmetry,
has all 21 tensor elements independent representing the most general elasticity tensor

cab =


c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26
c33 c34 c35 c36

c44 c45 c46
c55 c56

c66

 . (3.9)

The monoclinic type of lattice has only one symmetry plane (crystallographic point group
C2), but that already reduces the number of independent constant to 13. The 32 crys-
tallographic point groups divide into 9 classes for the elastic tensor cab. The general rule
is that the more symmetries the crystal lattice possesses, the fewer independent elastic
constants there are. Groups innate to the cubic type of lattice (T , Th, Td, O and Oh) have
the highest symmetry and accordingly only three independent elastic constants within the
elasticity tensor

cab =


c11 c12 c12

c11 c12 0
c11

c44 0 0
0 c44 0

c44

 (3.10)

The constants appearing in Eq. (3.10) are familiar constants of the elasticity theory, c44 = µ
is the shear modulus and c12 = λ is the Lamé constant. The remaining constant can be
related to the anisotropy of the material

ξ =
c11 − c12

2c44
. (3.11)
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If the anisotropy ξ is close to or exactly equal to 1, the material has no preferred direction
with respect to its elastic properties. These kinds of elastic media will be in the center
of our attention because their simple properties are representative for the essence of the
quantum phase transition we consider in later chapters.

In the case of a two-dimensional solid there are at most 6 independent coefficients, which
is realized for the oblique type of lattice (parallelogram unit cell). The square lattice, on
the other hand, contains only three independent elastic constants and the elastic energy
has the form

e(x) = 1
2
c11(w

2
1,1 + w2

2,2) + c12w1,1w2,2 + 2c44w
2
1,2. (3.12)

This class of elastic tensors with only 3 independent parameters Eq. (3.10) or Eq. (3.12),
is common to any d-dimensional hypercubic lattice, where the energy has a simple form

e(x) = 1
2
c11

d∑
i=1

w2
i,i + 1

2
c12

d∑
i,j=1
i6=j

wi,iwj,j + c44

d∑
i,j=1
i6=j

w2
i,j. (3.13)

The solids with the simplest elastic tensors are the isotropic ones. Generally speaking,
a single crystal cannot have isotropic elastic properties with the 2D triangular lattice as the
only exception which is accidental. There, the gradient expansion yields isotropic elastic
energy. We met another possibility already with the anisotropy given by Eq. (3.11) set to
1, but given the fact that c11 and c12 are derived from a microscopic theory, the probability
that all the microscopic couplings conspire to produce two identical elastic constants is
very unlikely. Alternatively, real materials like pieces of steel are not made of a single
crystal and because they are amorphous on large scales they appear as isotropic elastic
entities. Since the symmetry of such a coarse-grained state is the highest and the details of
the lattice point group are entirely lost, the elastic properties are defined in terms of only
two constants: the compression and shear moduli. The compression modulus κ represents
a response of a body to change of volume. It is not exclusively associated with solids since
liquids and gases also respond to volume changes. The shear modulus µ (introduced in Eq.
(3.10)) is associated with the response of a solid when deformed without any change in the
volume. Obviously, such stiffness is exclusive to solids and can even be used to make a sharp
distinction between a solid and a liquid state of matter. Resting on rotational symmetry
principles (for more details see Appendix C), the two rigidities can be associated with two
irreducible representations of the rotation symmetry group. The change in the volume
is an operator invariant under rotations, and so compression corresponds to the singlet
(spin-0) part of the elasticity tensor. Shear, on the other hand, transforms under the
spin-2 representation and the corresponding part in the elasticity tensor has spin 2. The
two channels are separated by the introduction of d-dimensional projection operators onto
spin-0 (rotation singlet) and spin-2 states (rotation multiplet, e.g. in d = 2 the state is a
doublet)

P
(0)
ijab = 1

d
δiaδjb, P

(2)
ijab = 1

2
(δijδab + δibδja)− 1

d
δiaδab. (3.14)
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These operators are orthonormal and span the space of all symmetric matrices. They allow
us to define the elastic tensor (written in the convenient form of Eq. (3.4)) of an isotropic
d-dimensional solid as

Cijab = dκP
(0)
ijab + 2µP

(2)
ijab (3.15)

with the compression and shear moduli κ and µ respectively.
There are alternative constants used in the theory of linear elasticity to express elastic

properties of a solid [48]. When we introduced the compressibility, the Lamé constant
became redundant, because the two are related by

κ = λ+
2µ

d
. (3.16)

Other constants include the Poisson ratio ν and Young modulus E, with the former used
often in combination with the shear modulus µ to express the compression modulus

κ = µ
2

d

1 + ν

1− (d− 1)ν
. (3.17)

We shall use a combination of these two parameters most of the time except when we
wish to stress that some effect is due to compression, where we will use the compression
modulus κ instead.

The Young modulus is defined as the inverse ratio of the relative elongation and the
force required to cause this deformation

E = 2µ(1 + ν). (3.18)

In a liquid there are no shear forces and elongation of a liquid is a process which does not
cost energy and the Young modulus becomes zero.

It was already mentioned that a local rotation of a solid body or a rotation of a body
as a whole does not contribute to its elastic energy. Solids, however, respond to torque
deformations: if two adjacent regions are mutually rotated, there are seemingly no de-
formations inside any of these regions. However, on a larger scale, the distance between
two constituents located in two different regions is changed and such a deformations costs
a finite energy. The elastic energy associated with these kinds of deformation is clearly
related to the derivatives of the local rotation operator Eq. (3.5) and we know where
these terms came from: the second derivative term in the relative displacement expansion
Eq. (3.3) takes care of this, as well as of other terms of the same order in the number
of derivatives. When linearized elasticity is supplemented with these terms, one obtains
the so called second-order gradient elasticity which describes the torque effects as well as
other elastic effects related to gradients of the linear elastic deformations (strains). In an
isotropic medium, only two terms are allowed by symmetry and each of these has a length
associated with it. The additional terms are (the local rotation ωa,b is defined in Eq. (3.5))

e2(x) = 1
2
2µ
[

1−(d−2)ν
1−(d−1)ν

`′2∂i∂ju
j∂i∂ku

k + `2∂iωa,b∂iωa,b

]
, (3.19)
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with a length `′ describing the stiffness of the solid under compression gradient and a
length ` describing ‘rotational stiffness’ (the response under a gradient of local rotations
= torque). The choice of prefactors will become clear when we analyse the excitation
spectrum. However, already at this level it is clear that at distances larger than `′ and `
the contribution from Eq. (3.19) gets overwhelmed by the linear elasticity term Eq. (3.4).

Finally, we must set another condition on the elastic constants of a solid. Namely, the
stability of a lattice can be compromised if any of the elastic deformations results in a
negative energy. To prevent this from happening, any sub-determinant of elastic tensor
Eq. (3.9) must be strictly positive. In terms of (hyper-)cubic elastic constants, this means
that

c11 > 0, c44 > 0, c11 > c12, c11 + 2c12 > 0. (3.20)

In order for the isotropic elastic medium to be stable, the shear and the compression moduli
must be positive. The same is true for the Young modulus while the Lamé coefficient must
obey the inequality

λ > −2
d
µ. (3.21)

The Poisson ratio is dimensionless, with allowed values in the range −1 ≤ ν ≤ 1
d−1

.
In most solids its value is positive, as a negative value would imply an elastic medium
that reduces its cross section upon pressure, going against our daily intuition. The known
exceptions are the Abrikosov lattice in type-II superconductors (d = 2) [127] and α-quartz
(d = 3) [128]. Recently, phases of biopolymers that experience a negative Poisson ratio
have been proposed [129].

3.2 Path integral formulation

The elastic theory can be easily constructed as a literal quantum field theory and this
section will be devoted to this construction. The continuum field of displacements is
interpreted as the order parameter field, the corresponding partition function is defined and
the relevant questions such as the Green’s functions of the model are analysed. Although
our ultimate aim is to implement the duality in order to deal with defects of a solid within
the ‘elastic field theory’, in this section only smooth displacement fields are considered.
The results obtained in this way are reminiscent of the results in Eq. (2.49) obtained for
the XY model where only the Goldstone mode (magnon) is visible in the spectrum. In
the same way, smooth displacements can carry only phonon excitations which are massless
Goldstone modes.

Viewing elasticity as a field theory of the displacement field, the corresponding partition
function is

Zel. =

∫
Dua e−

R
Lel.dx. (3.22)
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The Lagrangian Lel. is that of the elastic solid and in general, it is a function of displace-
ments as well as their first and higher derivatives (depending on the number of derivative
terms considered in Eq. (3.3)). In the case of an electrically neutral solid, next to the elas-
tic energy part Eq. (3.4), the action contains only the kinetic energy part. In a classical
crystal, the kinetic energy is given simply as

t(x) = 1
2
ρ (∂tu)2 , (3.23)

where ρ is the mass density of the solid. The kinetic term of a quantum crystal is a more
subtle issue, as it must, among other things, encapsulate the statistics of the crystalline
constituents. In a crystal with constituents other than bosons, a winding of particle world-
lines (extending in the imaginary time direction) may give rise to nontrivial statistics by
means of imaginary contributions to the action. Suppose, for example a fermionic crystal,
and consider a configuration which contains a pair of fermions exchanging their position
over an imaginary time τ = ~/kBT . The action of such a configuration has, next to its real
part, acquired a contribution of iπ that will change the sign of its weight in the partition
function Eq. (3.22). The simple statistical methods applicable to bosons are at this point
no longer valid and we are confronted with the fermion sign problem which has bothered
physicists for quite a long time without any final solution. One could go a step further
and imagine the effects on the action of considering configurations of some of the many
possible particles with ‘exotic statistics’, which might exist as the effective constituents of
strongly correlated condensed matter systems.

In this respect we are safe with the quantum elasticity theory as long as we deal with
bosons as the basic quantum solid constituents. Although one might object that in the
classical theories the phonons (basically the same as the displacements) are bosons re-
gardless of the statistical nature of the constituents, this is a consequence of the finite
temperature compactification where ‘winding configurations’ such as the one mentioned
above are highly unlikely (radius of the imaginary time direction ~/kBT is relatively small
compared to other lengths in the problem). If one deals with the quantum crystal at zero
temperature, the temporal direction extends to infinity and both space and time become
entangled in such way that the statistics of the solid constituents becomes crucial.

The above statement is a bit strong and in fact, even at zero temperature crystalline
phonons are bosonic excitations even for fermionic solids (e.g. Wigner crystal). This is
true only because expansion around the crystalline ground state involves configurations in
which none of the particles is allowed to dwell far away from its equilibrium position. Even
when the displacements become larger than the lattice constant, the considered motions
are always collective as the phonons are represented only by smooth fields. When the
singular displacement field configurations are taken into account, as it will be the case in
the dual theory of the elasticity, the problem of imaginary action is on the table again and
this will be the reason to limit ourselves to the development of a theory applicable only to
bosonic crystals in spite of the rich variety of particles seen in nature.

With a bosonic crystal, one can always rely on the classical kinetic term Eq. (3.23)
continued to imaginary time by the Wick rotation t → −iτ . The kinetic term Eq. (3.23)
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and the potential energy term Eq. (3.4) can be written in a compact form

L0(x) = 1
2
ρ∂τu∂τu + 1

2
∂iu

aCijab∂ju
b ≡ 1

2
∂µu

aCµνab∂νu
b. (3.24)

The extended elastic tensor

Cµνab =


Cijab, µ = i, ν = j
ρδab, µ = ν = τ
0, otherwise

(3.25)

now includes both elastic constants and the mass density and gives the action more of a rel-
ativistic appearance, similar to the action Eq. (2.2). The action Eq. (3.24) is unfortunately
not Lorentz-invariant, as the gradient expansion leading to the elastic energy Eq. (3.4)
assumes that equilibrium positions of the constituents are static in a certain (our) refer-
ence frame. The elasticity theory emerges on a non-relativistic concept of the equilibrium
positions and therefore it must abandon the Lorentz-invariance innate to the fundamental
microscopic theory.

We discussed how time has a special role in the physical theories due to our experiments
performed in a specific reference frame and this is valid even with models that are originally
relativistic, like the XY action Eq. (2.2). In the elastic theory, the special status of time
is only amplified on the level of the emergent theory. In addition, the field variables, the
displacement, exist only in the spatial direction. The constraint uτ = 0 would have to be
imposed, had we started with a Lorentz-invariant formulation of the theory equivalent to
the one with elastic action Eq. (3.24). These “upper labels” of the displacements, as well
as the upper labels that occur in the dual description will be called ‘flavours’.

We have now to ask physical questions such as what are the Green’s functions of the
model in terms of the displacement fields? Associated with a displacement ua, an external
source term is added to the action

LJ = J aua (3.26)

so that the imaginary time propagator is found as the derivative of the generating functional

〈〈ua|ub〉〉 =
1

Z

∂2Z[J ]

∂J a∂J b

∣∣∣∣
J=0

. (3.27)

The real time propagator is then obtained by the analytic continuation of the propagator
Eq. (3.27) back to real time by τ → it − δ (or ωn → −iω − δ for the propagator of the
Fourier components).

When only smooth displacement configurations are assumed in the path integral Eq. (3.22),
one can transform the fields to the momentum-Matsubara frequency space. It is convenient
to rotate the displacement flavours to the momentum (L, T , i.e. ‘zweibeinen’ Eq. (1.3)) ba-
sis, but for the moment we keep the Cartesian indices and separate the longitudinal and
the transversal displacements by the projection operators Eq. (1.11, 1.12). When the lin-
ear isotropic elasticity is considered, the elastic action including the external source terms
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turns into

L = 1
2
ua
[
(ρω2

n + µq2)δab + µ1−(d−3)ν
1−(d−1)ν

qaqb

]
ub + J aua

= 1
2
ρua

[(
ω2

n + c2Lq
2
)
PL

ab +
(
ω2

n + c2T q
2
)
P T

ab

]
ub + J aua, (3.28)

introducing two velocities

c2L =
2µ

ρ

1− (d− 2)ν

1− (d− 1)ν
=
κ+ 2µd−1

d

ρ
, c2T =

µ

ρ
(3.29)

which correspond to the longitudinal and transversal phonon velocities of the isotropic
d-dimensional solid.

The Gaussian integration of the (exclusively smooth!) displacements yields the partition
function of the solid, including the external source terms,

Z[J a] =
∏
q,ωn

√
2π

ρ(ω2
n + c2Lq

2)

√
2π

ρ(ω2
n + c2T q

2)
e

1
2
J a

"
P L

ab

ρ(ω2
n+c2Lq2)

+
P T

ab

ρ(ω2
n+c2T q2)

#
J b

= Z e

1
2
J a

"
P L

ab

ρ(ω2
n+c2Lq2)

+
P T

ab

ρ(ω2
n+c2T q2)

#
J b

. (3.30)

The imaginary-time displacement propagator for the elastic ideal solid is found to be

〈〈ua|ub〉〉 =
1

ρ

(
PL

ab

ω2
n + c2Lq

2
+

P T
ab

ω2
n + c2T q

2

)
. (3.31)

The excitation spectrum of an ideal crystal has a massless linear pole associated with
the longitudinal displacements, and d− 1 degenerate massless linear poles associated with
the transversal displacements. These are of course well-known, and go under the name of
the longitudinal and transversal crystal phonons respectively. Liquids differ from solids for
having no reactive shear rigidity which implies the absence of massless propagating poles
in the transversal response (compare µ = 0 in Eq. (3.29)). Instead, a liquid responds to
shear either by a dissipative response (as in a classical liquid) or it does not respond at all
as in superfluid 4He. There, a response to shear is not present at all, all the way down to
length scales of a few lattice constants, where the shear response is recovered, signaled by
the roton minimum in its excitation spectrum.

The displacement propagator for a solid as described by the second order gradient
elasticity is straightforwardly found in the same manner as the propagator Eq. (3.31).
Two additional terms in the elastic energy density Eq. (3.19) are added to the inverse
propagator, resulting in

〈〈ua|ub〉〉 =
1

ρ

[
PL

ab

ω2
n + c2Lq

2(1 + `′2q2)
+

P T
ab

ω2
n + c2T q

2(1 + `2q2)

]
. (3.32)

The choice of the factors (lengths) `′ and ` in the second order gradient energy density
Eq. (3.19) is now clear: second-order gradient elasticity effects become visible in the phonon
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spectra only at lengths smaller than `′ in the longitudinal and ` in the transversal sector.
Although the two lengths are in first instance irrelevant for the long-wavelength behaviour,
the length ` does regulate the ratio of dislocation and disclination rest mass and it will be
necessary to implicitly include it in the formalism in order to achieve the phase transition
to the nematic crystal [48, 44].

The existence of separate, decoupled, excitations in the ideal crystal displacement prop-
agators (Eqs. (3.31, 3.32)) allows us to split the propagator into longitudinal and transversal
parts. The longitudinal component of the displacement field is proportional to the com-
pressional strain ∂au

a → −quL. Therefore, the longitudinal propagator is defined as the
correlation function of the compression strain

GL = 〈〈∂au
a|∂bu

b〉〉. (3.33)

The transversal part of the displacement is proportional to the local rotation operator
Eq. (3.5) and the residual part of the displacement propagator is then the trace of the
local rotation correlator

GT = 2〈〈ωa,b|ωa,b〉〉. (3.34)

The antisymmetric local rotation can in general be represented as a contraction of the
Levi-Civita symbol and an axial-tensor of rank d−2. Thus, in two dimensions there is only
one component of the local rotation (axial-scalar) ωτ = 1

2
εab∂au

b, while in three dimensions
the local rotation is represented by an axial-vector ωa = 1

2
εabc∂bu

c. The transversal propa-
gator Eq. (3.34) is the propagator of the local rotation excitation(s) and it is interesting to
see how the antisymmetric strain component, which does not even have an elastic stiffness
in the linear elasticity, acquires a nontrivial Green’s function.

Use of the strain propagators Eq. (3.33) and Eq. (3.34) ensures that these propa-
gators stay well-defined even in the phase where the displacements are disordered. This
choice of Green’s functions does, in analogy with the superfluid velocity-velocity correlators
Eq. (2.49), break the ‘dual censorship’ barrier and allows us to measure disorder/topological
field correlation in the disordered phase by means of (order) phonon propagators.

Hypothetically, one could construct a correlation function between compression strain
and local rotation

Gchiral = 〈〈∂au
a|ωb,c〉〉. (3.35)

Compression is always a true scalar, i.e. a rotation singlet invariant under spatial reflections.
The local rotation transforms under a representation that depends on the dimensionality,
but it is always an ‘axial’ object. This means that it changes sign under spatial reflections.
Accordingly, the propagator Eq. (3.35) has to be an axial object as well, and it will change
its sign under spatial reflection. The only way for this propagator to acquire a non-zero
value is that the ground state be chiral, i.e. it breaks the spatial reflection symmetry so
that it is not equivalent to its mirror image. In the ideal crystal, the two sectors are
decoupled and, as expected, the propagator Eq. (3.35) vanishes as there is no chirality
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breaking. Later, in the ordered nematic state, the Fourier transformed chiral propagator
will acquire a nonzero value for certain values of angle between Burgers- and wave-vector.
This is however not a sign of broken reflection symmetry since one needs to perform the
inverse Fourier transformation after which the correlator (in real space) may vanish. When
we come to the exact expression of the chiral propagator in the ordered nematic phase, we
will use that opportunity to demonstrate conditions on the Fourier transformed correlators
implied by (un)broken reflection symmetry.

3.3 Topological defects in solids

The theory of the ideal crystal presented in the previous section is heavily used for common
solids encountered on a daily basis like metal rods or springs. One might wonder why the
gradient expansion works so well for the long-wavelength description of solids experiencing
low stress? What causes the simple elasticity picture to fail? The assumption that all the
crystalline constituents remain, for infinitely long times, close to their equilibrium positions
may be jeopardized by many factors. First of all, no crystal growth process is perfect and
occasionally there will be a missing atom (vacancy) or an excess atom (interstitial) in the
crystal. Vacancies and interstitial pairs may be introduced by high energy processes such
as an irradiation of the crystal where an atom is ‘pushed’ out of its equilibrium position into
a new position, far enough away such that the recombination of the interstitial-vacancy
pair is not likely to occur. A vacancy or an interstitial can occur due to fluctuations in the
system whether they are of classical (thermal) or quantum (zero-point) origin [48]. In real
crystals, the formation energy for a vacancy is of order of 0.5eV, resulting in roughly one
percent vacant sites for a piece of steel at 1000K, while the vacancy concentration is ∼ 10−7

at room temperature. The formation energy of interstitials is even higher, usually like 3-
6eV, rendering only few of them at 1000K, while they are virtually non-existent at room
temperature. A small concentration of vacancies is not in contradiction with long-range
crystalline order: the vacancies by themselves ‘dilute’ the crystal by reducing the crystalline
order. In the quantum crystal matters are a bit different, as interstitial-vacancy pairs are
bound in virtual pairs at small coupling constant while they might Bose-condense when
the coupling constant increases, forming a supersolid (coexisting phase of crystalline order
and the vacancy Bose condensate). A further increase in the coupling constant leads to
a transition into the superfluid phase where the crystalline order parameter is completely
diminished. This scenario becomes relevant when Umklapp scattering dominates, as in
popular toy models of the Bose-Hubbard variety [1] studied earlier.

The potential energy per vacancy/interstitial event in a solid is quite high and whenever
a multitude of these point defects is present, they will, instead of leading a solitary life,
get rather close in order to minimize their potential energy. What usually happens is that
interstitials group into line defects, effectively removing a large number of frustrated bonds.
In a two-dimensional crystal this is the way in which dislocation and disclination defects
are formed. The crystal deforms around the line to repair (remove) high strains caused by
interstitial defects which decreases the energy of the defect further, and the only place where
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this repair is impossible is close to the line-end where the defect core is formed and where
most of the defect energy is stored. In three dimensions, things are less obvious. Namely,
following the manner of two-dimensional defects, rows of interstitials in three-dimensions
can stack onto each other, with further reduction in the potential energy. in this way sheets
of interstitials are created, the crystalline repair may again take place at the surface of the
sheet only to fail at the edges which then form a line-like core of dislocation/disclination
defects in the three-dimensional solid. However, the three-dimensional interstitials are still
point particles and they can significantly reduce the total energy by a delocalization. In
this manner, the supersolid ground state can compete with the state dominated by the
topological defects even when there are no strong Umklapp processes present. In higher
dimensions the topological defects are created by further stacking of interstitials so that
in d dimensions dislocations and disclinations are geometrical p-branes with p = d − 2.
The increased dimensionality, however, favours even more strongly the realization of the
supersolid phase. Notice that the geometrical structure of dislocation/disclination defects
in an arbitrary-dimensional medium corresponds to that of vortex excitation in XY model
(chapter 2) which will later be crucial in development of the elastic duality.

The coexistence of the solid and interstitial BEC parameter in a supersolid is in a
way possible due to the non-topological status of interstitial defects: presence of one of
them in the lattice influences only other constituents in the vicinity of the defect. By
contrast, the dislocation and disclination defects are topological excitations: whenever a
circulation is made around one such defect, the displacement field u becomes ill-defined
by acquiring a singular part. This muti-valuedness of the displacement field characterizes
the defect and, in analogy with the XY singular configurations, yields a precise description
of the topological defect as a part of the field theory. The same as with the vortices, the
topological defects of the elasticity theory can be ‘measured’ by an encircling contour which
counts the discontinuities in the displacement and local rotation field, the former giving
the dislocation and the latter giving the disclination charge of the defect [130, 131]. The
requirement that symmetrized strains have to be smooth is analogous to the requirement
that the superfluid velocity of the XY model is a smooth function.

The discontinuity in the fields can alternatively be expressed as a jump of the corre-
sponding fields across a surface (in 3D) which has the defect line as its only boundary. If a
defect is unbound the surface will extend to infinity. If a defect forms a loop, the surface is
usually taken to be finite. The choice for this surface, which is known as the Volterra cut,
is physically irrelevant. If we imagine that a defect is made ‘by hand’, by cutting the solid
and inserting extra material at that plane (as Volterra imagined), the crystal will relax to
‘repair’ along this line (symmetrized strains match precisely) and the only physically ob-
servable quantity is the singularity along the defect line which could have been achieved by
any other arbitrary Volterra cut, having the defect line at its edge as the only requirement.

A dislocation charge, the Burgers vector, is defined by the displacement discontinuity,
regardless of the number of embedding dimensions. A disclination charge is, on the other
hand, a dimension-sensitive quantity. This comes from the definition of local rotations as
an antisymmetric tensor of rank-2, Eq. (3.5). Alternatively, this tensor (the local rotation
field) can be expressed as a contraction of the Levi-Civita tensor and an antisymmetric
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Figure 3.1: Topological defects in 2D: a) dislocation can be regarded as a line of interstitials
coming to an end in the bulk of a solid; b) stacking these lines of interstitials yields a wedge of
interstitials which is a disclination.

axial-tensor of rank d− 2 which is known as the Frank charge of the disclination. Accord-
ingly, a disclination of a two-dimensional medium has axial-scalar charge (Frank scalar)
and one in a three-dimensional medium has axial-vector charge (Frank vector).

In Fig. 3.1 we can see how defects look in a two-dimensional solid. The dislocation can
be thought of as a a line of atoms coming to an end in a middle of the crystal [132, 133, 134].
It is associated with the restoration of the broken translational symmetry in the crystal
and causes discontinuities in the displacement field only. A disclination, on the other
hand, looks like a wedge of atoms inserted into the crystal. It is associated with the
restoration of the rotational symmetries in the crystal and it causes discontinuities both in
the displacement and the local rotation field. Dislocation and disclination defects are not
independent: a disclination can be viewed as a stack of dislocations extending to infinity
and a dislocation can conversely be seen as a bound pair of an anti-disclination and a
disclination. Pursuing the analogy, a whole hierarchy of excitations in solids may be made:
interstitials are made of bound dislocation-antidislocation pairs and phonons are just bond
interstitial-vacancy pairs (vacancy at the original constituent position R0, interstitial at
its true position R0 + u).

The geometrical properties of the topological defects, their topological charges and their
mutual ‘alignment’ define different types of dislocations and disclinations. In two dimen-
sions defects are point charges and there is no need for a classification although sometimes
they are regarded as if they were in slices of a three-dimensional medium (so that they
are referred to as ‘edge’ and ‘wedge’ respectively). Three-dimensional defects are lines and
topological charges are vectors so the classification is based on their alignment. A disloca-
tion can be edge dislocation, with the Burgers charge perpendicular to the defect line, and
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C+

x1+

x2+

x1-

x2-
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Figure 3.2: Weingarten theorem: a difference in the displacement circulation between contours
1 and 2 is given by Eq. (3.43). The discontinuity occurs at the Volterra cut (rastered plane).

screw dislocation, with the two being parallel; a disclination can be wedge disclination,
with the Frank vector and the defect line parallel, splay disclination, with the two being
perpendicular, or twist disclination, similar to the splay except with the two lines bypassing
each other. Both dislocations and disclinations can also be a mixture of different classes
when the angle between the defect line and the topological charge has some intermediate
value.

There is a theorem by Weingarten which insures that only these two types of topological
defects can exist [135]. While the original work pertained to three-dimensional solids, we
present a slight modification that is valid in an arbitrary dimensional medium [50].

Suppose that we have a defect line in a solid and wish to relate the discontinuity in the
displacement field at two points 1 and 2 located at the cut (see Fig. 3.2). The discontinuity
is recorded by encircling the defect, so we have

∆ua(2)−∆ua(1) =
(
ua(2+)− ua(2−)

)
−
(
ua(1+)− ua(1−)

)
=

∫ 2+

1+(C+)

dxi∂iu
a −

∫ 2+

1−(C−)

dxi∂iu
a (3.36)

=

∫ 2+

1+(C+)

dxi(wi,a + ωi,a)−
∫ 2+

1−(C−)

dxi(wi,a + ωi,a).

Contours C+ and C− connect the respective points 1 and 2 and run each on one side of
the Volterra cut. The term with the local rotation can be partially integrated∫ 2±

1±(C±)

dxiωi,a =
[
xi − xi(1

±)
]
ωi,a

∣∣2±
1±
−
∫ 2±

1±(C±)

dxj

[
xi − xi(1

±)
]
∂jωj,a (3.37)
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and since

xi(1
+) = xi(1

−), xi(2
+) = xi(2

−), (3.38)

we arrive at

∆ua(2)−∆ua(1) = (xi(2)− xi(1))(ωi,a(2
+)− ωi,a(2

−)) +∫
C+

dxj [wj,a + (xi − xi(1))∂jωi,a]− (3.39)∫
C−

dxj [wj,a + (xi − xi(1))∂jωi,a] .

The integrals are calculated over two different sides of the Volterra cut and they can be
merged into one integration over a contour C of the discontinuities∫

C+

−
∫

C−
→
∫

C

dxj [∆wj,a + (xi − xi(1))∆∂jωi,a] . (3.40)

The discontinuity of the local rotation derivative can be reorganized into

∆(∂jωi,a) = 1
2
∂j(∂iu

a(x+)− ∂au
i(x+))− [x+ → x−]

= ∂iwj,a(x
+)− ∂awj,i(x

+) + 1
2
(∂j∂i − ∂i∂j)u

a(x+)− (3.41)
1
2
(∂j∂a − ∂a∂j)u

i(x+) + 1
2
(∂a∂i − ∂i∂a)u

j(x+)− [x+ → x−].

Since the displacement field is smooth on both sides of the Volterra cut, all terms with two
derivatives vanish and the integral Eq. (3.40) turns into∫

C

dxj [∆wj,a + (xi − xi(1))∆(∂jwj,a − ∂awj,i)] . (3.42)

It was earlier assumed that both strains and their derivatives are smooth on the Volterra
cut. Accordingly, the integral Eq. (3.42) is identically zero. The discontinuity in the
local rotation field defines an antisymmetric tensor Aij = ∆ωi,j, and we obtain the exact
formulation of the Weingarten theorem

∆ua(2) = ∆ua(1) + Aab

[
xb(2)− xb(1)

]
, (3.43)

which states that a discontinuity over a Volterra cut can only be a constant vector plus
the action of an antisymmetric tensor. Another way to formulate it is by saying that
a discontinuity in the displacement around a defect line is independent of the path and
always given in the form∮

C

(dl · ∇)u = u(x+)− u(x−) = b0 + Â (x− x0). (3.44)

We express the antisymmetric tensor A as

Ωa1a2...ad−2
= 1

(d−2)!
εa1a2...ad−2ijAij, (3.45)
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and vice versa: A = εΩ (in symbolic form) and we recognize the second term of the
Weingarten theorem Eq. (3.43) as a d-dimensional rotation. For a two- or three-dimensional
defect line, the Frank scalar and vector respectively coincide with Ω and Ωa. Defects with
Ω equal to zero are pure dislocations with the Burgers vector b = ∆u. The Burgers vector
of a disclination is on the other hand sensitive to the choice of the reference point 1 in
the Weingarten theorem Eq. (3.43). The most important consequence of the theorem is,
however, that dislocations and disclinations are sufficient to cover any possible discontinuity
and therefore there is no other kind of defect permitted.

An elastic topological defect is characterized by discontinuity at the defect manifold
(point, line, brane, etc.). In analogy with the vortices of the Abelian-Higgs model, we
introduce the density of defects, dislocations and disclinations respectively, as

αa
i1i2...id−2

= εi1i2...id−2jk∂j∂ku
a, (3.46)

Θ
a1a2...ad−2

i1i2...id−2
= εi1i2...id−2jkεa1a2...ad−2bc

1
2
∂j∂k∂bu

c. (3.47)

d−2 lower indices represent the fact that the defect is an oriented manifold (a d−2-brane).
The upper indices correspond to the Burgers charge (vector regardless of the number of
embedding dimension) and Frank charge (tensor of rank d− 2). By our earlier convention,
we will refer to the upper index of the dislocation density as a ‘flavor’ index.

Let us suppose that a general topological defect is defined by singularities on a manifold
Σ. The defect densities can be expressed in terms of manifold delta function, Eq. (2.106),
used in section 2.5

αa
i1i2...id−2

= δi1i2...id−2
(Σ)(ba −Aabxb), (3.48)

Θ
a1a2...ad−2

i1i2...id−2
= δi1i2...id−2

(Σ)Ωa1a2...ad−2 . (3.49)

Since the topological defects cannot have any edges, the derivative identity Eq. (2.101) is
valid for the manifold Σ. Accordingly, the conservation law for disclinations and a similar
law for dislocations follow when we differentiate defect densities Eqs. (3.48 - 3.49)

∂jΘ
a1a2...ad−2

ji1i2...id−3
= 0, (3.50)

∂jα
a
ji1i2...id−3

= Aajδ...(Σ) = εajb1b2...bd−2
Θ

b1b2...bd−2

ji1i2...id−3
. (3.51)

The latter identity can be interpreted as the conservation law for dislocation densities
valid only in the absence of disclinations. In the presence of disclinations, it illustrates the
interdependence of dislocations and disclinations: ‘peeling’ of dislocations from the infinite
stack that builds a disclination is allowed at no cost on the disclination Frank charge.
This implies that, in order to create a dislocation, all we have to do is make a disclination
move. This law works the other way around also: a moving disclination leaves a trail of
free dislocation defects behind it. If these proofs seem superficial, a more precise proof,
based on the analogies with differential geometry [48]. and gravity [123, 124, 125], will be
presented in appendix B.

Until now we were concerned only with defects of a classical elastic medium. Given
that a quantum elastic medium has an additional coordinate, i.e. imaginary time, we
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Dv b=
t

¶

Figure 3.3: Discontinuity in the velocity field or the ‘velocity dislocation’: such a disconti-
nuity, though physically possible, violates the assumptions of the Weingarten theorem Eq. (3.44).
Depending on the orientation of the Volterra cut with respect to the ‘velocity Burgers vector’ it
represents slip of surfaces (parallel, full line) or adding/removing material (perpendicular, dashed
line). For simplicity, we use the word ‘slip’ for both motions.

should repeat the whole procedure, now having the topological densities only as the static
(temporal) components of the more general defect currents and generalizing the definitions
Eq. (3.46 - 3.47) to accommodate the dynamical currents. The imaginary time direction
should have a special role in this generalization. However, it turns out that the generaliza-
tion to the dynamical currents of a quantum solid is straightforward if we assume a medium
with one more dimension which is assigned to the imaginary time and use the definitions,
remarks, conservation laws, etc., from the previous paragraphs in this section. There is,
however, a subtle change due to the special status of time in the elastic theory – crystalline
displacements in the temporal direction (uτ = 0) are forbidden and this is reflected in the
geometrical structure of the defect topological charges. First, we note that the Burgers
vector registers the displacement discontinuity which is only possible in the spatial direc-
tions. Therefore, the dislocation currents with temporal flavor are not permitted and the
definition of dynamical dislocation currents becomes

Ja
µ1µ2...µd−1

= εµ1µ2...µd−1νλ∂ν∂λu
a. (3.52)

The Greek indices are now used to signify summing over both spatial and temporal indices
while the Burgers flavor is exclusively spatial.

The generalization of the disclination current Eq. (3.47) has to be performed with
greater care. Let us naively substitute all the indices in Eq. (3.47) by their Greek counter-
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parts (space-time indices) to obtain the definition of the dynamical disclination current

Tα1α2...αd−1
µ1µ2...µd−1

= 1
2
ε{µ}νλε{α}βγ∂ν∂λ∂βu

γ. (3.53)

Braces represent a string of indices (say {α} = α1α2 . . .). Since the index γ cannot take the
temporal value τ in the summation of Eq. (3.53), one of the remaining indices, either any of
the αi or β, has to be the temporal one. If one of α’s has taken the value τ , the remaining
indices are all spatial, including β, and the topological charge operator Eq. (3.53) gives the
discontinuity in a local rotation. If, however, one takes the disclination current component
with all of the α indices spatial, β is forced to take the temporal value and the topological
charge Eq. (3.53) is not measuring a discontinuity in a local rotation, but rather in the
velocity field ∂βu

γ → ∂τu
c ≡ vc. Thus, this kind of generalized disclination current can

alternatively be thought of as a disclination in the velocity field. In principle, such events
are possible in real solids, but what do they mean physically? In Fig. 3.3, we give an
illustration of the effect of a velocity discontinuity. Pending the orientation of the Volterra
cut (which is physical now since the velocity field does not repair itself) with respect to

the velocity discontinuity, a nonzero value of the current T
{a}
{µ} means that two crystalline

surfaces slip over each other or that some additional material is added or removed from the
defect. These effects are in clear violation of the Weingarten theorem as it states that all
the symmetrized strains (and the velocity field can be regarded as such) have to be smooth.
The conditions violating the Weingarten theorem imply further that the conservation laws
Eq. (3.50 - 3.51) are no longer valid. The velocity slips act as defect factories, adding new
material from the outside and changing the total amount of crystalline material. As we
wish to describe defects which are innate to the solids and conserved (equivalent to the
condition that no new matter is introduced into the system), the disclination currents with
d − 1 spatial Frank indices are prohibited in the remainder of this work. Therefore, the
current Eq. (3.53) is redefined for a non-relativistic solid as

T a1...ad−2
µ1µ2...µd−1

= 1
2
ε{µ}νλε{a}bc∂ν∂λ∂bu

c, (3.54)

so that only the Frank charge is represented in the upper label(s). It turns out that the
dual elastic theory, which is supposed to treat all possible defects, decouples the prohibited
velocity slips from the physical dual degrees of freedom at the end of the day.

3.4 Topological kinematic constraints: dislocations and

the glide principle

Defects such as interstitials/vacancies, dislocations or disclinations perturb the ideal per-
fectly periodic crystal. Since they play a crucial role in the melting transition by their
deconfinement, it is natural to expect that their kinematical and dynamical properties
become essential when these transitions are analysed. An important example is the dis-
location glide constraint. This constraint is very well known in the materials science
community, but the understanding of this constraint was always based on either heuristic



3.4 Topological kinematic constraints: dislocations and the glide principle 67

or numerical arguments. Recent work on the melting of quantum crystals [44] signified the
importance of the glide constraint for the properties of the new melted phases and it offered
a formulation of glide in terms of the novel dynamical dislocation currents Eq. (3.52).

In this section we treat these matters carefully and show that the glide constraint, which
is a topological constraint, may be derived from a simple consideration that the matter is
conserved inside the solid. To highlight the history of the subject and the beauty of the
proof, we first derive the linear glide constraint for a charged solid, and later repeat the
procedure for an uncharged solid with the same result. The proof we give is independent
of the number of embedding dimensions and it always constrains one of the dynamical
currents Eq. (3.52). To give a better feeling for the glide constraint in higher dimensions,
the constraint is interpreted in two, three and four dimensions, and we point out how
the geometrical structure of the defect can allow local ‘leaks’. Because the constraint, as
initially derived by us, represents only the linear approximation to the exact expression, we
revisit the proof without the linear approximation, rederive the exact expression and argue
that these corrections can accommodate the physics beyond the linear theory, involving
interstitial events and finite lattice constant effects. There is another aspect of the glide
constraint: its transformation properties under the spatial symmetries of the system. As
we show toward the end of this section, the glide constraint prohibits the only singlet
current in the system, relieving the compression degree of freedom from the burden of the
disorder degrees of freedom. In the dual theory of the elasticity, this condition is sufficient
to keep the compression rigidity present at all length scales.

In many standard texts, e.g. [132, 133, 134], the explanation of the glide constraint
is not profound. A dislocation corresponds to a row of particles (atoms) ‘coming to an
end’ in the middle of a solid. One way to move this entity is to cut the neighboring
row at the ‘altitude’ of the dislocation and consequently move over one tail to cure the
cut (Fig. 3.4a). The net effect is that the dislocation is displaced. This easy mode of
motion is termed ‘glide’. Moving in the orthogonal direction is not as easy. Let us try to
move the dislocation ‘upward’. This requires loose particles to lengthen or shorten the row
of particles (‘interstitials’ or ‘vacancies’) and since loose particles are energetically very
costly and they move very slowly (by diffusion) this ‘climb’ motion is strongly hindered.
Estimates on ‘climb’ diffusion rates are provided in e.g. Ref. [136]. Climb is hindered to
such an extent in real life situations (e.g. pieces of steel at room temperature) that it may
be ignored altogether. The lower dimensional glide motion of dislocations is reminiscent
of dynamics in the heavily studied sliding phases [57, 137, 138, 139, 140, 141, 142, 143] in
which an effective reduction of dimensionality occurs.

Earlier discussions on the glide constraint present it in a fairly quantitative way by de-
manding that the dislocation motion obeys conservation of crystalline material. Suppose we
have a dislocation line specified by x(s) having a Burgers charge b. The three-dimensional
glide constraint is then expressed as∫

L

ds ∂sx · (b× ẋ) = 0. (3.55)

It is given in integral form in order to leave room for the diffusion of the material over
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a) b)

Figure 3.4: Possible motions of dislocation defects in a) two and b) three dimensions a)
allowed (matter conserving) cutting and reconnecting of ‘atomic columns’ gives rise to the glide
motion of the dislocation line (at the center of figure) in the horizontal direction. By contrast, an
emission or absorption of vacancies and interstitials is required for a climb motion (vertical motion
of the dislocation in this figure). Thus, an absence of additional material (mass conservation)
strictly prohibits the climb within, continuum limit, linear elasticity. b) in three dimensions, the
same principle is still valid for a motion of the defect as a whole line parallel or perpendicular
to its Burgers vector. However, due to the geometrical structure of the defect, small exchange
of material is allowed across the defect line. That way, a segment of the defect line may locally
climb at expense of its neighbours’ height.

the line. In spite of the fact that this diffusion process is not intensive, it is usually still
much stronger that the diffusion of the external interstitials. This motion, where a segment
of the three-dimensional dislocation can move perpendicular to its Burgers vector at the
expense of its neighbouring segment is known as restricted climb (see Fig. 3.4b ).

The glide formulation Eq. (3.55) may suffice for the needs of metallurgy. However, if we
want to write a consistent dual theory of quantum elasticity, the glide constraint should be
given in an exact mathematical form, involving the currents Eq. (3.52). This formulation
of the constraint is the aim of this section.

Let us begin with the analysis of an electrically charged solid. Such a medium (“bosonic
Wigner crystal”) is interesting in itself [9, 144], and will be the central object of our study
in the chapter on our novel type of superconductivity (chapter 5). Here, it is merely utilized
as a convenient tool for implementing the material conservation law via gauge invariance,
to subsequently derive the glide principle. Later on, we will independently derive the
glide constraint by direct mass conservation without resorting to local gauge invariance
to implement it. As mass conservation pertains to a scalar quantity, such a conservation
law translates into a condition on a linear combination of the topological defect currents
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which is necessarily invariant under spatial rotations. Conservation laws (equivalent to
gauge invariance) may greatly restrict the dynamics of the system, leading to an effective
reduction in the dimensionality. We will now illustrate how this indeed transpires in solids:
in linear elasticity, mass (‘charge’) conservation allows only glide motion of a dislocation.

From chapter 5, we borrow the (linear) EM coupling term Eq. (5.3) of a charged solid
and add it to the total action density

LEM = (nee
∗) [Aτ∂au

a − Aa∂τu
a] . (3.56)

For the exact derivation of this result we refer the reader to chapter 5. The charge and
its density are given by e∗ and ne; the first term in Eq. (3.56) is the Coulomb repulsion
energy gained by compression of the solid, while the second term represents the Lorentz
potential of a moving charged particle. Charge conservation is closely related to gauge
invariance – the gauge invariant action is equivalent to the statement that the charge is
conserved. Therefore, we demand that the action Eq. (3.56) is invariant under the U(1)
gauge transformation of the electromagnetic potentials Aµ given by

Aµ → Aµ + ∂µα, (3.57)

with α an arbitrarily smooth scalar field. Inserting the gauge transformed fields, Eq. (3.57),
into Eq. (3.56), and performing an integration by parts, the gauge-variant part is found to
be

LEM → LEM + (nee)α [∂a∂τu
a − ∂τ∂au

a] . (3.58)

Since the gradient function α is arbitrary, the term in the brackets must be identically zero
in order to preserve the electric charge, and thus

∂a∂τu
a − ∂τ∂au

a = 0. (3.59)

This will be the glide constraint in terms of strain. Contracting the dynamical current
definition Eq. (3.52) with the Levi-Civita tensor and employing the identity

ετaµ1...µD−1
εµ1...µD−1νλ = (D − 1)!

∣∣∣∣ δτν δτλ

δaν δaλ

∣∣∣∣ , (3.60)

the glide constraint Eq. (3.59) can be rewritten so that it acts on the dislocation currents
in any arbitrary dimension:

ετaµ1...µD−1
Ja

µ1...µD−1
= 0. (3.61)

This is none other than the glide constraint acting on the dislocation current in arbitrary
dimensions! This result places on rigid mathematical footing the conventional glide “prin-
ciple”. As we will illustrate later on, this result, now derived in full generality within the
linear regime, is violated by non-linear contributions. Towards the end of this section,



70 Elasticity and its topological defects

we will derive a complete non-linear glide constraint which will enable us to predict and
estimate corrections to the linear order glide constraint in general elastic solids

At first sight this might appear as magic, but it is easy to see what is behind this
derivation. In order to derive Eq. (3.56) one has to assume that the gradient expansion is
well behaved, i.e. the displacements should be finite. This is not the case when interstitials
are present, because an interstitial is by definition an object which can dwell away an
infinite distance from its lattice position. Hence, in the starting point, Eq. (3.56), it is
implicitly assumed that the interstitial density is identically zero. The gauge argument
then shows that gauge invariance exclusively communicates with the non-integrability of
the displacement fields, Eq. (3.59). These non-integrabilities are of course nothing else than
the topological currents – the glide constraint is a constraint on the dislocation current.
If the glide constraint were not satisfied, electrical conservation would be violated locally,
i.e. electrical charges would (dis)appear spontaneously, as if the dislocation were able to
create or destroy crystalline matter. In the absence of interstitials this is not possible and,
therefore, dislocations can only glide. The key is, of course, that by default, dislocation
currents are decoupled from compressional stress in the linear non-relativistic theory.

We may indeed equivalently derive Eq. (3.61) without explicitly invoking EM gauge
invariance to arrive at Eq. (3.59). Instead, we may directly rely from the very start on
mass conservation – the continuity equation of the mass currents (which, as alluded to
above, is equivalent to local gauge invariance),

∂τρ+∇ · j = 0. (3.62)

To see how this is done directly, we compute the various mass current components jµ.
By simple geometrical considerations, within the linear elastic regime, the mass density is

ρ = ρ0[1− ∂iu
i], (3.63)

with ρ0 the uniform background value: the divergence of u (signaling the local volume
increase) yields the negative net mass (‘charge’) density variation at any point. Similarly,
the spatial current density

j = ρ0∂τu. (3.64)

Compounding the mass continuity equation of Eq. (3.62) with the physical identification of
the current (Eqs. (3.63, 3.64)), we obtain Eq. (3.59) from which Eq. (3.61) follows. Later,
we will return to such a physical interpretation of the glide constraint from this perspective
in order to determine corrections to the glide principle which follow from anharmonic terms.
We emphasize that the mass conservation law leading to Eq. (3.59) trivially holds in any
medium regardless of the underlying statistics [145] of potential quantum systems or their
dimension. Furthermore, within the linear elastic regime, such a discussion highlights the
validity of Eq. (3.59) and the ensuing glide equation of Eq. (3.61) (when interpreted as
density matrix averages) in crystals at any temperature in which strict linear order mass
conservation condition is imposed on all configurations. Needless to say, as temperature
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is elevated, a departure occurs from such an imposed linear order condition through the
enhanced appearance and diffusion of interstitials and vacancies leading to climb motions.
The restriction on the dynamics in this regime is captured by a higher order variant of
Eq. (3.61) (Eq. (3.76)) which will be derived later on.

Let us now pause to consider what Eq. (3.61) means physically. In two spatial di-
mensions, Eq. (3.61) implies that the dislocation currents have to be symmetric [44]:
εabJ

b
a = Jy

x − Jx
y = 0. Now, consider Fig. 3.4a. Here, the Burgers vector is pointing

in the horizontal x-direction implying that Jy
µ = 0, while the glide constraint reduces to

Jx
y = 0. This current (Jx

y ) is, by its very definition, the climb current perpendicular to the
Burgers vector.

In three and higher spatial dimensions, the story is less easy, the reason being that
the constraint on the motion is less absolute. This is of course known in the classic
theory [48, 133], but the reader might convince him/herself that making use of Eq. (3.61)
the analysis is much helped as compared to the rather pain-staking effort based on the
‘intuitive’ arguments. In 3+1D, the constraint of Eq. (3.61) becomes

ετabcJ
a
bc = 0. (3.65)

Let us first consider a screw dislocation. These correspond to dislocation currents of the
form Ja

aµ (i.e. the static µ = τ component corresponds to the orientation of the dislocation
loop being parallel to the Burgers vector). It follows immediately that the constraint
Eq. (3.65) is not acting on screw dislocations and, henceforth, screw dislocations can move
freely in all directions. Edge dislocations are the other extreme, corresponding to dynamical
currents of the form Ja

bµ where a and b are orthogonal. The condition µ = a corresponds
to glide: an edge dislocation with its loop oriented in a direction (b) perpendicular to the
Burgers vector (a) can still move freely in the direction of the Burgers vector (a). The
displacement of a dislocation along the line is not a topological object and the current
with two identical lower indices (µ = b) vanishes. The glide constraint only strikes when
all three labels are different. Let us consider a dislocation line extending in z direction
with Burgers vector in the x direction (see Fig. 3.4b). The only nonzero components of the
current are Jx

zµ and the glide constraint becomes Jx
zy = 0. This automatically forbids any

motion in the y direction, that is perpendicular both to the dislocation line and its Burgers
vector. The constraint is ‘leaky’ due to the extended nature of the defect. The material
needed for the climb of one segment of the dislocation can be supplied by an adjacent
segment. The glide constraint has therefore only a real meaning through its integral form,

0 =

∫
dV ετabcJ

c
ab. (3.66)

As illustrated in Fig. 3.4b, only the dislocation’s ‘center of mass’ is prohibited to move in
the climb direction. Local segments of the line may still move at expense of their neighbors,
effectively transporting matter along the defect line. The ‘leaky’, locally defined, constraint
of Eq. (3.66) corresponds with the intuitive idea of ‘restricted climb’ found in the elasticity
literature.
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Having a mathematical definition of the glide constraint at our fingertips enables us
to address its incarnations in even higher dimensional systems where direct visualization
is of little use. Notwithstanding that such crystals are, of course, not to be found in
standard condensed matter, higher dimensional glide constraints might have implications
for ‘emergence theories’ of fundamental phenomena resting on elasticity theory [146, 85].
Let us for example look how the constraint Eq. (3.61) acts in a 4+1D crystal. A dislocation
is now a 2-brane, say, a plane extending in y and z directions. When its Burgers vector lies
in this plane, this brane is analogous to a screw dislocation in the sense that its motions
are not affected by the glide constraint. The other extreme is the ‘edge dislocation brane’
with a Burgers vector perpendicular to the brane, say in the x direction. In this case
the nontrivial currents correspond to Jx

yzµ. As noted earlier for three-dimensional defects,
topological currents do not record any motion taking place within the defect-brane but only
in directions perpendicular to it. The bottom line is that besides the static current (density)
Jx

yzτ , the topological dynamical currents are Jx
yzx and Jx

yzw, representing dislocation glide
and climb respectively. The glide constraint Eq. (3.61) forbids the latter ‘in integral form’,
allowing climb of a certain brane element only at the expense of the brane volume taken
by a neighboring element.

Contrary to our rigorous (‘glide only’) result concerning the linear regime of continuum
elasticity, in real crystals dislocations do climb (albeit at small rates). When dislocations
collide, interstitial matter will be exchanged and this process releases climb motions [44].
In what follows, we will rederive the glide constraint, yet now do so within a fully general
framework which will enable us to address the implications of both (higher order) non-linear
elasticity and the presence of a lattice cut-off. Higher order corrections to linear elasticity
modify the original glide constraints of Eq. (3.61) giving rise to dislocation climb.

To achieve this aim, we could invoke a more precise version of electromagnetic coupling
term Eq. (3.56), robust against particles that dwell away from their equilibrium positions
(interstitials) and exact up to higher orders is given by

LEM = (nee
∗)

[
Aτ (R0 + u)

det(δij + ∂iuj)
− Ai(R0 + u)∂iu

a

]
. (3.67)

The denominator in the first term is the exact volume change due to the compression.
The main difference between the approximate coupling Eq. (3.56) and the exact coupling
Eq. (3.67) is that now, particles ‘feel’ the EM potential Aµ not at their original crystalline
positions R0 but rather at their true positions, i.e. R0+u. Demanding the gauge-invariance
of coupling Eq. (3.67) under performed gauge transformation Eq. (3.57) yields the exact
glide constraint. However, when we are in search for the exact glide constraint, the un-
charged ‘mass conservation’ argument gives a far simpler derivation.

We return to the mass continuity equation invoked earlier (in unison with Eqs. (3.63,
3.64)) yet now, by examining contributions of higher order derivatives of the displacement
field, we exercise far greater care in examining its ramifications. The continuity equation
of Eq. (3.62) implicitly assumes that the density and current fields are functionals of local
Eulerian (distorted lattice) coordinates. On the other hand, the displacement, stress, and
other elastic fields are functionals of substantial coordinates (i.e. the coordinates defined
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relative to the undistorted lattice coordinates) – the Lagrangian coordinate frame. As
was briefly done earlier (Eqs. (3.63, 3.64)), we express the local density and currents of
Eq. (3.62) in terms of volume and velocities as ρ = ρ0

V
and j = ρ0v

V
, with ρ0 the mass of the

ideal uniform medium in a unit volume in the undistorted original medium (i.e. the ideal
background mass density). Following a distortion, a unit volume element of the original
medium now occupies a region of volume V . With these relations in tow, Eq. (3.62) reads

∂τV + (v · ∇)V ≡ DτV = V (∇ · v). (3.68)

This equation can be interpreted as a law governing the change of volume of the elastic
medium: the change in volume (the derivative on the left hand side) is exclusively dictated
by the motion of the boundaries – the gradient on the right hand side corresponds to
a surface integral of the velocity field. This is just a reformulation of the same basic
constraint: the conservation of mass (or electrical charge). Throughout this section, mass
conservation was the primary ingredient leading to the glide constraint. To invoke the mass
continuity equation in the form of Eq. (3.68), let us express the actual atomic coordinates
Rj in terms of the Eulerian coordinates (henceforth denoted by ri)

r[R, τ ] = R + u[R, τ ], R(r, τ) = r− u(r, τ), (3.69)

which gives the identity (valid for finite lattice constant a),

(
∂Rj

∂ri
)τ = (δij +

∞∑
m=1

am−1

m!
∂m

j u
i)−1. (3.70)

Simplifying, we find that Eq. (3.68) may be recast as

∂τV = V (
∂Rj

∂ri
)τ∂i∂τu

j. (3.71)

This is an exact expression (entailing corrections to all order in gradients of u) detailing
the glide constraint. Retaining the leading order contributions and employing V = 1+∂iu

i,
we recover the ‘familiar’ linearized glide constraint of Eq. (3.59).

What can we learn from this exact form of the glide constraint? Let us specialize to
the simple 2+1D medium. Assuming a vanishing lattice constant a, the volume of an
elementary cell is simply given as V = det(δij + ∂iu

j). Inserting this in the exact glide
expression Eq. (3.71) we find that it simplifies,

0 = εabJ
b
i (δia + ∂iu

a) = Jx
x∂xu

y + Jx
y (1 + ∂yu

y). (3.72)

The displacement derivative ∂iu
a includes both regular and singular components. When

∂iu
a is small compared to unity, the linearized glide constraint of Eq. (3.61) is recovered.

In the second step we chose a specific Burgers vector orientation b = bex so that all current
components Jy

µ have to vanish.
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The ‘climb’ current Jx
y is non-zero in two cases. The dislocation may already glide

(Jx
x 6= 0) and by following the smoothly displaced crystalline lines, a small climb motion

is present in rate of

Jx
y ≈ −Jx

x∂xu
y. (3.73)

This is however no true climb as the dislocation is still stuck to one crystalline line and the
‘climb’ we find is just a result of motion of the dislocation conforming to the deformation
of the lattice (drag by the underlying lattice). This is by no means a topological climb
current! By contrast, when ∂yu

y = −1 which represents the stacking of material in y
direction, i.e. presence of the interstitial matter, the current Jx

y may take arbitrary value
which means that the dislocation can freely climb.

At this point it seems that the field theory defined in Ref. [48] is not able to capture
relevant interstitial physics without inclusion of the anharmonic effects. In the next chap-
ter we’ll however discuss the interstitial dynamical currents (strictly speaking they are not
topological) and show their relation to the dislocation current. Given that climbing dislo-
cations represent sources and sinks for the interstitials, we’ll point out how to implement
the glide constraint in its local form to explicitly include the previous relation between the
interstitials and dislocations.

We reach the conclusion that higher orders in the displacements (non-linearities, anhar-
monicities) have the effect of restoring the physics of interstitials. Another natural question
to ask regarding the continuum limit is whether there may be a hidden dependence on the
lattice cut-off a. To investigate this issue, let us see what happens to Eq. (3.71) when we
only keep terms which are harmonic in the displacements, while imposing no conditions
on the number of derivatives. These have to do with the volume of the unit cell. Let us
specialize to a simple hypercubic lattice with sides defined by the vectors (i = 1, . . . , D),

uj(Ri + ai)− uj(Ri) = δij +
∞∑

m=1

am−1

m!
∂m

i u
j. (3.74)

The corresponding volume is a determinant of the matrix Eq. (3.74) and in the harmonic
approximation only the diagonal elements remain,

V = 1 +
D∑

i,j=1

∞∑
m=1

am−1

m!
∂m

i u
j. (3.75)

Using this expression for the volume, the exact equation of constraint (Eq. (3.71)) reads

ετai1...iD−1
Ja

i1...iD−1
= −(D − 1)!

D∑
i=1

∂τ
ea∂i − a∂i − 1

a∂i

∂iu
i. (3.76)

The remarkable fact is that it is possible to collect all higher order derivatives in a simple
exponent. Eq. (3.76) affords us with the general non-linear corrections to the glide con-
straint of Eq. (3.61). Given any elastic media in which the magnitude of the gradient terms
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are known, we may estimate the size of the non-linear corrections to the linear order glide
constraint.

Let us finally analyse the symmetry properties of the glide constraint. The static dis-
locations and disclinations of higher dimensional media are geometrically complex entities
such as lines, sheets or p-branes with Burgers vectors and Frank tensors attached. When
in motion, these branes sweep the additional time dimension. For instance, defects in two
space dimensions are point-like particles turning into world-lines in space-time, in three
space dimensions they form loops spreading out in strings etc. Nevertheless, regardless of
the embedding dimensionality, all of these ‘branes’ share a universal property: there is a
unique direction perpendicular to the brane. This direction can be related to the dynamical
defect currents by contracting it with the D − 1 dimensional antisymmetric tensor having
one index set equal to time,

1
(D−1)!

ετib1b2...bD−1
Ja

b1b2...bD−1
= ∂i∂τu

a − ∂τ∂iu
a = Ua

i , (3.77)

isolating the perpendicular direction i. Instead of the dislocation current J , we could have
used here also the disclination current T , but our interest in this subsection will be in
the former. The comparison of the tensor Eq. (3.77) with the glide constraint Eq. (3.59)
illustrates that the glide condition turns into a constraint on the trace U i

i = 0. For rank-2
tensors, the trace is the only invariant tensorial component of the D-dimensional orthog-
onal group (O(D)), corresponding to all rotations and the inversion in the D-dimensional
medium. It follows that the constrained current is the only ‘singlet’ (scalar) under the
point group symmetries of the crystal (point group symmetries constitute a subgroup of
O(D)). The conjugate degree of freedom must have the same symmetry and this can only
be compression, the only physical entity being a singlet under O(D). We have identified
the fundamental reason that glide implies the decoupling of dislocations and compressional
stress [44].

Apart from rotations, the glide constraint is also invariant under Galilean space-time
translations. Needless to say, the constraint does not obey Euclidean Lorentz (space-time)
invariance as the time direction has a special status both in Eq. (3.59) and Eq. (3.61). The
origin of this lies, of course, in the definition of the crystalline displacement u and its role
in the minimal coupling Eq. (3.56). The displacements are defined under the assumption
that every crystalline site has an equilibrium position which implicitly wires in that their
world lines extend exclusively in the temporal direction.

We conclude with a speculation. As emphasized throughout, the basic physical ingredi-
ent leading to the derived constrained glide dynamics in solids was mass conservation. In a
formal setting, similar albeit more restrictive volume conserving diffeomorphisms (param-
eterized by time) may be directly examined via the w∞ algebra in two spatial dimensions
and its extensions, e.g. [147, 148, 149]. We suspect that there might be a more fundamental
way of casting our relations by relying on the intricacies of such symmetries of space and
time.
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Chapter 4

Dual elastic theory – nematic phases

The previous two chapters were of an introductory nature as we reviewed most of the
known results relevant for the Abelian-Higgs duality (chapter 2) and the elastic theory
(chapter 3), adding a few novel results to each chapter. Now, having made the reader
accustomed to the basic ideas of duality and elasticity, we will proceed in this chapter to
unify the two ideas in the dual theory of elasticity. This concept is fairly new in physics:
it was introduced by Kleinert [48] and it seems that the scientific community has only
recently started to appreciate its full power. This unfortunate fact may be attributed to
the ‘sociological distance’ between the fields that dual elasticity binds together: on one
end of the spectrum, we have duality, often perceived as a mathematical trick of hard core
field theorists, and on the other end of the spectrum, elasticity and its topological defects
considered as a closed chapter in theoretical physics and left to material science. Hopefully,
the pursuit represented by this thesis will close this gap and demonstrate that abandoned
theories can give fundamentally new results when dressed up in a field theoretical setting.

As we learned in chapter 2, ordered and disordered phases are relative concepts, relying
directly on the kind of machines our experiments are equipped with. Nevertheless, being
in the disordered state does not a priori ban us from seeing the correlations of the disorder
objects by experiments devised in terms of order observables [62]. Elasticity is superficially
similar to the XY model as seen by the comparison between their actions, Eq. (2.2) and
Eq. (3.4) respectively. The displacement fields u take the role of the phase field φ and
the difference comes from the ‘flavours’, showing that the dualization has to be performed
with respect to d spatial field components. The tensorial nature of the coupling constant
Eq. (3.25) and its symmetry properties, as well as the constraints on the topological de-
fects, enrich the dual theory, leading to many counterintuitive results and interpretations
which will be found throughout the present chapter. One of the basic ideas we wish to
highlight in this chapter is that the phonon propagators can measure correlations between
the topological defects, in a manner analogous to the capacity of the superfluid velocity
correlators Eq. (2.49) to penetrate the dual barrier.

The scope of this thesis, and especially this chapter, is largely based on the pioneering
work on quantum elasticity by Zaanen et al. [44]. Prior to that work there were no other
treatises on dual elasticity known to us that had addressed disorder in a way similar to the
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Abelian-Higgs duality. Although many older works focused on defect proliferation as the
mechanism behind melting transitions [70, 105, 106, 107, 108, 109, 110, 111, 112, 113], it
was not before this treatise that the gas of defects had been represented by a GLW action
in the context of the dual stress gauge formalism. In the same manner that EM photons
acquire mass in a superconductor (chapter 2), the dual stress photons, parameterizing the
crystalline degrees of freedom, acquire mass in the melted phase.

The special aspect of the dual elasticity melting presented here is that the GLW action
can be invoked only for dislocation defects. In that respect, the phases found initially by
Zaanen et al. (called nematic phases, which we explain in a moment) are similar to the
hexatic phase associated with the triangular lattice solid predicted long ago by Nelson,
Halperin and Young [45, 46, 47], where the melting is caused exclusively by dislocation
defects. There are, however, a number of differences. The NHY melting was a classical
treatise disregarding the statistics of the crystalline constituents and based principally
on the Kosterlitz-Thouless [110, 111] destruction of algebraic long-range order in the XY
system. Further, the hexatic phase and the entire formalism developed in Refs. [45, 46,
47] is innate to the triangular or hexagonal lattice (lattice point group of C6h type); on
the other hand, the quantum nematic is constructed from the dual action and such a
construction is possible regardless the lattice point group. The unique advantage of the
NHY construction is that, treating the defects on a classical level, it can handle both
dislocation and disclination defects. If a quantum crystal is considered, the geometrical
phases associated with the winding of the disclination world lines and the ensuing statistics
invalidate the GLW description.

Since the original work Ref. [44] contained a subtle flaw regarding the dynamics of
the defect fields – a problem tackled in chapter 2 and a preprint of ours [62], the results
presented here are derived with the dislocation condensate treated as a fully ‘relativistic’
entity. The conceptual ideas of Ref. [44] are, however, all retained in this thesis and as a
consequence, a new phases of matter and novel mechanism for the superconductivity, based
on these new phases, are found. With respect to these result, this and the next chapter
represent the core of this thesis. The treatise on neutral solids in this chapter forms a basis
for the following chapter where electrically charged solids are considered.

Let us review here the basic ingredients needed for construction of the dual elasticity
theory and the GLW disorder action that describes the nematic phases. The construction
of the dual theory alone is fairly unrestricted, as was the case with the XY model. The role
of the conjugate momenta is taken by stress fields. In more than two spatial dimensions it
is still possible to define the dual stress gauge fields, but the dual theory shares a difficulty
with the Abelian-Higgs duality: the gauge fields become d− 1 antisymmetric forms as do
the defect currents. When we introduce the dual elastic theory, we will proceed as far
as possible with a dimension independent formulation of the formalism. Unfortunately,
when the disorder fields are introduced in the theory, we will have to restrict ourselves to
2+1D quantum solids, just as was the case with the Abelian-Higgs duality. There is one
lucky circumstance for the application of this dual elasticity. It is generally believed that
the physics behind high-Tc superconductivity in cuprates is restricted to two-dimensional
copper-oxide planes. In this regard, our handicap seems not so important because the most
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promising application of our theory is to high Tc superconductivity. One should however
be careful when electromagnetism is incorporated in the theory. The EM fields are in
principle 3+1-dimensional and one should pay care to match the dimensions properly; in
the next chapter more attention will be paid to this issue.

In the previous chapter we argued that a nontrivial statistics of the solid constituents
may give rise to nontrivial (imaginary) contributions to the quantum action. In order to
protect the dual disorder theory from these ‘signs’, we consider a solid made exclusively
from bosonic (spin-0) particles. This condition implies that, when we wish to apply the
model to a certain physical system, there exists a temperature/energy scale where effective
bosonic excitations emerge.

Another important condition is that we consider only the so-called extreme type-II
kind of melting process where interstitials are prohibited in the formalism. The non-
topological status of interstitial events makes it less obvious how to incorporate these in
the theory. Although we present some speculations in the conclusion on how to include
interstitials defects into the field-theoretical description, the full formalism is still not fully
developed and so we leave it as an issue for further investigation. The finite Higgs mass
for the stress fields at the same time means that there is a (shear) penetration depth λS

associated with the dual stress gauge fields. This length has to be large compared to the
microscopic scales associated with the constituents (Cooper pairs). This condition also
implies that the disordered phase is a quantum liquid crystal of the nematic kind. The
quantum phase transition from the crystal to the isotropic superconductor is necessarily
of the first order [150] and a continuous transition is required for a large λS. In the dual
language, the nematic order implies the topological status of the phase in a sense that
disclination defects are massive. The only permitted defects are dislocations, which are at
the same time “carriers of the disorder”.

In the previous chapter we learned that dislocations have a vectorial Burgers charge.
Based on this charge, we introduce a Burgers director – a liquid-crystal like order pa-
rameter whose value splits the nematic phase into two subphases: ordered and topological
(disordered/isotropic) nematic. In the construction of the disorder field, the Burgers charge
acquires the status of a coupling constant with respect to the flavour label of the dual stress
gauge fields. The order in the Burgers sector means that only one flavour of the dual gauge
fields, the one parallel to the Burgers vector, is minimally coupled to the disorder field and
only this flavour will be subjected to the Higgs mechanism. The derivation of results for
this phase is straightforward, although it becomes technically tedious here and there. On
the other hand, the problem of the disordered Burgers charge in the topological nematic
phase has triggered some controversy. When a ‘naive’ (mean-field) average of the Burgers
director is used, the ramifications of the dual disorder theory seem in contradiction with
the initial assumptions. Nevertheless, these results, still not published, are presented for a
few reasons. First, if there is indeed a technical error in the results (inadequate averaging,
gauge artifacts, etc.), a reader skillful in these matters might be able to find the correction
and this might help us to eliminate the flaw. However, at the end of the section on the
topological nematic, a claim will be presented that the three demands imposed on this
phase in Ref. [44] (‘isotropy’ in the Burgers sector, GLW action implying a Burgersless



80 Dual elastic theory – nematic phases

dislocation superfluid and Gaussian treatment) cannot be all simultaneously satisfied, at
least in the case when the dislocation condensate is treated dynamically. The last section
is devoted to a vindication of the results obtained for the topological nematic by ‘naive’
averaging and in that section it is shown that the controversial results have application to
yet another, newly identified phase of the nematic type.

This chapter is organized in the following way. The first section is a straightforward
derivation of the dual elastic field theory. It leads to the introduction of dual stress gauge
field degrees of freedom and the identification of defect currents from section 3.3 as cur-
rents which are minimally coupled to the dual gauge fields. The resulting formalism is a
generalization of the work of Kleinert [48], now applicable to an elastic solid of arbitrary
dimension. Following the same storyline as in chapter 2, the second section contains the
formalism required to treat the disorder field. We are limited to a 2+1D gas of bosonic
dislocations and a simple GLW action of type Eq. (2.35) suffices for its description. The
problem of order vs. disorder in the Burgers sector is formulated in this section and at
this point we rely on the analysis from Ref. [44] where a liquid crystal action is suggested
for the Burgers director order parameter. The phase diagram based on these arguments is
outlined. In the third section, the dual stress gauge bosons are thoroughly analysed. Ini-
tially, the ideal crystal phase is recovered as the Coulomb phase of the dual gauge theory
and the dual stress gauge field components are given a physical interpretation within the
Coulomb gauge fixing. Subsequently, the Bose-condensation of the dislocations is consid-
ered. The Higgs mechanism which is implied in one of the stress gauge field flavours leads
to the ordered nematic phase. The symmetry analysis, discussed in detail in appendix C,
shows that after all relevant constraints have been implemented, only two ‘shear rigidity’
gauge photons are left to interact with the defects. In the ordered nematic phase the Higgs
mechanism acts only on one of the two shear doublet components. In the next section,
the ‘naive average’ over the Burgers vector is discussed and the isotropic/topological phase
of the solid is obtained. Due to the problems already mentioned, the end of this section
analyses consistency of the topological nematic phase. Some physical interpretations of
the existing results are offered, based on symmetry arguments. In the last section, an
alternative model for the disorder field is considered, which leads to an interpretation of
the results of the previous section in a completely different light. The phase to which the
controversial results are applicable and which we call the ‘isotropic nematic’, shares some
features with the topological nematic: the disclinations are massive and the Burgers direc-
tor has no vacuum expectation value in either of the two phases. In fact, the last property
seems responsible for the misinterpretation of the two phases since the only input in the
construction of the disordered nematic phase was precisely that the Burgers director order
parameter vanishes (Q̂ab = 0). The difference between the phases is in the following: in
the isotropic nematic phase there is a multitude of mutually interacting dislocation con-
densates whose Burgers directors add to zero. At the same time, each condensate has a
well-defined conserved Burgers vector. The topological phase, on the other hand, has only
one bosonic degree of freedom whose Burgers director is disordered. It will be argued that
one must take higher order (interaction) terms into account in order to properly describe
the ‘strong interaction’ effects of this phase.
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4.1 Dual elasticity

The dual elastic theory should in principle be easy to obtain if we stick to the recipe given
in chapter 2, applying it directly to the theory defined throughout the action Eq. (3.24).
That the procedure is everything but straightforward becomes clear when one is forced
to invert the “coupling constant”, the elastic tensor given in Eq. (3.25). Given that the
symmetries of space-time require the antisymmetric part of the elastic tensor to be singular,
the construction of the dual theory has to be executed with great care. In his book [48],
Kleinert considers only the symmetric strains Eq. (3.6) and the dual fields are introduced
with respect to these strains. The introduction of conservation laws on conjugate momenta
Eq. (2.10) in this approach lacks the symmetry in indices which motivated an alternative
procedure in the construction of the dual elasticity presented here for the first time. The
procedure is based on the same ideas that inspired Kleinert for his dual elastic theory
and in fact it amounts to nothing more than reshuffling of indices. However, due to its
apparent symmetry, this construction is tailored in such a way that it is easy to generalize
all important steps to a medium of arbitrary dimensions.

After the single curl dual stress gauge fields (in analogy with Eq. (2.12)) have been
introduced and the ‘single curl’ dual field theory is found, the remainder of this section
is used to show that this dual formulation cannot cope with the presence of disclination
defects. It should be improved by the introduction of ‘double curl’ gauge fields. Inter-
dependence of dislocation and disclination currents is cured when the ‘true’ topological
current is introduced. This topological current operator collects only the defect degrees of
freedom (from both dislocation and disclination currents) that are not redundant in the
linear elasticity. Although in the remainder of the thesis the ‘true’ topological currents
and the ‘double curl’ dual theory are not of direct relevance, they are presented as part of
the elastic duality which cannot be ignored in a general review of the subject. We must
also notice that the introduction of the ‘true’ topological currents and their conjugate de-
grees of freedom, double curl stress gauge fields, differs in this text from all the current
literature known to us [48]. When Kleinert introduces the ‘double curl’ stress gauge fields,
this is done for a classical crystal and all the indices have spatial values. Hopefully, we
have convinced the reader that the generalization to dynamical defect currents is a tricky
business due to the lack of temporal displacements (uτ ≡ 0). We can take two definitions
for the disclination currents as an example, Eq. (3.53) that does not respect the temporal
displacement constraint and the corrected version Eq. (3.54). In this respect, the ‘double
curl’ fields we introduce must take care of the inability of matter to displace in the temporal
direction, such that only the physical topological defect currents are tracked.

Let us now return to the initial action of an (electrically neutral) solid as given in
Eq. (3.24). The generalized momenta are defined according to

σa
µ = −i ∂L0

∂(∂µua)
= −iCµνab∂νu

b, (4.1)

and they have a physical meaning: components σa
i represent stress exerted on a portion of

the solid and the components σa
τ are kinematical momentum densities. One is supposed



82 Dual elastic theory – nematic phases

to express all strains ∂µu
a in terms of the stress fields σa

µ. Unfortunately, Eq. (4.1) cannot
be directly inverted due to the singularity associated with the antisymmetric stresses. At
this point an elegant way to avoid this singularity is introduced in this thesis. Next to the
spin-0 and spin-2 projectors, Eq. (3.14), which span the space of symmetric tensors Cijab,
we introduce the antisymmetric spin-1 projector

P
(1)
ij,ab = 1

2
(δijδab − δibδja). (4.2)

The space of all rank-2-2 tensors is spanned by these three projectors as seen from the
closure relation

P
(0)
ijab + P

(1)
ijab + P

(2)
ijab = δijδab ≡ 1ijab. (4.3)

Projecting the definition of stress Eq. (4.1) on the three possible spin subspaces, the fol-
lowing relations between the stresses and strains are found

P
(0)
ij,abσ

b
j = −idκP (0)

ij,ab∂ju
b, (4.4)

P
(1)
ij,abσ

b
j = 0, (4.5)

P
(2)
ij,abσ

b
j = −i2µP (2)

ij,ab∂ju
b. (4.6)

These relations are derived for the isotropic elasticity theory characterized by the elastic
tensor Eq. (3.15) and we will use them in present work. In analogy with the decomposition
Eqs. (4.4 - 4.6), one can find the appropriate relations for an elasticity tensor of a solid
with lower point group symmetries.

The substitution of strains by stress fields in the action Eq. (3.24) and the recovery of
the Hamiltonian is trivial if we employ the decomposition Eq. (4.3) and the orthonormality
of each projector (P 2 = P ). Inserting the unity operator between stress and strain fields
one obtains

H = −iσa
µ∂µu

a + L0 =
1

2ρ
σa

τσ
a
τ − iσa

i

(
P

(0)
ij,ab + P

(1)
ij,ab + P

(2)
ij,ab

)
∂ju

b +

+1
2
∂iu

a
[
P

(0)
ij,abdκP

(0)
jk,bc + P

(2)
ij,ab2µP

(2)
jk,bc

]
∂ku

c = 1
2
σa

µC
−1
µνabσ

b
ν . (4.7)

The terms containing temporal components σa
τ factorize immediately and are trivially

dualized because there is no singularity in that sector. The inverse elastic tensor C−1
µνab

should not be taken literally. Instead, this is just the symbolic notation for the tensor
coupling the stress fields

C−1
µνab =

1

ρ
δτµδτνδab +

1

dκ
P

(0)
µν,ab +

1

2µ
P

(2)
µν,ab (4.8)

=
1

ρ
δτµδτνδab +

1

4µ

[
δ(2)
µν δab + δµbδνa −

2ν

1 + ν
δµaδνb

]
. (4.9)
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The singular direction of the elasticity tensor does not appear in the ‘inverse’ elasticity
tensor Eq. (4.9). Instead, the singularity implies the constraint on stresses (see Eq. (4.5))
which is in fact the famous Ehrenfest constraint [126]

σb
a − σa

b = 0. (4.10)

In the previous chapter we argued that, based on the symmetry properties of expansion
Eq. (3.2), and the microscopic crystal potential V , the elasticity tensor in Eq. (3.4) can-
not have an antisymmetric part. The implications are very fundamental. The Ehrenfest
constraint Eq. (4.10) is in fact much a deeper statement since the stress fields are defined
in all media, be it solids, liquids or gases. The constraint is directly related to angular
momentum conservation: its violation would imply a violation of the angular momentum
conservation. As it turns out, the symmetry of the elasticity tensor Eq. (3.25) is a funda-
mental consequence of space isotropy. In contrast with the derivation presented here, it is
a physical consequence, and not the cause of the Ehrenfest constraint defined on stresses
Eq. (4.10).

Together with the Ehrenfest constraint, the partition function acquires the form

Z =

∫
DuaDσa

µ

∏
a 6=b

δ(σb
a − σa

b ) e
−

R
dxν Ldual , (4.11)

with dual action

Ldual = H + iσa
µ∂µu

a. (4.12)

Following the duality procedure, the displacement field is decomposed into smooth and
singular parts. Integrating out the smooth part, the stress conservation law is obtained

∂µσ
a
µ = 0. (4.13)

This constraint is nothing else than the equation of motion for stresses in an elastic medium
[126]. The sum over spatial values of index µ is the divergence of the stress tensor. It is
equal to the negative force, which is, according to the classical Newton law, precisely the
kinematic momentum time derivative ∂τσ

a
τ .

We are more interested in the use of the equations of motion Eq. (4.13), in a similar
manner as the momentum conservation law Eq. (2.10) was used. The ‘no divergence’
condition implies that a gauge fields can be introduced, similar to those in Eq. (2.12), in
such a way that the stress is defined via

σa
µ = εµνλ1...λd−1

∂νB
a
λ1...λd−1

. (4.14)

In analogy with the higher dimensional Abelian-Higgs duality, the number of lower indices
depends on the dimension as d−1. Also, only antisymmetric (in lower indices) components
of the gauge field have a physical meaning, but not all: some are part of the gauge volume
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and some are ‘eaten’ by the Ehrenfest constraint. The main difference between the Abelian-
Higgs and elastic stress gauge fields is that the latter carry an upper (Burgers) label.

To treat the singular part of the displacement field, a partial integration of the multival-
ued strain part of Eq. (4.12) with respect to the stress gauge fields is performed in the usual
way. This results in the familiar coupling of the elastic gauge fields to the d+1-dimensinal
dislocation currents, as defined earlier in Eq. (3.52)

iσa
µ∂µu

a
MV = iεµνλ1...λd−1

∂νB
a
λ1...λd−1

∂µu
a
MV

= iBa
λ1...λd−1

ελ1...λd−1νµ∂ν∂µu
a
MV = iBa

λ1...λd−1
Ja

λ1...λd−1
. (4.15)

In a shorthand symbolical form, the total elastic action turns, after dualization, into

Ldual = 1
2
(ε∂B)C−1(ε∂B) + iJB, (4.16)

with the Ehrenfest constraint explicitly imposed on the gauge fields. The partition function,
with all of the constraints included, becomes

Z =

∫
DBa

{λ}“DJa
{λ}”

∏
b

F b(Ba
{λ})

∏
a 6=b

δ(εaν{λ}∂νB
b
{λ}) e

−
R

dxν Ldual . (4.17)

This result is astonishing, especially so in two spatial dimensions where, in analogy
with vortex duality, we recover a Maxwell type of effective action with phonon degrees of
freedom represented by gauge photons and dislocations acting as electric charges. There
are, however, a couple of important differences. The most important is that this Maxwell
theory is about ‘flavored’ gauge fields and currents, the flavour corresponding to one upper
(Burgers) index. The ‘coupling constant’ appears in the form of a tensor Eq. (4.9) which
couples degrees of freedom in a quite unexpected way (longitudinal and transversal field
components are messed up). The final novelty comes from the Ehrenfest constraint which
effectively removes some of the gauge degrees of freedom at the expense of inducing a
coupling between the remaining ones.

One may wonder what has happened to the disclination defects: why are they missing
from the dual action Eq. (4.16)? There must be a way to introduce these defects in
a field theoretical formalism. To address this issue, we first check the validity of the
dislocation coupling term in the dual action Eq. (4.16). The gauge transformations in the
two- and three-dimensional vortex dualities where already introduced in chapter 2. The
transformation is easily generalized to higher dimensions in such way that the transformed
fields stay antisymmetric. The gauge invariance of the action Eq. (4.16) is tightly linked
to the dislocation current conservation condition

∂µJ
a
µν1...νd−2

= 0. (4.18)

In the vortex duality no defects other than vortices exist and the vortex currents are always
conserved, validating the introduction of the gauge fields Aµ and their minimal coupling
to the vortex currents. In dual elasticity this is not always the case due to the Weingarten
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theorem [135] which states that the dislocations alone do not exhaust the spectrum of
all possible topological defects. Contrasting the dislocation conservation law Eq. (4.18)
with the exact relation Eq. (3.51), it becomes clear that the ‘single curl’ dual stress gauge
fields are no longer valid objects as soon as a single disclination is present in the system.
Therefore, in such a case it is necessary to avoid the substitution Eq. (4.14). A natural
question which arises is: what can we do to develop a proper treatment of the disclination
current densities within the dual field theory formalism? Comparing the definitions of
dislocation and disclination currents, Eqs. (3.52) and (3.54) respectively, we observe that
the disclinations carry one more derivative of the displacements fields. By introducing an
additional curl in Eq. (4.14), the problem is removed, while now both dislocations and
disclinations are coupled to the physical stress degrees of freedom. These new fields are
called the ‘double curl’ stress gauge fields [48]. Due to the dimension dependent nature of
the Frank charge, the introduction of the double curl gauge fields is sensitive to the number
of dimensions of the solid. In two and three spatial dimensions it can easily be tracked
down to the following relations,

σa
µ = εµνρ∂ν

[
∂ah

1

ρ + ετab∂bh
2

ρ

]
, (4.19)

σa
µ = εµνρλετabc∂ν∂bh

c

ρ,λ. (4.20)

Again, due the special status of time in the theory, these fields are introduced in a slightly
different manner compared to Ref. [48].

By means of partial integration, the double curl gauge fields (h
1,2

µ in two and h
c

ρλ in
three spatial dimensions) couple minimally to field discontinuities given by

η1
µ = εµνλ∂a∂νwλ,a,

η2
µ = εµνλεab∂a∂νwλb (4.21)

in two or

ηλρ = ελρµνεabc∂b∂µwµ,c (4.22)

in three dimensions. The defect currents η are known as the “true defect currents” or
“true topological currents”. They are related to the disclination and dislocation currents
via relation which holds in all dimensions, although the contraction of the indices does
depend on the number of dimensions, namely

η = T + ε∂J. (4.23)

Therefore, the true topological current groups redundant defect densities into one tensorial
defect density operator. It is important to notice that the true topological currents are
incomplete if the second-order gradient elasticity terms Eq. (3.19) are added to the elastic
action. The rotational stiffness term introduces a new dual degree of freedom that should
couple to a discontinuity in a local rotation. The true topological currents are all defined
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as discontinuities in the symmetrized strains and therefore cannot code for all relevant
defects of the elastic theory.

In relativistic solids (relevant for emergent gravity [84, 85]), temporal displacements are
possible and the relativistic definition of the true topological currents in arbitrary number
of dimensions is the one given by Kleinert [48]

ηα1...αd−1
µ1...µd−1

= ε{α}βγε{µ}νλ∂β∂νwλ,γ. (4.24)

which is a relativistic tensor. The relativistic true topological current Eq. (4.24) is sym-
metric under the simultaneous exchange of all the upper with all the lower indices. The
relativistic double curl field is given by (compare with Eqs. (4.19 - 4.20))

σα
µ = εµν{λ}εαβ{γ}∂γ∂νh

{γ}
{λ}, (4.25)

and due to the Ehrenfest constraint, the double curl gauge field h has the same symmetry
properties as the relativistic topological current Eq. (4.24). The antisymmetric part of

the field h
{γ}
{λ} is unphysical and accordingly the ‘true’ topological currents couple only

physical degrees of freedom with singularities relevant for the linear elasticity. These are
expressed in the form of linear combinations of dislocation/disclination currents while
the irrelevant/redundant components are left out. The number of the physically relevant
current components is, in this way, easy to establish.

In a non-relativistic solid, where the temporal dimension is not connected by Lorentz
symmetry to the spatial dimensions, the symmetrized strain Eq. (3.6) becomes corrupted in
the spatial direction (i.e. we should define wτ,a = ∂τu

a in Eqs. (4.21 and 4.22 )). Therefore,
the previously introduced currents Eqs. (4.21, 4.22) cannot demonstrate, in an apparent
way, the reduction of the number of independent components. Nevertheless, the number
of independent current components can be deduced from the smoothness requirement on
the symmetrized strain Eq. (3.6). It removes precisely one (2+1D) or three (3+1D) com-
ponents from the theory, corresponding the number of independent double curl gauge field
components h with the number of independent true topological non-relativistic current
components η. Again, when finer details of elasticity (the second-order gradient elastic-
ity) are included, the true topological currents are rendered an incomplete set for a full
description of the physics of the crystalline defects.

4.2 Defect fields and their dynamics

After the appropriate Maxwell-like dual theory of elasticity is obtained, one has to develop
the theory describing the dual disordering field. Complex geometrical properties of topo-
logical defects in elastic media, more precisely the non-Abelian character of disclinations,
represents a major obstacle for the construction of the complete quantum melting theory.
We are only aware of a few attempts (by means of quantum double symmetry groups) to
resolve the problem of a second quantization of the disclinations [151]. If disclination de-
fects are entirely prohibited or appear as bound particle-antiparticle pairs, their role in the
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long-wavelength theory can be ignored and the effective theory acquires a much simpler
form. This is a consequence of the Abelian character of dislocations. The disclinations
are non-Abelian objects due to their relation to the curvature/rotational rigidity and ro-
tational symmetry restoration. The dislocations, on the other hand, are related to shear
rigidity, and their presence in the system restores the translational symmetry, broken by
the crystalline ground state. Since the group of all translations in d-dimensions is Abelian,
the dislocations do not exhibit a nontrivial statistics regardless of the number of the em-
bedding dimensions. By contrast, the Euclidian group E(d), containing both translations
and rotations, is not Abelian even in the two-dimensional case, implying that the quantum
field theory that comprises all the topological defects has to be nontrivial.

As announced in the introduction of this chapter and in the previous section, our
treatise of defects will, for the reasons listed above, deal only with the dislocation defects in
2+1D. The dual theory of the Maxwell kind that was constructed in the previous section,
Eq. (4.16), is precisely tailored for our needs – the dislocation defects are the exclusive
topological defects treated by the theory and the disclinations are (implicitly) assumed
to be absent. The ‘single-curl’ dual theory is based on the path integral formulation
of elasticity in Eq. (4.17) which is rooted into the path integral formulation of the strain
formalism, Eq. (3.22). The latter partition function assumes contributions originating from
all possible configurations in the smooth and singular displacement fields. After the duality,
the smooth fields are reparametrized by means of dual stress gauge fields Eq. (4.14), while
the singularities are recorded by the dislocation currents. Each singularity configuration
has its own ‘statistical weight’ in the path integral Eq. (4.17) given by the defect action.
However, since we, at that particular step, still had to derive the specific action, the path
integration was symbolically marked by quotation marks. In this section, this problem is
addressed in more detail. Based on the derivations of Ref. [44], and in analogy with vortex
duality, a proper disorder field theory of GLW type is constructed, at least for the ordered
phase of a nematic solid. Given that the Burgers vectors correspond to a liquid crystal
order parameter, the transition between the ordered and isotropic/topological nematic is
modeled in terms of a liquid crystal action, based on the work by de Gennes [150]. Based on
these ingredients, a phase diagram following from the theory is sketched and we thoroughly
analyse the order of the transition between the various phases.

The guiding principle throughout this chapter is that the vortex duality can be gener-
alized to the tensorial elastic action Eq. (3.24). The question which arises at this stage is
if the disorder field can be constructed in the same manner as it was in chapter 2. Naively
looking at the problem, one might fear that dislocations do not have much in common
with vortices: the displacements, and accordingly dislocation currents, have, in contrast to
vortices, Burgers flavors. The same holds for the structure of the gauge theory developed
in the previous section. Due to the d = 2 flavours in the displacement field ua, the dual
theory is a “d-fold” vortex dual theory at least with respect to the gauge fields: the physical
stress fields as defined in terms of the stress gauge fields (Eq. (4.14)) are invariant under
gauge transformations of the U(1)× U(1) kind

Ba
µ → Ba′

µ = Ba
µ + ∂µα

a, (4.26)
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where αa is an arbitrary smooth vectorial function. Gauge transformation in the form
of Eq. (4.26) is the specialty of the duality in 2+1-dimensions. In higher dimensions one
cannot just generalize transformation Eq. (4.26) by assuming a vectorial gauge function
αa. Instead, as we learned in section 2.5, each of the components of the gauge function αa

becomes an anti-symmetric d− 1-form.
At this point one might argue that the gauge transformation Eq. (4.26) implies the

existence of two U(1) disorder (matter) wave-functions, one for each Burgers flavour. A
claim similar to this one will be presented in the last section of this chapter where a different
kind of disorder field is considered. However, in this section, the disordered field theory is
constructed following the ideas of Zaanen et al. [44] where the final disorder action is a
mere clone of the GLW action Eq. (2.35), containing a single U(1) disorder field. So how do
we get rid of one of the U(1) gauge sectors and connect a gas of dislocations with a GLW
type of action? The answer to this question is based on the disorder treatise in the vortex
duality, except that one needs to ‘strip off’ the Burgers vector from the dislocation in order
to make them bosonic point particles of the same kind as the vortices. The recipe lies in
a simple decomposition of the dislocation current Eq. (3.52), taken from Kleinert’s book
[48]. If one considers a single free dislocation, it can be viewed as a bosonic particle given
by a world-line (or world-loop) x(s) with a Burgers vector n attached to it. The bosonic
world-line of the dislocation defines a bosonic current in accordance with Eq. (2.37), which
we denote by Jµ. Using the bosonic current and the Burgers vector as two independent
degrees of freedom, dislocation current is decomposed simply into

Ja
µ = naJµ. (4.27)

For simplicity, the Burgers vector na will from now on be always considered as a unit
vector, while the intensity of the bosonic current Jµ will take care of the difference in
Burgers vectors.

In the ordered nematic, where all the Burgers vectors are aligned, the dislocation current
decomposition Eq. (4.27) splits the original U(1)⊗ U(1) gauge structure into two sectors,
one parallel to the Burgers vector and one perpendicular to it: U(1)⊗2 = U(1)‖ ⊗ U(1)⊥.
The parallel gauge sector has one bosonic collective field of dislocations to which it mini-
mally couples and accordingly it can be in Coulomb and Higgs phases. On the other hand,
in the perpendicular sector there is no such field and the gauge fields from this sector can
experience only the Coulomb phase. The argument is quantitative when we consider a sin-
gle dislocation world-line and couple it to the dual stress gauge fields as given in Eq. (4.16).
In terms of the dislocation world-line the minimal coupling becomes

SBJ = i

∫
dxdτ Ja

µB
a
µ

= i

∫
dxdτ na

∮
C

ds ∂sxµ δ[x− x(s)]δ[τ − τ(s)]Ba
µ = i

∮
naBa

µ

∣∣∣∣
x,τ

dxµ.(4.28)

This equation is in every respect equivalent to the vortex duality coupling derived in
Eq. (2.40). In the ordered nematic phase all the dislocations’ Burgers vectors point in the
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same direction. Accordingly, only one kind of dislocation (bosonic) defects exists in the
system and they are coupled minimally to an effective U(1) gauge field, given by

Aµ = naBa
µ ≡ B‖

µ. (4.29)

Therefore, only stress gauge field components with their flavour parallel to the Burgers
vector interact with the disorder field and can be considered relevant (or true) gauge fields.
Their orthogonal (with respect to flavour) counterparts B⊥

µ = εabn
aBb

µ do not interact with
any disorder field and they represent the ‘perpendicular’ gauge fields without an associated
disorder field.

At this point we introduced new basis in the two-dimansional space defined by Burgers
vectors

e‖ =
n

n
, e⊥ = “ez”× e‖. (4.30)

This basis will be used at a couple of other instances in the remainder of this thesis for
illustrational purposes.

On a more superficial level, the dislocation current decomposition Eq. (4.27) can be
used in a single line identity

SBJ = iBa
µJ

a
µ = iBa

µn
aJµ = iAµJµ (4.31)

to argue that the coupling of the dual stress gauge fields and the disorder degrees of freedom
are equivalent to that of the vortex duality Eq. (2.14).

Finally, we will have to determine the action describing the gas (tangle) of dislocations.
Having their Burgers vector stripped off, the dislocations become bare bosonic point par-
ticles and, based on the ‘random walker’ construction of section 2.2, the disorder action
follows

Ldisl. = 1
2c2d
|DτΨ|2 + 1

2
|DiΨ|2 + 1

2
m2

Ψ|Ψ|2 + λΨ|Ψ|4. (4.32)

The form of this action is identical to the vortex GLW action Eq. (2.35) since the bare
dislocations do not differ much in their dynamical nature from standard XY vortices.

One might worry that the action Eq. (4.32) cannot deal with the constrained dislocation
dynamics (i.e. the glide constraint). However, such a constraint can be implemented on the
level of the partition function Eq. (4.17) instead of directly on the bare dislocations. Let
us illustrate this idea by the glide constraint studied in detail in section 3.4. Before you
start thinking how to impose the glide constraint on each single dislocation (that would
automatically reduce the dimensionality of action Eq. (4.32), a dangerous statement!),
recall that the whole business with the exact mathematical formulation of the glide principle
was motivated by the intuitive nature of the classical formulation. That a single dislocation
cannot climb is an intuitive claim, based on an intuitive picture of a single dislocation where
it actually turns out to be true. In a tangle of dislocations, the glide constraint on each
single defect is something with no support in any physical law. At this moment the strictly
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mathematically formulated glide constraint Eq. (3.61) shows its full power. When a tangle
is formed out of defect world-lines, the collisions between dislocations allow tunneling of
interstitial matter. The climb up is therefore possible if supported in material by a nearby
dislocation that climbs down. The glide constraint was derived only as a constraint on the
total, coarse-grained current density, and it should be applied in the same manner as we do
in the remainder of the text. As a curiosity, let us just say that when the glide constraint is
invoked in this manner in the phase with no order in Burgers sector, it effectively reduces
the dislocation sound velocity cd (introduced in the next paragraph) by a factor

√
2. This

was already shown in Ref. [44] (Appendix C) where the glide constraint was applied to a
free dislocation gas. Here that proof is fully justified by means of the field theory and the
implicit representation of the glide constraint in terms of Lagrange multipliers. The ‘glide
dressed’ velocity is denoted by cg = cd/

√
2.

The velocity cd in Eq. (4.32) is the dislocation second sound velocity. This velocity
defines the relativistic dislocation dynamics and in this regard it is completely analogous
to the vortex velocity cV in the vortex duality of chapter 2. One would like to avoid
an additional free parameter in the theory, so let us try to find out if the dislocation
sound velocity cd can be expressed in terms of the existing parameters of the theory in the
first place in terms of the phonon velocities Eq. (3.29). In vortex duality, the apparent
Lorentz invariant formulation of the zero-temperature problem in Eq. (2.2), as well as
the connection of the order propagator Eq. (2.69), lead to the conclusion that the vortex
velocity has to be the same as the phase velocity cV = c. The corresponding elastic action
Eq. (3.24) does not exhibit Lorentz-invariance and the previous argument cannot be used.
There is, however, an estimate for the total energy of a moving 3D screw dislocation in the
book by Friedel [132]. The sound velocity is directly related to the energy and according
to Friedel’s results it follows that cd = cT , i.e. the propagation velocity in the dislocation
gas is dictated purely by shear rigidity. In 2+1D, the dislocations can only be of the edge
type and the above analysys is not directly applicable. Nevertheless, from the fact that
dislocations are tightly related to the shear rigidity, we could argue that the dislocation
sound velocity has to be of order of the shear velocity if not equal to it. There are two other
arguments supporting this claim. One says that at zero temperature the dislocation second
sound velocity has to be a function of the remaining parameters of the theory. Based on
dimensional analysis, the only two other parameters that could combine into a velocity are
two phonon velocities Eq. (3.29). According to the other argument, the sound velocity in
a medium plays the role of light velocity in the vacuum and any excitation with energy
larger than the sound velocity should have diverging energy (when the imaginary time is
rotated to its real counterpart). The dislocation sound velocity is precisely the velocity
where the dislocation defect energy is supposed to diverge so it must not be larger than
the longitudinal velocity cL.

Following the discussion in the previous paragraph, we may assure ourselves that the
physical predictions of our theory stay accurate when we set cd = cT . Whenever any
quantitative result is presented this will indeed be the case. However, as long as the theory
of the nematic solids is developed in a general theoretical framework, the two velocities will
be considered independent. The motivation lies in what we learned from vortex duality: the
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separate tagging of the order (spin-wave or phonon) and the disorder (vortex or dislocation)
velocities can aid in the proper interpretation of the physical outcomes.

At this point the story of the disorder dislocation fields is still not over. After the
decomposition Eq. (4.27), our work was focused entirely on the bosonic current Jµ while
the Burgers vector was treated as a constant effective charge, having uniform precise value
throughout the whole system. This is not true at all since Burgers vectors of dislocations
may vary in space (and time) and the associated configurations lose weight which is ‘mea-
sured’ by additional terms in the action. The argument for the existence of two separate
nematic phases is based on the assumption that the theory might favour one or another
ground state (with respect to the Burgers vector).

To construct this action, we first have to redefine the order parameter associated with
the Burgers sector. Dislocations have an interesting property: a dislocations with Burgers
vector n and a dislocation with Burgers vector −n mutually annihilate, so they may
be considered as a particle and an antiparticle of the same defect class. Therefore, two
tangles of dislocation world-lines, one with Burgers vectors all pointing in the n direction
and another with the Burgers vectors pointing in the −n directions represent exactly the
same tangle (the wave-function Ψ is bosonic and does not discriminate between particles
and antiparticles). This Z2 local symmetry in the disorder sector has to be obeyed by the
‘disorder field’ order parameter. This is naturally not possible to obtain with a simple
vector order parameter field; instead, an order parameter invariant under Z2 local gauge
transformations should be constructed. Such an order parameter has been known for a
long time in the liquid crystal theory [130, 150]. Classical liquid crystals are composed of
microscopic rod-shaped particles whose two ends are identical. Due to this Z2 symmetry, an
order parameter that transforms as a vector is not a good candidate as the orientational
order parameter of the liquid crystal. What one does instead is to construct a spin-2
(traceless) tensor out of the orientation vectors n

Qab = nanb − 1
2
δab. (4.33)

This tensor is the standard order parameter for any O(d)/Z2 invariant theory as it is
invariant under the symmetry transformation n → −n. It is called the director order
parameter. However since we use it not to describe orientations of rods, but orientation
of Burgers vectors, whenever the director order parameter is constructed from Burgers
vectors, we will use the name ‘Burgers director’ order parameter.

An alternative argument for the nematic liquid crystalline order parameter, presented
in Ref. [44] is based on the fact that macroscopic ‘ferromagnetic polarization’ of the Burgers
vectors is forbidden on grounds of the topological status of the nematic phases. A disloca-
tion may be regarded as a pairing of a disclination and an anti-disclination, separated by
a distance equivalent to the Burgers vector. Therefore, a presence of a total Burgers vec-
tor that is macroscopically observable and comparable to the system size means that loose
disclinations are present in the system and this is topologically forbidden. The dislocations
with Burgers charge n have, in that respect, to be accompanied by the same amount of
the dislocations of −n charge. The only observable quantity associated with this pair of
excitations is the Burgers director Eq. (4.33).
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The theory of liquid crystals represents a glorious discipline of physics often associated
with de Gennes who had made significant contributions to the field and presented us with a
book on the subject [150]. One of the most relevant results of the liquid crystal theory is a
mean field action in terms of the director order parameter Eq. (4.33), which is reminiscent
of the GLW action. Based only on the symmetries of the model, Zaanen et al. [44] deduced
that the most general action, allowed by symmetry, is

LQ = 1
2c2Q

∂τQ
ab∂τQ

ba + 1
2
∂iQ

ab∂iQ
ba + 1

2
(m2

Q − rQ|Ψ|4)QabQba + λQQ
abQbcQcdQda (4.34)

The velocity cQ is the second sound velocity associated with the Burgers vector degrees of
freedom. After the paragraph on the dislocation velocity cd, the ‘Burgers velocity’ and its
origin should be self-explanatory. In Ref. [44] this velocity was also not explicitly included.

Notice that the cubic term is not present in the action Eq. (4.34), in contrast with a
general liquid crystal GLW actions where this term is allowed. The standard action for a
liquid crystal is given for the O(3)/Z2 director order parameter, whereas in the case of the
two-dimensional theory, the order parameter is rather a ‘semi-circle’ of directions and the
cubic invariant is forbidden.

An additional peculiarity of action Eq. (4.34) comes from the term rQ|Ψ|4QabQba. Such
a term is usually not found in actions associated with liquid crystals. The origin of this
term lies in the sequence of orderings for the disorder fields. When the action Eq. (4.34)
was introduced in Ref. [44], it was argued that the Burgers director field Eq. (4.33) has
no physical interpretation before the dislocations, described by the action Eq. (4.32), pro-
liferate forming a tangle (condensate). Therefore, it appears as a requirement to prevent
ordering of the liquid crystalline order parameter Eq. (4.33) in the absence of the disloca-
tion condensate. This condition implies that the bare director mass m2

Q must be strictly
positive. So, if we prohibit the ‘Burgers mass’ term m2

Q from being negative, how can
Burgers vectors ever order? The answer to this question follows from the parentheses in
the third term of the action Eq. (4.34). One can see that the order and disorder of the
Burgers director are governed not by the bare mass term m2

Q, but rather by an effective
mass m2

Q,eff. = m2
Q − rQ|Ψ|4. Assuming a second order transition into the nematic phase

of a solid, the expectation value of the dislocation field grows as |Ψ|2 ∝
(

gc−g
gc

)2β

and the

effective mass follows as m2
Q,eff. = m2

Q − r′
(

gc−g
gc

)4β

. The coupling constant g is a control

parameter used to express the transition from the ideal crystal to the nematic solid phase.
The transition occurs at gc. If the bare mass m2

Q is strictly zero, upon proliferation of
dislocations, the effective mass becomes negative and the Burgers director parasitically
develops the order. The resulting ground state is that of the ordered nematic with all the
Burgers vectors oriented along the same direction. However, if this mass term is non-zero,
the dimensionless coupling g−gc

gc
has to exceed a certain value g′ in order for the effec-

tive director mass to become negative. Hence, a state with disordered Burgers vectors is
anticipated in the region gc < g < g′ of the coupling constant.

After the disorder (dislocation) field has been decomposed into a pure bosonic and
Burgers sector, and appropriate fields and actions are assigned to each one of them, the
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path integral under quotation marks in Eq. (4.17) can be substituted by the precisely
mathematically defined path integral over a bosonic dislocation field and over a Burgers
vector field

Z =

∫
DBa

µDΨDna
∏

b

F b(Ba
µ, n

a,Ψ)
∏
a 6=b

δ(εaνµ∂νB
b
µ) e−

R
dxν Ldual . (4.35)

The pair of gauge fixing currents F b acts not only on the dual stress gauge fields, but also
on the bosonic field since its transformation is governed by the Burgers vector

Ψ → Ψ′ = Ψeinaαa

. (4.36)

The full dual action of the nematic phase Ldual contains the stress ‘Maxwell’ part (Eq. (4.16)
without the current coupling), the bosonic GLW action Eq. (4.32), and the Burgers liquid
crystalline action Eq. (4.34).

The schematic phase diagram of the melting of an elastic solid is given in Fig. 4.1.
On the left side, there is the ideal crystal phase with a perfect order of displacement
fields and long-range correlations of phonon propagators. This phase is characterized by
a ground state that breaks all translational and rotational symmetries. On the right side,
we find a superfluid where, due to the complete quantum disorder, the displacement field
is completely disordered and, apart from the superfluid sound, there are no long-ranged
correlations. In this phase both translational and rotational symmetries are fully restored
by the proliferation of disclination defects. With the condensation of the disclination
defects, the dislocations come for free in this phase, as suggested by Eq. (3.51). Resting
on symmetry arguments,the transition between these two phases has to be first order.

The type of melting that we are interested in is the one where only dislocation defects
proliferate while the disclinations stay massive. There is a precisely defined prerequisite in
order to keep disclinations massive and allow free proliferation of dislocations. Recall the
second-order gradient energy term Eq. (3.19) and its second term that defines the energy
costs of curvature in the system. The disclinations are associated with the curvature so a
high value of ` means that a disclination requires a large amount of energy in order to be
created. The dislocations, on the other hand, have their rest mass barely dependent on
the curvature rigidity `. It is therefore possible, for large enough values of the rotational
stiffness, to achieve proliferation of dislocations while simultaneously disclinations cannot
proliferate as their kinetic energy gain cannot compensate for the high potential energy
costs. This part of the phase diagram we call the nematic phase – the translational sym-
metries are restored in one or all directions, while the rotational symmetry is still broken.
Such an intermediate phase in classical solids has already been predicted [45, 46, 47, 48],
but its splitting into the ordered and topological phases was only recently realized [44].
Close to the end of this chapter, the diagram will be revised and an additional phase will
be added. It will also be argued that an emergent rotational symmetry may take place in
the topological nematic in spite of the absence of disclinations.

The position of the transition line between the order and disorder in the Burgers sector
is tilted so that the ordered nematic phase is closer to the superfluid phase whereas the
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Figure 4.1: Suggested phase diagram of a quantum elastic solid at zero temperature [44]:
The disorder is given on the horizontal axis. In the left part of the phase diagram the ideal crystal
is realized, representing a defect vacuum in the dual language. On the right, superfluid may be
seen as a condensate of both dislocation and disclination defects. On the vertical axis, the inverse
rotational stiffness is given. It controls the ratio of dislocation to disclination rest mass, and
thus allow the existence of the nematic phases, which are the dual dislocation condensates with
disclination defects preserved massive.

ordered nematic phase is closer to the ideal crystal. The location of the transition line
between ordered and topological nematic follows from a mere heuristic argument. What
is the most important agent that takes care of the disorder of the Burgers directors? As
the disorder increases, bound pairs of disclinations and antidisclinations grow in size and
right at the transition point to the superfluid phase, their size diverges. It is important
to notice that these bound pairs do not have a direct influence on the long-wavelength
dynamics in the nematic phase. At short scales, however, a moving dislocation that passes
once thorough the loop rotates its Burgers vector precisely by an angle given by its Frank
charge [151]. Therefore, in the vicinity of the superfluid phase the ‘angular delocalization’
of the Burgers vector is favoured and one expects a phase where dislocation defects lose
any sense of the Burgers vector direction. Unfortunately, currently the ‘topology’ of the
phase diagram cannot be determined more precisely, i.e. based on solid arguments we
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cannot make any claims regarding the ending points of the topological to ordered nematic
transition line.

In Ref. [44] where the topological nematic phase was introduced for the first time, this
phase was considered to be a phase of matter where one has to identify dislocations without
referral to their Burgers vector. This is an isotropic state of matter which is not the same
as an isotropic superfluid because disclination defects are massive. This phase is impossible
to envisage starting from the classical picture of a gas of rods. Nevertheless, a topologically
ordered state like this was identified before with use of elegant arguments based on gauge
invariance. In their papers [152, 153], Lammert, Rokshar and Toner realized that in a
theory based on Eq. (4.34), which is characterized by the Ising (Z2) gauge symmetry
n → −n, the only meaningful object is the director Eq. (4.33). They argued that the
theory can be generalized by making the gauge symmetry explicit in terms of rotors n
minimally coupled to Ising gauge fields σz living on lattice links (the theory is regularized
on a lattice) with Hamiltonian

Ĥ = −J
∑
〈i,j〉

niσ
z
ijnj −K

∑
〈i,j,k,l〉

σz
ijσ

z
jkσ

z
klσ

z
li. (4.37)

The first term represents the minimal coupling of the rotors and the gauge field. The
second term of the Hamiltonian is the Ising-Wilson action corresponding to a product of
Ising variables on a plaquette. This action Eq. (4.37) is gauge invariant under Z2 gauge
symmetry defined in the following way: each Z2 transformation of a rotor at site i is
accompanied by the simultaneous flipping of Ising fields sitting on links that originate
from the flipped rotor (σz

ij). It is well known that this model has three phases:

1. A Higgs phase, where the rotors are ordered and the gauge fluxes (frustrated plaque-
ttes) are confined;

2. A confining phase, where the rotors are disordered and the gauge fluxes proliferate;

3. A Coulomb phase, with the rotors disordered while gauge fluxes are confined; this
state carries topological order.

Identifying the rotor degrees of freedom with Burgers vectors and gauge fluxes with
π-disclinations, Zaanen et al. concluded that the Higgs phase of the LRT model Eq. (4.37)
corresponds to the ordered nematic phase, the confining phase corresponds to isotropic
phase, i.e. superfluid (Burgers vectors disordered and disclinations proliferated) and finally,
the Coulomb phase should be related to the topological nematic phase (therefore the name,
due to the topological order in the Coulomb phase), since the Burgers vectors are disordered
and the topological excitations are massive.

The theory of quantum melting presented in this thesis is, however, a much richer theory
than the LRT model (Eq. (4.37)). While the LRT theory describes the Burgers sector with
great accuracy, the dual elastic theory contains many other degrees of freedom besides the
Burgers vector. If the LRT theory offered the entire description of the topological nematic
and isotropic phases, there would be no measurable differences between the superfluid and
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the topological nematic phase apart from the massiveness of disclinations. We are however
equipped with many other correlation functions, primarly phonons expressed by means of
displacements. When we try to describe the topological nematic in a later section and
arrive at a ‘suspicious’ result, it will seem that the two phases are entirely different, and
as if the topological nematic of ours resembles a regular solid at low energies. The first
argument for the difference between the topological nematic and the superfluid phase was
based on the symmetry restorations in each of the phases. In the absence of disclinations
it was expected to have the rotational symmetry still broken. A state with broken global
rotational symmetry may develop a Goldstone mode associated with that symmetry break-
ing [154]. This Goldstone mode is ‘hidden’ behind the translational photon which occurs
due to the translational symmetry breaking, but when all the translational symmetries are
restored by the ground state, the ‘rotational Goldstone mode’ can show itself in the full
light.

However, it turns out after the discussions in the last two sections that the theory
developed for the disordered nematic is in fact describing another nematic phase. In place
of one Burgers condensate with no well-defined Burgers director, this phase is characterized
by many independent condensates that ‘average’ all the directions resulting in the total
Burgers director Q̂ = 0. The symmetry argument from the previous paragraph is in fact
applicable to this newly found ‘isotropic nematic’ phase. It is left for the discussion in
this chapter and later for the conclusion to discuss possible restoration of the rotational
symmetry in the phase with one dislocation condensate that has no sense of Burgers vectors.

Although counter-intuitive and not easy to accept for many, the concept of an isotropic
ground phase with a ground state that breaks the rotational symmtry is repeated in a
far more familiar setup: the translational symmetry breaking. There, a solid that is
homogeneous has a ground state which breaks the translational symmetry. Let us just
add that the isotropic solid with elasticity tensor Eq. (3.15) is another example of an
isotropic system that breaks rotational symmetry.

4.3 Ideal crystal as the dual Coulomb phase

That elastic solids can be mapped onto a flavoured Maxwell theory was already demon-
strated in section 4.1. At this point in the thesis this fact is used to consider different
phases of elasticity theory in terms of the dual theory and their respective phases. In anal-
ogy with the Abelian-Higgs duality, here the dual Coulomb phase represents the original
ordered phase, which is precisely the ideal crystal phase. This phase, now represented via
the dual theory, will be studied in detail in this section. Let us mention the other phases
that are considered in later chapters. There are various ways to destroy the crystalline
order. The dual theory constructed in the previous two sections cannot deal with the
disclination defects and therefore the superfluid phase stays out of our reach. Neverthe-
less, that phase can be successfully described starting from the opposite limit: the ‘gas’
of free particles. In between, the nematic ‘dome’ represents the phase where the crystal
is disordered purely by means of the dislocations. The dual elastic theory seems to be
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the right choice for these phases. In the previous section it was demonstrated that out
of two ‘flavoured’ dual Maxwell theories, only one, that parallel to the Burgers vector,
has a minimally coupled matter field and accordingly only that ‘flavour’ of the Maxwell
theory can undergo the transition. In that regard, the ordered nematic phase corresponds
to the dual Higgs phase realized in one of the‘flavours’ and the dual Coulomb phase in the
another. Finally, when the dual theories with each of the flavours are treated equally and
both undergo the transition to the Higgs phase, the isotropic nematic phase is obtained.

Based on our experience with vortex duality, one might expect that the construction
of the dual theory for the ideal crystal is only a slight detour via dual stress gauge fields
to trivial results already obtained in section 3.2. Such a fairly simple task could then be
joined with some other section and not have a section of its own. However, due to some
steps in the dual elasticity which are not trivial even in the Coulomb phase, the treatment
of the ideal crystal deserves its own section. As we begin to implement the dual theory
and try to obtain the phonon propagators in this section, it will become clear that a direct
Zaanen-Mukhin relation, analogous to Eq. (2.55) cannot be derived for the dual elastic
theory, primarily because of the fact that the elastic tensor is singular. This problem
can be circumvented and the phonon propagators can actually be expressed in terms of
the gauge field propagators. However, the resulting formalism becomes fairly nontrivial, so
only after a quite lengthy detour, we get to the theory resembling the Coulomb phase of the
dual vortex model in chapter 2. A few of the tricks that we learn in this section will be quite
important in the two following sections and in this respect, this section may be regarded as
a tutorial on the proper implementation of constraints and gauge fixing in the dual elastic
theory in general. This is another reason for this section to find its place at this stage of
the thesis. In spite of the fact that the theory for the dual elastic Coulomb phase, that
is the ideal crystal, does not involve any kind of disorder and could have been developed
accordingly before the treatment on defects in section 4.2, we thought that it would be
better if the three phases are presented together in a sequence of increasing complexity in
the underlying physics. In this way, the experience gained in the construction of a theory
for each phase is transfered to the next, more complex, section. For example, the ‘modified
Zaanen-Mukhin’ relation for the singular elastic tensor is introduced in this section to be
further generalized and employed in sections on the ordered and topological nematic. Also,
the Higgs mechanism exhibited by the dual stress gauge fields in the ordered nematic is in
a way further generalized in the section on the topological nematic.

After the problem with the singular coupling constant related to the Ehrenfest con-
straint is removed, this section continues with the interpretation of the dual stress gauge
fields as photons and dislocation Coulomb forces in analogy with the Coulomb phase of
the Maxwell theory.

The easiest way to probe an elastic solid is by means of phonons defined via propagators
Eqs. (3.33) and (3.34). When the dual theory is in charge, these propagators have to be
expressed in terms of the dual stress field propagators. The naive generalization of the
Zaanen-Mukhin relation Eq. (2.55)

〈〈∂µu
a|∂νu

b〉〉 = C−1
µνab − C−1

µκacC
−1
νλbd〈〈σ

c
κ|σb

λ〉〉 (4.38)
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is not well-defined as the elastic tensor Eq. (3.25) does not have an inverse (C−1) and we
cannot use it directly. This is at least true for the transversal propagator because it is
defined as the propagator between the local rotations for which the singularity is present.
Although we cannot use the direct ‘elastic Zaanen-Mukhin’ relation Eq. (4.38), the wisdom
that led to the original relation Eq. (2.55) can be used here with a careful eye on the
singularity in order to obtain the relation between the dual and phonon propagators. When
we are not interested in elastic propagators, as in the following chapter, the dualization
as explained in section 4.1, with the singularity implemented in the form of the standard
Ehrenfest constraint, is sufficient.

In order to derive the relation between the dual and original propagators, we begin in
the style of the ‘Zaanen-Mukhin’ derivation, by adding two external source terms to the
action Eq. (3.24), K for the longitudinal and J for the transversal propagator

L0[K,J ] = L0 +Kδia∂iu
a + J ετia∂iu

a = L0 +KδiaP (0)
ijab∂ju

b + J ετiaP
(1)
ijab∂ju

b. (4.39)

The closure relation Eq. (4.3) is inserted in the external source terms, leaving only the
relevant projections. The action Eq. (4.39) can now be dualized using the recipe described
in section 4.1. The difference between this case and the one in the former section, without
the external source terms, is that Eqs. (4.4 - 4.6) now change into

P
(0)
ij,abσ

b
j = −idκP (0)

ij,ab∂ju
b − iKP (0)

ij,abδjb, (4.40)

P
(1)
ij,abσ

b
j = −iP (1)

ij,abετjbJ , (4.41)

P
(2)
ij,abσ

b
j = −i2µP (2)

ij,ab∂ju
b. (4.42)

Two of the strain projections P (0)∂u and P (2)∂u can be found from the relations
Eq. (4.40) and Eq. (4.42) respectively. The spin-1 relation just imposes the Ehrenfest
constraint on the gauge fields, letting the generating functional J be the difference of two
antisymmetric stresses

ετiaσ
a
i = −i2J . (4.43)

The Ehrenfest constraint is however not lifted as the external sources are set to zero at the
end of calculation.

The remaining strain components P (1)∂u cannot be expressed in terms of dual stress
fields but this does not pose any problem as it completely drops out of the Hamiltonian

H [K,J ] = −iσa
µ∂µu

a + L0[K,J ] = 1
2
σa

µC
−1
µνabσ

b
ν − 1

2

K2

κ
+
i

κ
Kσa

a. (4.44)

Given that the dual Lagrangian contains the Hamiltonian Eq. (4.44) and given that the dis-
location currents do not couple to the external source field K, the longitudinal propagator
follows directly as

GL = 〈〈∂au
a|∂bu

b〉〉 =
1

κ
− 1

κ2
〈〈σa

a|σb
b〉〉. (4.45)



4.3 Ideal crystal as the dual Coulomb phase 99

This result is in agreement with the incomplete Mukhin-Zaanen relation Eq. (4.38), as
expected. In the longitudinal sector, relation Eq. (4.38) does not involve the singular
subspace of the elasticity tensor. In the remainder of the text, there is no need for the
external source field K since relation Eq. (4.45) is valid in all phases. Therefore, we keep
only the transversal phonon external source field J explicit in the remainder of the text and
use the ‘longitudinal Zaanen-Mukhin’ relation Eq. (4.45) when we need the longitudinal
phonon propagator.

With the transversal propagator and its external source field J the derivation is more
subtle as we observe that it is missing from the Hamiltonian Eq. (4.44). A general formalism
is not easy to obtain and we are left to explicitly impose the Ehrenfest constraint with the
external source term, Eq. (4.43). After that step, explicit external source terms are found
in the dual action and the ‘singular Zaanen-Mukhin’ relation follows directly. Before doing
that, let us first write the partition function (generating functional)

Z[J ] =

∫
DBa

µ“DJa
µ” F b(Ba

µ) δ(∂aB
a
τ − ∂τB

a
a + i2J )e−Sdual[B

a
µ]. (4.46)

Although we set internal currents strictly to zero in the ideal crystal, the path integral
over currents in Eq. (4.46) is kept since this partition function can be used in the next two
sections. In this section, we can freely remove that term and allow only external dislocation
currents (controlled from the outside) as the only source terms for the dual stress gauge
fields.

For simplicity, the fields are Fourier transformed and their components are expressed
in the momentum basis (‘zweibeinen’, Eq. (1.3)) rather than in the Cartesian one. The
dual action splits into two decoupled parts: longitudinal, governing the physics related to
the longitudinal propagator

LL = 1
2

1

2µ(1 + ν)

 BT
τ

BT
L
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T

† q2 −iqω −iνqω
iqω ω2 νω2
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2
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+iBT †
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L JT
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T JL
T ; (4.47)

and transversal

LT = 1
2

1

4µ
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τ
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L

BT
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† q2 −iqω iqω
iqω ω2 −ω2

−iqω −ω2 ω2 + 4c2T q
2
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+iBL†

τ JL
τ + iBL†

L JL
L + iBT †

T JT
T . (4.48)

All the dislocation currents are written without the usual ext. label, but we implicitly
assume that their origin is external – someone has introduced them in the system as part
of a (linear response) experiment.

There is some similarity between the dual vortex action Eq. (2.9) and the dual elastic
action Eqs. (4.47) and (4.48). In each sector there is a non-dynamical Coulomb force pho-
ton BL,T

τ and one longitudinal and one transversal photon (with respect to lower indices).
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Notice however, that each transversal photon, supposed to carry order excitations, is not
decoupled from the other two (Coulomb and longitudinal) photons in its sector. Their bare
propagation velocities are also not the respective phonon velocities. This should not worry
us since the gauge fields are a mathematical construct which, as we learned in chapter 2,
acquires true physical meaning only after the gauge fixing condition(s) have been imple-
mented and non-dynamical degrees of freedom have been removed. An additional subtlety
lies in the transversal sector, where the Ehrenfest constraint removes one additional degree
of freedom. After all such considerations are taken into account, the phonon propagation
velocities get dressed to their true values and all degrees of freedom decouple in a natural
way.

Let us start with the longitudinal sector. In the ideal crystal there are no other con-
straints in this sector apart from the gauge fixing which allows us to integrate out the
Coulomb photon BT

τ which has no dynamics (propagator is q2). This photon is minimally
coupled to dislocation current with transversal label JT

τ , but it also couples to the other
two photons. When removed the following longitudinal action is obtained

LL = 1
2

4κµ

κ+ µ

JT †
τ JT

τ

q2
+

1

2ρ
BL†

T

(
ω2

n

c2L
+ q2

)
BL

T +

iBT †
L (JT

L −
iωn

q
JT

τ ) + iBL†
T (JL

T − νJT
L ). (4.49)

The first term represents the static Coulomb interaction between defects of the same,
transversal, Burgers flavour. In two cases the interaction energy between the dislocations
vanishes, when either the shear or compression modulus is zero. The former corresponds
to a liquid where dislocations come for free, while the latter case cannot exist in nature:
However it would correspond to a ‘compressionless’ solid where the excess row of atoms
(constituing a dislocation) can be stacked on a top of another row at no energy costs.
The second term contains the propagator for the longitudinal phonon, represented here by
the transversal gauge field photon BL

T . The transversal photon carries smooth (phonon)
excitations in analogy with the dual vortex theory, except that the dual elastic gauge fields
carry flavours. Its propagation velocity is dressed back to the expected longitudinal phonon
velocity cL. The third term couples the longitudinal photon BT

L to a linear combination
of currents which vanishes since even the externally added currents must obey the con-
servation law. The longitudinal component is anyway not physical and is removed in the
Coulomb gauge

0 = ∂iB
T
i = −qBT

L (4.50)

The minimal coupling between the photon BL
T (corresponding to the longitudinal pho-

non) and the defect currents is again nontrivial, owing to the tensorial nature and symme-
tries of the system. Coupling to the dislocation current JT

L is acquired from the removed
unphysical longitudinal gauge field BT

L . Identifying the current components as irreducible
representations of the rotation symmetry group (appendix C), the coupled current is ex-
pressed as a linear combination of the external glide (compression) and ‘electric’ shear
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dislocation currents

JL
T − νJT

L =
1 + ν

2
(JL

T − JT
L ) +

1− ν

2
(JL

T + JT
L ). (4.51)

It readily follows that the longitudinal phonon couples to a mixture of the two defect
currents, depending on the Poisson ratio ν. In the unphysical limit of the compressionless
solid ν = −1, only shear rigiditiy exist and, accordingly, only the shear current couples
to the physical degrees of freedom. In the opposite limit, ν = 1, the liquid has no shear
rigidity and only the glide current couples to the longitudinal phonon. Although one may
think that the glide current in Eq. (4.51) should be set to zero as a consequence of the
glide constraint, this is not correct. The glide constraint Eq. (3.61) was derived for internal
dislocation currents without external influence. Currents in Eq. (4.51) are, on the other
hand, external currents and there is no reason that an outside observer/experimetalist
cannot violate the glide principle by simple particle injection.

Let us now tackle the transversal sector, Eq. (4.48), where the situation is more subtle
due to the indirect action of external source field J via the Ehrenfest constraint Eq. (4.43).
One of the ways to implement the constraint Eq. (4.43) is via a Lagrange multiplier term
that would couple both to the external source field J and to the gauge fields. Then,
after the gauge fixing has been implemented and the gauge fields have been integrated
out, the Lagrange constraint acquires a propagating nature (quadratic term) which allows
us to integrate it out by means of a Gaussian integration. This produces an expression
which should yield the transversal propagator through the generating functional. Although
seemingly quite universal, this implementation of the Ehrenfest constraint involves a gauge
fixing procedure which has to be different from phase to phase. We therefore eschew such a
procedure and instead invoke the Ehrenfest constraint in the most natural way, by explicit
removal of one of gauge field components in flavour of other two fields and the generating
constraint.

After the Fourier transformation, the Ehrenfest constraint Eq. (4.43) becomes

−qBL
τ + iωnB

E
E = −2iJ , (4.52)

and we eliminate the Coulomb photon BL
τ in favour of the other two. Generally, the

physical results are the same if we remove any other component. We wish, however, to
make an action in the transversal sector where one can directly interpret gauge photons in
terms of physical degrees of freedom. Since we expect the transversal photon BT

T to carry
smooth (transversal) displacements, it is better to leave it explicit in the action. Whether
one choses to remove the Coulomb BL

τ or longitudinal BL
L photon, the final action remains

the same.
We choose the Coulomb photon since it is usually removed first in any treatment of

gauge theories. In the dual elastic gauge theory, the absence of the Coulomb photon in the
transversal sector has a precise physical implication: in an elastic solid described by a linear
elastic theory, there are no forces between static dislocations with longitudinal Burgers
charges. When the second-order gradient terms are in charge, the dual theory admits



102 Dual elastic theory – nematic phases

additional dual degrees of freedom (fields called τ and τ ′, for details see Kleinert, Ref. [48])
corresponding to second order gradient rigidities. The Ehrenfest constraint appears to be
softened as it acts not only on gauge fields, but also on the new dual degree of freedom τ .
Hence, one can remove the new, curvature degree of freedom and keep the ‘longitudinal’
Coulomb interaction. The interaction is however short-ranged with a characteristic fall off
length `. Thus, when interested in physical answers at length scales greater than `, the
Coulomb interaction between Burgers longitudinal flavours becomes irrelevant.

Upon elimination of the Coulomb photon, the action including the external currents
reads
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1

2ρ
BT †
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n

c2T
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)
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T + iBL†
L (JL

L −
iωn

q
JL
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T (JT
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− 1

2µ
J †J +

1

µ
iωnB

T †
T J − 2

q
JL†

τ J . (4.53)

The first term is the propagator of the transversal photon BT
T which has taken the role of the

transversal phonon as expected. The propagation velocity is cT in contrast with Eq. (4.48).
The second term contains the coupling of a non-physical longitudinal photon BL

L to the
current conservation identity, as usual. The longitudinal photon is removed by the second
Coulomb gauge fixing BL

L = 0. The third term couples the transversal photon to a specific
external dislocation current, namely the magnetic shear current JT

T − JL
L (see Appendix

C). This current, together with the electric shear dislocation dynamical current, represents
the shear current doublet which transforms under the spin-2 irreducible representation
(E2,−2). The remaining ‘rotation’ current JT

T + JL
L is decoupled as a consequence of the

Ehrenfest constraint, or equivalently the absence of the rotational rigidity in the elastic
action Eq. (3.24).

At last, the external source field J is present explictly in the second line of Eq. (4.53).
We may neglect the last term since we are not interested in the influence of external disloca-
tion currents on the elastic propagators. In fact, such a term exists even in the longitudinal
sector, coupling the external source field K with the external dislocation currents, as well as
in the dual vortex theory where the external source field Jµ, which was the key ingredient
in the derivation of the Zaanen-Mukhin relation, is coupled to the external vortex currents
in Eq. (2.55). Just as here, they were left out.

Relying only on the first two terms in the second line of Eq. (4.53), the ‘transversal
Zaanen-Mukhin’ relation is found to be

GT =
1

µ
− 1

µ2
ω2

n〈〈B
T †
T |B

T
T 〉〉. (4.54)

This relation reproduces the transversal propagator of the ideal crystal, Eqs. (3.31, 3.34).
We must notice that Eq. (4.54) is unfortunately not the general relation applicable in
all phases. Namely, we circumvented the problem of the singular elasticity tensor by an
explicit elimination of one of the gauge fields. In the process we used the gauge field
propagator from Eq. (4.48) which are valid only in the Coulomb phase – the ideal crystal.
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Whenever the gauge field propagator in the transversal sector acquires additional terms,
the ‘second line’ in action Eq. (4.53) has a different form, a major consequence is that a
new ‘Zaanen-Mukhin’ relation has to be derived in the transversal sector. This is of great
importance to us since additional (Higgs) terms are present in the nematic phases and
we will have to recalculate the ‘Zaanen-Mukhin’ relations for both the ordered and the
topological nematic.

At this point, the lengthy detour amounting to exercising the duality of the ordered
phase of a solid is completed. We have demonstrated that the phonon propagators can
be recovered in the dual language. The dual elastic theory is quite similar to the vortex
dual theory except that “it repeats itself twice”, once in the longitudinal and once in
the transversal sector. In analogy with vortex duality, in the ideal crystal a Coulomb
gauge fixing is imposed in each sector so that the gauge fields acquire a specific physical
interpretation. The most important part of this section is that we learned how to treat the
Ehrenfest constraint in a way such that the appropriate ‘Zaanen-Mukhin’ relations can be
derived despite the singular nature of the elasticity tensor Eq. (3.25).

4.4 The ordered nematic phase of a solid

In the previous section we have presented the dual treatment of the elastic theory for the
simplest case of the ideal crystal. Next to getting some familiarity with dual gauge fields,
we learned how to treat the Ehrenfest constraint in a proper way in order to extract the
‘transversal Zaanen-Mukhin’ relation Eq. (4.54) which is otherwise not possible to obtain
due to the singularity in the elasticity tensor. In this section, we derive the first truly novel
results of this chapter, the theory of the ordered nematic phase of a solid. When the dual
elastic theory was derived in section 4.1, the next step was relatively easy to guess from the
parallels drawn between vortex and elastic duality. One needs to introduce the disorder in
the system via a condensate of defects and the disordered phase is easily accessible by means
of dual fields. In vortex duality, the disordered phase corresponds to the incompressible
Bose-Mott insulator. In the dual elasticity theory, the richer defect structure makes possible
several disordered phases (Fig. 4.1). Each of these states of matter can be regarded as a
melted solid given that some kind of crystalline order has been destroyed. Conceptually,
condensates of topological defects were recognized a long time ago as the proper way to
describe disordered/melted phases of solids [70, 105, 106, 107, 108, 109, 110, 111, 112, 113].
Begining in this section we employ that wisdom in order to construct new interesting
quantum phases of matter.

In this particular section, we focus on the ordered nematic phase. Given that this phase
is characterized by a well-defined value for the Burgers director, we leave out its fluctuations
as they would be beyond the scope of Gaussian/mean field theory. Therefore, the effective
field theory is derived without explicit use of the Burgers field action Eq. (4.34). In the
remainder of this section every time we encounter the Burgers vector, it will be assumed
that this vector has a predefined value, constant throughout the entire system. Resting on
this assumption, we can construct two ‘flavour’ components of the gauge fields, the parallel
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and perpendicular ‘flavoured’ gauge fields B
‖
µ and B⊥

µ respectively. Based on the dislocation
action Eq. (4.32) that was constructed in the section on defect dynamics, we conclude that
the stress gauge field components with ‘parallel flavour’ exhibit the Higgs mechanism and
as a consequence become short ranged when the dislocation defects proliferate. One has
to be careful, however, since there are two important constraints lurking in the theory, the
Ehrenfest constraint in its ‘external source term’ form Eq. (4.43) and the glide constraint
Eq. (3.61). The latter played no role until now, but since we now invoke internal dislocation
currents, it has to be strictly imposed. These two constraints influence the stress gauge
fields and the Higgs term in a way such that it is still possible to have some degrees of
freedom which are massless despite their presence in the bare Higgs term. The degree of
freedom associated with compression rigidity is of this kind. Due to the form of the glide
principle, the elastic solid never loses its long-range compression rigidity, at least as long
as it does not have a reservoir to exchange particles with it.

In the case of vortex duality, we learned that the Coulomb gauge fixing used in the
previous section, is not the best choice for the gauge fixing in the Higgs phase. Instead,
it is better to use Lorentz gauge fixing with the vortex sound velocity Eq. (2.74). In the
case of the elastic Higgs phase, the disorder is caused by the dislocation tangle and hence
the best choice for the gauge fix seems to be Lorentz gauge fixing with the dislocation
velocity cd. Using that gauge fixing, we first find the ‘ideal crystal’ contribution to the
gauge field propagator in matrix form and subsequently define the bare Higgs term and
implement the constraints in a proper way that takes care that degrees of freedom such
as compression are not subject to the Higgs mechanism. The ‘ideal crystal’ and the ‘con-
strained Higgs’ contributions constitute the total propagator of the gauge fields. In the
process, the ‘transversal Zaanen-Mukhin’ relation is obtained for the ordered nematic. One
expects intuitively that the ordered nematic phase be highly anisotropic with a liquid-like
behaviour along the Burgers vector direction, where the translational symmetry is restored,
and a solid-like behaviour in the perpendicular direction, owing to the persisting symmetry
breaking. The results we obtain show anisotropy, but the periodicity of screening, as we
rotate our ‘experiment’, is not π as expected from the previous argument but π/2 instead.
Although counterintuitive at first, this result makes perfect sense once we realize where the
Higgs gap of the dual stress fields comes from. When the constraints are imposed in the
dual theory of the ordered nematic, the only two allowed dislocation currents will be the
electric and magnetic shear currents (see Appendix C), and in fact only one of them will be
responsible for the Higgs mechanism. Given that these two currents transform as a spin-2
doublet under spatial rotations, the screening periodicity begins to make sense. We do
not wish to give away already which shear component is screened in what direction before
we obtain the final results towards the end of the section. Let us just suppose that we
orient our ‘experiment’ with respect to the Burgers vector in such a way that the magnetic
shear is screened whereas the electric shear stays unaffected by the Higgs mechanism. If
the experiment is rotated by 90 degrees, the screened shear component transforms into
itself modulo a minus sign, which is of no importance since the observables associated with
Higgs gap are always about its absolute value. Quite counterintuitively, one should rotate
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the screening direction by 45 degrees in order to cause screening in the longitudinal sec-
tor (electric shear) and keep the transversal sector unchanged. Hopefully, we managed to
convince the reader using only words, that the screening has a spin-2 character, based on
symmetry arguments. The argument becomes precise when the Higgs term is determined
later in this section.

When the propagation of a phonon makes an intermediate angle value (not 0, π/2
or π/4), the screened shear component is a mixture of both electric and magnetic shear.
The Higgs term therefore creates coupling between the longitudinal and the transversal
sector of the action. Due to this coupling, computing the phonon propagators in the
intermediate propagation directions becomes tedious, involving bi-cubic roots as poles of
the propagators. We will find the exact inverse propagators for the dual stress gauge field,
but to avoid work that is of little physical significance, the elastic propagators will be
fully analysed only in the ‘decoupled’ directions where either electric or magnetic shear is
exclusively screened. In all the intermediate directions, only the long wavelength leading
expansions of the phonon propagators will be addressed.

The coupling of the longitudinal and transversal sectors of the action has another,
potentially dangerous, consequence. Recall the ‘chiral propagator’ Eq. (3.35). In the
previous chapter, we argued that this propagator has to be strictly zero or otherwise
the parity symmetry of the space is broken by the ground state. The ordered nematic
ground state should not break the spatial parity symmetry (its order parameter, the Burgers
director Eq. (4.33) is Z2 invariant) and we expect the chiral propagator Eq. (3.35) to
be strictly zero. Nevertheless, the coupling between two sectors may and will produce
nonzero values for the 〈〈∂au

a|εab∂au
b〉〉 propagator which can spark some worries. We

should note that we work with Fourier transformed fields and the chiral propagator written
in the above is nonzero only when it measures correlation between the Fourier transformed
strains. To obtain the chiral propagator in real space one has to perform the inverse
Fourier transformation of the propagator Eq. (3.35). As it turns out, the nonzero chiral
propagator of the ordered nematic that we find in Fourier representation, averages to
zero when the inverse Fourier transformation is performed. In fact, the broken parity
has a different consequence in the Fourier space: the chiral propagator has to be an odd
function of relative angle between the director and wave-vector. This simple statement is
a consequence of the fact that in Fourier space, the only reflection symmetry left is with
regard to a line parallel to the wave vector. While the compression strain is invariant under
this transformation, the local rotation is not, so any “evenness” in the chiral propagator
implies that system prefers one state over its mirror double.

Another ingredient required for the realization of the nematic phase is a high curvature
stiffness given by the value of ` in the potential energy density Eq. (3.19). Let us here
repeat the argument, first given by Kleinert [48], that the disclination rest mass is an
increasing function of the stiffness ` while the rest mass of dislocations is barely dependent
of the curvature stiffness. For a high enough value of the curvature stiffness `, there is a
certain range of disorder (see Fig. 4.1), where the “meandering entropy” of defect world-
lines overwhelms the dislocation energy cost, while it still falls short for the unbinding of
the disclination loops. One may wonder why we have not explicitly included the term
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Eq. (3.19) in the starting action Eq. (3.24), given that it is necessary for the nematic phase
formation? As mentioned before and demonstrated in the case of the dislocation Coulomb
force, the effects of the second order gradient terms are visible only at length scales shorter
than the characteristic lengths ` and `′. If these lengths are “microscopic” or eventually a
few orders of magnitude larger than the lattice constant, but still below the length scales
that we can access in our experiments (we are ultimately interested in the longwavelength
behaviour), then our experiments cannot resolve the difference between the ` ≡ 0 and finite
` results. In the concluding chapter we will shortly discuss the dual theory of second order
gradient elasticity. The results we obtained for this theory are not included in this thesis
as the entire formalism would take a whole new chapter to explain all the relevant steps as
well as its peculiarities. The concluding chapter contains only some final results that do
not differ significantly from the ` = 0 case, so it readily follows that for any measurement
at scales large compared to ` is completely blind to its direct effects.

Before we delve into the technicalities of the dual theory of the ordered nematic phase,
let us make one more comparison of the ordered nematic with a classical phase that breaks
the symmetries in the same manner. We notice that the ordered nematic phase has the
symmetry properties of the “smectic-C” phase [130]: the translation symmetry is broken
only in one direction and fully restored in the other direction. When the response of
the ordered nematic is established towards the end of this section, it will be clear that
the elastic properties do not match. When it comes to the smectic phase, it was shown
independently by Peierls and Landau [126] in the 1930’s, based on symmetry arguments
(even before they knew that smectics existed!), that the elastic energy density of a layered
elastic medium can be written as

e(x) = 1
2

[
B(∇‖u)

2 +K(∇2
⊥u)

2
]
. (4.55)

When we compare the elastic response of the ordered nematic phase that we will find
later with the one that follows from the elastic energy Eq. (4.55), it becomes immediately
clear that the two phases, apart from the symmetry breaking pattern, have not much
in common. The main difference comes from the presence of an additional mode in the
ordered nematic phase which can be tracked down to the dislocation condensate. Such
mode is not present at all in the smectic state of matter since the energy Eq. (4.55) does
not deal with a displacement parallel to the planes. Neither of the two remaining poles in
the response function of the ordered nematic resembles the excitations of the “smectic-C”
phase. We put emphasis that this fundamental difference in the excitation spectrum shows
unambiguously that the ordered nematic is not a stack of decoupled sliding liquid layers
as one might be tempted to think from the intuitive perception of the glide constraint. If
that had been the case, the whole work presented here would not make much sense since
the Higgs mechanism is based on the long-range order assumption for the Higgs field. Due
to Mermin-Wagner-Hohenberg theorem [155, 156], uncoupled layers, which are effectively
one-dimensional systems, cannot exhibit long-range order even at zero temperature.

After this lengthy introduction let us begin with the technical part of this section. At
the beginning of the section we mentioned that a ‘Lorentz’ gauge fix will be imposed on the
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gauge fields. The reason for this is the following: one would like to use ‘interpretational’
gauge fixes, the Coulomb gauge fix for B⊥

µ flavour and the unitary gauge fix for the B
‖
µ

flavour, so that the remaining gauge field components (photons) have an easy physical
interpretation. Although perfect for interpreting the final results, this choice of gauge fixes
would force us to perform the entire calculation three times: once for the propagation
parallel to the Burgers vector, once for the perpendicular propagation, and finally for
intermediate values of the angles. This is necessary since the Ehrenfest constraint acts
differently depending the ‘orientation’ of the Coulomb photon BL

τ relative to the Burgers
director.

An additional difficulty comes from the glide constraint. We learned that the glide
constraint acts exclusively on the dislocation currents Eq. (3.61). On the other hand,
working in the unitary gauge fix means that the gauge fields take the role of currents.
This is best illustrated by the simple case of the vortex duality. Recall the definition of
bosonic current Eq. (2.21) and its form in the Higgs phase (Ψ0 is the expectation value of
the bosonic collective field)

Jµ = |Ψ0|2(∂µϕ− Aµ). (4.56)

With the unitary gauge imposed (ϕ ≡ 0), the vortex currents become proportional to the
dual gauge fields. This consequence of the unitary gauge fix is rooted in the fact that
the complex phase of the bosonic field, which usually determines the currents, transfered
its degree of freedom to the longitudinal gauge field AL. Surprisingly (or not), with the
unitary gauge fix, the constraints that are originally acting on currents, have now to be
imposed on the gauge fields.

In the dual elastic theory, at least when applied to the ordered nematic phase, the
dislocation currents are given by

Ja
µ = na|Ψ0|2(∂µϕ− nbBb

µ) = na|Ψ0|2(∂µϕ−B‖
µ). (4.57)

With the unitary gauge fix as our preference, the glide constraint implemented on the
current Eq. (4.57) reads

0 = εadJ
a
d = −|Ψ0|2εadn

anbBa
d = −|Ψ0|2B‖

⊥. (4.58)

In analogy with the Ehrenfest constraint, the ‘unitary gauge fix’ glide constraint Eq. (4.58)
acts, pending the alignment of the wave-vector and the Burgers vector.

Bearing in mind everything said in the last two paragraphs, we have decided to sacrifice
the physical interpretation of the gauge photons in exchange for a more concise derivation
of the dual theory in the ordered nematic phase. It will be fairly easy to track down the
physical interpretations for these results, based on the experience we have obtained with
the vortex duality.

The choice for the gauge fix is therefore not governed by its elegance, but rather by the
simplifications it brings to the calculation. Since the unitary gauge fix is ruled out, the
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Higgs term must be written in gauge invariant form like in Eq. (2.73). The most desirable
gauge fix that we can work in is

0 =
1

c2d
∂τB

a
τ + ∂iB

a
i , (4.59)

because, as we mentioned in chapter 2, the bare Higgs term (before the constraints are
implemented) is simply proportional to nanbBa†

h B
b
h with h = ±1, where the summation

goes over the components in the linear polarized basis (‘dreibeinen’, Eq. (1.6)).
By using the gauge fix Eq. (4.59), the Coulomb and longitudinal photons are merged

in one, temporally-spatially admixed transversal component A+1. For future purposes, we
define the dislocation three-momentum as pµ

d = (ωn, cdqi) and its scalar value by pd =√
ω2

n + c2dq
2. The linearly polarized basis (“dreibeinen”, Eq. (1.6)) that we use, is defined

in terms of the three-momentum

e(0)
µ =

pµ
d

pd

=

(
ωn

pd

,
cdqx
pd

,
cdqy
pd

)T

= (cos θ, sin θ cosφ, sin θ sinφ)T ; (4.60)

e+1
µ =

(
cdq

pd

,
−ωnqx
pdq

,
−ωnqy
pdq

)T

= (sin θ,− cos θ cosφ,− cos θ sinφ)T ; (4.61)

e−1
µ =

(
0,
qy
q
,
−qx
q

)T

= (0, sinφ,− cosφ)T . (4.62)

Any of the gauge fields components with Cartesian indices and flavours has to be
expressed in the linear polarized basis Eqs. (4.60 - 4.62). The general identity connecting
components of a vector in the two bases is given in the introduction. However, the dual
stress gauge fields also carry flavours that can take spatial values and these have to be
changed to the momentum basis too (“zweibeinen”, Eq. (1.3)). The gauge fields with
Cartesian indices are therefore expressed in terms of linearly polarized basis via

Ba
µ = iẽE

a

[
e+1

µ BE
+1 + ie−1

µ BE
−1

]
. (4.63)

Components Ba
(0) are absent since they are set to zero by gauge fix Eq. (4.59). As usual,

the prefactors i take care that two fields with opposite momenta B(pµ) and B(−pµ) are
conjugate to each other.

Let us now rewrite the gauge field propagator originating in the first term of Eq. (4.16).
It is common to all phases of a solid and in the previous section where the Coulomb gauge
fix was chosen, the longitudinal and transversal sectors of the propagator were found in
Eqs. (4.47, 4.53). To find the propagator with the gauge fix Eq. (4.59) imposed, we first
have to find the action of the Ehrenfest constrain on the new fields and then use it to
remove one gauge photon. When the gauge fields in the Ehrenfest constraint Eq. (4.43)
are written according to Eq. (4.63), the Ehrenfest constrain reads

BL
+1 = −iωn

pd

BT
−1 +

2

pd

J . (4.64)
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Similar to before, the gauge field component BL
+1 is removed in favour of the compo-

nent BT
−1 which is left (it is proportional to the transversal phonon-photon BT

T ). The
remainder fields are independent degrees of freedom and we put them in a column/row
B = (BT

+1, B
L
−1, B

T
−1)

T . The dual action contribution from the Eq. (4.16) reads

Lideal = 1
2
B†G−1

0 B − 1
2

K†K
κ

− 1
2

J †J
µ

+iK†pdB
T
+1 + iωnB

L
−1

2κ
+ iJ †ωnB

T
−1

µ
, (4.65)

where we left both eternal source terms, J and K, explicit so that the ‘Zaanen-Mukhin’
relation can be recovered for the chiral propagator Eq. (3.35). Notice that external dislo-
cation currents are left out for simplicity.

The inverse gauge field propagator is given as

G−1
0 =

1

µ


p2

d

2(1+ν)
iνpdωn

2(1+ν)
0

−iνpdωn

2(1+ν)

ω2
n+(1−ν2)c2Lq2

2(1+ν)
0

0 0 ω2
n + c2T q

2

 . (4.66)

The connection between the degrees of freedom in the action Eq. (4.65), and the degrees
of freedom in the combined actions Eqs. (4.49) and (4.53) is the following: the transversal
sector is trivially identified since we already noticed that the gauge field componentsBT

T and
BT
−1 differ only by a minus sign. The absence of a Coulomb force between dislocations with

longitudinal Burgers vectors is manifested by the constrained photon BL
+1. The longitudinal

sector is spanned by the remaining two gauge fields BT
+1 and BL

−1. As in the transversal
sector, photon BL

−1 is the BL
T photon with opposite sign. The remaining gauge field BT

+1

carries the Coulomb interaction between dislocations with transversal flavour.
The action Eq. (4.65) recovers the ideal crystal phonons as its Green functions. Any

other result would mean that something went wrong with the gauge fix Eq. (4.59). We
are, however, not interested in yet another derivation of the very well known phonon
propagators in the ideal crystal. Since our aim is the ordered nematic phase (and the
disordered one in the next section), which is nothing else than the dislocation melted
phase, we want to include dislocation defects in the dual theory and to extract consequences
coming from their proliferation. The defect action has already been constructed in section
4.2. Due to the striking resemblance between the dislocation GLW action Eq. (4.32) and
the vortex GLW action Eq. (2.35), we already anticipate the Higgs term for the dual stress
gauge fields when dislocation defects proliferate in the system. Unlike the situation in
the vortex duality, the construction of the Higgs term in elastic medium has to take into
account two constraints that are central to the dual elastic theory. One is the Ehrenfest
constraint Eq. (4.64), which we implement as usual, by removal of the gauge field BL

+1 in
favour of the transversal photon BT

−1. When the constraint is implemented, there is however
a generating functional J involved. It follows that the Higgs term changes both linear and
quadratic terms in the external source field J , so that the ‘transversal Zaanen-Mukhin’
relation Eq. (4.54) acquires additional terms.
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At an earlier stage, we mentioned that the glide constraint Eq. (3.61) is only a coarse-
grained (averaged) constraint and that it should not be imposed on independent disloca-
tions, but instead, it should constrain only the total ‘climb’ of the dislocation world-lines
tangle. Such an action of the glide constraint is attainable by means of the Lagrange
multiplier term added to the total dual action

Lglide = iλετµaJ
a
µ . (4.67)

The major consequence of the glide constraint invoked in the form of Eq. (4.67) is that
the covariant derivative obtained from Eq. (4.28) acquires an additional term and, in the
ordered nematic phase, it reads

∂µΨ DµΨ = (∂µ − inaBa
µ − iλετµa)Ψ. (4.68)

When the Higgs term is constructed, the minimal coupling Eq. (4.68) implies that, in place
of the curly gauge fields Eq. (4.29), one has to work with the constrained counterparts

A eff.
µ = na(Ba

µ + λετµa). (4.69)

The effective gauge field yields linear and quadratic terms in the Lagrange multiplier λ so,
after it is integrated out, the glide constraint is effectively in charge.

In the ordered nematic, the action of the Burgers sector Eq. (4.34) is not explicitly
included. We assume that the effects of this action have been exhausted when all the
Burgers vectors are ordered in a particular direction n. Thus, instead of performing the
path integral over the Burgers vectors, we calculate the total partition function Eq. (4.35)
with a contribution from a single Burgers vector orientation. This value corresponds to
the mean-field treatment of the Burgers sector. The Burgers director is substituted by the
mean-field value Q̂ and its excited states couple only via higher order couplings with the
gauge degrees of freedom, so these terms are left out.

The bare Higgs term we want to add to the action is initially written as

LHiggs = 1
2

Ω2

µ
(Q̂ab + 1

2
δab)(Ba

µ + λετµa)

[
δµν −

pµ
dp

ν
d

p2
d

]
(Bb

ν + λετνb)

= 1
2

Ω2

µ
(Q̂EF + 1

2
δEF )(BE†

h + λ†ετµae
h
µẽ

E
a )(BF

h + λετνbe
h
ν ẽ

F
b ). (4.70)

While the first line is universal and written in Cartesian coordinates, in the second one
we summed exclusively over helical components h, h′ = ±1. The flavours E,F in the
‘zweibeinen’ basis Eq. (1.3) take values L, T .

A Higgs gap is introduced in the Eq. (4.70) as Ω = |Ψ0|/
√
µ. The expectation value for

the dislocation field Ψ follows from action Eq. (4.32). When the effective dislocation mass
m2

Ψ has become negative, the average dislocation density is controlled by the short-range
repulsion term λΨ so that |Ψ0|2 =

√
−m2

Ψ/λΨ. When the elastic response of the nematic
phase is found, a gapped mode will occur which will always have a gap precisely equal to
Ω.
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The first line of the Higgs term Eq. (4.70) is written as the gauge invariant Higs term
Eq. (2.73). Although it was earlier stated that the ‘Lorentz’ gauge fix Eq. (4.59) does not
require this term to be explicitly included, when the Lagrange multiplier term Eq. (4.67)
is added to the action, the new effective minimally coupled gauge field Eq. (4.69) does not
obey the gauge fix Eq. (4.59) any more. Therefore, we have either to change that gauge fix
to include the Lagrange multiplier λ or just work with the gauge invariant Higgs term. We
choose the latter. The advantage of the helical basis Eqs. (4.60 - 4.62) is that the bracket
term in Eq. (4.70) is realized by summation over h = ±1 polarization indices, whereas the
h = 0 component is omitted.

The final comment about the action Eq. (4.70) concerns the use of the Burgers director
field Eq. (4.33). This Higgs terms was derived under the assumption that the Burgers
vector is oriented in a particular direction n throughout the entire system. From this
Burgers vector, the Burgers director order parameter is constructed, acquiring the value

Q̂ = 1
2
[| ‖ 〉〈 ‖ | − | ⊥ 〉〈 ⊥ |] (4.71)

in the ordered nematic phase. Vectors | ‖ 〉 and | ⊥ 〉 are unit vectors parallel and
perpendicular to the Burgers vector n respectively, Eq. (4.30). In the following section
we are concerned with the topological nematic phase, characterized by the disorder in
Burgers vector. Quantitatively, this is expressed through the zero expectation value of the
Burgers director. In the treatment that will follow, we will ‘naively’ use the bare Higgs
action Eq. (4.70) in the topological nematic phase. Since this action is valid, in a strict
mathematical sense, only for the values of Q̂ that belong to the ordered nematic phase
Eq. (4.71), the generalization to the disordered nematic phase will bring some difficulties,
but these are left for the discussion in the next section.

In the remainder of this section, we do not need the bare Higgs term expressed in terms
of the Burgers vector, so one may assume that each instance of Q̂ab + 1

2
δab in Eq. (4.70)

should be simply replaced by nanb. Given that the entire theory is presented in the Fourier
space, the Burgers vector components bear L, T indices instead of the Cartesian ones (x
and y). Since n2 = 1, only one parameter will be used to describe the orientation of
the Burgers vector. We define angle η as the angle between the Burgers vector and the
wave-vector so that n = (cos η, sin η)T .

Let us now return to the bare Higgs term Eq. (4.70) and treat the glide constraint first.
From a direct calculation, it follows that the Lagrange multiplier λ becomes a ‘dynamical
field’ with propagator term

1
2

Ω2

µ
λ†
ω2

n + c2dq
2 cos2 η

p2
d

λ ≡ 1
2
Ω2µλ†

p2
η

p2
d

λ. (4.72)

introducing a new ‘momentum’ p2
η = ω2

n + c2dq
2 cos2 η only for notational purposes.

Besides the quadratic term, the Lagrange multiplier λ couples linearly to the dual stress
gauge fields as

λ†
(
iωn

pd

cos η sin ηBL
+1 −

iωn

pd

sin2 ηBT
+1 − cos2 ηBL

−1 + cos η sin ηBT
−1

)
. (4.73)
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When it is removed by Gaussian integration, it produces a counter term in the bare Higgs
term Eq. (4.70) with the effect that the Higgs term acquires a simpler form

LHiggs = 1
2

Ω2

µ

|nE(nLpdB
E
+1 + nT iωnB

E
−1)|2

p2
η

. (4.74)

We see that despite the presence of all gauge field components in Eq. (4.70), the glide
constraint allows that only one gauge field component acquires mass in the Higgs term
Eq. (4.74). This degree of freedom can be identified on the basis of symmetry principles.
The advantage of the gauge fix Eq. (4.59) is that it allows initially only four gauge degrees
of freedom. Out of these four degrees of freedom, one transforms under the B0 irreducible
representations of the group of all rotations O(2)

BR = |B0〉 = BL
+1 + i

ωn

pd

BT
−1. (4.75)

Physically, the B0 irreducible representation is associated with rotation and this field com-
ponent indeed represents the rotational stress gauge boson. However, we know that the
elastic action Eq. (3.24) excludes any rotational rigidities so this stress gauge boson has to
disappear, which is precisely the statement of the Ehrenfest constraint (compare Eq. (4.75)
with Eq. (4.64)). From the remaining three independent degrees of freedom, one is invari-
ant under all rotations (irreducible representation A0) and this is precisely the compression
degree of freedom

BC = |A0〉 = BT
+1 + i

ωn

pd

BL
−1. (4.76)

The remainder pair of the dual stress gauge bosons transform as a spin-2 doublet (E2,−2

irreducible representation). They correspond to the shear rigidity, which we split into
‘electric’ (present in the longitudinal sector) and ‘magnetic’ (present in the transversal
sector) shear

Bel.sh. = |EL
2,−2〉 = BL

−1 + i
ωn

pd

BT
+1, (4.77)

Bm.sh. = |ET
2,−2〉 = BT

−1 + i
ωn

pd

BL
+1. (4.78)

The gauge field component that acquires the Higgs mass Eq. (4.74) belongs to the spin-2
subspace spanned by shear bosons Eqs. (4.77 - 4.78) and we conclude immediately that
the Higgs mass can be acquired only by shear gauge bosons whereas the compression is
protected by the proper implementation of the glide constraint Eq. (3.61).

An alternative way to identify shear as the unique entity subjected to the action of
the Higgs mechanism is to represent the specific stress boson from Eq. (4.74) in terms
of physical stress fields. Through direct comparison, one finds that the stress gauge field
appearing in Eq. (4.74) is precisely given by

nanb(∂τB
b
a − ∂aB

b
τ ) = εacn

anbσb
c. (4.79)
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This stress component can be seen as one of the shear stresses. It has a zero overlap with
the compression stress σi

i and pending the orientation of the Burgers vector this is either
electric or magnetic stress or their mixture. Let us try to explain this for specific values
of angle η. Take first a propagation parallel to the Burgers vector, the shear component
Eq. (4.79) becomes σL

T which corresponds precisely to the magnetic shear stress. The same
is true for η = π/2 since σT

L = σL
T , except that the massive shear component acquired

one minus sign. This is precisely what one expects from spin-2 fields, after rotation by
π/2 they change sign. According to the spin-2 representation rules, one component of the
doublet should transform into its counterpart if rotated by η = π/4. We check this case
(nL = nT = 1/

√
2) and it follows immediately that the massive shear stress Eq. (4.79)

turns into the ‘electric’ shear stress σT
T − σL

L. Naturally, for all other, intermediate values,
the massive shear admixes two shear components.

Finally, let us add the Ehrenfest constraint to the action. We remove the gauge field
component BL

+1 according to the Ehrenfest constraint in form of Eq. (4.64). This results
in the final Higgs terms for the ordered nematic phase

LHiggs = 1
2

Ω2

µ

p2
d

p2
η

[
B†

HBH −
4 cos4 η

p2
d

J †J − i
4J †

pd

BH

]
, (4.80)

introducing the ‘Higgs shear gauge field’

BH = − sin 2η
BT

+1 − iωn

pd
BL
−1

2
− i

ωn

pd

cos 2ηBT
−1 (4.81)

which equals precisely the screened component of shear, Eq. (4.79), with the Ehrenfest
constraint explicitly invoked. The external source field J is kept here in order for us to
recover the transversal propagator. In the next chapter, when we ask questions about
the electric properties of the nematic phases and ignore the phonon propagators, terms
containing J can be removed from the Higgs term Eq. (4.80).

Bearing in mind that the inverse gauge field propagator in the ideal crystal, Eq. (4.66),
can be regarded as the ‘unperturbed’ gauge field propagator in matrix form G−1

0 , the first
term of Eq. (4.80) may be written as a self-energy contribution to the action as −1

2
B†uHB.

The self-energy matrix uH originating in the Higgs mechanism is given by

−uH =
Ω2

µ

(pd

2
sin 2η, −iωn

2
sin 2η,−iωn cos 2η)⊗ (pd

2
sin 2η, iωn

2
sin 2η, iωn cos 2η)

p2
η

. (4.82)

Following this notation, the total inverse propagator for the elastic gauge fields is written
as

G−1 = (G0)
−1 − uH (4.83)

and this form will be used not only for the recovery of the phonon propagators, but also
in the next chapter where we analyse how the self-energy Eq. (4.82) influences the electro-
magnetic response of a solid.
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When the inverse total gauge field propagator matrix Eq. (4.83) of the ordered nematic
phase is inverted, the result is the stress gauge field propagator matrix with elements
corresponding to propagators of different pairs of dual stress gauge fields. The dual stress
gauge bosons always represent physical degrees of freedom, even in gauge fixes that have
the effect of encrypting the physics, so they have to be related to phonon propagators. In
order to recover the connection, which is nothing else than a generalized ‘Zaanen-Mukhin’
relation Eq. (2.55), we resort to the external source fields K and J that we kept explicit
in the action all along.

Let us begin with the longitudinal propagator. The propagator can be directly extracted
from the action Eq. (4.65) since the external source field K is not influenced by presence
of the Higgs field. Therefore, the relation which is universal to all the phases is recovered

GL =
1

κ
− p2

d

κ2
〈〈B†

C |BC〉〉. (4.84)

This is the same relation as Eq. (4.45) except that we expressed the compressional stress
in terms of the compression gauge photon Eq. (4.76). Eventually, this could have been
obtained by using directly the relation Eq. (2.55), since the longitudinal sector contains no
singularity in the elasticity tensor Eq. (3.25).

The transversal phonon propagator, on the other hand, is a subject of a significant
change as compared to its ideal crystal form Eq. (4.54). The Ehrenfest constraint implies a
coupling of the external source field J to the Higgs field and the presence of the dislocation
condensate has consequences as seen from Eq. (4.80). The Zaanen-Mukhin relation for the
transversal phonon now becomes

GT =
1

µ

(
1 +

4Ω2 cos4 η

p2
η

)
− ω2

n

µ2
〈〈B†

T |BT 〉〉. (4.85)

where we introduce a new linear combination of gauge fields which we call the ‘dressed’
transversal phonon

BT =
2pdΩ

2 cos2 η

ωnp2
η

BH +BT
−1. (4.86)

The physical content of Eq. (4.85) can be understood as follows: due to the presence
of the dislocation condensate, experiments that are designed to measure the transversal
phonon response now couple to new degrees of freedom reflected in the ‘dressed transversal
phonon’ Eq. (4.86). A physical interpretation of the photon “dressing” can be found in
the earlier claim (section 3.4 on glide) that dislocations live in the solid and therefore
have to conform to smooth elastic deformations. In a way defects ‘clutch’ to the medium.
When the transversal elastic response is measured, the medium is forced from the outside
into a ‘whirling motion’ at the probing points: the transversal phonons are defined as a
response of the solid to external local rotation, see Eq. (3.34). It follows that the defect
degrees of freedom are excited also when a local deformation is made in order to probe the
transversal phonon. The defect excitations then become visible in the phonon propagators,
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demonstrating that the ‘dual censorship’ can be broken even in a more direct way than
originally thought when the dual ‘Zaanen-Mukhin’ relation was derived. At the end of the
section, when we analyse the phonon propagators for specific values of angle η, we will give
a pictorial representation of the dressed transversal phonon Eq. (4.86), at least for values
η = 0 and η = π/2.

After the derivation of the longitudinal and transversal propagator, we could employ
the external source terms to derive the ‘chiral’ propagator Eq. (3.35). The propagator
correlates the compression and the local rotation strains which belong to the longitudinal
and transversal sector respectively. This correlator will therefore be nonzero only if the
two sectors are coupled and that is indeed the case when angle η takes an intermediate
value (not a multiple of π/4). The chiral propagator is obtained as a second derivative of
the partition function Zel.[K,J ], once with respect to K and once with respect to J and
it reads

Gchiral = GLT = 〈〈∂iu
i|εab∂au

b〉〉 =
Ω2

κµ

p2
d

p2
η

〈〈B†
C |BT 〉〉. (4.87)

Its conjugate propagator 〈〈εab∂au
b|∂iu

i〉〉 is a chiral propagator too.
Having introduced all four elastic propagators between spin-0 excitations, the com-

pression ∂au
a and the local rotation Eq. (3.5), we can represent them in a matrix of the

form

Ĝ =

(
GL GLT

GTL GT

)
=
〈〈

(∂au
a, εab∂au

b)⊗2
〉〉
, (4.88)

If the phonon propagator of the ideal crystal is denoted by Ĝ0 = diag(G0
L, G

0
T ), while

the phonon propagator of the ordered nematic phase is Ĝ, one can introduce the ‘phonon
self-energy matrix’ Π̂ in a standard way:

Ĝ =
1

(Ĝ0)−1 − Π̂
. (4.89)

All four phonon propagators of the ordered nematic phase can be expressed in a very
convenient way if one uses the phonon self-energy Eq. (4.89). Avoiding steps with explicit
forms of inverted matrices that are required in order to obtain the phonon propagators, we
present only the final step where the ‘phonon self-energy’ becomes a projector to a specific
‘vector’

−Π̂ =
µΩ2

c2T q
2

1

c2T q
2(ω2

n + cos2 ηc2dq
2) + Ω2(ω2

n + 4 cos2 ηc2T q
2)

(
cos η sin ηc2T q

2

ω2
n + 2 cos2 ηc2T q

2

)⊗2

,(4.90)

where the ‘tensorial square’ represents the outer product of the column with itself. This
self-energy makes the anisotropic character of the screening apparent: tuning the Burgers
orientation from η = 0 to η = π/2, the screening alternates from being purely in the
transversal sector to being exclusively in the longitudinal sector and than back. In the
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static limit (ωn → 0), the glide constraint has disappeared and the ‘phonon self-energy’
Eq. (4.90) collapses to a far simpler expression

−Π̂ωn→0 =
µ

4 + λ2
dq

2

(
sin η

2 cos η

)⊗2

. (4.91)

The dislocation correlation length λd = cd/Ω is introduced here, and it represents the length
above which the dislocation excitations as represented by the complex phase gradient lose
their correlation (kinematical range of the dislocation second sound). From Eq. (4.91) one
can read the static screening anisotropy which is closer to our intuitive expectations: the
screening properties parallel and perpendicular to the (Burgers) director are in complete
contrast. The continuous changes of angle η drive the screening between the transversal
and the longitudinal correlator, but it takes angle π, not π/2 as in the dynamical case, to
return to the same static correlator.

Until now, this whole section was dedicated to the derivation of the phonon propagator
with all the peculiarities coming from the constraints in the dual elasticity theory, suc-
ceeding when the phonon self-energy was finally obtained in Eq. (4.90). This job is not
done yet, because we need to analyse the phonon propagator Eq. (4.88) to find out the
features of the ordered nematic solid that make it distinct from the ideal crystal or the
superfluid phases of matter. In the few remaining paragraphs of this section, the experi-
mentally measurable phonon propagators are therefore carefully studied in relevant limits.
Because of the anisotropy of the ordered nematic phase, the phonon propagators are anal-
ysed thoroughly only in the cases when the two sectors of the action are decoupled (η is
π/4 times an integer). The propagators for intermediate η values are analysed only in the
long-wavelength limit which is in fact the most relevant one for the comparison with exper-
iments. In this analysis, we will continue to use Matsubara frequency ωn when searching
for poles. One should notice however that physical properties as obtained in experiments
are trivially recovered by rotation to real time/frequency ωn → −iω + δ.

Let us begin with the case of η = π/2, i.e. propagation perpendicular to the Burgers
vector. The longitudinal propagator is the same as in the ideal crystal, but the transversal
propagator becomes

GT =
1

µ

c2T q
2 + Ω2

ω2
n + c2T q

2 + Ω2
(4.92)

developing a gap Ω for its only pole. This result is intuitively comprehensible imagining
dislocation currents that can run only in a perpendicular direction and theirimplied effect
on the screening of the magnetic shear. The longitudinal propagator is off course unaffected
because the translational symmetry is still broken in the propagation direction.

The propagation along the Burgers direction is the first piece of physics defying our
intuition. Setting η = 0 in the phonon self-energy Eq. (4.90), we find that the longitudinal
propagator is again unchanged, but the transversal propagator turns into

GT =
1

µ

c2T q
2(ω2

n + c2dq
2) + Ω2(ω2

n + 4c2T q
2)

(ω2
n + c2T q

2)(ω2
n + c2dq

2) + Ω2ω2
n

. (4.93)
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This propagator experiences one massive pole at iωn = Ω, however an additional pole
appears with no mass and quadratic dispersion iωn = cdcT q

2/Ω2. Based on the previous
arguments on the spin-2 nature of the screening, we should understand why the longitudinal
sector is unaffected. An additional argument comes from the geometrical nature of the
electric shear:the electric shear requires that the deformation is simultaneously contraction
in the longitudinal and expansion in the transversal directions (or the opposite). Therefore,
although one may anticipate a liquid-like behaviour along the Burgers vectors, the electric
shear seeks “support” in the transversal direction where the system still remembers its
solid rigidities.

Now we have to find out where the extra mode in the transversal propagator comes
from. Naively looking at the number of independent gauge degrees of freedom, one might
be tempted to think that there is no more room for new modes in the transversal sector,
but that is a misconception. Namely, by choosing gauge fix Eq. (4.59), we deliberately
abandoned the Coulomb/unitary gauge fix where one physical mode corresponds to one
gauge field component. In order to retrieve that point of view, we do not have to repeat
the entire calculation. In fact, it is sufficient to recall the ‘dual censorship’ violation in
the vortex duality. It is all about the phase degree of freedom of the condensate and its
emergence in form of the longitudinal photon. In the vortex duality, the condensate prop-
agator became visible in the superfluid velocity correlator Eq. (2.69). Here, the dislocation
condensate wave-function Ψ has a phase degree of freedom translating in this dislocation
second sound which is reborn (if the unitary gauge fix is chosen in the ‖ flavor) in the form

of the dual stress gauge photon B
‖
L. When η = 0, the phase becomes BL

L which turns from
an entity in the gauge volume into a real physical degree of freedom.

The appearance of an additional mode is therefore justified. However, we still have
to understand why only one mode in the transversal phonon propagator is gapped, while
the other is massless and quadratic. The proper answer to this question can be obtained
only after the intermediate η behaviour has to be found and analysed at small η values.
Therefore, this discussion is left for the end of this section when the transversal phonon
propagator Eq. (4.93) will be revisited.

At this point we may return shortly to the case of the perpendicular Burgers vector
(η = π/2) and clarify why there is no third mode in this particular Burgers orientation.
Now, we know that the dislocation condensate materializes itself in form of the stress
gauge field B

‖
L → BT

L , but, at the same time we know that the glide constraint (in the
unitary gauge fix) constrains pair of gauge fields BT

L and BL
T . Therefore, it follows that the

dislocation phase degree of freedom is eaten by the glide constraint before it could appear
in a phonon propagator. The mass term was “awarded” to the (transversal phonon) photon
BT

T (it develops the gap) and to the Coulomb photon BT
τ : a careful analysis of the external

current couplings show that the Coulomb force becomes shortranged with a characteristic
length λd. The longitudinal photon BT

L is forbidden to show up due to the glide constraint.

The remaining value of η where the ramifications of the Higgs mechanism in the ordered
nematic phase are expected to be simple is η = π/4, with the electric shear as the massive
shear component Eq. (4.79). Because the magnetic shear component does not participate
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in the Higgs term, one expects consequences exclusively in the longitudinal propagator.
This is partially true. The longitudinal propagator is

GL =
1

µ

c2Lq
2

ω2
n + c2Lq

2 − c2T q2Ω2

ω2
n+

c2
d
2

q2+Ω2

, (4.94)

which can be seen as a ‘dressing’ of the longitudinal crystal phonon with a self-energy that
corresponds to the interaction with a sliding condensate slanted by π/4 (thus the half in
the velocity in Eq. (4.94)). In the long-wavelength limit, the only rigidity which survives
is the compressional rigidity (propagation velocity is

√
c2L − c2T ≡ cK). Only at distances

shorter than the ‘shear screening length’ λs = cT/Ω, the medium recovers its shear rigidity
and behaves as a solid.

In the previous paragraph, a comment was made on the triviality of the propaga-
tors when η = π/4. If one considers the gauge field propagators only, there is indeed
only one contribution to the action which screens the electric shear in the longitudinal
sector. The difficulty begins with the transversal phonon external source field J which
appears in additional terms in the action only due to the changes in the ‘dressed transversal
phonon’ Eq. (4.86). These changes produce nontrivial results not only in the transversal
phonon propagator Eq. (3.34), but also in the off-diagonal terms of the phonon propa-
gator Eq. (4.88), i.e. in the chiral propagators. We leave the results associated with this
particular case out.

For the intermediate values of angle η there are three physical excitations in the system:
two phonons and the condensate (longitudinal) photon, but due to the coupling between the
two sectors, each phonon propagator sees all three poles. Given the length of the analytical
work needed to analyse the corresponding bi-cubic equations in detail and the physical
(in)significance of the obtained results, the results for intermediate η values are treated only
in physically interesting limits, far below and well above the gap. As expected, at lengths
shorter than the shear screening length λs and frequencies smaller than the shear gap
(cT q, ωn � Ω), the self-energy contribution Eq. (4.90) is negligible compared to the ideal
crystal part of the phonon propagator. Hence, the solid-like properties are recovered as all
the elastic degrees of freedom are insufficiently screened at these length scales. The opposite
(long-wavelength) limit is more interesting as it yields the hydrodynamical properties of
the system which can be related to the symmetry content of the model.

The possible gapped modes are found in limit q � ωn,Ω. We retrieve only one gapped
mode with an isotropic gap Ω. The massless modes are found in the regime Ω � ωn, q, at
inverse lengths and energies significantly smaller than the shear gap. Here, the self-energy
Eq. (4.90) simplifies into

−Π̂ =
µ

c2T q
2

1

ω2
n + 4 cos2 ηc2T q

2

(
cos η sin ηc2T q

2

ω2
n + 2 cos2 ηc2T q

2

)⊗2

. (4.95)

When the eigenvalues of the phonon propagator matrix are found, the velocities associated
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Figure 4.2: The anisotropic velocity softening in the ordered nematic: parallel (η = 0) and
perpendicular (η = ±π/2) to the Burgers director, the longitudinal velocity is intact, while the
transversal phonon, i.e. the ‘magnetic shear’ is completely softened. In contrast, at η = ±π/4 the
‘electric shear’ is completely screened leaving the longitudinal phonon with only compressional
rigidity, while the transversal phonon is intact. The two figures correspond to a) positive- and
b) negative Poisson ratio ν when the hierarchy of the compression and shear velocities is inter-
changed. The thickness of the lines corresponds to the long-wavelength limit pole strength in the
longitudinal phonon Eq. (3.33). While for the positive Poisson ratio the transversal phonon has
only a weak signal which vanishes at η = ±π/4, when the compressional velocity is lower than
the shear velocity, the two poles exhibit the avoided level crossing for the intermediate values of
η, so that at η = π/4 the entire strength of the longitudinal phonon lies in the lower pole.

with the two poles are given as

c21,2 = 1
2

[
(c2K + c2T )±

√
(c2K + c2T )2 − 4c2Kc

2
T sin2 2η

]
. (4.96)

Fig. 4.2 shows the periodic exchange of the shear softening between the longitudinal and
transversal sector.

The shear softening in the particular cases of angle η that we analysed earlier are
reproduced here (disappearance or quadratic dispersion of a mode are considered to have
the vanishing propagation velocity). The general values of the propagation angle η show
that propagation velocities have a 4-fold angular periodicity, just as anticipated from the
arguments on the spin-2 shear. The 4-fold periodicity is just an artifact due to squaring
of spin-2 screening gap (recall relation sin2 2η = 1

2
(1− cos 4η), just like the other physical
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spin-2 effects like d-wave superconductivity which shows four nodes).
The angle dependence of the phonon velocities gives a good clue about the quadratic

mode in the propagator Eq. (4.93). The magnetic shear, which is the dominant degree of
freedom in the transversal sector, becomes entirely gapped both in η = 0 and η = π/2
cases and in the vicinity its velocity vanishes as

c1 ≈
cKcT
cL

sin 2η = 1+ν
2
cT sin 2η. (4.97)

A degree of freedom cannot vanish even when it becomes infinitely soft. It was earlier
established that the exception in the η = π/2 case is due to the glide constraint which
‘eats’ the condensate mode. When η = 0, this is no longer the case. One of the two poles
in the transversal propagator become gapped as ω2

1 = Ω2 + (c2d + c2T )q2 + . . . and can be
thought of as the fully gapped magnetic shear. The other mode lost all of its shear rigidity
so one might at first expect that it has no dispersion ω = 0. On the other hand, the
second mode becomes the dislocation condensate sound at small length scales ω ∝ cdq.
The only way to ‘patch’ the short-wavelength linear dispersion with the ‘flat’ dispersion in
the long-wavelength limit is to make the excitations possible via the second order process.
The ‘flat’ mode thus couples to the massive shear with dispersion ωn = iω1 so that the
first-order perturbation theory gives the dispersion ω2 = cdcT q

2/ω1 which is exact.
The behaviour of the dislocation condensate second sound is particularly interesting in

the physically relevant case of the resonant velocities cd ≡ cT . When the two velocities are
different, it is natural to expect that the dislocation sound pole has vanishing strength at
short length scales as one wants to recover the ideal crystal response. However, when the
two velocities are precisely the same a miracle occurs: two poles of equivalent strengths
are present at all wavelengths having dispersions ω ≈ cT q. So how does it happen that we
never see two poles in the transversal phonon propagators but always only one? A closer
inspection of the dispersion gives that the two excitations are split by the Higgs gap

ω1,2(q) = cT q ±
Ω

2
+

Ω2

8cT q
+ . . . (4.98)

Such a spectral response is represented in Fig. 4.3. In order to be able to make the
distinction between these poles in an experiment, a resolution higher than the Higgs gap is
required. In the ideal crystal this discrepancy between the poles is vanishing and therefore,
only one transversal phonon is observed despite the fact that it represents a doublet of two
microscopically distinct modes.

The journey through this new quantum phase of matter, the ordered quantum nematic
phase is over and let us summarize the most important results. The phase itself is closely
related to the famous hexatic phase predicted by Nelson, Halperin and Young [45, 46, 47],
apart from being a quantum version including the dynamics. The translational symmetry
is restored, but, in contrast to the hexatic phase of NHY where the dislocations proliferate
in all three directions permitted by lattice type, here, the lattice artifacts are merged into
the effective action Eq. (3.24) and the dislocations are only allowed to have a particular
orientation of their Burgers directors. This direction is crucial for the identification of the
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Figure 4.3: The transversal phonon spectral response of the ordered nematic at η = 0: a) in
the long-wavelength sector, an additional mode is present originating in the dynamical condensate
(longitudinal photon BL

L), one has the shear Higgs gap Ω, and another is diffusive; b) at scales
smaller than the shear penetration depth, the transversal phonon recovers. However, due to the
velocity resonance, it propagates in form of a doublet, split by the minute shear gap Ω.

shear component which has to become massive. This degree of freedom materializes itself
as the third mode, implying that the shear stress photons and the dislocation degrees of
freedom are just two sides of the same coin, and we look at one of them accordingly to
the choice of the gauge fix. Since there is always one photon to be gapped, the shear
gap is isotropic, but the phonon velocity softening is not, because it is subjected to spin-
2 modulations. Clearly, the phase resembles, with regard to the translational symmetry
breaking, the smectic phase of liquid crystals, except that the translational symmetry
restoration is not implied by geometrical nature of liquid crystalline constituents (rods
pointing in one direction), but rather by the dislocations Burgers vectors. In the static limit
it even seems as that the strain correlations may match although the smectic phase does
not have well-defined in-plane displacements. Nevertheless, once the dynamical features
of the theory are considered, the symmetry properties of the shear excitations remove the
similarities and the question to ask is if our theory may be dressed, e.g. by interstitial
degrees of freedom, to recover the classical smectic phase.
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4.5 The topological nematic phase

The last phase of matter that we wish to address in terms of Abelian-Higgs dual theory
applied to elasticity is the topological nematic phase. This phase is characterized, similarly
to the superfluid, by the disorder in the Burgers director degree of freedom, short-ranged
shear excitations and isotropy of the phase. This phase is, however, not identical to the
superfluid because of the ‘status’ of topological defects therein: in a superfluid disclinations
are appearing as free excitations, whereas the nematic phases are by the definition phases
where any unbound disclination defects are strictly prohibited. In this respect, this phase
represents the topological (or “Coulomb”) phase of the gauge field theory of rotors n
minimally coupled to Ising gauge fields σz as given by Hamiltonian Eq. (4.37). This
claim, reviewd in detail in section 4.2 was presented first in Ref. [44], where Zaanen et al.
realized that the generalization of the famous hexatic phase by Nelson, Halperin and Young
[45, 46, 47] to the quantum case offers a richer phase diagram because of the possibility
of either (quantum) order or disorder in the Burgers sector. In the previous section we
already developed the theory for the case of a nematic characterized by order in its Burgers
sector. When the Burgers order parameter Eq. (4.33) becomes disordered a new phase of
matter is born and in this section we will try to find an appropriate theory for its physical
description.

One can wonder, what is behind the disorder of the Burgers director? Surely, the first
term of the action Eq. (4.34) favours ‘angular’ delocalization of Burgers vectors, but one
would like to know where it is coming from. From a naive perception of a single dislocation
in a solid, but also from the dislocation current conservation law, whose validity is required
in phases described by ‘single curl’ stress gauge fields, a Burgers vector appears as a robust
topological object that likes to preserve its value over time. This is true as long as there
are no disclinations in the vicinity of the dislocations that could interfere with its Burgers
vector orientation. Namely, whenever a finite disclination density is present in the system,
the dislocation currents are not conserved as seen in Eq. (3.51) and as a consequence the
Burgers vector of a dislocation is also not conserved. This can alternatively be seen as a
consequence of parallel transport of the Burgers vector in a curved space: in absence of
disclinations curvature is absent, resulting in the conservation of the Burgers charge; pres-
ence of disclination implies finite curvature and accordingly the Burgers vector is rotated
if subjected to the parallel transport in this curvature field. Given that disclination defects
are bound in the nematic phases, the dislocation currents and the ‘single curl’ stress gauge
field formalism are safe on the global level. Locally however, bound pairs of disclinations
and antidisclinations may be present and they will act as the disordering agents in the
Burgers sector. This feature is especially prominent in the vicinity of the phase boundary
between the ‘nematic’ region and the superfluid phase in Fig. 4.1, where bound pairs of
disclinations start to appear in the system with growing characteristic lengths. A large
characteristic size of the bound disclination loop greatly enhances the probability for these
‘Burgers scattering’ processes which is the heuristic argument behind the placement of
the phase boundary between the ordered and the topological nematic phases in the phase
diagram on Fig. 4.1
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In order to construct a mathematically consistent theory of the topological nematic
in this section, we rely on the ideas and formalisms developed in previous sections of
this chapter. The main difference between the ordered and the topological nematic is
that the expectation value of the Burgers director order parameter Eq. (4.33) is vanishing
which at the same time implies that the Burgers vector n is not well defined anymore. A
serious problem arises at this point, given that we want to couple ‘Burgersless’ dislocations,
dislocations without any notion of the Burgers vector, to the dual stress gauge fields, since
it was earlier shown in Eq. (4.29) that this coupling is always determined by the direction
of the Burgers vector of the dislocation. One cannot just take the definition of the effective
gauge field Eq. (4.29) and make the mean field average with use of 〈n〉 = 0 as that would
lead to theory without effective Burgers charges (dislocations decouple entirely from the
theory). The Burgers director order parameter is, however, the more relevant observable,
being well-defined both in the phases with order or disordered in the Burgers sector. In
other words, the expectation value

〈nanb〉 = 〈Qab〉+ 1
2
δab → 1

2
δab (4.99)

is finite, in spite of the vanishing expectation value for the Burgers vector alone. Therefore,
the mean-field averaging with respect to the Burgers degrees of freedom can be done with
meaningful implications on the role of the dislocations in the theory. Using the averaged
value Eq. (4.99) for each quadratic appearance of the effective gauge fields Eq. (4.29), one
can obtain the Higgs term equivalent to the starting Higgs term Eq. (4.70) with the Burgers
director Qab set to zero.

At this point we are obliged to provide a scientific disclaimer: the theory which will be
developed here is constructed as a pure mathematical treatise of the dual elastic theory
as presented in the previous sections of this chapter. All the results are obtained in the
Gaussian order and the topological phase is supposed more than anything else to be the
representative phase in our theory of the nematic driven quantum melting of solids, if
there had not been an inconsistency problem in the formalism that shines some doubts
on the final results. Namely, after the ‘naive’ mean-field averaging of the Burgers sector
is performed, the number of degrees of freedom in the theory becomes augmented by one.
This fact is in contradiction with the property of the Gaussian theories that the number
of degrees of freedom should not change, under any circumstances. Nevertheless, the
motivation to present the results obtained within this formalism will be explained. If the
theory indeed has some kind of glitch (most probably some gauge artifact) due to the ‘naive’
averaging, we hope that an expert in these matters could easily point us the proper way
to proceed with the formalism and the new theory should by rule be built on the present
state of the formalism. We are however inclined to think that the results we obtain have
a physical sense and are relevant to another phase, the one that will be introduced in the
next chapter and called the ‘isotropic’ nematic phase. For the moment it will be referred
to as the Gaussian topological nematic. The discrepancy in the number of the degrees of
freedom is of course related to the ‘naive’ averaging, but we will make the case that the
same results are alternatively obtained if one does the exact averaging procedure, based
on the path integral, and then keeps only the Gaussian terms in the action. Therefore, one
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thing has to be sacrificed. We can keep terms beyond the Gaussian order and obtain the
formally correct and exact answers for the topological nematic phase, but the price we pay
is the need to calculate higher order corrections to the propagators. If we are determined
to keep only the Gaussian order terms in the action, the workings of the Higgs mechanisms
are such that the Abelian-Higgs longitudinal photon (which we identified as related to the
shear photons) splits its Higgs contribution to both longitudinal and transversal sectors.
In fact, our claim is that the only Higgs term permitted by the symmetry requirements,
(isotropy in Burgers ‘flavours’) is the one we construct here.

The exact arguments are kept for the end of this section as it will be easier to present
them, once we went through the entire formalism. This problem might be viewed as
that the Gaussian approximation is in contradiction with itself and that the only way to
properly describe the topological nematic is to keep all higher order terms in the action.
We do believe that such a treatise would produce the ‘strongly interacting’ topological
nematic, the way that Zaanen et al. envisaged it, only with a dynamical dislocation
condensate. However, having analysed the theory only on the Gaussian level and we want
to find out if the Gaussian topological nematic can be ‘repaired’ into a mathematically
consistent theory. Based on the arguments in the following section, we believe that the
answer is positive, except that the theory of dislocations given in section 4.2 has to be
changed. This change implies, as its ultimate consequence, that the phase of matter that
we describe in this section, which is at the same time the only isotropic nematic phase on the
Gaussian level, is rather a ‘collection’ of dislocation condensates, each with the Burgers
director in a particular direction, than a single condensate of ‘Burgersless’ dislocations.
Having a myriad of condensates at our disposal, each carrying its own sound degree of
freedom, the problem of a missing degree of freedom is trivially patched. Unfortunately,
this phase cannot be regarded as topological in a sense of Lammert, Toner and Rokshar
since each of the condensates carries a well defined Burgers vector. The precise details of
the construction of the disorder sector are left for the following section.

Let us now, begin with the construction of the action for the topological condensate.
In spite of the complicated theory behind the Burgers vector disordering and problems
associated with the counting of the degrees of freedom, the technical part of this section
is more trivial than its corresponding part in the case of the ordered nematic. This is
the consequence of the fact that the coupling terms between the longitudinal and the
transversal sector average to zero. Since the two sectors are decoupled, the effective action
continues to factorize into longitudinal and transversal ‘sectors’, as was the case in the
ideal crystal. In addition, the chiral propagators are strictly equal to zero and the phase
is isotropic.

For reasons of compatibility with the previous section, we use the same, ‘Lorentz’ gauge
fix Eq. (4.59). This choice for the gauge fix helps us in few aspects. We already found the
Ehrenfest constraint in this particular gauge fix in Eq. (4.64). The same is true for the ideal
crystal contribution to the propagator, i.e. the first term of Eq. (4.16), which we do not have
to recalculate again, but instead we can just reuse the result from the Eq. (4.65). Finally,
the Higgs term Eq. (4.70) with the Burgers director order parameter set to 〈Qab〉 = 0 is
the expression defining the Gaussian topological nematic phase. We, however, decide to
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make a detour at this point and instead of Eq. (4.70) we use an alternative route to obtain
the Higgs term of the topological nematic phase. The results obtained in this way are
naturally the same as if we employed the Higgs term Eq. (4.70). This alternative route to
the Higgs term of the topological nematic makes the workings of the disorder currents more
apparent by removing the constraint currents and gauge fields from the minimal coupling
and leaving only the shear stress fields to be subjected to the Higgs mechanism. The
difference with respect to the ordered nematic phase is that there is no notion of preferred
direction in the topological nematic phase. Accordingly, the dislocation condensate restores
the translational continuous symmetry in all directions which reflects in the fact that both
electric and magnetic shear acquire Higgs mass in a democratic fashion.

The separating of the compressional, rotational and shear dual stress photons in the
minimal coupling term in Eq. (4.16) is performed by a ‘rotation’ of the original linearly
polarized dual stress gauge field components BE

h . The minimal coupling is rewritten as

LBJ = iBE†
h JE

h =
i

1 + cos2 θ

[
(BL†

+1 − i cos θBT †
−1)(J

L
+1 + i cos θJT

−1)+

(BT †
−1 − i cos θBL†

+1)(J
L
−1 + i cos θJT

+1) + (BT †
+1 − i cos θBL†

−1)(J
T
+1 + i cos θJL

−1) +

(BL†
−1 − i cos θBT †

+1)(J
L
−1 + i cos θJT

+1)
]
≡ iBE†

h J
E
h , (4.100)

with the ‘dynamical cosine’ already introduced in the definition of the polarization basis
Eq. (4.60 - 4.62) as cos θ = ωn/pd. The unitary transformation behind this rotation is
dynamical which is seen from the definitions of the ‘curly’ gauge fields and ‘curly’ dynamical
dislocation currents

BL
+1 =

1√
1 + cos2 θ

(BL
+1 + i cos θBT

−1), J L
+1 =

1√
1 + cos2 θ

(JL
+1 + i cos θJT

−1),(4.101)
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1√
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−1), J T
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−1),(4.102)
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1√
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(BT
−1 + i cos θBL

+1), J T
−1 =

1√
1 + cos2 θ

(JT
−1 + i cos θJL

+1).(4.104)

The connection to the earlier defined symmetric stress gauge fields, BC , BR, Bel.sh. and
Bm.sh. is obvious, the gauge fields Eq. (4.101 - 4.104) are the normalized versions of the
former gauge fields. The labels of the ‘curly’ currents are chosen in such way that each
stress gauge field or the dislocation current collapses onto its curly counterpart in the
static limit (ωn → 0, i.e. cos θ = 0). Given that the minimal coupling term Eq. (4.100)
is split into terms with different symmetry properties, the constraints are fairly trivial to
implement at this stage.

Let us first treat the glide constraint. Expressed in terms of the helical components,
the constraint Eq. (3.61) transforms into

0 = εabJ
b
a = εabe

h
a ẽ

E
b J

E
h = JT

+1 + i cos θJL
−1, (4.105)



126 Dual elastic theory – nematic phases

and this is precisely the curly dislocation current J L
+1. Since this current cannot contribute

to the minimal coupling term, its conjugated stress gauge field is ‘protected’ from the Higgs
mechanism. This dual stress gauge field, protected by the glide constraint, is BL

+1 and this
is just the (normalized) compression stress photon BC .

The Ehrenfest constraint is implemented in a similar fashion, except that the corre-
sponding term is not completely removed from the minimal coupling Eq. (4.100). In-
stead, the Ehrenfest constraint implemented accordingly to Eq. (4.64) requires BL

+1 =

2
√

1 + cos2 θJ /pd, which introduces the external source field J into the Higgs term. The
presence of the external source field of the transversal phonon has its influence on the
Zaanen-Mukhin relation of the topological phase. When we ask physical questions not
directly related to the transversal phonon, this whole term is simply set to zero.

After the constraints have been implemented, the Higgs term of the topological phase
in the Gaussian order reads

LHiggs = 1
2

Ω2

2µ

[
BT †

+1BT
+1 + BT †

−1BT
−1 −

4(1 + cos2 θ)

p2
d

J †J
]
. (4.106)

The curly stress gauge fields BT
±1 correspond to the normalized “electric-” and “magnetic”

shear components, and according to the first two terms of Eq. (4.106), both of them acquire
a Higgs mass. The presence of the ‘curly’ fields with exclusive transversal flavours in the
Higgs term Eq. (4.106) can be interpreted as that the dislocation carry only the transversal
Burgers charges. The statement is, however, correct only in the static limit, when the curly
stress gauge fields become equivalent to their regular counterparts. At any finite frequency,
this is no longer true as can be seen from the unitary transformation Eqs. (4.101 - 4.104)
where the dual stress gauge fields with longitudinal and transversal flavours dynamically
admix into the shear photons.

The original strains as well as the Zaanen-Mukhin relations are usually given in terms
of the linearly polarized dual stress gauge fields BE

h so the curly fields in Higgs term
Eq. (4.106) have to be‘rotated’ back, but is also necessary to use the Ehrenfest constraint
again as

BT
−1 =

√
1 + cos2 θBT

−1 +
2

p
J . (4.107)

This leads to the final form of the topological nematic Higgs term

LHiggs = 1
2

Ω2

2µ

[
|BT

+1 + i cos θBL
−1|2

1 + cos2 θ
+ (1 + cos2 θ)|BT

−1|2−

4

p2
d

J †J + i2 cos θ(BT †
−1J − J †BT

−1)

]
. (4.108)

Terms not containing the external source term J can alternatively be written in terms of
the stress gauge fields self-energy matrix as

−uH =
Ω2

2µ

[
(pd,−iωn, 0)⊗ (pd, iωn, 0)

2ω2
n + c2dq

2
+

2ω2
n + c2dq

2

ω2
n + c2dq

2
(0, 0, 1)⊗2

]
. (4.109)
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The tensorial square represents, like in the previous section, the outer product of a vector
with itself resulting in a matrix. This self-energy matrix enters the total dual stress gauge
fields propagator according to Eq. (4.83).

Now we can ask the ‘measurable’ questions again: what are the phonon propagators
of the topological nematic phase described by Higgs term Eq. (4.108)? To answer this
question, one needs the Zaanen-Mukhin relations for phonons. The relation for the longi-
tudinal phonon is, as it was the case in the ordered nematic, unchanged in the presence
of the condensate, implying that the Eq. (4.45) is still valid. When invoked, this relation
yields the longitudinal phonon propagator of the topological nematic phase as

GL =
1

µ

c2T q
2(ω2

n + c2gq
2 + Ω2)

(ω2
n + c2Lq

2)(ω2
n + c2gq

2) + Ω2(ω2
n + c2Kq

2)
, (4.110)

introducing the ‘glide’ velocity cg = cd/
√

2 in the problem. The effective halving of the
dislocation condensate rigidity is not an accident: it is a consequence of the glide constraint
applied to the topological nematic [50, 44].

Although we recovered the exact expression for the longitudinal phonon, partially due
to the decoupling between the transversal and the longitudinal sector, we may want to
analyse Eq. (4.110) in physically relevant cases. However, there is actually no need for
that. The topological longitudinal photon Eq. (4.110) is exactly equal to its counterpart
in the ordered nematic when the propagation angle is η = π/4. In the previous section
we analysed this case and found that the longitudinal phonon acquires an additional mode
corresponding to the gapped electric shear photon. The original phonon mode stays mass-
less, but at long wavelengths the shear rigidity is gone and the phonon propagates with
the compression velocity cK . At short wavelengths the shear rigidity is recovered and the
original longitudinal phonon velocity is restored.

In the transversal sector, the Zaanen-Mukhin relation is, just as before, sensitive to the
presence of the condensate and in order to recover it, a second derivative of the generat-
ing functional corresponding with the topological nematic action is found. The resulting
relation is

GT =
1

µ

(
1 +

2Ω2

p2
d

)
− ω2

n

µ2

(
1 +

Ω2

p2
d

)2

〈〈BT †
−1|BT

−1〉〉. (4.111)

When the dual gauge field propagator, extracted from the action with the self-energy
Eq. (4.109), is used in the topological nematic Zaanen-Mukhin relation Eq. (4.111), the
transversal phonon propagator of the Gaussian topological phase follows as

GT =
1

µ

c2T q
2(ω2

n + c2dq
2) + Ω2(ω2

n + c2gq
2 + c2T q

2) + Ω4

(ω2
n + c2T q

2)(ω2
n + c2dq

2) + Ω2(ω2
n + c2gq

2)
, (4.112)

involving earlier introduced ‘glide’ velocity cg.
Before delving deeper into the problems associated with the number of degrees of free-

dom in Eq. (4.112), let us just quickly review the excitation content and their behaviour
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at short- and long-wavelengths. The transversal propagator Eq. (4.112) has two poles. At
the length scales smaller than the Higgs gap (q, ωn � Ω), the ideal crystal transversal
photon is recovered. The other mode is the dislocation sound with approximate dispersion
ω ∼ cdq. In analogy with the ordered nematic phase, the dislocation sound pole strength is
vanishing unless the transversal phonon and the dislocation sound velocities are resonant,
cT = cd, when the resonant splitting of the transversal phonon by Ω is present for any
finite dislocation density.

Surprisingly, this phase has a long-wavelength spectrum not much different from that
of the ideal crystal. If one considers only the low-energy sector, the massive mode with
gap Ω is invisible, and the effective propagator

GT (Ω = ∞) =
1

ρ

Ω2

ω2
n + c2gq

2
+O(1), (4.113)

has only one massless mode dispersing at the glide velocity. It may seem quite surprising
that the glide velocity appears in the transversal sector, given the fact that the glide
constraint acts solely in the longitudinal sector. The physical interpretation of this mode,
as well as of the other physical features represented by phonon propagators Eqs. (4.110
and 4.112), will be given in the following section in terms of the disorder field that is
constructed in an alternative manner. This is necessary since these propagators face a
serious problem regarding the number of physical degrees of freedom contained therein.

To explain this, let us count the degrees of freedom in the dual stress gauge field
theory as defined by the partition function Eq. (4.35). In the Coulomb phase there were
two dynamical degrees of freedom, transversal photons BL,T

T corresponding to the phonon
excitations and one non-dynamical degree of freedom, the Coulomb photon BT

τ . The other
Coulomb photon BL

τ is removed by the Ehrenfest constraint and the longitudinal photons
BL,T

L are removed by the gauge fix. In the section 4.2, it was demonstrated that only
one U(1) disorder complex field suffices for the description of the ordered nematic phase.
When the dislocation condensate is formed, the phase degree of freedom is transfered to
the longitudinal photon with the ‘parallel’ flavour, that is to B

‖
L = naBa

µ, which becomes
the physical entity. Its counterpart, the ‘perpendicularly’ flavoured longitudinal photon
B⊥

L , remains in the gauge volume, so that it is still an unphysical field. In the case of
the ordered nematic, this ‘rule of thumb’ was mathematically consistent and yielded the
additional shear/dislocation sound mode.

This is no longer true when one considers the elastic response expressed through the
phonon propagators Eqs. (4.110, 4.112). Each of these two propagators carries two poles
which adds up to four degrees of freedom in total, which is greater by one than the num-
ber of degrees of freedom that the theory started with. Obviously, the treatment of the
topological nematic phase presented in this section has introduced an additional mode in
the theory. On the other hand, the theory is Gaussian and the Gaussian theories may not
change the number of degrees of freedom in the theory. So where did we go wrong?

The procedure of ‘naive’ averaging of the Higgs term by invoking the isotropic Burg-
ers director Eq. (4.99) might have already sparked some concern among the connoisseurs
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reading this text. Namely, in the phase where the Burgers vector is not well-defined, one
cannot decide which flavour is supposed to take the role of the phase degree of freedom
and the only isotropic solution is to Higgs both flavours (be it x and y or L and T ) equally,
that is to construct the Higgs term as

LHiggs ∼ Ba
µB

a
µ. (4.114)

Thus, here lies the answer to the question on the additional degree of freedom. By making
the ‘democratic’ Higgs term of kind Eq. (4.114), there is not one, but two longitudinal
photons Ba

L that become physical. At the same time there is only one phase degree of
freedom in the disorder field that would like to be represented by the longitudinal photon
BL, therefore in the Higgs term Eq. (4.114) this degree of freedom got split in two. Since the
degrees of freedom are not supposed to split in the treatments of the Gaussian theories, the
only logical conclusion is that the Gaussian topological nematic phase is self-inconsistent.
This might seem as a big blow to the theory presented in this section, however, the results
obtained in this way may be justified, as it will be the case in the next section.

At this point we may try to ‘patch’ the theory in order to obtain the consistent theory
of the nematic phase with only one condensate whose Burgers vectors show no preference
for any particular direction. The ‘mean-field’ Gaussian treatment with the ‘naive’ imple-
mentation of the Higgs term Eq. (4.70) proved to be wrong, so let us step back to the
partition function Eq. (4.35) and give the special attention to the path integral over the
Burgers vector directions Dn. For simplicity, it will be assumed, without a proof, that
the path-integrations may exchange their order. The only two terms of the action that
depend on the Burgers direction are the Burgers director action Eq. (4.34) and the minimal
coupling term which reads

LHiggs[n] = 1
2
|Ψ0|2nanbBa

hB
b
h (4.115)

in the Higgs phase. For the sake of simpler notation, the argument is presented with the
Higgs term Eq. (4.115) suited for the gauge fix Eq. (4.59). If any other gauge fix was chosen
or the gauge invariant Higgs term of kind Eq. (2.73) was used, the arguments would follow
the same line.

The Burgers director action Eq. (4.34) is supposed to weight the configurations of the
Burgers vector field, i.e. treat it as a dynamical field. If the theory considers excitations
of the Burgers field, one of the consequences is the scattering on the Burgers vectors as it
would follow from the Higgs term Eq. (4.115). These scattering processes are not Gaussian,
and given that we are interested in the Gaussian theory, the Burgers director excitations
effectively decouple from the dual stress gauge degrees of freedom. Hence, the Burgers
director is treated only as a ‘global’ orientation field, which is the same throughout the
entire system. The path integral reduces to a regular integral Dn dn, and the Burgers
director action makes no discrimination between different orientations which results in the
following partition function

Z =

∫
DBE

h FEhr.(B
E
h ) e−S[BE

h ]

∫
dn

2π
e−

1
2

R
dτdx |Ψ0|2nEnF BE

h BF
h . (4.116)
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The action S[BE
h ] is the total action modulo the Higgs term Eq. (4.115) which is dependent

on the Burgers director and therefore separated into the second exponent. The Ehrenfest
constraint is imposed by function FEhr.

The integral over the Burgers vector in the partition function Eq. (4.116) can be done
analytically and the resulting contribution to the action, which corresponds to the effective
Higgs term of the topological nematic, is exactly

Ltop. = |Ψ0|2
[

1
2
BE

h (1
2
δEF )BF

h + ln I0(
BL

hB
L
h

4
) + ln I0(

BT
hB

T
h

4
) + 2 ln I0(

BL
hB

T
h

4
)

]
,(4.117)

where I0(x) is the modified Bessel function of the first kind.
Let us now expand the Higgs term Eq. (4.117) and keep only terms up to the Guassian

order. Series of the logarithms of the Bessel functions contain only fourth and higher order
terms in the dual gauge fields BE

h , so the only term that remains in the Gaussian order is
the first term. And such a Higgs term is precisely equivalent to the disputed Higgs term
Eq. (4.114)! Given the already demonstrated fact that such a Higgs term is inconsistent
with the disorder theory constructed from the action Eq. (4.32), it follows that one needs
to explicitly treat the non-Gaussian terms caused by the expansion of the exact Higgs term
Eq. (4.117), in order to give the valid theory of the topological nematic. Reformulated,
this statement reads: without the interaction terms, borne by the series expansion of the
exact Higgs term Eq. (4.117), the theory of the topological nematic cannot be consistent.

One should not be surprised that the ‘isotropy’ in the Burgers sector yields the Higgs
term of Eq. (4.114) kind. Even before any a priori specific knowledge about the disorder
field, there are only two possible bare Higgs terms that are in agreement with the required
symmetry. This is the consequence of the fact that there are only two spinless rank-2
tensors in two dimensions. One is the trace and it precisely corresponds to the Higgs term
as used in this section or given in Eq. (4.114). While this invariant tensor represented the
A0 irreducible representation tensor, the other spinless tensor belongs to B0 irreducible
representation and it is given by the Levi-Civita symbol

LHiggs,B0 ∼ εabB
a
hB

b
h. (4.118)

Of course, the presence of such a Higgs term would be possible only if the ground state of
the disorder field breaks the mirror symmetry of the original action. Even if that was the
case, in this particular dual theory, the chiral Higgs term Eq. (4.118) vanishes due to the
Abelian character of the dual stress gauge fields. It would be an interesting challenge to
construct a non-Abelian dual gauge field theory with a chiral Higgs term like the one in
Eq. (4.118).

At the end of the section we give the overview of neither the topological phase nor
the interpretation of the results obtained here due to the encountered problems with the
self-consistency in the theory. Since it was demonstrated that the topological phase needs
non-Gaussian treatment, it will not be in the focus of our attention anymore, apart from
some speculations in the concluding sections. Nevertheless, this section has two important
ramifications, one of them being the statement on the concurrent consistency of three con-
cepts: a) the ‘isotropy’ in the Burgers sector, b) the disordering dislocation gas described
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in terms of a single function GLW action and c) the Gaussian theory. Any two of these
three concepts can be featured simultaneously and these cases are represented in Fig. 4.4.
A theory which is Gaussian and has its disorder described by a single GLW action is the
ordered nematic presented in the previous section. This phase is, however, preferring one
‘flavour’ to the other, based on the orientation of the Burgers director, and therefore it
violates the isotropy. The topological nematic, on the other hand, has no preferred ‘flavour’
and it has only one dislocation gas described by the field Ψ. However, it cannot be for-
mulated in terms of the Gaussian theory as it just has been demonstrated. Finally, what
happens when one constructs a Gaussian theory of the nematic state which is isotropic
in its ‘flavours’? The answer lies in phonon propagators Eqs. (4.110, 4.112), as well as in
the dual gauge field self-energy Eq. (4.109). These results, that represent the second big
ramification of this section and of the entire thesis, have been derived from the ‘Burgers
isotropic’ Gaussian treatment of the dual stress gauge field theory. However, before we may
trust them, find the physical interpretations and employ them in the next chapter where
the charged nematic phases are considered, an alternative disorder field theory has to be
constructed, yielding the Higgs term Eq. (4.114) in a consistent mathematical manner.
Naturally, this disorder theory cannot rely on the GLW action for a single gas.

4.6 Burgers Higgs fields and the isotropic nematic

phase

Facing the inconsistency problems of the “Gaussian topological nematic” in the previous
section, we need to find a different interpretation for its results: the dual stress field self-
energy Eq. (4.109) and the phonon propagators Eqs. (4.110 and 4.112). Otherwise, the
mere mentioning of these results would not be appropriate for a scientific text such as this
thesis. The conclusion in the last section was that, if one wants to have a Gaussian theory
with an ‘isotropic’ Higgs term, the only consistent way to do it is to abandon the single
GLW approach via the dislocation action Eq. (4.32) and construct a different kind of the
disorder theory. Naturally, a modified disorder theory may predict phases which cannot be
described in terms of the action Eq. (4.32). In this section, the first task will be to develop
that alternative disorder theory, with the Gaussian topological nematic as the primarily
objective. However, while the disorder theory is being developed, its ramifications will be
much stronger: it will justify use of the bare Higgs term Eq. (4.70) for any possible value of
the Burgers director Eq. (4.33). Therefore, the total theory will be able not only to describe
the two extreme cases, ordered and isotropic nematic, but in addition, the use of the Higgs
term Eq. (4.70) will be justified for all intermediate values of the Burgers director. The
phase with such an expectation value for its Burgers director order parameter will be called
the “partially ordered nematic phase” and at the very end of the section, the case will be
made that all the relevant observables of the partially ordered nematic phase follow if the
phase is considered as a mixture of the purely ordered and purely isotropic nematic phases.
Before that is done, the physical interpretation of the phonon propagators Eqs. (4.110 and
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Figure 4.4: “Inconsistency diagram”: a theory that would satisfy all three demands (single
wave-function GLW, Gaussian and no order in Burgers sector) is inconsistent. However, by
sacrificing one of the demands and keeping the remaining two, a well defined theory can be
constructed with different types of the nematic phase as the outcome. These are the ordered,
topological and isotropic phase.

4.112) will be presented. That task will not be difficult, once the alternative disorder
field theory is understood, because the additional poles and their features will be trivially
related to the disorder degrees of freedom.

Let us begin with the considerations for the alternative disorder theory. In the previ-
ous section, the discrepancy in the number of degrees of freedom was traced back to the
unique form for an ‘isotropic’ Higgs term Eq. (4.114). A single GLW degree of freedom
is insufficient to generate the ‘double flavoured’ Higgs term so the first logical solution to
the problem would be to introduce an additional bosonic field and use its phase for the
physical realization of the second longitudinal dual stress gauge boson. This line of thought
seems to be consistent with the structure of the dual gauge theory which is U(1) ⊗ U(1).
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The disorder theory in the section 4.2 singled out one of these two U(1) gauge theories
and associated matter with it. The other stayed decoupled and did not have the ability
to undergo the transition into the Higgs phase. Although quite logical and based on the
decomposition Eq. (4.27), this kind of action caused quite some trouble when the Burgers
vectors became disordered. With two disorder scalar fields the problem with the number of
degrees of freedom in the previous section is solved. Let us call the two fields Ψa (a = x, y)
and minimally couple each of them to the dual stress gauge fields of the same flavour. The
two longitudinal photons Bx,y

L can now both become physical, each of them taking the role
of the phase of its minimally coupled scalar field.

In spite of the fact that the introduction of an additional scalar disorder field patched
the problem associated with the counting of the degrees of freedom, one cannot say much
more about the theory unless the scalar fields are given certain physical interpretation
and accordingly an action. One might, based on the proposed minimal coupling, assume
that the field Ψx corresponds to the gas of dislocations bearing the Burgers director in x
direction and the field Ψy to the dislocation gas with y flavour. This interpretation might
have worked if the theory was considering a squre lattice where only these two orientations
of the Burgers vector are allowed. However, in the isotropic elastic solid a dislocation
may point in any arbitrary direction and at that moment one cannot tell what the overlap
between its wave function and either of the fields Ψx,y would be. A circumvention of this
problem suggested here requires one scalar disorder field for each Burgers direction, which
are called “Burgers Higgs fields”. There is a grand disorder action associated with these
disorder fields. It contains a ‘free’ GLW propagator for each individual Burgers direction
and interaction terms between dislocations of different Burgers orientation. The mean-field
treatment of this disorder action will produce the long awaited Higgs term for the isotropic
nematic phase, but before we get into details, let us first justify the use of a separate
disorder field for each particular Burgers orientation.

In order to define the ‘free particle’ action for each of these Burgers orientations, it is
necessary that the Burgers vector of a dislocation stays the same along its world-line. This
can be checked if the dislocation current conservation is applied to the decomposed current
Eq. (4.27) as

0 = ∂µJ
a
µ = ∂µ(naJµ) = (∂µn

a)Jµ + na(∂µJµ) = (∂µn
a)Jµ. (4.119)

The second term vanishes since dislocations are conserved objects in the system, i.e. a
dislocation cannot be made out of nothing. This conservation law leads to the conclusion
that the Burgers vector of a single dislocation does not change along its world-line. In
other words, the Burgers vector is a good quantum number, i.e. an integral of motion for
a single dislocation.

The argument presented above is true only in the total absence of moving disclinations,
because the precise left hand side of the conservation law Eq. (4.119) reads −εabTb. Of
course, any finite density of free disclinations is strictly prohibited in the system, but locally
present bound pairs can violate the conservation law Eq. (4.119) and lead to the disorder
of the Burgers vectors. However, the disorder of the Burgers vectors means that the
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Figure 4.5: Zoom on the ‘nematic dome’ of the newly suggested phase diagram: in addition
to the ordered and topological nematic phase, already represented in Fig. 4.1, a new phase
is identified which we call the isotropic nematic phase. In order to stabilise each individual
dislocation condensate in this phase, the absence of disclinations is required, which is the reason
to expect the presence of this phase at very high rotational stiffness parameter `. Compare this
phase diagram with Fig. 4.4.

phase is the topological nematic which we wish to avoid due to its notorious non-Gaussian
features. Thus, the disorder theory behind the isotropic nematic, which is constructed in
this chapter, works only away from the phase transition line to the superfluid phase. Based
on these heuristic arguments, an ‘upgraded’ phase diagram for the elastic solid is given in
Fig. 4.5.

Let us assign an index b to the scalar field corresponding to the gas of dislocation
with Burgers vector b. Given that the dislocation orientation is a continuous label, all
the Burgers fields and associated physical observables will represent the angular density of
that field rather than the field itself. In order to obtain the physical fields one has therefore
to integrate the Burgers fields over the Burgers angle defined by b = (cos η, sin η). Notice
that η measures now the angle between the Burgers vectors and the x-axis.

With the previously introduced Burgers Higgs fields, the total GLW action can then
be written as

Ldis =
1

2

∫
dη

2π

[
|Pb

µ ψb|2 +m2|ψb|2 +

∫
dη′

2π
|ψb|2Vb·b′|ψb′|2

]
, (4.120)

where the first two terms represent the ‘free’ particle action and the last term originates
in the inter-particle interaction which is proven in the appendix A. The time is conversed
to the length units with use of the dislocation sound velocity cd. The covariant derivative

Pb
µ = ∂µ − ibaBa

µ. (4.121)



4.6 Burgers Higgs fields and the isotropic nematic phase 135

follows from the minimal coupling between a single dislocation with the Burgers vector
b and the dual stress gauge fields as demonstrated in Eq. (4.28), except that here this
scheme is applied to every single direction separately. As usual, the mass term m2 controls
whether bosonic fields are likely to proliferate (m2 negative) or stay bound (m2 positive).
In an isotropic solid it must be independent on the Burgers vector η. The interaction
term, on the other hand, must depend only on the mutual angle between two interacting
dislocations (b · b′). There are further restrictions based on symmetries and they will be
discussed in the text that follows.

The minimal coupling Eq. (4.121) also implies the transformational properties of each
of the Burgers fields under the gauge transformation Eq. (4.26). In order to keep the
disorder action Eq. (4.120), each of the Burgers Higgs fields should transform as

ψb → ψ′b = ψbe
ib·α. (4.122)

The Burgers bosonic current is

J n
µ = i

2

[
(Pb

µ ψ̄b)ψb − h.c.
]
, (4.123)

and together these imply the two-flavoured (physical) dislocation current

Ja
µ =

∫ 2π

0

dη baJ b
µ . (4.124)

When we have constructed the theory, it will become clear that all but two dislocation
current components from Eq. (4.123) decouple from the theory defined in pure strain
(phonon) degrees of freedom. Although these currents cannot be measured by means of
the phonon propagators, that does not imply that they are unphysical degrees of freedom.
The only specialty is that one has to devise an alternative experiment that may capture all
the richness of the dislocation dynamical currents with each particular Burgers orientation,
Eq. (4.123).

At this point the Z2 symmetry in the dislocation field has to be imposed onto the
Burgers scalar fields. Recalling the discussion from the section 4.2 about the equivalence
between the dislocation with the Burgers vecotr b and the antidislocation with the Burgers
vector −b, the constraint is imposed by demanding that the Burgers dislocation currents
with the opposite Burgers vector are equal modulo the sign change, i.e.

J b
µ = −J −b

µ . (4.125)

In terms of the scalar disorder fields, the statement about the Z2 symmetry is interpreted
as the demand that the Burgers scalar fields with the opposite Burgers vectors are mutually
complex conjugate

ψb = ψ̄−b. (4.126)

To verify the constraint Eq. (4.126), it is substituted in the bosonic current definition
Eq. (4.123). What follows is precisely the current constraint Eq. (4.125).
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The constraint Eq. (4.126) may be implemented in various manners. One could half
the angular domain to the compactified [0, π) and declare the fields in the other half of
the Burgers plane dependent. However, this way of imposing the constraint complicates
significantly the work later when the angular label η is Fourier transformed. Therefore,
the constraint is imposed in a completely different manner: the full domain [0, 2π) is kept
in the Burgers label b, but only fields ψb are considered independent. The ‘other half’ of
the fields, fields ψ̄b are constrained fields as implied by Eq. (4.126). As a consequence of
this constraint, the absolute values of the Burgers fields in Eq. (4.120) should be replaced
by |ψb|2  ψ−bψb. One can wonder if there is a problem with the fact that we count
the same current twice. This redundancy is merged into definition of the physical currents
as seen in Eq. (4.124) where a half should stand in front of the definition. However, this
factor is completely irrelevant unless one wishes to perform (an experimentally challenging)
direct measurement of the Burgers dislocation currents Eq. (4.123) and relate them to the
observables in the phonon realm.

When the dislocation mass m2 in the action Eq. (4.120) is positive, each of the Burgers
scalar fields has no expectation value and the system is in the ideal crystal phase. Let us
now assume that m2 < 0, so that the Burgers Higgs fields ψb may acquire some nontrivial
expectation value ψ

(0)
b . Its precise angular dependence will follow from the repulsive short-

ranged potential Vb·b′ , and this will be analysed in some detail in the next paragraph. For
now, we can assume that the expectation values are given and proceed with the construction
of the Higgs term. It arises from the minimal coupling Eq. (4.121), however, given that
the unitary gauge fix cannot be imposed onto all Burgers fields, the Higgs term is written
in its gauge invariant form

LHiggs = 1
2
Ba

µ

[∫
dη

2π
ba|ψ(0)

b |2bb
] [
δµν −

pµ
dp

ν
d

p2
d

]
Bb

ν . (4.127)

Comparing this action with the bare Higgs term Eq. (4.70), it readily follows that the
disorder theory constructed in this chapter can exactly reproduce that term. In contrast
with the derivation from that section, the Burgers director Q̂ does not have to correspond
only with the Burgers director of the ordered nematic phase. Its expectation value is
actually related to expectation value of Burgers Higgs fields as

Qab =

∫
dη
2π
ba|ψb|2bb∫
dη
2π
|ψb|2

− 1
2
δab =

1∫
dη
2π
|ψb|2

∫
dη

2π
|ψη|2 1

2

(
cos 2η sin 2η
sin 2η cos 2η

)
. (4.128)

The normalization prefactor was chosen in such way to make the ‘modulus’ of the Burgers
director Eq. (4.128) equivalent to the one defined by two unit vectors Eq. (4.33), while this
prefactor represents the Higgs gap, written in the same notation as

|Ψ0|2 ≡
∫

dη

2π
|ψb|2. (4.129)

Notice that the Burgers director defined by Eq. (4.128) transforms as a spin-2 object (sine
and cosine of 2η) just as it is expected for a gap related to the shear.
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When one realizes that the isotropic expectation value for the Burgers field ψ
(0)
b = const.

yields the Burgers vector of the isotropic nematic phase, Q̂ = 0, then the justification of
the use of the ‘naive’ averaging in the Burgers sector is basically done. Before revisiting the
results of the previous section, we would like, however, to analyse what sort of potentials
favour isotropic or ordered nematic phase.

When looking for the ground state configuration of the Burgers fields, it becomes handy
to work with Fourier transformed fields. Due to the Z2 constraint on the dislocation
currents, the transformation is defined only for

ψb =
∑
m

ψme
imη, (4.130)

while it automatically follows for the constrained conjugate fields. The Fourier coefficients
ψm are given by the inverse transformation

ψm =

∫ 2π

0

dη

2π
ψbe

−imη (4.131)

and each one of them represents spin-m components of the Burgers scalar field. The
constraint Eq. (4.126) on the conjugate fields reads

ψm =

∫ 2π

0

dη

2π
ψηe

−imη =

∫ 2π

0

dη

2π
ψ̄η+πe

−imη = eimπψ̄−m. (4.132)

The ‘static’ potential energy between dislocations is Fourier transformed

V [ψb] = 1
2

∫
dη

2π

[
m2|ψb|+

∫
dη′

2π
|ψb|Vb·b′|ψ′b|

]
→ 1

2

∑
m

(−)mm2ψmψ−m + 1
2

∑
m,n,k

(−)m+nψ−mψm+kV
(k)ψ−nψn−k, (4.133)

where the amplitude for the spin-exchange V (k) is given by the standard Fourier transform
of the potential

V (k) =

∫
dη

2π
eikηVη. (4.134)

This amplitude obeys he mirror symmetry which requires that Vη = V−η. On the level of
spin exchange this reads V (k) = V (−k) making left and right spin exchange equivalent.

When minimizing the static energy Eq. (4.133) we start not from the Higgs fields ψ
but rather from the density operator nb = ψ̄bψb which drives the Higgs term. The Fourier
transformed potential is

V [nb] = 1
2

∫
dη

2π
m2nb + 1

2

∫
dηdη′

(2π)2
nbVb·b′nb′ → 1

2
m2n0 + 1

2

∑
k

nkV
(k)n−k. (4.135)
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Varying the previous expression with respect to the density nk, the classical equations are
obtained for the density operator that read

0 = 1
2
m2δk,0 + V (k)nk. (4.136)

If all the spin-exchange amplitudes Eq. (4.134) are positive, the solution of the Eq. (4.136)
is nk = −m2

2V (k) δk,0, and that is precisely the state of the isotropic nematic! We conclude
that the isotropic nematic ground state is favoured if there is sufficient repulsion between
dislocations with closely aligned Burgers vectors.

What happens if one of the spin-exchange amplitudes is zero or negative? If at least
one of the amplitudes is negative, say V (k) < 0, the ‘isotropic’ solution of the Eq. (4.136)
represents the state with the maximum energy because populating the k-th harmonics n±k

decreases the total energy. The potential energy Eq. (4.135) doe not seem to be bounded
from below, as any further increase of the wave-function amplitude ψ±k has the effect
of lowering the energy further. However, there is a unilateral constraint on the number
operator which has to be positive, following from its definition: nb = |ψb|2 ≥. Thus,
the potential energy Eq. (4.135) has a lower bound due to the restrictions on the number
operator of the spin-harmonics nk.

This notion may be exercised on a few interesting examples. Let us take a potential
Vη = ω + U sin2 η with both parameters ω and U positive. It is obvious that this kind
of potential favours aligning of the dislocation Burgers vector and minimzes the potential
energy when all the Burgers directors are aligned. Therefore it will reproduce the ordered
nematic phase. Indeed, by substitution

ψη = 1
2
Ψδ(2π)(η − η̄) + 1

2
Ψ̄δ(2π)(η − η̄ − π), (4.137)

with the angular Dirac-delta function defined as

δ(2π)(α) =
∞∑

k=−∞

eikα, (4.138)

the dislocation GLW action for the ordered nematic phase Eq. (4.32) is recovered, where
the Burgers vector is fixed in the direction n = (cos η̄, sin η̄). Hence, the disorder theory
presented in this section can describe, among other, the ordered nematic state.

Can this theory also include the quantum version of the NHY ‘hexatic’ with its par-
ticularities exactly reproduced, such as the triagonal/hexagonal lattice and the dislocation
defects with Burgers vectors only in those three directions? It seems that it can. Recall
first the comment about the triangular lattice elasticity tensor from the chapter 3. Lattices
with this kind of the point group symmetry have their elastic properties indistinguishable
from the isotropic elastic solid, at least in the long-wavelength limit. Therefore, the dual
theory that has already been constructed in this chapter, is at the same time applicable to
the triangular lattice seen in the HNY ‘hexatic’. Now, only the dislocation field has to be
adjusted for the triangular lattice, and that is trivially performed by allowing only three
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Burgers director orientations

ψη = ψ1δ
(2π)(η − η̄) + ψ2δ

(2π)(η − η̄ − π
3
) + ψ3δ

(2π)(η − η̄ − 2π
3

) +

ψ̄1δ
(2π)(η − η̄ − π) + ψ̄2δ

(2π)(η − η̄ − 4π
3

) + ψ̄3δ
(2π)(η − η̄ − 5π

3
). (4.139)

In the ‘hexatic’ phase, none of the three lattice vectors is preferred over the other two,
which implies that all three Burgers ‘hexatic’ functions ψ1,2,3 have the same expectation

value. The use of Eq. (4.128)) gives the isotropic Burgers director Q̂ = 0. Hence, the
dynamical ‘hexatic’ phase seems to be no different, at least in the long-wavelength limit,
from the isotropic nematic phase.

There is yet another interesting feature of this disorder theory related to the fact that
spin-exchange amplitude V (k) may vanish for a certain k. In that case, the k-th spin-
harmonic of the number operator nk is not defined well by the Eq. (4.136) so it can take
any value as long as all nb are positive. At this point the ground state is selected by
the mechanism of order out of disorder [157, 158] which chooses the ground state with the
softest excitations due to the minimized entropy (classical) or zero-point energy (quantum).

Now, we would like to find out which dislocation degrees of freedom admix and get
‘transfered’ to the physical longitudinal dual stress photons in the isotropic Higgs phase.
This answer does not have an universal answer because it strongly depends on the Burgers
Higgs fields expectation values. As an example, in the ordered nematic phase the longi-
tudinal dual stress photon B

‖
L took the role of the phase degree of freedom of precisely

one Burgers field, namely ψn. In the istropic nematic one expects an answer with a less
discrimination between the Burgers angles η. For the purpose of answering this question,
the Fourier transformed fields Eq. (4.131) are far more suitable and for this reason the
gauge transformation Eq. (4.122) will be revisited.

One of the ways to determine which disorder field degrees of freedom turn into the
longitudinal photon(s) is to find the expression for the disorder current without the min-
imally coupled gauge fields. Observe first that the spin-0 harmonic ψ0 is real due to the
constraint Eq. (4.126). That constraint would have had the same physical meaning if any
other complex number had multiplied any of the sides, but it would also have changed
the complex phase of ψ0 to some other fixed value. All the other spin-harmonics have no
expectation value in the isotropic nematic phase.

For this occasion, yet another, holomorphic, basis in the flavor space is introduced

e± = 1√
2
[ex ± iey] , (4.140)

in which the unit vector making angle η with the x-axis has coordinates e±iη/
√

2. This
simplifies the dislocation current Eq. (4.124) expression to

J±µ =

∫
dη

2π

e±iη

√
2

i
2
[(∂µψη+π)ψη − h.c.] = i

2
√

2

∑
k

[(∂µψ−k∓1)ψk − h.c.] , (4.141)

which in the isotropic nematic collapses to

J±µ = i√
2
ψ0∂µψ∓1. (4.142)
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Hence, in the lowest order, the first two spin-harmonics play the role of the ‘complex
phases’ of the Higgs field and their signature is seen in the two additional modes in the
elastic response of the isotropic nematic solid. Each of these additional modes represents
one of the two longitudinal photons B±

L .
Notice that the spin-1 doublet of wave functions is not compact and has a trivial

topology, in contrast with the Abelian-Higgs duality (or the ordered nematic phase), where
the complex phase of the disorder wave-function may be wound around magnetic vortices
that puncture the dual superconductor. In that respect, one can argue whether the isotropic
nematic phase may develop the type-II behaviour. By that, we mean that stress fluxes
may appear in the system followed by shear currents with nontrivial circulation that screen
these fluxes.

Let us conclude this treatise of the disorder theory with another curiosity. Although not
necessary in this thesis, the gauge transformational rules for the spin-harmonics Eq. (4.131)
may be required in some future work. When the gauge transformation Eq. (4.122) is
utilized in the spin-harmonic definition Eq. (4.131), a rather unusual gauge transformation
is obtained

ψ′m =

∫
dη

2π
ψ′ηe

−imη =

∫
dη

2π
e−imηψηe

ib·α

=

∫
dη

2π
e−imηeib·α

∑
k

ψke
ikη =

∑
k

Am,kψk, (4.143)

introducing the spin-gauge transformation matrix

Am,k =

∫
dη

2π
ψ′ηe

iη(k−m)ei(α+e−iη+α−eiη) = Jm−k(f)ei(m−k) arg α+

. (4.144)

The homomorphic gauge components are defined as usual. Jm−k is Bessel function of the
first kind.

Having completed the construction of the alternative disorder theory, it is time to
return to the results obtained in the previous section and give them the appropriate physical
interpretation. We may start with the simpler longitudinal phonon propagator Eq. (4.110).
It was mentioned already when this propagator was obtained, that this results is identical
to the one found for the longitudinal phonon propagator in the ordered nematic phase
for η = π/4, Eq. (4.94). In both cases, the electric shear photon is completely screened,
while the compression rigidity is ‘saved’ by the glide constraint, so that the longitudinal
response resembles that of the liquid at long-wavelengths and recovers its ‘ideal crystal’
form at smaller distances.

The transversal phonon propagator is far harder to understand and its interpreta-
tion will introduce a few unconventional concepts. The massive pole of the propagator
Eq. (4.112) looks similar to the massive poles in the two cases where the magnetic shear
was screened. However, the massless sector is completely different than in any of these
cases. This is because in the η = π/2 case, the photon BT

T was screened, but the longitu-
dinal photon in the transversal sector BL

L didn’t show up. In this way, the entire magnetic
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shear was represented by BT
T becoming totally gapped with no other modes appearing.

In the other case, η = 0, the longitudinal photon BL
L becomes physical, so there are two

fields in the transversal sector, but only one, the shear photon BT
T − BL

L , acquires mass,
which leaves the photon BT

T +BL
L massless and with quadratic dispersion. In the isotropic

nematic, the longitudinal photon becomes physical and both BT
T and BL

L acquire mass,.
However, when the Ehrenfest constraint is imposed, only one of two poles becomes massive,
whereas the other acquires the linear dispersion. Similar as to the glide constraint in the
longitudinal sector, the Ehrenfest constraint keeps a certain current component conserved
in the transversal sector. This is best illustrated recalling the identity between the dual
gauge fields and the disorder currents in the unitary gauge fix

Ja
i = |Ψ0|2Ba

i , Ja
τ = |Ψ0|2 1

c2d
Ba

τ . (4.145)

When the Ehrenfest constraint Eq. (4.10) is interpreted in terms of dislocation currents
accordingly to the Eq. (4.145), a current constraint follows

c2d∂aJ
a
τ = ∂τJ

a
a , (4.146)

which disables the dislocation currents from generating mass for both transversal phonon
excitations. Alternatively, when the current definition in terms of the spin-harmonics of
the Burgers fields, Eq. (4.142), is substituted in the constraint Eq. (3.52), the identity
immediately follows.

Since the massive excitation in the transversal sector is easily traced back to the mag-
netic shear photon, all what remains is the physical interpretation of the long-wavelength
massless excitation. One way to recognize this mode is to directly inspect the long-
wavelength propagator Eq. (4.113). In the isotropic nematic phase the displacements
are ill-defined, however, the local rotation field is still well-defined due to the absence of
disclinations. Given that the transversal photon is actually the local rotation correlator
(see Eq. (3.34)), effectively the same dynamical response would have been found if the
action was given by

Lω = 1
2

2µ

Ω2
(∂τω)2 + 1

2

µc2d
Ω2

(∇ω)2. (4.147)

The prefactor in front of the angular acceleration ∂τω represents precisely the (density
of) moment of inertia of a crystal patch with a size of the shear penetration depth λS =√

2cT/Ω. Hence, the first term in the action Eq. (4.147) is the coarse-grained kinetic energy
of a system of rotors. The second term, as usual, couples the rotors locally. We could try to
give a physical origin of this term. Since each of the rotors is as big as the shear penetration
depth λS, it could be considered as an ideal crystal. When two ideal crystals are adjacent
to each other, the patching in between requires dislocations and it costs energy which is, in
the isotropic nematic phase, given by the correlation length of the dislocation condensate
µc2d/Ω

2 = c2d/Ω
2 = λ2

d.
Therefore, the isotropic nematic is hydrodynamically equivalent to a liquid, due to the

compressional rigidity, carrying a rotor which is in the ordered state. There is, however,
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a subtlety related to these rotors. By saying that the rotors are in the ordered state, we
assume that the ground state of the isotropic nematic is characterized by disorder of the
displacement fields and order of the local rotation ω ≡ 0, meaning that the orientation of
the crystalline lattice is the same everywhere as it was in the ideal crystal. However, being
in the (isotropic) ideal crystal, a special direction implied by the rotor ground state cannot
be identified. At the same time, a global rotation to another ground state, ω 6= 0, produces
the same physical state with no measurable quantity that could distinct between the two
of them. Having no preferred direction, the rotor could be though of as the generalization
of the director order parameter. However, while the director had a local Z2 symmetry
which resulted in the O(d)/Z2 order parameter, the local rotation field has a global O(2)
symmetry so it can be regarded as O(2)/O(2) rotor.

Since the elastic action of the isotropic nematic phase is rotational invariant, while its
ground state ω = 0 is not, it is not surprising that there is a massless linear mode in the
rotation correlator – this mode is the Goldstone mode associated with the broken rotation
symmetry. According to the folklore, phonons originate in the translational symmetry
breaking. When faced with the rotational symmetry breaking which also takes place in
the ideal crystal, it is usually assumed that the Goldstone mode of this symmetry is
overdamped due to the coupling to the dissipative shear. This is indeed true in the nematic
phase of a classical liquid crystal. However, when the theory has no explicit dissipation
as it is the case with our theory this argument cannot work. The general truth is that
the rotation Goldstone mode is ‘hidden’ behind the Goldstone transversal phonon. In the
long-wavelength limit to which the Goldstone theorem applies, the infinitesimal excitations
of these two modes are equal [154]. Hence, it takes a theory where the translational
symmetries are restored and the rotational left broken, such as the isotropic nematic phase,
in order to reveal the rotation Goldstone mode.

To support this claim we may intentionally invalidate the conditions required for the
Goldstone theorem, by removing the rotational invariance from the elastic action Eq. (3.24).
Consider a solid on some substrate, such that rotations of the solid are energetically costly
due to the interaction with the substrate. This is implemented with addition of a local
rotation coupling to the elasticity tensor

Cijab → Cijab + ε1
2
(δijδab − δibδja), (4.148)

with ε being the ‘rotational stiffness’. Although it is breaking the Ehrenfest constraint,
Eq. (4.10), this assumption is not violating the angular conservation since this solid is not
an isolated system and it may exchange the angular momentum with the substrate. In
such a setup the Lagrangian has only translational symmetries left over; rotation of a solid
as a whole costs a finite amount of energy. When the dualization procedure is repeated,
after the lengthy work with details left to an interested reader, the fourth mode is found
to acquire a gap equal to Ω2

ε = ε|Ψ0|2. Hence, by violating the global rotational symmetry
of the action by addition of term Eq. (4.148) the fourth mode becomes massive.

An alternative way to envisage the transversal excitation of the isotropic nematic is
illustrated in Fig. 4.6. In the ideal crystal the response to transversal motion is driven
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a) b)

Figure 4.6: An alternative interpretation of the massless excitation in the transversal
phonon spectrum: a) in the ideal crystal, the transversal motion induces reactive shear response;
b) in the isotropic nematic phase the shear response is massive. However, the transversal motion
may cause plastic deformation and the resonance is acquired from the dynamical dislocation
condensate.

by the shear rigidity (Fig. 4.6a). In contrast, the isotropic nematic phase has no shear
rigidity. Nevertheless, a transversal motion of the system induces a dislocation presence
in the system (Fig. 4.6b). The resonance is governed by the velocity at which the disloca-
tions propagate. The factor of 1/

√
2 (the transversal excitation propagates with the glide

velocity in the long-wavelength limit) originates in the fact that on average, one half of
dislocations have the Burgers vector point along the propagation direction, while the other
half is present but do not contribute to the propagation due to their perpendicular Burgers
vectors.
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Chapter 5

Superconductivity in nematic phases

Up to this point, the work presented here was focused exclusively on elastic media which are
decoupled from other physical fields. As an outcome, a number of novel phases of solid, like
the quantum melted phase, were identified and their physical properties, expressed through
the response to external stress, were identified. In the real world, an experimentalist would
like to probe the elastic response of a system end make sure if the melting theory developed
in chapter 4 is representative for that system. The long wavelength behaviour that was
predicted is not sufficient for those purposes. In the ordered nematic phase, the anisotropic
phonon velocities may be attributed to anisotropy in the elasticity tensor Eq. (3.7) and the
long wavelength response of the topological isotropic nematic predicts a massless mode per
each phonon propagator which makes it impossible to see the difference from a standard
solid when we are equipped only with long-wavelength phonon measurement devices. The
only feature of the nematic phases that one would like to measure and be sure that the phase
has undergone the transition into the dislocation melted solid, is the shear photon which
acquires its own pole in phonon propagators. This pole is however not easy to measure,
because it becomes visible only at lengths shorter than the shear penetration depth and
at frequencies higher than the shear gap. Recall that the expected values for the shear
penetration length have to be larger than the lattice constant (in order for the theory
to be applicable), but still in nanometer to micrometer range. When the corresponding
shear gap is assessed, it turns out that, in order to test the predictions of the previous
sections directly, that is by means of phonon propagators, one needs a machine that could
exert stresses at nanometer scales and modulate them with frequencies in giga or terahertz
range. While, to the best of our knowledge, the present day AFM tools have cantilevers
that may achieve resolution as high as the required nanoscales, the shear gap frequency is
many orders of magnitude above the measurable threshold in frequencies.

This unfortunate technological drawback calls for an alternative way to probe an elastic
system. In order to do that, the elastic medium must be coupled to another physical field
and preferably the experiments related to this additional field should be able to probe
terahertz/nanometer regime. The most natural and logical field for this purpose is the
electromagnetic field. In fact, dealing with the electron matter (our primary interest),
the electrodynamical response is the only way the system can be interrogated. The only
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property which counts in the present context is its electrical charge. In this chapter,
we develop the extension of the dual theory of nematic solids that will take care of the
electromagnetic fields and relate the properties of the nematic phases to measurable EM
quantities. The requirement for this theory is, of course, that the crystalline constituents
carry electric charge, so this idea will not work for elastic media in general. The charged
elastic solids that are described by the theory developed in this chapter can be thought of
as Wigner crystals. Traditionally, the name Wigner crystal is reserved for the crystalline
state made out of electrons realized in the low density regime. Such a crystal carries
fermionic statistic and is thereby beyond the scope of this work. As mentioned before,
in order to keep excitations with singular displacements bosonic, we must limit ourselves
to a medium made out of electrically charged bosons. To keep matters clear this state of
matter will be referred to as the bosonic Wigner crystal [144]. What this practically means
is that we assume the existence of effective bosonic particles, be it Cooper pairs, holons or
whatsoever, below some energy scale.

Although it might appear that we develop the dual theory of a bosonic Wigner crystal
for the purpose of detecting nematic phases in standard elastic media, the real motivation
is just the opposite. Our primary goal is to construct the dual theory of electronic liquid
crystals, and in that respect the previous section may be regarded only as an intermediate
step necessary in order to find the action of the dual stress degrees of freedom on the
electromagnetic fields. Our motivation in the electronic liquid crystals and, more notably,
their quantum version was presented in the introductory chapter, so let us quickly repeat
it here. The electron liquid in the high-Tc superconductors is strongly correlated and nu-
merous experiments [35, 36, 41, 42] demonstrate that it is close to the point of crystalizing
into the electron (stripe) crystal. The paper by Kivelson, Fradkin and Emery [37] suggests
the existence of electronic smectic and nematic phases in the high Tc superconductors.
According to the arguments in the paper, the quantum phase transitions of a high tem-
perature superconductor, with the dopant concentration x parameterizing the amount of
the quantum disorder, can be viewed in terms of an effective liquid crystalline theory for
the electrons. The most recent support for the electronic liquid crystal theory comes from
the recent experiment employing the neutron scattering on optimally doped ‘untwinned’
YBCO crystals [43] in which an unreasonably high anisotropy in the superconducting gap
is found. Could it be that the anisotropy is augmented by an electronic liquid that exhibits
spontaneous orientational order?

When we construct the dual theory of the elastic charged media it appears that some
of these questions can be answered. The advantage of the duality construction is not only
given by the fact that we already developed the formalism that can treat liquid crystal
phases, it is also expressed through the idea that the world seen through the duality has
a fundamentally different structure, so in a way one could say that the dual view shines
a completely different light on the problem. As one of the representative features, let us
mention here that in the dual theory every elastic medium has a Meissner term so it qualifies
as a bare superconductor. The interaction with the dual stress gauge fields is, however,
responsible for dressing of the Meissner term back to its effective value. The short-range
propagation of the shear photons in the nematic phases is therefore the key ingredient in
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the realization of the superconductivity. The precise statement which will be justified after
both topological and nematic phases have been analysed is thst the necessary condition
for an elastic medium to acquire a finite static Meissner term is that the magnetic shear
photon is an eigen direction of the shear Higgs term, i.e. there are no long-wavelength, zero
frequency parts in its bare propagator.

The presence of the bare Meissner term in the dual language can be understood as
follows The dual theories are naturally tailored to primarily describe the disordered side of
the phase diagram. The ultimately disordered state of a zero-temperature quantum elastic
medium is the superfluid and there is a theorem due to Wen and Zee [159, 160, 161] which
states that a charged superfluid is at the same time a superconductor. This argument works
regardless the ‘number of curls’ in the definition of the dual stress gauge fields. Naturally,
when there are no defects present, the stress fields are powerfull enough to defeat the
Meissner term, but as we mentioned, even a partial Higgs mechanism in the stress shear
sector is sufficient to liberate the Meissner term which was present all the time in disguise.

This superconductivity mechanism in the nematic phases is not based on the standard
BCS paradigm [17] and as it will turn out, the superconductivity is unconventional showing
a myriad of electromagnetic features, many of them never predicted before by any existent
theoretical model known to us. These effects include an unconventional magnetic and elec-
tric static screening, both experiencing overscreening effects, additional poles in the electric
response functions and an unconventional propagation of light. From these findings, we will
deduce some predictions for novel experiments which up to now have not been carried out,
which can serve the purpose to determine whether the theory of dual superconductivity
which is constructed here is realized in cuprates. Non-BCS superconductivity models were
suggested before, with some of them being closely related to our work. Chronologically
the first model was an early attempt to find a theory of conventional superconductivity
by Fröhlich [162, 163]. His idea of one-dimensional electrons that couple with phonons
and move in a sliding fashion as a whole, resulted in an ideal conductor but also proved
vulnerable to infinitesimal pinning. In a similar manner, the ideal Wigner crystal of ours is
an ideal conductor since the pinning processes are not incorporated in the theory. There-
fore one expects that, in manner of Fröhlich superconductor, this ideal crystal becomes
an insulator in the real physical world. Another drawback of the Wigner crystal is that
it is not a superconductor, in spite of its vanishing resistivity, since it can admit static
magnetic fields. The nematic phases, on the other hand, develop a finite Meissner term,
in a mechanism which is similar to the duality between the charge density-wave and su-
perconductor discovered by D.H. Lee [164]. In this phase of matter, ignoring the pinning
is justified since its effects are diminished. This is a consequence of the screening of the
pinning potential, which is basically transmitted by shear, now screened by the dislocation
currents. The remaining phase of matter, the superfluid phase, is not accessible by means
of the duality that is presented here, but if one wishes, its properties can be described
in the non-interacting gas limit which is the opposite of ours. Some of the answers are
already known such as that the phase is superconductor according to the theorem by Wen
and Zee [159, 160, 161] we already mentioned. The mechanism of their proof is simple: a
compression mode can be dualized into a pair of compression photons that couple to EM
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photons. Integrating the former out results in a mass gap for the latter.

This chapter is organized as follows: in the first section we introduce EM (gauge) fields
and analyse the way they couple to the displacements of a charged elastic medium. When
developing the dual theory of the charged elastic media, our final goal will always be to
derive the effective EM gauge field propagators by integrating out all other, in this case
dual stress, degrees of freedom. In order to interpret these propagators, we will derive
relations connecting the propagators to measurable physical quantities like electric and
magnetic susceptibility, conductivity and magnetic and electric screening. As a warm up
exercise (but also as a check for the later work), we first analyse the electric properties
of the ideal Wigner crystal by means of the strain formalism. In spite of the simplicity
of the problem and some intuitive simple expectation for this phase, it will actually show
some counterintuitive properties, such as propagation of light by diffusion and a gap in
the transversal response. The next section is dedicated to the construction of the dual
action for a charged medium. The aforementioned bare Meissner term of the dual theory
is found and, after other (stress) degrees of freedom have been integrated out, its fate
is determined. In the ideal crystal, the results that were already found in section 5.1
are recovered. Another novel result presented in this section is the ‘dual Kubo’ formula
which is engineered to relate the dual stress photon propagators to the conductivity of the
medium. The remainder of this chapter will be split in two sections following the discussion
of the two (sub)phases with the nematic order. One section deals with the electromagnetic
properties of the ordered nematic phase and the other with the properties of the isotropic
nematic phase. The order of the phases is permuted with respect to the previous chapter
because of the simpler isotropic nature of the topological phase and its representative
features. Due to more complicated propagators and the coupling between the longitudinal
and the transversal sectors of the ordered nematic phase, only a limited set of its physical
quantities is analysed and the discussion is centered on the values of the angle η where the
coupling between the elastic sectors is vanishing. We subsequently demonstrate that at all
other, intermediate, values of η a coupling is induced between the electric and magnetic
properties of the charged medium. Most of the results presented in this chapter are novel
and not yet published with the exception of the introductionary electrodynamics part and
the results on the unconventional static magnetic screening properties which were shortly
addressed in the preceding work by Zaanen et al. [44].

5.1 A tutorial: electrodynamics of elastic media and

physical observables

Whenever a new field is introduced into the theory, there are two questions to be addressed:
what is the independent dynamics of the field and how does one have to couple the field to
the existing theory? These questions are fairly easy to answer when the fields of relevance
are the electromagnetic fields, given the status of the Maxwell theory in present day physics
as foundational principle. Although the coupling between the elastic media and the EM
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fields is discussed in the Landau-Lifschitz books [126], we will rederive these matters in
the beginning of this section in order to construct the minimal coupling term that will be
easier to treat under the duality. After these terms have been found, together with the
(dynamical) Maxwell term for the EM gauge fields, the gauge fix is implemented on the
EM gauge fields. For illustrational purposes, the problem of the electric fields coupled to
the Wigner crystal is solved and the self-energies for the EM photons are obtained. When
the EM observables are related to the self-energies of the EM gauge fields in the remainder
of the section, these self-energies will be used to discuss the physics, showing that actually
even the bosonic Wigner crystal has untrivial EM properties.

We begin with discussing the minimal coupling between the elastic degrees of freedom
and EM fields. Let us start with the contribution to the action associated with a single
charged particle that is subjected to an EM field. If the particle’s effective electric charge is
e∗ and its position at time τ is given by R(τ), then it contributes to the action as [165, 166]

LEM,1p. = ie∗
∫

dτ
[
Aτ (R(τ), τ) + Ṙ(τ) ·A(R(τ), τ)

]
. (5.1)

This action is the origin of the exact EM coupling Eq. (3.67) mentioned in the section 3.4
dealing with the glide principle. The fields that the particle ‘feels’ at moment τ are taken
at its precise position R(τ). The first term corresponds with the energy of the particle in
the Coulomb potential field Aτ , while the second term represents the generalized potential
associated with the action of the Lorentz force on the moving particle. This is the natural
interpretation of the EM action in terms of forces in the laboratory reference frame, but
the coupling term Eq. (5.1) is Lorentz-invariant. The existence of the minimal coupling
Eq. (5.1) in the Lagrangian formalism is a consequence of the fact that the EM forces
belong to the class of generalized potential forces [167].

Since the basic action Eq. (3.24) which we use throughout this whole thesis is just an
effective action derived in the gradient expansion of true elastic energy Eq. (3.2), there
is no need to keep higher order terms in the displacements in the formalism than the
ones already present in Eq. (3.24). Therefore, we perform the gradient expansion of the
minimal coupling Eq. (5.1), where the particle position is given in terms of its equilibrium
position and the displacement R(τ) = R0 + u(τ), and keep only terms that are linear in
displacement

LEM,1p. = ie∗
∫

dτ [(u · ∇)Aτ + ∂τu ·A] +O(u2). (5.2)

In this step we subtracted the potential coming from the background charge, needed to
preserve global electroneutrality. When a large number of these charged particles forms a
crystal with density of ne particles per unit volume, the coupling term becomes simply

LEM = i(nee
∗)

∫
dxdτ [−Aτ∂au

a + Aa∂τu
a] ≡ iAa

µ∂µu
a. (5.3)

In order to have strains in both terms, a partial integration is performed. The EM poten-
tials turn into effective ‘curly’ strain potentials

Aa
µ = (nee

∗) [δµτA
a − δµaAτ ] , (5.4)
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and the EM coupling in this form is naturally married to the stress degrees of freedom
when the dual theory is developed in the next section.

Next to the coupling term, the dynamics of EM gauge fields has to be included in the
action by means of the Maxwell term

LMaxwell = 1
4
FµνF

µν (5.5)

with field strengths defined as Fµν = ∂µAν − ∂νAµ. The absence of the prefactor is often
encountered in a high-energy physics literature [80] and its advantage is that this form
is dimension independent. Given that we restricted ourselves to the 2+1-dimensional
universe, it would be wise to keep the number of spatial dimensions that the EM fields
are embedded into, which we also take two. Usual prefactors such as 1/(4πcl) in the CGS
system of units or 1/µ0 = c2l ε0 in the SI system of units have specific values in three
dimensions, but in any other number of dimensions they are meaningless. At the end of
our exposition it will be shown that this discussion is not crucial at all, because the only
physically relevant quantity involving the combination of the effective particle charge e∗,
their density ne and the mentioned prefactor, in other words, that is the plasmon energy
of the electron system. Notice however, that the specific choice of the prefactor will alter
the plasmon gap by a factor of 4π relative to commonly used definitions employing the
CGS system.

Both the Maxwell part of the action Eq. (5.5) and the minimal coupling to strain fields
Eq. (5.3) have to be invariant under gauge transformations of the EM fields Aµ which
were given earlier by Eq. (2.13). The gauge invariance is, per definition, obeyed by the
Maxwell term, while the invariance of the minimal coupling term implies electric current
conservation. In the previous chapter, this condition was restated in terms of the glide
constraint on the dislocation currents [50]. Due to the gauge redundancy of the EM gauge
fields, one has to choose a gauge fix. For the sake of the compatibility with the vast
literature (e.g. Ref. [51]), we will will employ throughout this chapter the Coulomb gauge
fix

0 = ∂iAi = −qAL. (5.6)

It was already clarified in chapter 2, that this particular gauge fix simplifies matters by
decoupling the electric and magnetic effects, while its components can even be directly
interpreted as real physical degrees of freedom. One might object at this point that we are
after a superconducting phase with massive EM photons, and that the massive gauge fields
may be better addressed in terms of the unitary gauge fix. Let us give two arguments in
favour of the Coulomb gauge fix Eq. (5.6). In the first place, the final physical outcomes
should not be dependent on the gauge fix, so whatever gauge fix we choose the results
are the same, and the Coulomb gauge fix will just simplify the computations significantly.
There is also a conceptual side: here the unitary gauge fix becomes meaningless since it
is proper only when the gauge fields acquire mass due to the Abelian-Higgs mechanism
originating in the off-diagonal condensed long-range order in the constituent bosonic fields.
Since the superconductivity in our dual theory has a completely different origin while, in
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fact, there is even not a bosonic wave-function minimally coupled to the EM gauge fields,
the entire gauge redundancy resides in one of the components of the gauge field Aµ and
the Coulomb gauge fix Eq. (5.6) is just a quite natural choice.

Similarly to the case of the Coulomb phase from section 2.3, the Maxwell term Eq. (5.5)
may be expressed in terms of the two remaining photons

LMaxwell = 1
2
q2A†

τAτ + 1
2
(ω2

n + c2l q
2)A†

TAT . (5.7)

The Coulomb photon Aτ is associated with the Coulomb force and the physical longitudinal
electric field as EL = iqAτ , while the transversal photon AT represents EM radiation
through its physical interpretations in the form of the magnetic field B = qAT and the
transversal electric field ET = −ωnAT .

Let us now switch gear back to the physics of the elastic medium to analyse the electrical
properties of the ideal Wigner crystal. For this purpose, the strain formalism with smooth
displacement fields u is considered. The minimal coupling term Eq. (5.3) is transformed to
Fourier-Matsubara frequency space. Only the physical EM gauge fields are left resulting
in

LEM = i(nee
∗)
[
iωnu

TA†
T + quLA†

τ

]
. (5.8)

Although one might have noticed it earlier, the exclusive nature of the minimal coupling be-
comes apparent when given in form of the Eq. (5.8). Here one can convince oneself that the
Coulomb photon couples exclusively with the degrees of freedom in the longitudinal elastic
sector, while the transversal photon communicates with the transversal elastic sector. In
the isotropic phases, this will give rise to the fact that the electric effects are governed by
longitudinal elastic properties, whereas the magnetic effects and the light propagation are
governed by the transversal elastic properties. The earlier claim of the coupling between
the electric and magnetic properties of the charged system is now readily anticipated in
the ordered nematic phase.

In order to obtain the effective EM gauge fix propagators, one has to remove the
displacement degrees of freedom. In the ideal crystal this invokes a trivial Gaussian in-
tegration, using the displacement propagators given in Eq. (3.31). The resulting effective
action for the EM gauge fields is

LEM,ideal = 1
2
A†

τAτq
2

[
1 +

ω2
p

ω2
n + c2Lq

2

]
+ 1

2
A†

TAT

[
ω2

n + c2l q
2 + ω2

p

ω2
n

ω2
n + c2T

]
, (5.9)

introducing a gap ωp which corresponds to plasmon gap of the charged medium

ω2
p =

(nee
∗)2

ρ
=
nee

∗2

m∗ . (5.10)

The effective mass of a constituent is m∗. This expression differs from the one found in
standard literature by factor of 4π for reasons we already mentioned (see Eq. (5.5) and the
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comment thereafter). An alternative way to represent the propagators in Eq. (5.9) is by
means of their self-energies. Defining the vacuum EM gauge field propagators as

(G(0)
τ )−1 = q2, (5.11)

(G(0)
T )−1 = ω2

n + c2l q
2, (5.12)

so that the total effective EM action is

L = 1
2
A†

τ (Gτ )
−1Aτ + 1

2
A†

T (GT )−1AT + iA†
τjτ + iA†

T jT , (5.13)

a self-energy term can be associated with each physical gauge field

−Πτ =
q2ω2

p

ω2
n + c2Lq

2
, (5.14)

−ΠT =
ω2

nω
2
p

ω2
n + c2T q

2
. (5.15)

In the following sections, this will be our standard way to represent the influence of a
charged medium on the EM fields.

Let us now turn to the physical interpretation of the propagators Eq. (5.9). Their bare
form does not yield much information when we recall the relations between the electric and
magnetic fields and the EM gauge fields. At this point it is useful to invoke the substantial
Maxwell equations with a spatio-temporal dispersion. The first equation reads

∇ · (εE) = jext.
τ , (5.16)

but after it has been transformed to the Fourier-Matsubara space and rewritten in terms
of the EM gauge fields with the implicit Coulomb gauge fix, it becomes

q2εAτ + ijext.
τ = 0. (5.17)

Comparing this Maxwell equation with the equation of motion that would follow from the
action Eq. (5.13), we conclude that

ε =
G−1

τ

q2
= 1− Πτ

q2
. (5.18)

This dielectric function is commonly known as the longitudinal dielectric function, εL,
because it serves as the propagator of the longitudinal electric field component [168].

Another Maxwell equation with source term is, in two dimensions,

c2l∇×
B

µ
= jext. + ∂τεE, (5.19)

introducing the magnetic susceptibility µ. It is a habit to set the magnetic susceptibility
to unity so that all the magnetic effects are defined in terms of the transversal dielectric
function εT which enters the transversal projection of the Fourier transformed Eq. (5.19)

(εTω
2
n + c2l q

2)AT + ijext.
T = 0. (5.20)
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Again, the Maxwell equation Eq. (5.20) is compared with the equation of motion following
from the action Eq. (5.13) and the transversal dielectric function is recovered as [51]

εT = 1− ΠT

ω2
n

. (5.21)

Of course, the Fourier transformed equation Eq. (5.19) should involve the same dielectric
function as the Eq. (5.18) on its right hand side and keep track of the magnetic properties
by means of the magnetic permeability µ. Thus, the mathematically proper Maxwell
equation reads (

εω2
n +

1

µ
c2l q

2

)
AT + ijext.

T = 0 (5.22)

so that the magnetic permeability can be given either in terms of the EM photon self-
energies or in terms of the already introduced longitudinal and transversal dielectric func-
tions [169]

1

µ
= 1 +

Πτ

q2

ω2
n

c2l q
2
− ΠT

c2l q
2

= 1 +
ω2

n

c2l q
2
(εT − εL). (5.23)

The presence of the light velocity in the denominator in Eq. (5.23) is sometimes used to
argue that the effect of a medium on the magnetic fields can be ignored at any finite wave-
lengths. The smallness of the magnetic permeability Eq. (5.23) is also behind the fact that
there are no experiments devised yet that could measure the EM transversal gauge field
propagator GT at finite wavelengths. For example, optical conductivity experiments are
just one of the many experiments that work effectively at q = 0. In that respect, experi-
mental physics is still handicapped with regard to probing the nematic phases by means of
electromagnetical experiments since only half of the measurable quantities we predict are in
principle accessible at this moment, and these are all related to the longitudinal response,
i.e. the Coulomb photon and its propagator Gτ . Nevertheless, for completeness and also
in the hope that in a near future experiments might be developed that probe the finite-
wavelength regime of the transversal EM photon, both results relating to the Coulomb and
to the transversal photon propagators will be presented for the various nematic phases.

The electric and magnetic response functions εL,T and µ are in last instance associated
with experiments and physical effects. Let us start with the static screening effects. The
electric static screening is governed by the poles of the inverse dielectric function Eq. (5.18).
In the ideal Wigner crystal the dielectric function has the following static limit

εWC = 1 +
ω2

p

ω2
n + c2Lq

2

ωn→0−→ 1 +
1

λ2
cq

2
, (5.24)

introducing the ideal crystal electric screening length λc = cL/ωp. The dielectric function
Eq. (5.24) has zeros at q = ±iqc, with qc = λ−1

c the inverse crystalline electric screening
length, which implies that instead of the standard Coulomb 1/r electric field fall-off, the
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ideal Wigner crystal exhibits electric screening with λc as the characteristic length. In a 1D
geometry, the profile of the electric field has an exponential fall-off and in a 2D geometry
(e.g. electric field flux penetrating the Wigner crystal at a certain point), the inverse
Fourier transformation yields a modified Bessel function of the second kind 1

λL
K1(

r
λL

)

which asymptotically behaves like
√

πλL

2r
e
− r

λL at large distance.

The magnetic permeability of the ideal Wigner crystal is

1

µWC

= 1 +
c2K
c2l

ω2
pω

2
n

(ω2
n + c2Lq

2)(ω2
n + c2T q

2)
, (5.25)

which indeed shows minute deviations from unity. In the static limit, the second term
vanishes so there are no static magnetic effects.

At the same time, the result in Eq. (5.25) confirms the claim of Bohm and Pines [170]
who argued that the discrepancy between the two dielectric functions εL and εT is due
to the magnetic response of the medium, and corrections have to be of order ( v

cl
)2 with v

being the characteristic velocity of the medium material. In the case of the ideal crystal
this velocity corresponds to the sound velocity cK .

Considering now the dynamical effects, one may want to focus on polaritons, the light
excitations dressed by the strong interaction with the medium [171, 172]. Given that the
polaritons are,by definition, the same excitations as the transversal EM photons AT in the
system, their spectra are identical. In general, there is an equation involving both electric
and magnetic permeabilities

0 = ε(ωn, q)ω
2
n +

1

µ(ωn, q)
c2l q

2. (5.26)

which yields the polariton spectrum. In the ideal Wigner crystal these poles are trivial to
find and there are two of them. In the long-wavelength limit one of the poles is gapped as
ω2

1 = ω2
p + (c2l + c2T )q2 +O(q4) and this is what one usually finds in a metal – screening of

the electric field together with ideal conductivity results in the skin effect and the medium
is a mirror, reflecting all incoming EM radiation, provided that the frequency is lower
than the plasmon gap. The other mode, however, involves a surprise as it develops a
quadratic dispersion ω2 ≈ cl

ωp
cT q as a consequence of level repulsion. Can we interpret this

mode? A possible answer lies in the fact that the electric field, which is also one of the
photon ingredients, is screened in the medium whereas, at the same time the magnetic
field is unaffected at large distances. They are both carried by the photon AT , i.e. the
polariton, which couples with the long ranged transversal mode. In the fight between
electric screening and long-ranged shear, the EM photon can still survive but only as a
diffusive, not freely propagating, degree of freedom. Alternatively, Eq. (5.26) which is
the polariton inverse propagator resembles the inverse propagator of the ordered nematic
phase at η = 0, Eq. (4.93). In the same fashion as there, the second pole dispersion can be
interpreted as due to the second-order process via the massive first pole ω2 = clcT q

2/ω1,
which is the unique way of that mode to ‘catch up’ with the short-wavelength dispersion
(decoupled EM photon and the transversal phonon).



5.1 A tutorial: electrodynamics of elastic media and physical observables 155

Measurements of the dynamical dielectric function are in principle possible, by electron
energy loss spectroscopy (EELS) where the amount of energy that an electron leaves behind
in the medium is related to the imaginary part of the inverse dielectric function [173]. We
however leave the details of this issue for the section on the charged isotropic nematic where
an important effect that can be measured by means of an EELS experiment is at the center
of the attention. Another experiment which appears to measure the dielectric function is
resonant inelastic X-ray scattering [174] although this claim needs further theoretical and
experimental scrutiny. The dynamical magnetic permeability is, as we mentioned, at this
moment out of reach of the experimentalists.

A medium carrying charge is also characterized by conductivity which is just the ratio
between the applied field and the internal currents carried by the constituent (intrinsic)
particles. When analysing the conductivity, one can, in the spirit of the Maxwell-Lorentz
analysis of Maxwell’s substantial equations [166], split the internal currents and charges
into the bound and free currents/charges. The bound currents, which have as physical
origin constituents that do not move an infinite distance away from their starting points,
are supposed to be integrated out to produce corrections to vacuum susceptibilities. On
the other hand, the free currents, which represent particles that are not bound to their
initial equilibrium position remain in the Maxwell equations. One can eventually invoke the
definition of the conductivity and express these free currents in terms of the conductivity
tensor as j = σ̂ · E. The Maxwell equation Eq. (5.19) then becomes

c2l (∇×B) = jext. + σ̂ · E + ∂τE. (5.27)

To find the conductivity, one would, however, need to use the full action, together with
the elastic part (3.24), Maxwell part Eq. (5.5) and their mutual coupling Eq. (5.3) in order
to find equations of motion, which can be compared with Eq. (5.27). Such a procedure
seems an unnecessary detour to recover the conductivity, since we already know the electric
response functions. As it turns out, the dielectric function and the conductivity are related
through a familiar relation

ε̂ = 1̂ +
iσ̂

ω
., (5.28)

This expression can be interpreted as stating that a conductor with conductivity σ̂ can
be regarded as a Maxwell dielectric with complex electric susceptibility Eq. (5.28). The
components of the dielectric function tensor ε̂ in the identity Eq. (5.28) are related to the
previously defined dielectric functions as εLL = εL = ε and εTT = εT . The off-diagonal
elements εLT and εTL vanish in isotropic media, but in the ordered nematic phase these
terms will become nontrivial.

In the ideal Wigner crystal, the conductivity is found using Eq. (5.28),

σL,T = ω2
p

ωn

ω2
n + c2L,T q

2
. (5.29)

The poles of the conductivity are found after the Wick-rotation to real time is carried out.
Given that our elastic system is dissipationless, the real part of either of the conductivities



156 Superconductivity in nematic phases

shows only a delta-function pole. This peak is positioned at the phonon frequencies cor-
responding to the resonant motion in the ideal crystal that would be seen if one applied
an oscillating spatially varying electric field. The correspondence between the phonon and
the conductivity poles is not an accident. When the ‘dual Kubo’ formula is derived in the
next section, it will be clear that the conductivity has to have the same poles as the elastic
response of the charged system.

In Eq. (5.29), the longitudinal and transversal pole correspond to field variations parallel
or perpendicular to its strength respectively, the difference between the two conductivity
components can be attributed to the magnetic response of medium. At q = 0, the two
are equal as we expect (no defined longitudinal and transversal directions). This limit is
important since the dc-conductivity of a medium is determined by the ‘q → 0 then ω → 0’
limiting procedure [51]. For the ideal crystal, we find the perfict conductivity σdc = ω2

pδ(ω)
and conclude that our charged ideal crystal would accelerate infinitely in a homogeneous
constant electric field revealing that it is a perfect Frölich conductor because pinning is
ignored.

5.2 Dual electromagnetism

In the above we found that the strain formalism suffices to treat the electrodynamics of the
charged ideal crystal, but we already know that the duality has to be employed in order to
derive the theory of charged nematic phases described in the previous chapter. In contrast
with the dual elasticity theory from the previous chapter, this time the additional terms
Eqs (5.3) and 5.5) are present, but the treatment should be straightforward if we apply
the same rules as before, paying special attention to the pitfalls caused by the constraints.
Although the EM fields lead to new terms in the dual action, slightly complicating the
problem, we no longer have to take care of the transversal phonon external source term J
which had to be handled with great care.

When the duality border is crossed, the physical interpretation of the theory is turned
upside-down with respect to that of the ideal crystal: we find that the dual theory provides
the system with the EM Meissner term for free, at the same time the couplings between the
dual stress degrees of freedom and the EM fields are recovered. These are integrated out
removing the dual stress degrees of freedom and we find an effective Meissner term which
determines the EM response functions. This expression for the effective Meissner term is
the starting point for the two next sections, forming the basis for the response functions
in the topological and the ordered nematic. The electric response of the ideal Wigner
crystal has already been discussed in terms of the strain formalism and in this section
we will confirm these results by means of the dual theory. At the end of this section, a
relation between the dual stress gauge fields and the conductivity tensor, which we call the
‘dual Kubo formula’, is derived. The advantage of such relation is that one can calculate
the conductivity of a medium, and extract the other electromagnetic response functions
therefrom, without invoking directly the EM fields. All that one needs to know is the dual
stress gauge field propagator and the plasmon gap corresponding to the charged medium.
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To get an overview, let us group together all terms in the action of the charged elastic
medium. There are three relevant contributions: the elastic part Eq. (3.24), the Maxwell
action responsible for the dynamics of the EM gauge fields Eq. (5.5) and their minimal
coupling Eq. (5.3). In combination, they read

L = 1
2
∂µu

aCµνab∂νu
b +

1

4
FµνFµν + iAa

µ∂µu
a. (5.30)

The phonon external source terms are intentionally left out as we are no longer directly
interested in elastic response. The action Eq. (5.30) is dualized in the standard way. First
we define stress fields as conjugate momenta, Eq. (4.1), resulting in an additional term

σa
µ = −iCµνab∂νu

b +Aa
µ. (5.31)

The inverse relation ∂µu
a = iC−1

µνab(σ
b
ν −Ab

ν) is used to obtain the Hamiltonian density

H = 1
2
σa

µC
−1
µνabσ

b
ν + 1

2
Aa

µC
−1
µνabA

b
ν − σa

µC
−1
µνabA

b
ν + 1

4
FµνFµν . (5.32)

Given that the field Aa
µ contains no spin-1 parts, the singularity of the elasticity tensor

Eq. (3.15) is innocuous and it is safe to use the ‘inverse elasticity tensor’ Eq. (4.9) in the
Hamiltonian density. The Ehrenfest constraint, Eq. (4.10) without the external source
term, is implicitly imposed.

The treatment of the smooth and the singular displacement fields is identical to that in
the previous chapter. First, the smooth displacements are integrated out, producing the
stress conservation equation of motion which leads to the introduction of the dual ‘single
curl’ stress gauge fields, as in Eq. (4.14). Notice, however, that the stress as introduced
in Eq. (5.31), differs from the elastic stress as found in standard textbooks on elasticity
[126], because now, a term including the minimal coupling to the EM fields is included.
Let us define the ‘standard’ stress as σ̃ = σ−A and rewrite the stress conservation identity
Eq. (4.13) as

∂µσ̃
a
µ = ∂µAa

µ = (nee
∗)[∂τAa − ∂aAτ ] = −i(nee

∗)Ea. (5.33)

These are precisely the equations of motion for stress found in the textbooks (factor i comes
from the Euclidian signature). This equation means that the divergence of the stress tensor
is equal to the negative force per volume exerted on the elastic medium. The external force
originates in the only external, EM field.

The second step in the treatment of the displacements, involving the singular config-
urations, is identical to the corresponding step in the electrically neutral elastic medium.
The result is that the singular configurations in the displacement field (i.e. dislocations)
minimally couple to the dual stress gauge field as iBa

µJ
a
µ . At the same time, this means

that the topological defects carry no bare electric charge because they couple exclusively
to the dual stress gauge fields. Nevertheless, the dislocations in a charged medium are
not completely immune to EM fields, due to the dual stress field which acts as a mediator
which couples both to the dislocation and EM fields. The effective interaction is, however,
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nonlocal both in time and space, which is easy to understand given the topological nature
of the dislocations: a static dislocation present at a certain position will extend its influ-
ence on the elastic displacements throughout the whole system, which implies that it will
also ‘feel’ the electric field throughout the entire space. Similarly, a dynamical (moving)
dislocation couples to the dual stress fields, and these propagate with the phonon velocity
to interact with the EM field somewhere else. Therefore, a dislocation’s ‘jitter’ at a certain
point in space and time is ‘felt’ by the EM fields at some other point only after the ripples
in the fabric of the elastic medium caused by that jitter could have been transmitted there.

Let us now return to the analysis of the dual action, containing the Hamiltonian
Eq. (5.32) and the minimal coupling term. A big surprise is associated with the sec-
ond term in Eq. (5.32). When expressed in terms of EM gauge fields, it yields a bare
Meissner term of the dual elastic solid

LMeiss.,bare = 1
2
Aa

µCµνabAb
ν = 1

2
ω2

p

[
1

c2K
AτAτ + AiAi

]
. (5.34)

As it turns out, just by rewriting the model in terms of the dual stress gauge fields, a
Meissner term arises even when the charged system is still forming a crystal. In strong
contrast with the standard particle language treatment where one has to work hard to
derive superconductivity as a ramification of the off-diagonal long range order, the Meissner
term comes now for free in this dual language and the difficulty is in fact that one has to
get rid of it, knowing that in the ideal crystal it should vanish in static limit (compare
with Eq. (5.9)).

The resolution of this problem lies in the third term of Eq. (5.32) corresponding to a
linear coupling of the EM gauge fields to the dual stress gauge fields. Could this interaction
be sufficient to “dress” the Meissner term back to its expected form Eq. (5.9)? This can be
easily checked. Let us first find the explicit form of this coupling. For reasons of convenience
and compatibility with the work in the previous chapter, let us choose to impose gauge
fix Eq. (4.59) on the dual stress gauge fields. At the same time, we continue to use the
Coulomb gauge fix Eq. (5.6) for the EM gauge fields. With these gauge fixes imposed, the
coupling term between the EM gauge fields and the dual stress gauge fields becomes

LEM,coupl. = −σa
µC

−1
µνabA

b
ν = −εµλρ∂λB

a
ρC

−1
µνabA

b
ν

= −Ba
ρερλµC

−1
µνab∂λAb

ν → −BE†
h gE

hMAM . (5.35)

The coupling constants follow, which are all vanishing except for

gT
+1,τ =

(nee
∗)

2κ
pd, gL

−1,τ = −(nee
∗)

2κ
iωn, gT

−1,T =
(nee

∗)

ρ
q. (5.36)

From these coupling constants it becomes apparent which dual elastic degrees of freedom
are communicating with which EM sector. The correspondence between the electric and
magnetic EM sectors with the longitudinal and transversal elastic sectors, must be pre-
served since the dualization just offers an alternative way to see the physical phenomena
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but should not yield any new ones. In the EM transversal sector the coupling is simpler
since there is just one dual stress photon BT

−1 coupled to the EM magnetic field. In the
longitudinal sector, there are two nontrivial couplings, but a careful inspection shows that
the dual stress field that couples to the Coulomb photon Aτ is precisely the compression
gauge degree of freedom (BC). The fact to remember is that the electric shear dual stress
gauge field Eq. (4.77) is neutral in the dual theory, and this will turn out to be crucial for
the experimental predictions for the nematic phases.

Given that the elastic degrees of freedom are internal degrees of freedom, appearing in
the partition function of the problem (e.g. Eq. (4.17), now with the external EM fields
added), these have to be removed by Gaussian integration, and we find an effective Meissner
term for the EM fields having a general form,

LMeiss.eff. = 1
2
ω2

p

[
1

c2K
AτAτ + AiAi

]
− 1

2
A†

Mg
E†
hMG

EF
hh′ g

F
h′NAN . (5.37)

The propagator for the elastic gauge fields G should be taken according to the phase whose
EM properties we wish to address.

Let us first test the action Eq. (5.37) for the ideal crystal. The bare Meissner term
Eq. (5.34) which sparked some worries regarding the dualization is removed when the dual
stress gauge field propagator Eq. (4.65) is inserted in Eq. (5.37). Since the elastic degrees
of freedom are long-ranged in the ideal crystal, their contribution is sufficient to dress the
bare Meissner term to precisely the form we found within the strain formalism: the effective
Meissner term of the ideal crystal Eq. (5.9). By doing this we also revealed the weak spot
of the superconductivity from the point of view of the dual theory: the normal state of
the ideal crystal is a consequence of the long-range propagation of the elastic degrees of
freedom which mounts to a cancelation of the bare Meissner term Eq. (5.34). Thus, we
can already anticipate that the massiveness of the dual shear degrees of freedom in the
nematic phases might lead to superconductivity, because this cancellation can no longer
be complete when a gap is present in the dual stress photon spectrum.

Let us conclude this section by deriving a useful relation for the conductivity, which we
call the ‘dual Kubo formula’. It allows one to find the electric conductivity of the elastic
medium without having to resort directly to the EM fields: all that one needs to know is
the dual stress propagator. In a way, all the other EM properties of the medium may be
derived via this formula recalling the relation between the conductivity and the dielectric
function tensor Eq. (5.28).

In the Coulomb gauge fix Eq. (5.6), the longitudinal electric field component, has a
different definition in terms of the EM gauge fields, compared to the transversal field. In
order to avoid three different derivations (for the longitudinal, the transversal and the off-
diagonal conductivity), we adopt the radiative gauge fix, ∂τAτ = 0, only in this part of
the text. This leads to an ‘isotropic’ formulation of the problem where one does not even
have to refer directly to the longitudinal and transversal flavours. In this particular gauge
fix the electrical field is simply given by Ea = i∂τAa = −ωnA

a.
The conductivity tensor is defined usually by

Ja = σ̂abEb = −σ̂abωnA
b, (5.38)
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where the electric field is expressed in terms of its gauge fields. The electric current carried
by the medium is proportional to the charge density and the local velocity field and it can
be expressed in terms of dual stress gauge fields as

Ja = −i(nee
∗)∂τu

a =
nee

∗

ρ
σ̃a

τ =
nee

∗

ρ
[σa

τ − (nee
∗)Aa]

=
nee

∗

ρ
ετij∂iB

a
j − ω2

pAa =
nee

∗

ρ
qBa

−1 − ω2
pAa. (5.39)

If one wishes to work explicitly with the ‘zweibeinen’ directions, Eq. (5.39) has to be con-
tracted with −iẽE

a , in order to extract the two components E = L, T . In the remainder of
our derivation of the ‘dual Kubo formula’ we do just the opposite: the couplings Eq. (5.36)
and the dual gauge field propagators have their ‘flavours’ transformed to Cartesian indices
for the purpose of an ‘isotropic’ formulation.

The dual stress gauge field Ba
−1 has to be removed from the electric current Eq. (5.39),

for which we use the equations of motion obtained by varying the total action with respect
to the dual stress gauge field

(G−1)ab
hh′B

b
h′ − gb

h,cAc = 0. (5.40)

The coupling constants Eq. (5.36) in the radiative gauge fix have a different form: only
two components are nontrivial

ga
−1,c =

nee
∗

ρ
qδac, (5.41)

while all others are identically zero. The dual stress field Ba
−1 is found from Eq. (5.40),

and together with the coupling Eq. (5.41), the electric current Eq. (5.39) becomes

Ja = ω2
pAa −

(
nee

∗

ρ

)2

q2Gab
−1,−1Ab. (5.42)

Comparing this with the definition of the conductivity tensor Eq. (5.38), it follows that

σ̂ab =
ω2

p

ωn

[
δab − q2

ρ
Gab
−1,−1

]
. (5.43)

This is the ‘dual Kubo formula’ expressing the conductivity in terms of the dual stress field
propagator G. This expression has much in common with the standard Kubo formula. The
current Eq. (5.38) is the current measured by experimentalists, which is just the average
local velocity of the charged medium. In contrast, the current that minimally couples to
the external fields in the Hamiltonian is proportional to the conjugate momentum σa

τ ,

ja =
nee

∗

ρ
σa

τ =
nee

∗

ρ
qBa

−1. (5.44)
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Thus the two dual stress photons that correspond to the longitudinal and transversal
phonon degrees of freedom BL,T

−1 are at the same time proportional to the electric currents
Eq. (5.44). The dual stress propagator G appearing in the dual Kubo formula Eq. (5.43)
represents therefore the current-current correlator, modulo a constant, meaning that the
dual Kubo formula Eq. (5.43) is equivalent to the standard Kubo formula

σ̂ab =
ω2

p

ωn

δab − 1

ωn

〈〈ja|jb〉〉. (5.45)

Apart from serving the purpose of the direct derivation of the conductivity, the dual
Kubo formula Eq. (5.43) reveals also that direct measurements of the conductivity will
reveal poles which are identical to the poles of the dual stress gauge propagator G, which
again are just the propagators that could be seen in the elastic response.

In the ideal crystal, the dual Kubo formula Eq. (5.43) reproduces known results Eq. (5.29).
In the isotropic nematic phase, the conductivity will be a diagonal tensor, due to the de-
coupling of the longitudinal and transversal sector, but as the ordered nematic phase has
these coupled, the off-diagonal terms in the conductivity tensor Eq. (5.43) will be nontrivial.
This, does not mean that an effect analogous to the anomalous Hall effect (off-diagonal
terms without external magnetic field) appear. Using the wisdom applied to the chiral
propagator Eq. (3.35), due to the symmetry properties of the medium, in the real space
the off-diagonal terms vanish.

5.3 Charged isotropic nematic phase

The hard work has been done. In order to find the EM gauge field propagators, all that one
needs to do is to take the effective Meissner term Eq. (5.37) and plug in one of the possible
dual stress gauge field propagators derived in chapter 4. This yields self-energies for the EM
gauge fields, and one can find the physical observables using the simple relations derived
in section 5.1, which are universal. In the previous section, it was already demonstrated
that the EM self-energy for the ideal crystal is recovered in this way. In this and the
next section, this straightforward exercise is repeated for the cases of the isotropic and
ordered nematic phases. We choose to invert the order of these phases for the following
reasons: in spite of the nontrivial physical picture behind the isotropic nematic phase,
one can convince oneself that this phase shows simple isotropic electromagnetic behaviour,
which is not the case with the ordered nematic. At the same time, given the discussion
from the previous section, we anticipate that the shear screening in this phase will produce
a nontrivial Meissner term. Hence, this phase is a representative example for the dual
mechanism of superconductivity, which is the main message we want to get across in this
thesis.

Given the fact that the quest for quantum liquid crystals began in the context of the
strongly correlated electronic liquid, the results for a charged medium presented here form
the highlight of this thesis. This is true not only because a novel fundamental mechanism
for superconductivity is proposed, the results from this section correspond to predictions
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for physical properties that can, in principle, be measured. The practical problem with
these measurements is the following: our ‘ordered’ superconductor is a unconventional type
of superconductor, exhibiting a host of properties which are not found in the conventional
BCS superconductors, and accordingly, have never been subject of attention for the exper-
imentalists. Some of these require either experimental setups that operate at the edge of
the limits of the present day technology or require a substantial modifications of existing
techniques. The features we find include unconventional static screening of both electric
and magnetic fields, the existence of additional poles in the electric response functions
and the presence of a weak massless pole in the optical (transversal) conductivity at finite
wavelengths. Experiments capable of detecting any of these features can prove crucial for
answering fundamental questions regarding the nature of high-Tc superconductors such as
the presence of the fluctuating order in the superconducting phase.

We are unaware of any experimental technique that can measure directly the profile of
a static field, be it magnetic or electric, at microscopic lengths. Experiments measuring
the London penetration depth exist.However, these assume conventional BCS-type mag-
netic screening which renders them inapplicable for our purposes. For this reason, we only
present possible screening scenarios and speculate about their possible effect on (frustrated)
charge separation, as observed in strongly correlated electron systems.For the similar rea-
sons, we also present a prediction for the transversal conductivity to discuss briefly what
we expect from an experimentalist will find in an optical conductivity measurement if these
could be extended to finite wave-vectors.

Our most promising prediction is to our opinion related to the longitudinal dielectric
function Eq. (5.18), where a new pole will appear in the nematic phases, corresponding to
the ‘dual shear’/‘dislocation sound’ degree of freedom. In principle, this response can be
directly measured in electron energy loss spectroscopy (EELS) experiments [173]. Unfor-
tunately, the ‘shear fingerprint’ pole has a strength which is roughly proportional to the
inverse square of the wavelength, which requires a very high resolution (h 10meV ) measure-
ment of the electron energy loss function at small but finite (“mesoscopic”) wavenumbers.
An experimental technique is at present under development using low-energy electrons
which is promising in this regard [175]. An alternative experiment having this potential is
resonant inelastic X-ray scattering although this technique is still under development [174].

Finally, let us make a remark about the ‘orderly’ status of the nematic superconductor.
From the construction of the nematic phases, it follows that the superconducting state that
is implied by it has the maximum possible crystalline order. This claim will be further
substantiated by the results of this and the next section. In particular, the parameter
measuring the remaining order in the nematic phase is the shear penetration depth λS,
which is inversely proportional to the shear Higgs gap Ω. The unconventional properties we
identified here will be most prominent when this gap is small such that the system is in close
proximity to the solid state. As this gap grows and the shear penetration depth is reduced,
the superconducting state becomes more conventional. When the shear penetration depth
(and the closely related dislocation correlation length) becomes of order of the microscopic
electric screening length λc, the crystalline order is completely destroyed and the resulting
superconductor cannot be distinguished anymore from the BCS ‘gaseous’ state. Due to the
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large difference between the phonon and light velocities, an exception to this rule is offered
by the London penetration depth. This length is many orders of magnitude larger than
the electric screening length, requiring that the shear penetration depth is at least of that
order of magnitude or larger in order to exhibit unconventional screening effects. Although
our the initial theory does not prohibit an arbitrary small dual Higgs gap, the necessity of a
first order transition between the ideal crystal and an isotropic superconductor may prove
an insurmountable obstacle for the realization of the unconventional magnetic screening
effects.

After this discussion, we turn to the technical part of the section deriving the EM
gauge field propagators first. Using the procedure we explained and invoking the dual
stress gauge fields propagator (i.e. self-energy term Eq. (4.109) for the isotropic nematic
phase, the inverse EM propagators are found, which we write as
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1 +
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p(ω

2
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2 + Ω2)

(ω2
n + c2Lq

2)(ω2
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(GT )−1 = ω2
n + c2l q

2 + ω2
p

ω2
n(ω2

n + c2dq
2) + Ω2(ω2

n + c2gq
2)

(ω2
n + c2T q

2)(ω2
n + c2dq

2) + Ω2(ω2
n + c2gq
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These are the key expressions in this section since all the results in the remainder follow.
Before proceeding further, one can convince oneself that the propagators Eq. (5.46 - 5.47)
do not vanish taking the order of limits ωn → 0 then q → 0. In short, the physical meaning
of this nonvanishing limit is that both electric and magnetic static fields are expelled from
the charged nematic phase which qualifies it as a superconducting state. Hence, the bare
Meissner term Eq. (5.34) which is tailored by the dual theory for the maximally disordered,
superconducting superfluid state, finally becomes ‘liberated’ when the shear stress photons
acquire a Higgs mass so that they lose their powers they have in the ideal crystal phase.

Let us start the analysis of Eq. (5.46 - 5.47) with the static magnetic screening of the
isotropic nematic phase for the reason that this was the first identified EM property of the
dual elasticity theory. Its unconventional properties were already pointed out by Zaanen
et al. [44], and we repeat their discussion here. For this static property, the problems
associated with the dynamical dislocation condensate are irrelevant. Since magnetic fields
are carried by the transversal EM photon, its static correlator is proportional to the static
limit of Eq. (5.47)
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2
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introducing the bare London length λL = cl/ωp and using the already introduced shear
penetration depth λs =

√
2cT/Ω.

The poles of the q dependent propagator Eq. (5.48) are given by

q0 = ± i√
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√
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]1/2

, (5.49)
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introducing the momenta corresponding to the London (qL = 1/λL) and shear (qs =
1/λs) penetration depths. There are two different ways that one can interrogate the poles
Eq. (5.49). Either a magnetic charge (monopole, dipole, multipole, vortex, . . . ) can be
inserted from the outside in the system and its influence can be deduced through the pole
strengths of the propagator Eq. (5.48), or one can just take the homogenous solutions
following from the poles Eq. (5.49) and impose boundary conditions in order to find the
magnetic field profile. In the case of the magnetic field we opt for the latter one. Let
us, for the sake of simplicity, first analyse what happens in 1D-geometry: in the ‘right’
semiplane x > 0, the magnetic field obeys the equation Gmag.B = 0, with solutions in this
specific type of geometry given as eiq0x. Patching these homogenous solutions to the ‘left’
semiplane x < 0 where the magnetic field is a constant B0, the following profile is found

B(x) =
B0

q
(2)
0 − q

(1)
0

[
q
(2)
0 eiq

(1)
0 x − q

(1)
0 eiq

(2)
0 x
]
, (5.50)

where q
(1,2)
0 are two solutions,of the possible four from Eq. (5.49), with a positive imaginary

part (in order to vanish in x→∞ limit).
The qualitative shape of the profile turns out to be highly dependent on the ratio be-

tween the two penetration depths. This is already clear from the expression under the
square root in Eq. (5.49) (which can change sign), but we also have a physical interpre-
tation. Begin with the straightforward case of a small shear penetration depth and large
London length, qs > 2qL. The expression under the square root in Eq. (5.49) is positive
and the magnetic field is governed by two functions with an exponential fall-off. In the
limit when the shear length is much smaller than the London length, qs � qL, the two
poles of the correlator Eq. (5.48) are approximately located at q

(1)
0 ≈ qL and q

(2)
0 ≈ qs. The

term with q
(1)
0 is dominant and the screening profile cannot be distinguished from that of a

conventional BCS superconductor B(x) = B0 exp(−r/λL). This can be understood in the
following way: the screening of the magnetic field occurs at depths of order λL. However,
at these scales, the medium has lost any knowledge about the shear rigidity and it behaves
precisely as a ‘gaseous’ BCS superconductor. This limit, when the crystalline correlations
are smaller than the screening lengths will be called ‘near-superfluid’ limit for this reason
although in this case the shear penetration depth can still be quite large.

What is the behaviour of the screening in the opposite, ‘near-solid’ limit of the nematic
phase? We anticipate unconventional effects, driven by the solid correlations. As soon
as the shear length exceeds a half of the bare London depth, i.e. one crosses the disorder
line qs < 2qL, the expression under the square root in Eq. (5.49) becomes negative, which
causes the solutions in Eq. (5.49) to have both real- and imaginary part. The imaginary
part was present before being responsible for the exponential screening. The novelty is
the real part which leads to harmonic modulations of the magnetic field. Therefore, the
total magnetic field decays in intensity, but its actual profile is a cosine function enveloped
in a decaying exponential function. This overscreening effect is due to the residual solid
correlations in the electron liquid. Recall that the magnetic screening in the charged
superfluid takes lengths of order of the London length λL to be screened, while at the same
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Figure 5.1: Static screening of external magnetic field in the isotropic nematic phase: a)
small shear screening length λs � λL, i.e. ‘near-superfluid’ state, exhibits the standard ‘gaseous
BCS like’ screening with the London penetration length λL as the characteristic length; b) above
the disorder line λs > λL, the model has a remnant solid (shear) rigidity at scales of the London
length. An attempt to screen the magnetic field at that scale ends in slight overscreening which
causes the remainder of the (halfplane) system to repeat the scenario, now with a changed field
sign. The ‘near-solid’ region of the nematic phase is thus characterized by the oscillating magnetic
field pattern.

time the solid prevents this from happening. When exposed to an external magnetic field,
the nematic phase will try to react by creating diamagnetic currents expelling the magnetic
field. However, at the depth where the magnetic field is completely screened (first zero in
Fig. 5.1b), due to the shear rigidity, which survives at lengths higher than the bare London
length, a drag of the remaining layers will occur resulting in a slight overscreening of the
external magnetic field. The remainder of the semiplane can now be treated recursively,
as trying to screen the negative magnetic field experienced at the first intensity minimum.
The next layer is, due to the reversed sign of the ‘external field’, paramagnetic, to be
followed by a diamagnetic layer and so on. The result is naturally a decaying cosine. In
the ‘near-solid’ limit, qs � qL, the solutions of Eq. (5.49) turn into the geometrical mean
of the two screening lengths q0 =

√
qsqL exp (i(2k + 1)π/4) [44].Since the real part of the

the effective screening length cannot exceed the imaginary part (they are equal in the limit

λs � λL), the field intensity at the first dip is at bound by e
−π

Imq0
Req0 ≈ 0.043 of the original

field. The characteristic fall-off length in this limit is the geometric mean of two lengths√
λLλs.

If the geometry of the problem was 2D instead of 1D, in other words, if we would
consider a magnetic flux line penetrating a two-dimensional layer, matters change a little:
the homogenous solutions of the equation for the magnetic field are now two Bessel func-
tions K0(q0r), that behave asymptotically as eiq0r

√
r

. This asymptotic behaviour is true even
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when q0 acquires a real part except that this situation corresponds to the configuration of
concentric rings of dia- and paramagnetic supercurrents. The 3D geometry has no physical
importance since no magnetic monopoles exist (and our system is strictly 2D!), however,
if it had been true, the profile of the magnetic field would be exactly the one given by the
Yukawa potential B ∝ eiq0r

r
. This expression is again applicable regardless on which sides

of the disorder line the system finds itself.
Let us now turn to the static electric screening. Given the fact that the electric field

is carried by the Coulomb photon, their propagators are proportional. The static electric
field propagator follows directly from the propagator Eq. (5.46) in the limit ωn → 0. This
is just the static dielectric function the same result
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4
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Next to the known ideal crystal electric field screening length λc, two other screening
lengths are introduced: λf = cK/ωp is the screening length corresponding to the electric
screening in a liquid with a sound (compressional) velocity cK , and λg = cg/Ω is the
screening length associated with the dual longitudinal stress photons BE

L . Since these
are coding for the dislocation condensate degrees of freedom, this length has the physical
meaning of correlation length of the dual condensate phase degree of freedom. In fact,
due to the equality between the dislocation sound velocity cd and the transversal phonon
velocity cT , this length is a half the shear screening length λg = λs.

Considering the solid (λg → ∞) and the liquid (λg → 0) limits, the standard electric
field screening behaviour of the charged crystal and the fluid (with the characteristic length
λf ) are recovered. When the correlation length λg is finite, the screening is determined by
the poles of the propagator Eq. (5.51), given by
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. (5.52)

In analogy with the magnetic screening, the sign of the expression under the square root
in Eq. (5.52) determines the nature of the screening. This expression can be rewritten in
the following manner
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= (λg + λc + λT )(λg + λc − λT )(λg − λc + λT )(λg − λc − λT ),

introducing the transversal screening length λT =
√
λ2

c − λ2
f = cT/ωp, corresponding to the

penetration depth of a medium with only shear rigidity. The right hand side of Eq. (5.53)
defines two disorder lines for the electric screening: λg = λc ± λT . In between these two
lines, the poles Eq. (5.52) have both real and imaginary part corresponding to a damped
oscillatory profile for the electric field. Outside this regime, we find the ‘near-solid’ and
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Figure 5.2: Imaginary poles of the static Coulomb propagator Eq. (5.51): Black and white
points correspond to positive and negative strengths. In the ‘near-superfluid’ region on the left
(λg < λc−λs), the minute dislocation correlation length λg does not have a sufficient strength and
does not ‘extend’ enough to cause the attractive effective Coulomb potential. On the opposite,
‘near-crystal’ side (λg > λc +λc), the corerlations in the dislocation condensate have longer range
than the genuine Coulomb repulsion resulting in the change of the sign of the interaction at large
distances. Between the two disorder lines (λc − λT < λg < λc + λT ) the screening develops
oscillating patterns of over- and under-screened regions.

‘near-superfluid’ regimes with purely imaginary poles. These purely imaginary poles given
by Eq. (5.52) are represented on Fig. 5.2. The pole strength is indicated by thickness
and the sign by colour: black – positive, white – negative. These pole strengths will be
necessary to demonstrate another unconventional feature: the overscreening of electric
charge. This global effect is different from the overscreening in the regime between the two
disorder lines with alternating over- and under-screening layers.

In spite of the three different regimes predicted by the theory, only one is of physical
significance. This is a consequence of the microscopic electric screening lengths λc,f which
are always of order of the lattice constant. On the other hand, in order to secure the validity
of this dual elasticity framework, one needs to keep the shear/dislocation screening lengths
large as compared to the lattice size. Hence, the physically relevant regime is the ‘near-
solid’ limit λg � λc,f , which is at the same time the most interesting one due to its high
level of correlations.



168 Superconductivity in nematic phases

Let us imagine that an electric charge is inserted in the system. We are right now only
interested in the behaviour of the electric field profile so we set the amount of charge to
unity, although the units and constants in the 2D Maxwell theory are not properly defined.
At the end of this discussion, an estimate for a 3D medium with 3D Coulomb forces will
be presented. The substantial Maxwell equation with the spatio-temporal dispersion for
the electric field in the nematic phase is in real space given by

∇x ·
∫

dx′dτ ′ ε̂(x− x′, τ − τ ′)E(x′, τ ′) = ρel.(x, τ), (5.54)

where we used the Matsubara-Fourier transformed dielectric function Eq. (5.18).
For simplicity , we consider first the one-dimensional problem. A static unit charge at

the coordinate origin ρ = δ(x) implies that the electric field, as follows from the solution
of Eq. (5.54), is in general given by

E(x) = A1e
iq
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0 x + A2e

iq
(2)
0 x, (5.55)

where A1,2 correspond to the pole strengths of poles q
(1,2)
0 chosen in such way that the

electric field Eq. (5.55) vanishes at infinity. In the physically relevant ‘near-solid’ limit,
qg � qc, the poles and their strengths are approximately given by
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The latter pole corresponds with the electric screening pole found in the ideal crystal. The
former pole is more interesting because, it has a negative strength, while the solution fol-
lowing from it falls-off slower than the positive pole. This pole finds its origin in interaction
of the dislocation condensate with the electric charge, which is clear from both its value
and from the effect that it appears only in the nematic phase. Although the dislocations
are electrically neutral, we already mentioned that their influence on the elastic medium
causes a nonlocal coupling to the electric field, and vice versa. When an external electric
charge is inserted in the system, it will interact with the charged medium, inducing, at the
same time disturbances in the dislocation tangle. Because these inhomogeneities ‘extend’
up to the correlation length of the condensate, the electric influence of the charge finds
a way to circumvent the crystalline screening and to act at much larger distances than
possible in the ideal crystal. Apparently, the dislocation condensate does not only screen
the electric field, it overscreens it according to the negative pole strength in Eq. (5.56). As
a consequence, the electric field becomes attractive after a distance which is exactly equal
to

x0 =
2λgλc

λg − λc

ln(

√
2

1− ν

λg

λc

), (5.57)
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regardless the number of spatial dimensions. This effect, mediated by the condensate, has
however a very weak strength and we may wonder if it has any true physical consequences.
The minimum of the attractive potential can be analytically found in 1D case and it occurs
at

x′0 =
4λgλc

λg − λc

ln( 4

√
2

1− ν

λg

λc

), (5.58)

where the electric field has (negative) value of

E(x′0) =
e−

x′0
λc

2λc

(
λc − λg

λc

)
. (5.59)

The leading expression is the strength of electric field that would be realized in the ideal
crystal phase. The expression in the parentheses is negative and orders of magnitude larger
that one. Hence, the overscreening effect does not only change the sign of the electric field,
it also enhances its intensity by many orders of magnitude. Unfortunately for the effect,
this minimum happens only after a significant distance, i.e. in the tail of the exponential
fall-off, when, although much stronger than the original field, it is nevertheless much weaker
than the relevant energy scale.

In order to make an estimate in real physical systems, we better consider what would
happen in a real 3D system with the electric propagator given by Eq. (5.51). The electric
field potential caused by a charge qel inserted in this medium reads

Aτ (r) ≈
1

4πε0

qel
r

[
e−

r
λc − λ2

T

λ2
g

e−r/λg

]
, (5.60)

with the dielectric constant of the vacuum which is given as 1/(4πε0) = 14.4eV Å/e2 in
three dimensions. Now we need the bare electric screening length and the dislocation
(shear) correlation length. The former is trivially defined and well known in the cuprates
and it is a microscopic length of order of few Ångrströms. It is not entirely clear where
to look for the shear/dislocation length in the electron system of a cuprate. A scale that
naturally arises in this system is the correlation length associated with the incommensurate
spin fluctuations which is of order of few nanometers. Thus, the ratio between the two
characteristic lengths is λg/λc ≈ 10. The Poission ratio is usually between 0 and 1, and we
set it to ν = 0.28 in order to have rational phonon velocities (cT = 0.6cL and cK = 0.8cL).
In fact, quantitatively very little depends on the Poisson ratio, unless it is close to unity
(liquid), when due to the similarity between the ideal crystal and the liquid, the effects of
the fluctuating order become less apparent.

With the parameter estimates presented in the previous paragraph, the attractive min-
imum of the electric field can be numerically determined. In order to give the reader a
feeling of the effect, the electric field is plotted in Fig. 5.3, zooming in on the region with
the attractive Coulomb potential. The minimum of the potential is realized at r′0 = 10.7λc

and the depth of the potential is approximately 10−4/λ2
L[Å] corresponding to a tenth of a
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Figure 5.3: Overscreening of the Coulomb field in the isotropic nematic phase: The pole
strength of the plasmon pole (dotted line in the main figure; thin solid line in the inset) is many
orders of magnitude larger than the strength of the attractive pole. However, due to its larger
penetration depth, the attractive potential (thin dashed line) eventually wins at larger distances
causing a shallow atractive well. From the estimates in the text, the depth of this potential for
two electrons should be of order of mili to a tenth of a Kelvin.

Kelvin. This whole estimate is of course quite rough. However, even if we overestimated
the value by one or two orders of magnitude, the depth of the potential would have been of
order of mK, which makes us speculate that this effect could be responsible for the charge
separation effect, observed in cuprates.

Having addressed the static properties of the system, let us turn now to the dynamical
EM response functions. We leave the longitudinal dielectric function for the end of this
section, since it is experimentally the most relevant one and it will be discussed in detail.
The EM response functions associated with the transversal elastic sector are the dynamical
magnetic susceptibility µ(ωn,q), the transversal conductivity εT and the transversal optical
conductivity σ̂T . These are not independent: determining one by an experiment the others
directly follow as it can be seen from Eq. (5.23) or Eq. (5.28). As it turns out, the signals
appearing within the nematic phase are visible only at finite wavelengths, whereas, the
experiments measuring the listed observables are always limited to the zero-momentum.
This is pure consequence of the enormous discrepancy between the velocities in the medium
and the velocity of the EM photons, used to probe the system. Until now, this problem
has not been overcome by any experimentalist. In the area of the semiconductor physics,
a technique exists which makes it possible to scan the dispersion of surface polaritons.
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This experiment involves a grating on the surface of the sample and in this manner the
wavelength can be regulated. There are, however, many limiting factors to this technique:
it allows control of the wavevector only parallel to the grating, the transversal field is not
very well defined, and the wavelengths obtained in this manner are still much larger than
the unit cell. Another drawback of this method, when applied to the particular case of
YBCO, is that the roughness of the surface is always much higher than the desired grating.
Given these limitations, our analysis of the transversal sector observables will be limited
to the long-wavelength limit, hoping that an experiment, devised to probe large but finite
wavelengths, may catch the fingerprints of the nematic phase.

Let us start out considering the optical conductivity σ̂T . It may be found from either
the transversal EM photon propagator Eq. (5.47) or from the dual Kubo formula Eq. (5.43)
and in the isotropic nematic phase it reads

σ̂T (ωn, q) =
ω2

p

ωn

ω2
n(ω2

n + c2dq
2) + Ω2(ω2

n + c2gq
2)

(ω2
n + c2T q

2)(ω2
n + c2dq

2) + Ω2(ω2
n + c2gq

2)
. (5.61)

Inhe long-wavelength limit (q → 0) this recovers the conductivity of the ideal conductor
σ̂ = ω2

p/ωn which is not a surprise. Notice that here only the real part of the conductivity
is considered. The imaginary part can be obtained either directly by Wick-rotation from
the conductivity Eq. (5.61) or from the Kramers-Kroning relation.

What happens at finite wavelengths? The static pole ωn = 0 is still present which is
the hallmark of the superconductivity. Its strength, however, weakens according to

A0 =
ω2

p

1 + λ2
sq

2
. (5.62)

This can be interpreted as that, at shorter scales, where the translational order is restored,
the superconductivity fades away. However, in order for the strength Eq. (5.62) to de-
crease significantly, one needs to examine the system at distances smaller than the shear
penetration length. This offers a potential experimental detection of the fingerprint of the
nematic conductivity, given the fact that the shear penetration length is much larger than
the lattice constant. Even though that this weakening of the signal may not be easily
detectible, one can focus instead on the signal from the other two poles which also contain
this information due to the sum rules. As can be seen from the dual Kubo formula, these
poles, reside at the same wavelengths as the neutral phonon poles. In the long-wavelength
limit, the strengths of these two poles are similar and given by A1,2 = ω2

pλ
2
sq

2/4 + O(q4).
Hence, by reducing the wavelengths probed in the optical conductivity experiment to the
order of the shear penetration length, two additional poles in the real part of the conduc-
tivity should appear. The massless pole with the dispersion ω ≈ cgq might be hard to
detect due to its proximity to a much more intense ideal conductivity pole. The other pole
is, however, gapped, and this might be crucial for the experimental detection. Based on
earlier estimates of the screening lengths and the Poisson ratio and including the value for
the plasmon gap ωp ≈ 1eV , the shear Higgs gap follows to be of order of Ω ≈ 60meV .
This is of course a crude estimate, but it actually falls not so far from the spin-gap value
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(10 − 50meV ), which might be thought of as a relevant energy gap in cuprates. Notice
also that the shear Higgs gap is an order of magnitude lower than the plasmon gap. It has
to be smaller, because otherwise the shear screening length would have been microscopic
and our theory would no longer be applicable.

Another interesting feature of the medium related to the transversal EM response
are the polaritons. It was already mentioned that the polariton dispersion follows from
the transversal EM photon propagator, so we can directly use Eq. (5.47) to look for its
poles. This yields a bicubic equation, and instead of the exact expression, we only present
the long-wavelength approximate solutions. One polariton pole is located at ω2

1 = ω2
p +

O(q2) and it has a nonvanishing strength in the long-wavelength limit A1 ≈ 1/(2ωp).
This is nothing else than the plasmon excitation of the electron liquid, which is robust
to the presence of the dislocation condensate of the nematic phase. Recall the massless
diffusion polariton pole of the ideal crystal. In the nematic phase an additional degree
of freedom appears and combined with the diffusion polariton, two modes appear. One
is gapped with the shear Higgs gap ω2 ≈ Ω, while the other has the same dispersion as
the massless pole already encountered in the transversal sector. Hence, it appears as if
the nematic superconductor can admit massless excitations which are, at least in the BCS
superconductor, dangerous for the superconducting order since any supercurrent may decay
into these excitations if not protected by the superconducting gap. A possible explanation
for the coexistence of this massless degree and superconductivity may lie in fact that this
superconductor does not acquire a gap according to the Abelian-Higgs or BCS mechanism.
Therefore, it is the medium which acts as the carrier for the currents and accordingly, the
supercurrents are nothing else than matter (superfluid) currents of the charged nematic
phase. The supercurrent cannot decay into the massless mode propagating at the glide
velocity because the supercurrent is already carried by that mode. It should also be clear
that the presence of this massless mode does not mean that the medium is incompressible.
The compressibility follows from the longitudinal dielectric function and in the remainder
of the text, the analysis thereof will show that the charged nematic isotropic phase is
incompressible electronic liquid.

The presence of the massless mode in the polariton spectrum implies, among other
things, that light can be freely propagate through a nematic solid, although the prop-
agation velocity is only cg which results in a medium which is effectively totally reflec-
tive. Another circumstance that hinders the propagation of the massless polariton is its
pole strength. While the strength of the plasmon pole is roughly a constant in the long-
wavelengh limit and the strength of the second polariton pole grows only proportionally
to q2, the massless polariton has a pole whose strength depends on the wave-number as q3

in the long-wavelength limit.
The final result regarding the EM response of the isotropic nematic phase is the longitu-

dinal dielectric function 5.18. In the remainder of this section, we will study this response
function in detail to arrive at experimental predictions that can be measured in princi-
ple although this requires a substantial upgrading of existing experimental methods. The
standard experiment tailored to measure the longitudinal dielectric function is EELS [173],
although there are other possibilities [174]. The outcome of our analysis will be that the
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electron energy loss spectrum acquires an additional pole in the nematic phase. The origin
of this pole may be traced back to the novel pole in the longitudinal elastic response of the
neutral crystal: the excitation behind this pole is carried by the ‘dual shear superconduc-
tor’. However, as with other measurable electric responses, this fingerprint of the nematic
order is absent in the long-wavelength limit and it is active only at finite wave-vectors
which makes it hard to measure. This is a lucky circumstance for our theory: although we
predict a feature no one has yet seen up to now, the fact is that experiments did not look
into the right direction or did not push their limits into the required kinematical region.
Given our predictions, we can tell precisely where to look and what to seek in order to
(dis)prove the applicability of this theory for cuprates or any other candidate system and
answer directly relevant questions for the cuprates such as the sense or nonsense of the
fluctuating order.

Let us begin with the expression for the dynamical dielectric function. From the
Coulomb propagatot of the nematic phase Eq. (5.46) the dielectric function readily fol-
lows as

ε̂ = 1 +
ω2

p(ω
2
n + c2gq

2 + Ω2)

(ω2
n + c2Lq

2)(ω2
n + c2gq

2) + Ω2(ω2
n + c2Kq

2)
. (5.63)

The ‘near-solid’ and ‘near-liquid’ limits are easily obtained

ε̂solid = 1 +
ω2

p

ω2
n + c2Lq

2
, (5.64)

ε̂liquid = 1 +
ω2

p

ω2
n + c2Kq

2
, (5.65)

with a single plasmon mode, with a plasmon gap ωp and having dispersion given either by
the longitudinal (cL) or by the sound (compression) velocity (cK). Hence, deep in the solid
or seep in the superconductor there is little new to be seen. However, when the competition
is severe, a new feature appears in the longitudinal dielectric function which can be seen
as the experimental signature of fluctuating order: the “electrical shear photon”.

Before we present a detailed analysis of the dielectric function, let us review the ex-
perimental significance. This is in first instance about EELS, but also soft X-ray inelastic
scattering (RIXS). Let us focus on the EELS experiments and explain what do we expect
to see in spectra of an nematic electron phase. The electron energy loss of a medium
measured in a transmission EELS experiment is defined as

FT (ω, q) = Im
1

ε̂(iω − δ, q)
(5.66)

Recently, also experiments with low energy reflective EELS where performed where the
loss function is given by

FR(ω, q) = Im
1

1 + ε̂(iω − δ, q)
. (5.67)
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The difference between the two spectra, based on Eq. (5.63), results in an effective reduction
of the plasmon frequency by factor of

√
2. In fact, the factor unity in Eq. (5.63) comes from

the assumption that the background medium is featureless, having the dielectric function
of the vacuum ε̂ = 1 which is not the case in cuprates. The oxygen atoms can polarize to
such an extent to allow the dielectric functions ε̂eff to be considerably larger than 1. The

effective plasmon frequency with such a background is then renormalized to ωp =
√

ne(e∗)2

ρε̂eff
.

The EELS formula Eq. (5.67) has the effect ofonly changing the effective permeability by
one ε̂eff → 1 + ε̂eff resulting in a small change of the measured plasmon gap.

Given the fact that we wish to obtain quantitative predictions to guide experimentalists,
we have to estimate values for gaps and velocities specific to cuprates. These were already
considered earlier so we continue to use these with one exception: In order to have a
good illustration of the effect of the discrepancy between the shear and plasmon gap, their
ratio is not fixed to 6/100, as it was the case in the previous part of this section, but we
introduce instead a new parameter ξ = Ω/ωp to analyse matters for arbitrary values of ξ.
In the various plots we typically take ξ = 1/10 as a representative example where the gaps
are differing precisely one order of magnitude. In absolute numbers, the plasmon gap is
kept at its approximate measured value of ωp = 1eV , while the shear Higgs gap is set to
Ω = 100meV . Since the shear penetration depth has to be large, this ratio cannot exceed
unity. At the same time the glide velocity cg is given in terms of the phonon velocity cT
significantly reducing the number of free parameters.

In Fig. 5.4 we represent two physically relevant cases of EELS spectra: a) Ω = 0: no
shear gap is present (the shear screening length is infinite). The system is in the ideal
Wigner crystal phase showing one strong pole that is just the longitudinal phonon having
acquired a plasmon gap; b) Ω � ωp: the dual Higgs gap is present, meaning that this
spectrum corresponds to the nematic phase. However, the dual mass has to be small
compared to the plasmon gap in order for the theory to be applicable. The ‘electric’ shear
photon is visible in the EELS spectrum, but its strength is much weaker that that of the
robust plasmon pole. In order to asses their relative strengths, let us take the dielectric
function Eq. (5.63) to analyse it in detail.

At this point we decided to introduce absolute dimensions in the problem, to express
every physical length/frequency/etc. in their respective units. This is done purely for the
purpose of illustrating the quantitative behavior of the EELS poles. As it turns out, the
entire effect depends only on the gap ratio ξ and the Poisson ratio ν, which we, at the end of
the work, set to 1/10 and 0.28 respectively. The unit length we use is the electric screening
length λc, so that the momentum is given by the dimensionless number k = q/qc = λcq.
With regard to the frequencies, the unit frequency is given by the plasmon gap so that
we express the Matsubara frequencies by $ = ωn/ωp, while in these units the shear Higgs
gap is just ξ. This choice of units implies that the longitudinal velocity becomes the unit
velocity. Let us now use these units to rewrite the dielectric function Eq. (5.63)

ε̂($, k) = 1 +
$2 + 1−ν

4
k2 + ξ2

($2 + 1−ν
4
k2)($2 + k2) + ξ2($2 + 1+ν

2
k2)

. (5.68)
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Figure 5.4: Electron energy loss spectroscopy (physically relevant gap values): the spectrum
is found from the inverse dielectric function as Im(1/ε): a) ideal Wigner crystal (Ω = 0), b)
dominant plasmon gap (ωp � Ω). The ‘plasmon’ dispersion is barely changed and only few
percent of its strength moved to the ‘electric shear photon’.

The dispersion of the two poles of the function Eq. (5.66) using the dielectric function
Eq. (5.68) is given by

$2 =
1 + ξ2

2
+ k2 5− ν

8
±

√(
1− ξ2

2

)2

+ k2
3 + ν + ξ2(1− 5ν)

8
+ k4

(
3 + ν

8

)2

. (5.69)

In the long-wavelength limit, the plasmon and the shear photons are both massive with
dispersions, respectively,

$1 = 1 +
k2

4

(
(1 + ν) +

1− ν

1− ξ2

)
+O(k4), (5.70)

$2 = ξ + k2 1− ν

8

1− 3ξ2

1− ξ2
+O(k4). (5.71)

As announced in the paragraph on polaritons, the dielectric function of the isotropic ne-
matic Eq. (5.63) and its poles Eq. (5.71) demonstrate that the charged nematic isotropic
phase is an incompressible phase of matter. Due to the hierarchy of the velocities, the
modes do not cross and are therefore at short distances significantly smaller than any of the
screening lengths. The model predicts two poles to behave as the crystalline longitudinal
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Figure 5.5: Pole strength of the ‘electric shear photon’: a) the strength of the plasmon pole
(solid) is many orders of magnitude larger than that of the ‘electric shear photon (dashed). There
are two wavelength regimes with a different behaviour: at intermediate wavelengths (qS < q < qe)
the pole develops the maximum strength (relative to the plasmon strength) of order of a tenth
of ξ2, i.e. 0.3% for the gap estimates in the text; in the potentially experimentally accessible
long-wavelength regime (q < qS), the strength grows with square of the wavelength and reaches
values of order of ξ3 or 0.1%. b) The prefactor in Eq. (5.73) as a function of the Poisson ratio ν.
At high Poisson ration (ν . 1), the strength is vanishing because the unmelted solid has a very
weak shear rigidity in the first place. The ‘electric shear photon’ strength is naturally the most
prominent when the entire crystalline rigidity rests on the shear (physically unlikely case ν = −1.

phonon ω1 = cLq+O(1) and decoupled condensate of gliding dislocations ω2 = cgq+O(1).
Naturally, due to the vanishing coupling, the shear pole becomes practically invisible.

We denote the strengths of the poles respectively as

A1,2(q) = lim
ω→ω1,2(q)

[(ω − ω1,2(q))F (ω, q)] (5.72)

and plot them in Fig. 5.5a. We do not show the lengthy expressions, to analyse Eq. (5.72)
only in physically relevant cases. Already from looking at the figure, we can deduce that
the plasmon mode is very robust to the presence of any charge and its strength does not
change significantly from the ‘uncharged’ case where A1 ∝ 1/

√
1 + k2. The shear photon’s

strength is many orders of magnitude smaller and it vanishes both in the short- and long-
wavelength limit, with a maximum at intermediate distances.

At first instance, we may look for this minimum by expanding Eqs. (5.72) in ξ, knowing
that this parameter is not larger than 0.1. The series up to a second order in ξ reproduce
well short- and medium-wavelength regimes where the intensity maximum is located. We
find its approximate position q0 ≈ qc2/

√
3(3 + ν) and the intensity

A2(q0) = ωp

[
3
√

3− 3ν

16
√

3 + ν
ξ2 +O(ξ4)

]
. (5.73)
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The prefactor in Eq. (5.73) is plotted in Fig. 5.5b as a function of the Poisson ratio ν. It
is clear that regardless the value of the Poisson ratio, the intensity maximum A2 cannot
exceed a fraction of ξ2. Having the strength of the plasmon pole close to ωp/2, the ratio
of two pole strengths is limited to few parts per thousand relying on ‘optimistic’ estimate
for the shear gap of 100meV.

From the estimate on the momentum where the shear photon has the maximum in-
tensity, we do run into the problem of applicability of the model. With q0 being of the
order of qc and therefore microscopic, the reliability of the result Eq. (5.73) is question-
able. In addition, existing EELS experiments can reach up to mementa which are much
lower than the inverse microscopic lattice constant, i.e. the inverse electric screening depth
qc. Thus, in order to make reliable predictions, we need to analyse the strength A2 in
the long-wavelength limit where the small ξ approximation is no longer valid. This is a
consequence of another small number in the problem: at wavenumbers of order or shorter
than the inverse shear screening length, the dimensionless momentum k is smaller than
the gap ratio ξ, so that one has to expand first to small momenta. The series yield the
long-wavelength pole strength

A2(k) =
ξ(1− ν)

4(1− ξ2)2
k2 +O(k4) (5.74)

and at first sight it seems that instead of a square dependence of the strength in small ξ it
is replaced by a linear one. Unfortunately, this is not true since the expansion Eq. (5.74)
works only if k . ξ and the strength picks up therefore two additional powers of ξ. As a
result, the total strength of the shear pole in the experimentally accessible and physically
relevant regime of wavelengths longer than the shear penetration depth, acquires a weight
that cannot exceed. ξ3. The earlier estimate ξ = 1/10 results in an expected strength ratio
of some parts per thousend which we expect to be measurable in a dedicated experiments

where the region with q . qg ∼ 0.1Å
−1

and ω . Ω ∼ 100meV is investigated with high
resolution EELS.

The message from this section and especially from the last paragraph should be clear:
the ‘fluctuating order’ in the electronic liquid, as suggested in preceding works and as
constructed here in terms of the dual elasticity theory, leaves its specific fingerprints on
the EM response functions of the system. Although these require specific nonconventional
experiments, which have to be pushed to their limits, once the measurements reach the
desired kinematical regimes, the fluctuating order will reveal itself in terms of a unique
experimental signal.

5.4 Charged ordered nematic

Having learned about the effects of the screened shear and the dynamical dislocation con-
densates in the isotropic nematic, the electric response functions of the ordered nematic
phase of matter do not bring any real surprises. The effects seen in the charged isotropic
phase are present here too, except that they are now modulated by the anisotropy. The
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bottomline is that the ordered nematic phase screens only one of the two shear photons,
and only in the appropriate ‘flavor’ direction, the system behaves as a liquid, while in
the perpendicular direction it resembles a solid. In the neutral case, this naive perception
has been demonstrated to be only of relevance to the static limit, whereas at any finite
frequency a dynamical admixing of modes is found, associated with the spin-2 transfor-
mational properties of the screened shear mode. Such an behaviour is not an exception in
charged system. We find that the order nematic behaves as a liquid in one and solid in
the perpendicular direction only in the static limit. The dynamical response functions are
found to transform, similarly as in the neutral system, according to spin-2 representation
of the rotation group.

In this section, the anisotropic dual stress gauge field propagator (expressed in terms
of the self-energy Eq. (4.90)) is used together with the effective Meissner term Eq. (5.37)
to recover the EM response functions. Given that the dual stress gauge field propagator is
quite complicated at arbitrary angles η, so is the Meissner term, containing also off-diagonal
terms that couple the electric and magnetic properties. In order to avoid these uninteresting
and lengthy technicalities, the EM properties are analysed, as for the electrically neutral
case, for three specific angles η = 0, π/4, π/2 where the sectors are decoupled. In order
to demonstrate the significance of the anisotropy, and especially its effect on the electric-
magnetic coupling, we address what happens at intermediate angles η using the EELS
spectrum as a representative response function. However, we do this only in the long-
wavelength limit which is relevant for the experiments. We find, next to the ‘electric shear
photon’, an even weaker excitation, the light polariton, leaving its dynamical fingerprints
in the EELS spectrum due to the coupling between electric and magnetic sectors.

Let us begin with the static properties of the ordered nematic phase. An advantage
is that the coupling between the longitudinal and the transversal sector vanishes in the
static limit, so the static Meissner term decouples into distinct magnetic and electric parts.
In fact, the consequences of the static limit are much stronger. Consider the dual stress
gauge field self-energy Eq. (4.90) and take the limit ωn → 0. There is only a single term
surviving, namely

− uH (ωn → 0) =
Ω2

µ
|BT

+1|2 sin2 η, (5.75)

which restates the fact that, in the static limit, the dislocations have only one relevant
‘flavour’: the transversal one. The consequences for superconductivity are devastating as
it appears that the ordered nematic phase has no ability to expel static magnetic fields. We
will return to this issue after the effect of the ordered nematic on the electric screening is
investigated. The static Meissner term following from the self-energy Eq. (5.75) acts only
on the Coulomb photon and the total propagator for the EM Coulomb photon is identical
to the propagator Eq. (5.51) found in the isotropic nematic phase with the anisotropy in
the screening length given by

λg →
λg√

2 sin η
. (5.76)
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Because the dislocation sound velocity cd is the same in all directions, from the length
anisotropy Eq. (5.76) it follows that the static shear Higgs gap has spin-1 anisotropy defined
as Ω(η) = Ω sin η/

√
2 and it acts only in the electric (Coulomb) sector. The anisotropy

of the gap could be conversely seen as that the isotropic nematic averages its Higgs gap
to value Ω. There is no need to analyse the behaviour of the electric field profile again,
since the minimum shear penetration realized in the vicinity of angle η = π/2 belongs
to the ‘near-solid’ regime. Hence, the static Coulomb screening of the ordered nematic
corresponds to a crystal screening in one direction and a ‘near-solid’ screening, presented
in the previous section, in another direction. The overscreening of the electric field and the
attractive Coulomb potential are exhibited in all directions, except that the effect is the
strongest in directions almost perpendicular to the Burgers director and vanishes parallel
to it.

There is however one exception to the behaviour presented in the previous paragraph.
One might have noticed that the dual stress gauge field BT

+1 in the self-energy term
Eq. (4.90) cannot develop the mass in the case of η = π/2, which is in contrast to the
limit found in Eq. (5.75). This inconsistency follows from the fact that the Higgs term
Eq. (4.90) is not uniformly convergent at the (η = π/2, ωn = 0) point. Therefore, the static
limit self-energy Eq. (5.75) is correct for all values of η, except η = π/2, representing the
propagation exactly perpendicular to the Burgers director. In the opposite order of limits,
by first taking η → π/2, the dual Higgs self-energy Eq. (4.90) turns into a non-dynamical
dual stress Meissner term, which implies a non-vanishing Meissner term for the EM photon
AT :

−uH =
Ω2

µ
|BT

−1|2 ⇒ −ΠT = ω2
p

ω2
n + Ω2

ω2
n + c2T q

2 + Ω2
. (5.77)

This implies that the superconductivity is recovered, of course only in this specific direction,
while the Coulomb screening corresponds to that of the ideal crystal: there is a sharp
discontinuity in the angular dependence of the EM response functions at this η value.

This extremely anisotropic superconductivity found in the ordered nematic phase does
not correspond to the anisotropic superconductivty observed in YBCO [43], since it corre-
sponds with the presence of the EM Meissner term only in a single direction. On the other
hand, the isotropic phase has perfectly isotropic EM response, so one would like to see the
phase with the EM properties that are somewhere in between in order to relate the theory
to the superconductivity of cuprates. The solution to this problem can be found when one
introduces the partially ordered nematic phase with the Burgers director order parameter
given by

Q̂ =

(
cos 2η sin 2η
sin 2η − cos 2η

)
= 1+ε

2
(cos η, sin η)⊗2 + 1−ε

2
(− sin η, cos η)⊗2, (5.78)

corresponding to a ground state that has an anisotropic dislocation condensate density.
Two limiting cases of the Burgers director Eq. (5.78) are ordered- (ε = 1) and isotropic
(ε = 0) nematic phase. The full calculation for that phase is not presented because it
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would involve another chapter. However, the static case can easily be reproduced and here
we just list the implications for the EM response functions. The magnetic and electric
sectors are decoupled as expected due to the vanishing coupling in the static limit. The
electric screening can again be expressed through an anisotropic screening length that
varies between two directions as

λ2
g →

λ2
g

(1− ε) + 2ε sin2 η
. (5.79)

The properties of the isotropic and ordered nematic phases are easily recovered. Given
that we already assumed the static limit when the screening length Eq. (5.79) was found,
the nonuniform convergence of the Meissner term in the ordered nematic phase at η = π/2
point is not apparent. Otherwise, the anisotropic gap Eq. (5.79) may be used for all η
values. Although just a speculation at this moment, the anisotropy in the Coulomb force,
caused by the anisotropic screening Eq. (5.79), might lead to the anisotropy in formation of
Cooper pairs if one supposes that an electron liquid coexists with another charged nematic
phase.

The effect of partial Burgers order is also relevant for the static screening of the magnetic
field. The static Meissner term of the partially ordered nematic phase is equivalent to the
corresponding term of the isotropic nematic Eq. (5.48) with the anisotropic shear screening
length given by

λs → λs

√
cos2 η

1− ε
+

sin2 η

1 + ε
. (5.80)

The anisotropy effects diminish in the isotropic limit (ε→ 0) and become most prominent
in the ordered limit (ε→ 1) when the first term in the parentheses of Eq. (5.80) diverges,
meaning that the magnetic field cannot penetrate the phase. However, the nonuniform
convergence is now manifest and one can convince oneself that the reversed order of limits
(first η → π/2, then ε→ 1) does yield a finite Meissner term.

This is surely relevant for the experimentally observed anisotropic superconductivity in
cuprates [43]. In addition, the anisotropic screening length Eq. (5.80) may also give rise to
the oscillatory screening of the magnetic field, predicted already for the isotropic nematic.
There, however, the necessity of the first order transition to the isotropic superconductor
led to the fact that the shear penetration depth λs could not overwhelm the bare London
penetration depth λL which is known to be of order of thousands Ångströms. In the case of
the partially ordered nematic state, one can circumvent this fact by a highly anisotropic, yet
not completely ordered nematic state. The effective anisotropic shear screening lengths are
given, parallel and perpendicular to the dominant Burgers direction by λ‖,⊥ = λs/

√
1∓ ε,

and the proximity of ε to the unity can result in one of these two lengths being larger
than the bare London length. In that case, the magnetic field would be screened in the
standard BCS-like exponential fashion in one direction, while in the other it would develop
the oscillating screening pattern. This idea needs more thoughts since we do not know if
this ‘almost ordered’ nematic state can be realized, either from the ideal Wigner crystal
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in the first order phase transition or as the intermediate state in the ordered to isotropic
nematic transition, whose order is unknown to us.

Having completed the analysis of the static properties, let us now turn to the dynamical
EM response of the ordered nematic phase in the three particular ‘decoupled’ directions.
The case of the perpendicular propagation η = π/2 has been discussed before with the
Meissner term given by self-energy Eq. (5.77). Since the longitudinal sector does not
acquire any Higgs mass, the electric response functions (including the longitudinal dielectric
function Eq. (5.18)) is the same as in the ideal crystal. The same is then true for the
longitudinal conductivity which is equal to that of the ideal crystal (ideal conductor without
pinning). The observable that is affected by the Meissner term Eq. (5.77) is the transversal
optical conductivity

σ̂T =
ω2

p

ωn

ω2
n + Ω2

ω2
n + c2T q

2 + Ω2
. (5.81)

Its pole at ωn = 0 is the fingerprint of superconductivity with a strength that falls off in
the same manner as in Eq. (5.62) except that the shear penetration depth acquires a factor
of
√

2. The interpretation of this strength reduction is the same as it was in the isotropic
case: at distances comparable to the shear penetration depth the medium recovers its solid
nature and the superconducting pole weakens in favor of the ‘transversal plasmon’ mode
with a dispersion given by ωn =

√
Ω2 + c2T q

2. The polariton equation shows only two
poles, as in the ideal crystal, with the difference that the massless diffusion mode acquired
the shear Higgs gap. There are no massless modes in this direction and accordingly the
medium behaves as a perfect mirror.

Considering a next representative propagation angle η = 0 similar dynamical behaviors
are found as in the perpendicular case η = π/2, since in both cases it is the ‘magnetic shear’
photon that is subjected to the Higgs mechanism. However, in the neutral case of chapter 4
it was clear that the constraints work differently in two cases, as well as that an additional
degree of freedom enters: the condensate longitudinal photon B

‖
L ≡ BL

L . Therefore, the
effective Meissner term will be active only in the magnetic sector (EM transversal photon
AT ), but the prefactor will be different

LMeiss.(η = 0) = 1
2
ω2

p

ω2
n(ω2

n + c2dq
2 + Ω2)

(ω2
n + c2T q

2)(ω2
n + c2dq

2) + ω2
nΩ2

|BT
−1|2, (5.82)

having a vanishing value in the static limit. Hence, the medium is not superconducting in
this direction. The lack of superconductivity is also apparent in the transversal conductivity
which reads

σ̂T (ωn, q) = ω2
p

ωn(ω2
n + c2dq

2 + Ω2)

(ω2
n + c2T q

2)(ω2
n + c2dq

2) + ω2
nΩ2

, (5.83)

with the ωn = 0 pole missing.
The last representative case is η = π/4, and this does not require any special treat-

ment. Propagating at this angle, the ‘electric shear photon’ is completely screened, while
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Figure 5.6: A predicted outcome of an EELS experiment (long but finite wavelength) on
the ordered nematic: a) degenerate plasmon doublet has the dominant signal. The ‘electric
shear photon’ is a faint feature, being the strongest at η = ±π/4 and vanishing perpendicular
and parallel to the Burgers director. The weak diffusive polariton is visible at the bottom. b)
when the low-energy region is zoomed in, the angular dependence of the pole strengths becomes
manifest.

the transversal sector is unaffected. Similar as in the neutral nematic medium, the lon-
gitudinal sector for this direction is equivalent to the one of the isotropic nematic phase.
Hence, at this specific angle the analysis of the EELS spectrum from the previous section
applies. This means nothing else than that the ordered nematic phase should also leave its
fingerprint in the EELS spectrum, except that the strength of the ‘electric shear photon’
will be anisotropic, given the fact that the it is not present in the electron energy loss
function at η = 0, π/2.

Beside the anisotropic ‘electric shear photon’, one should also expect that all dynamical
excitations of the ordered nematic phase become visible as poles in the electron energy loss
spectrum, given the fact that the longitudinal and transversal sector dynamically couple for
general values of η. There are in total four such degrees of freedom: two phonon degrees of
freedom, the condensate (longitudinal stress photon) degree of freedom and finally the EM
transversal photon (light). In order to illustrate the angular dependence of the excitation
poles in an EELS experiment, we plotted this spectral function in Fig. 5.6 for the case
of the long but finite wavelength regime (q ≈ qe/100) which should be experimentally
accessible. In a charged medium both phonon degrees of freedom acquire a plasmon gap
and a large pole strength. Because electron energy loss spectroscopy probes the longitudinal
sector, it has only direct access to the gapped longitudinal (compressional) plasmon at the
center of discussion in the previous section. The contribution from the transversal plasmon
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exists only when the system is probed in some intermediate direction where the dynamical
coupling between the two sectors switches on. Given that the longitudinal and transversal
plasmon are degenerate in the long-wavelength limit, this contribution cannot be directly
separated from the direct longitudinal plasmon signal in a real EELS experiment. These
two plasmon poles represent the dominant signal in EELS spectrum, being many orders of
magnitude stronger than the other poles. Next, there is a contribution from the ‘electric
shear photon’ which was the most important feature of the isotropic phase with respect
to experiment. This mode is fully visible, as discussed in the previous paragraph, at
η = π/4 and loses its strength as the angle deviates from that value. This is due to the
fact that longitudinal plasmon couples to the ‘electric’ shear component, which has only a
finite, angular dependent, overlap with the Higgs shear stress photon Eq. (4.81). Finally,
there is the EM photon which turns into a polariton. From the long-wavelength limit of the
dielectric function of the ordered nematic, we conclude that the dispersion of this polariton
is still diffusive

ω ≈ cTλLq
2 sin 2η. (5.84)

Thus, it seems as that light couples only to the softened transversal photon (plasmon) in
the same way as it does in the ideal Wigner crystal. Because of the indirect coupling to
the longitudinal plasmon (via the transversal plasmon), the strength of this polariton is
the weakest in the EELS spectrum and it vanishes at the special ‘decoupling’ values of η.
Unfortunately, there are fundamental experimental constraints prohibiting the detecting
the polariton pole given by Eq. (5.84). In a spectrum measured in an EELS experiment,
the main contribution to the signal comes from the elastic zero-momentum peak. Its
strength overwhelms all other poles by many orders of magnitude. Although there are
methods developed to subtract this signal, which is innate to the experiment and contains
no information whatsoever about the probed system, the minute signal of the polariton
will be overwhelmed by the noise of the elastic peak. In fact, given that the polariton has
the weakest pole in the electron energy loss spectrum, and that earlier we argued that even
the ‘electric shear photon’ is a faint feature, one easily concludes that the polariton would
be hard to observe even if one could remove the contributions from the elastic peak.
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Chapter 6

Conclusion

In this thesis a theory for electronic crystal melting has been presented, offering some
quite surprising outcomes that one might expect to encounter in electron quantum liquid
crystals characterised by fluctuating translational order. Of course, this was not possible
without the use of the machinery of the duality where we relied on the notion that ‘order
and disorder are relative matters’. This change in point of view can significantly simplify
the theoretical description of the problem and we use this fact when describing the melted
phase in terms of the dual theory developed initially by Kleinert [48]. The dual theory of
melting of a bosonic quantum crystal is developed in this way and new liquid crystalline
phases are identified. A surprise that follows is that the dual theory, being tailored to treat
the melted phase as the ordered phase, yields the bare Meissner term Eq. (5.34) for the
charged quantum liquid. Hence, this dual point of view does us yet another favour: the
superconductivity comes for free and the normal metallic phase is viewed as a the one where
the dual order, represented by the bare Meissner term, is destroyed by the fluctuations of
the long-ranged dual stress fields.

The phase that we are a particularly interested in is the quantum nematic phase,
characterized by the proliferation and condensation of dislocations, while disclinations are
still massive. This phase, having the character of a liquid crystalline phase due to the
presence of a partial order, is in between the ideal crystal (fully crystalline ordered phase)
and superfluid phase (fully disordered). Accordingly, its properties are a mix of those of
both worlds, showing massive shear and long-ranged compression at large length scales
while the crystalline rigidities are recovering at short distances. The surprise is that under
these circumstances a new propagating mode appears: the dual shear photon characterized
by a Higgs mass expressing that at long distances shear rigidity has disappeared, while it
resurfaces at shorter distances. This photon actually reflects the phase degree of freedom
of the dual dislocation Bose condensate.

When the medium is also electric charged the theory predicts that the nematic phase
turns into a true superconductor, which is not so hard to understand being aware the work-
ings of the dual shear superconductor. However, the electromagnetic response functions
of such a superconductor are now full of surprises. In contrast with the standard BCS
theory, where the superconductivity arises as a ramification of the long-range off-diagonal
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order of the constituent ‘gaseous’ bosons (Cooper pairs), the mechanism responsible for
the superconductivity in the nematic charged phases is entirely different. The superfluid
is, by means of the dual theory, the ordered state. It is characterized exclusively by com-
pressional rigidity and it has to be an electromagnetic superconductor as well because of
the well-known Wen-Zee theorem [159, 160, 161]. The nematic state is characterized by
crystalline order at short distance. Nevertheless this order is transient and as such it can-
not destroy the electromagnetic Meissner term. Because the transient order is present only
at finite length- and time scales, all of its consequences on the Meissner term are apparent
in the various response functions only at finite wavelengths and frequencies.

In this way, our theory for the electronic liquid crystalline states yields predictions
which can be tested experimentally, although they require unconventional experiments.
In principle, this amounts to a strategy to determine once and for ever if the notions
of fluctuating order do apply to e.g. high-Tc superconductivity. The feature that we find
most promising in this regard is the novel ‘electric shear photon’ pole in the electron energy
loss function and at this moment some experimental groups have already undertaken first
steps to devise experiments that can probe the finite-wavelength regime and detect the
pole’s weak signal. Other response functions like the optical (transversal) conductivity also
feature excitations which are not of the kind found in conventional BCS superconductors.
However, the existing experimental techniques are even more limited that EELS with
regard to probing the relevant kinematical regimes. The transient order characterizing
charged quantum liquid crystals also leaves its imprint through the static overscreening
effects of electric and magnetic fields. Unfortunately, existing experimental techniques are
designed to measure only the standard BCS London length and it would be interesting to
see if experiments can be designed to search for the overscreening effects.

It would be unfair to not give the full credit to the pioneering work of Zaanen, Mukhin
and Nussinov [44], where these ideas were employed for the first time. The theory pre-
sented here, should be seen as a follow up, removed a flaw associated with the dynamical
(relativistic) treatment of the dislocation condensate. Apart from encountering a problem
associated with the topological phase and identification of a new isotropic phase, we also
did investigate the entire spectrum of EM properties of a charged liquid crystal. Somewhat
as a sideline, we obtained results eventually of relevance to the construction of the dual
theory in general. We refer to the interpretational issues associated with the dual gauge
degrees of freedom as presented in section 2.3 and the glide principle derived in section
3.4. The former result clarifies the appearance of the additional degrees of freedom in the
nematic phases and reveals the hidden connection between the dual shear photons and
the dislocation degrees of freedom. The latter is a necessity for the understanding of the
protection of the compressional properties of the superfluid.

Given the new theoretical results presented in this thesis, it is now up to the experimen-
talists to develop new experimental techniques, to measure the signatures of fluctuating
order. One can wonder if our theoretical program is now completed or if there are still
loose ends that need further attention. In our opinion, there are still a number of unre-
solved problems. One which does not require additional computations is related to the
interpretation of the excitation spectra in the nematic and charged media. We are partic-
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ularly puzzled about the presence of the diffusive poles, as found in the ordered nematic
(Eq. (4.93)), as well as in the polariton spectrum of both the ideal crystal (Eq. (5.15)) and
the ordered nematic (Eq. (5.84)). Although we presented some arguments referring to the
loss of rigidity and second-order processes that could cause this diffusion, we find those
explanations unsatisfactory and we would like to understand better what is the precise
physical interpretation of these diffusive excitations. The other problem is more serious as
it is related to the inconsistency encountered in the construction of the topological nematic
state when the dual condensate is treated in its full relativistic glory. In section 4.6, the
‘inconsistent’ results previously obtained in section 4.5 were interpreted using a different
disordering field. At that point we had to satisfy ourselves with the fact that we could
explain only the isotropic nematic phase which, although showing quite unconventional
features, is only a non-interacting approximation (in the Burgers sector) to the topological
nematic phase. If the argument is correct, it implies that one needs to take into account
the interactions coming from the expansion of the action Eq. (4.117). There is an open
issue regarding the method one should use to treat these interaction effects. Apparently,
the completely different mode content of the topological- and isotropic phase suggests that
a perturbational approach might not work, although in principle it is possible that the
mode content changes if the theory is excluded the Gaussian approximation.

All other issues may be considered as extensions of the original theory. One further gen-
eralization of the theory is to consider a less symmetric elasticity tensor than the isotropic
one, Eq. (3.15), that we used throughout the thesis. Another possible extension is as-
sociated with the treating of the second-order gradient elasticity (Eq. (3.19)). However,
after the hard work of the dualization and construction of the disorder theory has been
accomplished, these generalization turn into a complicated but straightforward. In fact, we
have some preliminary results where second-order gradient elasticity is included. However,
because the dualization formalism for second-order gradient theories (see Ref. [48]) would
require yet another chapter additional chapter to present, we decided to omit it. Let us
just mention unexpected outcome that the additional terms in the elastic energy do not
affect the shear Higgs mechanism, so that the phonon self-energies corresponding to the
propagators Eq. (4.110) and (4.112) are still valid.

A different matter is the addressing of the fundamental limitations we had to impose
onto our theory, which requires some further deep thoughts. These include the nontrivial
statistics of the crystal constituents, the dimensionality of the medium and the issue of
non-topological (interstitial) as well as the non-Abelian topological defects (disclinations).
Most of these problems are actually ‘holy grails’ of modern physics with deep fundamental
implications. Despite the lacking of a general formalism required to treat fermionic- or
even anyonic crystals, we might still be able to speculate that in a medium melted by
fermionic/anyonic dislocations the loss of shear rigidity is inevitable, resulting in a similar
long-wavelength description as for the bosonic case, although the shear photon might
have a different meaning, being associated with a dynamical Fermi- or anyon dislocation
gas. Although we could leave the dimensionality issue related to the construction of a
second-quantized theory of strings, to string theorists, we suspect that the Abelian-Higgs
duality might be employed the other way round. In this manner, the condensation of
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strings might be understood in terms of a type-II superconducting transition in higher
dimensions, which could shed some light on this fundamental problem. The disorder field
for disclinations, which is highly nontrivial because of its non-Abelian nature, is in a way
similar to the problem of treating fermionic dislocations. However, due to their particular
geometrical Berry phases associated with disclinations, it appears that the mathematical
idea of quantum double symmetry groups has a real potential to make substantial progress
on this deep problem. On the other hand, it appears that the treatment of non-topological
defects in the theory (vacancies and interstitials), is a task which is relatively easy to
accomplish. One should bear in mind that an interstitial is not just a bound pair of a
dislocation and an antidislocation. These defects have the meaning of the classical wave
function Ψcl.

0 amplitude fluctuations in a filed theoretical description and it appears that a
proper theory may be constructed using the knowledge of type-I superconductivity.

To conclude, let us mention a number of other interesting questions related to the dual
theory of elasticity. One is concerned with the critical regime near the phase transitions in
analogy with the Abelian-Higgs duality critical regime discussed in the section 2.4. There
is still a number of open questions. The critical exponents that were used in section 2.4
were found for the case of a fully relativistic theory [63, 91]. The elastic action Eq. (3.24)
does not satisfy this symmetry requirement and this can change the universality class
of the transition and, accordingly, the values of the critical exponents. There is also an
issue regarding the order of the transition: our theory with the disorder action Eq. (4.32)
implicitly assumes that the transition from the ideal crystal to the nematic phase is of
second order which is necessary in order to find a critical regime. The transition from the
classical crystal to the nematic liquid crystal state is, however, of the first order, and the
same is true for the transition from a normal state to the isotropic EM superconductor.
We believe that the definite answer to these questions follows from the theory when the
interstitial degrees of freedom are taken into account. This opens up a possibility that a
new phase could emerge between the ideal crystal and the nematic phase.

The last important feature of the quantum nematic pertains to the problem of gravity.
When we introduced elasticity in the introduction of chapter 3, we mentioned that the
curvature and torsion induced by the elastic deformations and the topological defects can
alternatively be treated using the language of differential geometry. There is no torsion in
our universe and in an earlier work [146] it was demonstrated that in 2+1D the universe
can be seen as a nematic phase of a ‘world-crystal’ which has lost its torsion through the
proliferation of dislocations. The 3+1D version of this problem could possibly result in
an theory for emerging gravity. As a curiosity, the transformational properties of shear
degrees of freedom and gravitons match, because they are both spin-2 objects. There
are, however, five shear degrees of freedom in an ideal crystal compared to two gravitons.
Hence, the phase transition from the ideal ‘world crystal’ to the nematic ‘world’ phase
should generate a Higgs mass for compression- and the three shear photons. This leaves
us with two other shear photons having the highest helicity which should stay massless:
these can be gravitons.



Appendix A

Mapping of a nonlocal interaction to
Ψ4 term

In chapter 2, we presented a mapping of action for a gas of random walkers onto the
GLW action Eq. (2.35). The proof yielded quadratic contributions to the action in the
long-wavelength limit, and Ψ4 term was added ‘by hand’, corresponding to short-range
interaction between the particles. Then we promised to return to that issue in this ap-
pendix where mapping of inter-particle interactions onto the Ψ4 term of action Eq. (2.35)
is demonstrated. The exact proof presented here is, however, based on a different map-
ping [49] and cannot be directly utilized for the description of the dislocation tangle. This
will become clear after the details are presented and we will discuss the differences in
the conclusion of this appendix. There are nevertheless two reasons that we include the
mapping in the form presented in this appendix. First, it illustrates the origin of the Ψ4

term in Eq. (2.35) in a setup that is only slightly different from ours. Another reason
is that the mapping, as presented by Kiometzis et al. [75], takes only local (short-range)
interactions into account. The mapping given in this appendix uses the same idea as in
Ref. [75]. However, we manage to incorporate any kind of potential, local or nonlocal,
between the particles, which then acquires a corresponding Ψ4-like term in Eq. (2.35). To
the best of our knowledge, such a mapping, although a simple generalization of Ref. [75],
has not been presented elsewhere. For us, it is of importance to stress that this mapping
of arbitrary particle interactions can be further generalized to the case with a multitude
of different particles. In this manner, the interaction term in Eq. (4.120) can be linked to
the interaction between dislocations of different Burgers charges.

For the readers convenience we begin by repeating the ‘non-interacting’ part of the
mapping as given in Ref. [75]. The only difference here is that the mapping can be gener-
alized to an arbitrary dimension with the minute change of a single factor in the partition
function. While the first part starts with the GLW complex theory and ends with a gas
of free particles, the second part of the mapping, which incorporates the interaction, is
performed ‘backwards’. The interaction is added to the particle action, and, by means of
a Hubbard-Stratanovich auxiliary field, ‘pulled’ through the mapping so that it appears
as a Ψ4 term in the complex field theory. At the end of the appendix, a brief discussion
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regarding the differences between this mapping and that from chapter 2 is given.
Let us begin with the Hamiltonian of a free complex field theory

Ĥ = 1
2

∫
ddx

(
|∇Ψ|2 +m2|Ψ|2

)
. (A.1)

This derivation is done for continuum theories, for discussions about the lattice derivation
we refer the reader to Refs. [60, 176, 177]. The correlation function defined by Hamiltonian
Eq. (A.1) is explicitly given by

G(x) =

∫
ddq

(2π)d

eiq·x

q2 +m2
. (A.2)

This is written in the Schwinger proper-time representation [178] as an integral over the
proper time s

G(x) =

∫ ∞

0

ds e−sm2

∫
ddq

(2π)d
eiq·xe−sq2

=

∫ ∞

0

ds e−sm2

Γd s
−d/2 e−

1
4
x2/s, (A.3)

where we used the identity

1

a
=

∫ ∞

0

ds e−sa. (A.4)

The factor Γd is a constant which depends only on the number of dimensions d in the
problem, and it follows after the momentum q has been integrated out. For example,
Γ2 = 1/(4π) and Γ3 = 1/(8π3/2).

The right-hand side of Eq. (A.3) describes diffusion of a particle of mass 1/2, i.e. it
represents a sum over all real space paths starting at x(s′ = 0) = 0 and ending at x(s′ =
s) = x [179]

Γd s
−d/2 e−

1
4
x2/s =

∫ x(s′=s)=x

x(s′=0)=0

Dx(s′) e−S[x(s′),ẋ(s′)], (A.5)

with ‘free’ action

S[x, ẋ] = 1
4

∫ s

0

ds′ (ẋ(s′))2. (A.6)

The additional Boltzmann factor exp(−sm2) exponentially suppresses loops with large
proper-time.

Having identified the Green’s function Eq. (A.2) with the diffusion problem Eq. (A.5),
we may proceed to the partition function corresponding to Hamiltonian Eq. (A.1). Let us
first integrate identity Eq. (A.4) to obtain

ln a = −
∫ ∞

0

ds

s
e−sa + const. (A.7)
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Denoting the integral over all momenta q by a trace, we can write

Tr ln(−∇2 +m2) = −
∫ ∞

0

ds

s
e−sm2

∫
ddq

(2π)d
e−sq2

= −
∫ ∞

0

ds

s
e−sm2

∮
Dx(s′) e−S. (A.8)

The closed path integral
∮
Dx runs over all closed loops. The ‘action’ is the same as in

Eq. (A.6).
Using the famous identity

Tr ln Â = ln det Â, (A.9)

where Â is an arbitrary matrix, one can write[
det(−∇2 +m2)

]−1
= e−W0 , (A.10)

where we denoted the left-hand side of Eq. (A.8) by W0. The exponential on the right-hand
side of Eq. (A.10) can be expanded in a series as

e−W0 =
∞∑

N=0

1

N !

N∏
l=1

[∫ ∞

0

dsl

sl

e−ms2
l

∮
Dx(s′l)

]
exp

[
−1

4

N∑
l=1

∫ sl

0

ds′l(ẋ(s′l))
2

]
. (A.11)

This is precisely the partition function of a grand canonical ensemble of closed fluctuating
loops that do not interact. On the other hand, the left-hand side of Eq. (A.10) can be
viewed as an inverse functional determinant, which is the partition function of the free
complex theory given by Hamiltonian Eq. (A.1). Hence, the identification of a gas of free
loops with a free complex field theory.

Now we wish to add interactions to the problem. At this point we start to diverge from
the course of exposition given in Ref. [75]. We begin with the grand canonical partition
function Eq. (A.11) and add interaction terms so that it reads

Z =
∞∑

N=0

1

N !

N∏
l=1

[∫ ∞

0

dsl

sl

e−m2sl

∮
Dx(s′l)

]
× (A.12)

exp

{
−1

4

N∑
l=1

∫ sl

0

ds′l [ẋ(s′l)]
2 −

N∑
l,k=1

∫ sl

0

ds′l

∫ sk

0

ds′k
1
2
V [x(s′l)− x(s′k)]

}
.

The potential V (x2 − x1) may be arbitrary in contrast with the Ref. [75], where only the
short-range potential V (x) = λδ(d)(x) is considered.

The interaction term in Eq. (A.12) poses a problem to the mapping we have just
presented. However, it may be circumvented through the introduction of an auxiliary
Hubbard-Stratanovich field. Let us first introduce Fourier transformed components of the
interaction potential V by

V (x) =

∫
ddq

(2π)d
Ṽ (q)e−iq·x. (A.13)
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The last term in the exponential in Eq. (A.12) becomes

N∑
l,k=1

∫ sl

0

ds′l

∫ sk

0

ds′k

∫
ddq

(2π)d
1
2
Ṽ (q)e−iq·[x(s′l)−x(s′k)]. (A.14)

Now, the auxiliary field σq is brought into the action via the identity∫
Dσq exp

[
−
∫

ddq

(2π)d
σ−q

1

2Ṽ (q)
σq + i

∫
ddq

(2π)d

∫ s

0

ds′σ−qe
iq·x(s′)

]
=

∏
q

√
2πṼ (q)× exp

[
−1

2

∫
dq

(2π)3

∫ s

0

ds′
∫ s

0

ds′′ Ṽ (q)eiq·[x(s′)−x(s′′)]

]
. (A.15)

The normalization constant (Jacobian of the HS transformation) comes from the Gaussian
integrations and it will be cancelled at the end of the procedure.

The partition function Eq. (A.12) is rewritten, with help of Eq. (A.15), as

Z =
∏
q

1√
2πṼ (q)

∫
Dσq exp

[
−
∫

ddq

(2π)d
σ−q

1

2Ṽ (q)
σq

]
× (A.16)

∞∑
N=0

1

N !

N∏
l=1

[∫ ∞

0

dsl

sl

e−m2sl

∮
Dx(s′l)

]
exp

{
−

N∑
l=1

∫ sl

0

ds′l

[
1

4
[ẋ(s′l)]

2 − iσ[x(s′l)]

]}
,

where σ[x] represents the auxiliary field in real-space coordinates. After this step we
resort to the relation between the inverse functional determinant and the loop gas partition
function Eq. (A.10) and Eq. (A.11). The only difference with respect to the non-interacting
case is that now we have an additional auxiliary field which enters the complex field action

Z =
∏
q

1√
2πṼ (q)

∫
Dσq

[
det(−∇2 +m2 − iσ)

]−1 ×

exp

[
−
∫

ddq

(2π)d

σ−qσq

2Ṽ (q)

]
. (A.17)

The auxiliary field served the purpose of ‘smuggling’ the potential V through the mapping
and now it can be integrated out. Together with the undesired Jacobian, this produces the
Ψ4 term in the following way∏

q

1√
2πṼ (q)

∫
Dσq exp

[
−
∫

dq

(2π)d

σ−qσq

2Ṽ (q)
+ i

∫
dx |Ψ(x)|2σ[x]

]

=
∏
q

1√
2πṼ (q)

∫
Dσq exp

[
−
∫

dq

(2π)d

(
σ−qσq

2Ṽ (q)
+ iσq

∫
dx |Ψ(x)|2e−iq·x

)
]

]

→ exp

{
−1

2

∫
dxdx′ |Ψ(x)|2

[∫
dq

(2π)d
Ṽ (q)eiq·(x−x′)

]
|Ψ(x′)|2

}
(A.18)

= exp

{
−1

2

∫
dxdx′ |Ψ(x)|2V (x− x′)|Ψ(x′)|2

}
.
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Hence, the interaction between two loop segments maps onto Ψ4 term so that the total
complex field action reads

SGLW = 1
2

∫
ddx

[
|∇xΨ(x)|2 +m2|Ψ(x)|2 +

∫
ddx′|Ψ(x)|2V (x− x′)|Ψ(x′)|2

]
, (A.19)

and this completes our derivation.
There is one technical detail we overlooked and now we return to it. Namely, the

original proof of Ref. [75] considered the delta-function interaction for which all the Fourier
coefficients are non-zero. On the other hand, a general potential V (x) that we wish to
map may exhibit a vanishing Fourier coefficient for an arbitrary value of moment q which
compromises the Hubbard-Stratanovich identity Eq. (A.15). This problem is dealt with in a
way similar to the implementation of the Ehrenfest constraint. This should not be a surprise
given the fact that the duality presented in this thesis was a kind of Hubbard-Stratanovich
transformation. What one should do in order to avoid the ‘singularity’ problem associated
with the vanishing Fourier components Ṽ (q) = 0 is to separate the momenta with zero
Fourier components from the momenta with finite components. The latter can safely
undergo the described treatment, while the components related to the former are absent
in the course of mapping. In other words, one can assume that a constraint σq ≡ 0 is
imposed for each q with vanishing Fourier component of the interaction. In the last step
in Eq. (A.18), the missing momenta do not contribute to the real-space potential V (x) as
should be the case, and the original interaction potential is recovered.

Let us now mention the reason we cannot directly utilize the mapping presented in this
appendix for the purpose of describing a tangle of defects (vortices or dislocations). It turns
out, despite the fact that both describe a gas of loops, that the grand canonical ensemble
of loops, with its partition function Eq. (A.11), has a different phase space as compared
to the path integral Eq. (2.31). While in the original proof each loop is counted just once
and weighted according to its length Eq. (2.19), the path integral in this appendix has a
redundant counting, since each loop can be parameterized by the Schwinger proper-time
in infinitely many ways. Each parameterization has a different weight as implied by action
Eq. (A.6). At the moment we are not aware if there is a relation that would link the weight
obtained in that way to the weight given by the loop action Eq. (2.19), and hence we are
forced to use the mapping of section 2.2.
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Appendix B

Defect current conservation laws

When the dislocation and disclination conservation laws Eq. (3.50 - 3.51) were presented,
we had to resort to the identity Eq. (2.101) in order to derive these laws. There is yet
another proof based on the connection between elasticity and differential geometry [48].
and gravity [123, 124, 125]. The disclination current conservation law obtained in this
manner is published as part of the article on the glide constraint [50]. Deep inside, the
assumptions of this proof are not any different from those behind the identity Eq. (2.101).
Nevertheless, this proof appears more ‘elegant’ due to its origins.

The dynamical version of the disclination conservation law can be traced back to the
material conservation. As an example consider a wedge disclination: the material added
is proportional to the Frank vector (scalar in 2+1D) and it should not change over time.
In this respect the disclination conservation law may be regarded as a generalization of
the glide constraint for the general topological defects. The basic idea is that after the
Volterra cutting procedure has been applied, no additional material should be introduced,
which is the same as the requirement that all symmetrized strains and derivatives thereof
are smooth everywhere, including the locus of the Volterra cut. This condition is hard
wired into the proof of the generalized Weingarten theorem Eq. (3.44). As we will now
show, the ramification of this principle for disclinations is a conservation law.

To make headway, it is convenient to first consider Euclidean Lorentz-invariant D + 1
space time. The non-relativistic case will turn out to be a special case which directly
follows from imposing the condition of the absence of time like displacements (uτ = 0).
What follows rests heavily on elastic analogs of identities in differential geometry which are
discussed in detail in the last part of Kleinert’s book [48]. First, we introduce the tensor

Rµν,ρσ = (∂µ∂ν − ∂ν∂µ)∂ρu
σ (B.1)

representing the Riemann-Christoffel curvature tensor in the geometrical formulation of
the theory of elasticity (the u’s are the usual displacements). The smoothness assumptions
underlying the Weingarten theorem may be expressed as,

0 = (∂µ∂ν − ∂ν∂µ)(∂ρu
σ + ∂σu

ρ), (B.2)

0 = (∂µ∂ν − ∂ν∂µ)∂λ(∂ρu
σ + ∂σu

ρ), (B.3)
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which in turn imply smoothness of the displacement second derivative

0 = (∂µ∂ν − ∂ν∂µ)∂λ∂ρu
σ. (B.4)

Cycling through the indices µ, ν, and λ of the smoothness equation Eq. (B.4), we obtain
the Bianchi identity for the displacement fields [180],

∂µRνλ,ρσ + ∂νRλµ,ρσ + ∂λRµν,ρσ = 0. (B.5)

Starting from the other end, let us analyze a candidate for a disclination conservation
law, corresponding to ∂µT

α1α2...αD−1
µν1ν2...νD−2 . This can be expressed in terms of the Riemann

tensor where {α} refers to a string of indices labeled by α,

∂µT
{α}

µ{ν} = 1
2
εµ{ν}κλε{α}ρσ∂µ∂κ∂λ∂ρu

σ

= 1
2
εµ{ν}κλε{α}ρσ∂µ(∂κ∂λ − ∂λ∂κ + ∂λ∂κ)∂ρu

σ

= 1
2
εµ{ν}κλε{α}ρσ∂µRκλ,ρσ − ∂µT

{α}
µ{ν} . (B.6)

The first term is zero as a consequence of the contraction of the Bianchi identity
Eq. (B.5) and the Levi-Civita symbol εµ{ν}κλ. This implies that relativistic disclination
currents are conserved. The non-relativistic case is just a special case: the vanishing of
time like displacements means that all upper labels are space-like (α→ a) and it follows,

∂µT
a1a2...aD−2

µν1ν2...νD−2
= 0. (B.7)

Let us now try to envisage the physical consequences of this dynamical conservation law.
In 2+1D, only wedge dislocations exist and the message of the conservation law Eq. (B.7)
is clear: the Frank charge – the angle of an inserted wedge in the Volterra construction –
behaves as a trivially conserved scalar component of a tensor. In higher dimensions, the
disclination current similarly behaves as a conserved tensorial current. The defect density
has information regarding both dislocations and disclinations. The disclination conser-
vation law has separate ramifications for the defect density. The fundamental condition
Eq. (B.4) can be directly rewritten into a conservation law for the defect density of a similar
form as for the disclinations,

∂µη
α1α2...αD−1
µν1...νD−2

= 0. (B.8)

This is not surprising as defect currents are proportional to to disclination currents.
Together with the glide constraint, this completes the picture: the conservation of

matter mandates that the ‘proper’ disclinations currents are also conserved. However,
the ‘handicapped’ dislocation currents are not conserved a-priori (disclinations form their
sources) but they have to pay the price that they can only glide.



Appendix C

Irreducible tensors of the symmetry
group

The idea that one can make important statements about a system by mere analysis of
symmetries is often attributed to Landau. In this very last part of the thesis we utilize
this idea. By representing the field components of the physically relevant tensors (strains,
stresses, dislocation currents and dual stress gauge fields) as irreducible tensors of the
symmetry group in the problem, we can interpret these and give each component a precise
physical meaning. The symmetry considerations presented here are simplified in the sense
that they exclude the translational symmetries of the model. As it turns out, the rotational
degrees of freedom combined with space and time reflections are sufficient for our needs and
at the end of the section the specific degrees of freedom, be it strains, stresses, dual stress
gauge fields or the defect currents, mentioned in the main part of the thesis, are associated
with different irreducible representations of the symmetry group. The physical degrees of
freedom, on the other hand, also have certain transformation properties and matching these
with the properties of the (dual) degrees of freedom leads to the proper interpretation. As
the example already encountered in the thesis, recall the glide constraint Eq. (3.61) and its
relation to the compression. The compression is invariant under all possible (point group)
transformations. The same is true for the glide constrained component of the dynamical
dislocation currents. As a result, the suppression of the climb in the system is uniquely
associated with the compressional rigidity. In the same manner, other degrees of freedom
can be traced to their physical origins.

Let us start with the group of symmetries that the elastic action Eq. (3.24) has to
obey. The Euclidian group E(2) is broken down to the product of the group of discrete
lattice translations and the point group of the lattice. Since we are after the minimal
model that is supposed to associate degrees of freedom with the irreducible representations
of the symmetry group, the translations will be neglected in this short exposition. We
concentrate on rotations, i.e. the point group which is in general determined through
the symmetry group of the underlying crystalline lattice. Given the fact that the theory
presented in this thesis is developed for the exclusive case of the isotropic elastic tensor
Eq. (3.15) (although the generalization to an arbitrary tensor Cijab is straightforward),
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the point group symmetry explicitly analysed in this appendix will be the group of all
(proper) rotations in two dimensions, denoted as C∞. This group does not exhaust all the
symmetries of the crystalline lattice, in addition there is the spatial reflection symmetry
σv which, together with proper rotations forms the group C∞v. Finally, we should add the
time-inversion symmetry στ to cover the dynamics introduced in our action through term
Eq. (3.23). The total point symmetry group is then C∞vh.

The next step is to determine the action of these symmetries on the single component
vectors in the system, that is to find the vector representations of the symmetry group.
Recalling from undergraduate physics courses in mechanics [167] as well as electromag-
netism [165, 166], one should note that the space- and time-inversions act differently on
different kinds of vectors. For example, the radius-vector r perpendicular to the reflection
axis, changes its orientation under the spatial reflection. The same is true for the force F.
On the other hand, their cross-product is the torque vector which is invariant under the
same reflections. We shall refer to the former as polar-vectors, whereas the latter will be
called axial-vectors. The same pattern is followed by the time-inversion symmetry: while
the radius vector r does not change under time-inversions, its first derivative, the velocity
field, does. In order to draw the line between the two sorts, the former will be called true-
and the later pseudo-vectors. Accordingly, there are four classes of vectors: true-polar-,
true-axial-, pseudo-polar- and pseudo-axial-vectors. The examples are respectively radius
vector, angular momentum, velocity and angular velocity. Let us add that in most of the
cases, a distinction is not made between the spatial- and time-inversion with words ‘axial’
and ‘pseudo’ identified. We stress however the difference between the two symmetries.

Scalars exhibit different transformation properties, in the same manner as vectors. The
same is true for tensors with more indices. It is even possible for a tensor to have different
indices transforming differently under the same inversion. This will be the case, for exam-
ple, when we analyse the dislocation currents. Let us just add that (proper) rotations are
always represented in the same way independently from the type of scalar/vector/tensor.
Therefore, the representations of the symmetry group will be determined by simple group
multiplication of a proper rotation and the appropriate representations for the symmetries.

Although not of direct interest for our problem, we may begin with scalars. A scalar
is invariant under proper rotations, i.e. Dsc.[T |P ][P |A](Rα) ≡ 1. The first choice of letters T
and P stands for ‘true’ and ‘pseudo’, and the second letter can be P or A if the scalar is
of ‘polar’ or ‘axial’ type. The space- and -time-reflections are represented in the following
way:

Dsc.TP (σv) = 1, Dsc.TP (στ ) = 1, (C.1)

Dsc.TA(σv) = −1, Dsc.TP (στ ) = 1, (C.2)

Dsc.PP (σv) = 1, Dsc.TP (στ ) = −1, (C.3)

Dsc.PA(σv) = −1, Dsc.TP (στ ) = −1. (C.4)

If the scalar representations sounded boring because we could not apply them to the
problems we presented in this thesis, now we turn to vectorial representation and their
products, and as a first example, the strain field is decomposed into physically relevant
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components. Let us suppose that a two-dimensional vector is represented by a column of
length two (i.e. (ax, ay)

T ), and the 2+1-dimensional vector by a column with the first two
elements corresponding to the spatial indices and the third one to the temporal index (i.e.
(ux, uy, uτ )

T ). A proper 2D-rotation is represented by the matrix

D[R(α)] =

 cosα − sinα 0
sinα cosα 0

0 0 1

 , (C.5)

when acting on a three-vector. The two-dimensional (spatial) representation D, needed
for ‘flavour’ representations is given by simple erasing of the last column/row. We also
need to know how to represent reflections. The temporal inversion is represented by a
unit matrix for representations of true-vectors and by a negative unit matrix for pseudo-
vector representations. When defining spatial reflection representation, a certain axis has
to be chosen, say x, to serve as the reflection axis. Then, the polar-vectors transform
according to DP [σv] = diag(−1, 1, 1), and axial-vectors according to the unit matrix. Of
course, the two-dimensional representation is again obtained by taking only the first two
columns/rows.

For our first example, the strain field, we also need to determine the representation
according to which the derivatives transform. This is a standard exercise in the general
relativity which we repeat here. Begin with

∂

∂x′µ
=
∂xν

∂x′µ
∂

∂xν
. (C.6)

Then, express the old coordinate as xν = [D−1]νµx
′µ and use the unitarity of the repre-

sentation [D−1]νµ = D ν
µ , to find that the derivative transforms under the representation

DT which is obtained by transposing representation D. Here and later in the text, unless
stated otherwise, the plain letter D represents the representation under which the coordi-
nates transform. That is the true-polar representation for spatial indices and pseudo-polar
for the temporal index.

Knowing that the displacements transform the same way as a radial vector, that is as a
true-polar-vector, we find that the strain transforms under the product of representations

∂µ′u
a′ = [DT ⊗D]µa′

µ′a∂µu
a. (C.7)

This composite representation is decomposed into the Clebsch-Gordon series of the irre-
ducible representations of the group of symmetries [181]. In the case of the C∞vh group,
the series read

D ⊗D = A+
0 +B+

0 + E−
1 + E+

2 . (C.8)

Let us first clarify the sub- and super-scripts of the representations. The subscript indi-
cates the ‘spin’ of the representation. The super-scripts tell us whether the representation is
invariant under the temporal reflection or not (+ means it is invariant). A0 is the represen-
tation invariant under rotations (spin-0), and also under spatial reflection, differently from
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B0 (also spin-0) that changes sign under σv. The spinful (two-dimensional) representations
Em always see the spatial inversion as a conjugation. A proper rotation is represented as
eimατz

with τ z being the Pauli matrix. The representation properties will help us identify
strains components.

Through projection operators [181], the eigenvectors (irreducible representation vec-
tors) are found:

|A+
0 〉 = ∂xu

x + ∂yu
y = ∂iu

i, (C.9)

|B+
0 〉 = ∂xu

y − ∂xu
y = εij∂iu

j, (C.10)

|E−
1 ,±〉 =

1√
2

(∂τu
x ± i∂τu

y) = ∂τu
±, (C.11)

|E+
2 ,±〉 = 1

2
(∂xu

x − ∂yu
y)± i

2
(∂xu

y + ∂xu
y) = ∂∓u

±. (C.12)

Note that the first two strains can also be expressed in holomorphic (±) coordinates as
∂+u

+ ± ∂−u
−. Now we turn to the physical interpretation. The |A+

0 〉 is clearly the com-
pression strain. It is invariant to all the transformations of the symmetry group. The next
is the rotation strain |B+

0 〉 which sees only the spatial inversion. The spin-1 doublet |E−
±1〉

consists of two velocities written in holomorphic fashion. These velocities change sign
under the time reflection and acquire phase e±iα upon rotation. Spin two strains |E+

±2〉
represent shear, and in this notation these may be viewed as a helical composition of the
electric and magnetic shear.

Let us add for curiosity that these strains can be related to the vibrational degrees of
freedom on a triangular lattice through the same analysis of the irreducible representa-
tions, now of the group C3vh. The equivalence of the two is the reason behind the simple
(isotropic) elastic tensor found in two-dimensional triangular lattice. Already in three spa-
tial dimensions, the irreducible representations of the group of rotations O(3) differ from
the irreducible representations associated with the vibrations of the simplest diamond lat-
tice, which leads to the anisotropic elastic tensor as measured quite some time ago [182].
Talking about the vibrational microscopic degrees of freedom, we may also mention a simi-
lar classification of strains by Ahn et al. [183]. Their work is, however, focused on a square
lattice which makes space for additional degrees of freedom.

After this interesting ‘dissection’ of the strain degrees of freedom we may find its impli-
cations on the form of the isotropic elastic tensor. When two irreducible tensor components
are multiplied, their spins add up, while their parities (under each reflection separately)
multiply. Since the only allowed terms in action must be invariant under all elements of
the group representation, the only admitted terms must have total spin zero and contain
an even number of ‘pseudo’ and an even number of ‘axial’ components. In the case of the
linear elasticity, the most general action allowed by the C∞vh symmetry group has form

Linv =
1

2

[
KA(∂iui)

2 +KB(εij∂iu
j)2 +K1∂τu

+∂τu
− +K2∂−u

+∂+u
−] . (C.13)

The coefficient KA is clearly the compression modulus κ. K2 is the shear modulus µ and K1

is the mass density ρ. This simplified approach cannot rule out the term with KB. This is
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a consequence of the fact that we use only linear (matrix multiplicative) representations in
our approach whereas the true physical rotation, in addition, shifts the local rotation field
by a constant. The same form of the linear elastic energy as that of Eq. (C.13) could have
alternatively been obtained by demanding that only singlet components of the elasticity
tensor Eq. (3.9) may appear in the action.

Given the fact that stress fields transform under the same representation as strain
(Eq. (C.7)), everything said for the strains from the symmetry point of view, applies also
to the stresses. There are compressional (σa

a), rotational (εabσ
b
a) and two shear stresses

of spin-2 which were identified earlier in Eq. (4.79). The kinetic momenta densities form
spin-1 stress fields σ±τ . Notice that the Ehrenfest constraint has a precise meaning in terms
of the symmetry: the stress component sensitive to the spatial reflection is not allowed. In
analogy with the action Eq. (C.13) one can construct the minimal dual stress action allowed
by symmetry. Contrasting its constants with the ‘inverse’ elasticity tensor it readily follows
that Kσ

A = 1/(4κ), Kσ
2 = 1/(4µ) and Kσ

1 = 1/ρ, illustrating how each coupling constant
remains ‘confined’ to its own symmetry sector even after the dualization.

Finally, we arrive at most important and most interesting part of this appendix, the
irreducible components of the dislocation currents. By identifying these, the appropriate
gauge degrees of freedom are automatically recovered. One should, however, be careful
since gauge fields do not have direct physical meaning and can be shifted by an arbitrary
gauge transformation. Nevertheless, the experience from the chapter 4 taught us that after
a definite gauge fixing has been chosen, one can correspond the dual stress gauge degrees
of freedom with the physical degrees of freedom such as compression and shear.

We denote that repersentation with DJ so that we have

Ja′

µ′ = [DJ ]a
′a

µ′µJ
a
µ . (C.14)

The left-hand side can be expressed in the original strains

Ja′

µ′ = εµ′ν′ρ′∂ν′∂ρ′u
a′ = εµ′ν′ρ′D

T
ν′νD

T
ρ′ρD

a′a∂ν∂ρu
a, (C.15)

as well as the right-hand side

[DJ ]a
′a

µ′µJ
a
µ = [DJ ]a

′a
µ′µεµνρ∂ν∂ρu

a. (C.16)

The identity that follows is contracted with tensor ελνρ to find

[DJ ]a
′a

µ′µ =
1

2
εµ′ν′ρ′εµνρD

T
ν′νD

T
ρ′ρD

a′a. (C.17)

This representation is decomposed into the Clebsch-Gordan series

DJ = A−
0 +B−

0 + E+
1 + E−

2 , (C.18)

which show one interesting difference compared to Eq. (C.8): the time-reflection status is
here inverted. The static currents |E+

1 〉 = J±τ are time-inverse invariant as they represent
the static dislocation charge. The dynamical currents are, on the other hand, sensitive
to the time-inversion: the compression current |A−

0 〉 = εijJ
j
i , the rotation current |B−

0 〉 =
J i

i and the doublet of shear currents |E−
2 〉 = J∓± . On this level, the glide constraint is

exclusively associated with the dynamical singlet current |A−
0 〉.
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[162] H. Fröhlich, Phys. Rev. 79, 845 (1950).
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Samenvatting

Op macroscopische schaal bestaan objecten zoals bijvoorbeeld een stoel, een fles wijn of
een glas water uit ontzettend veel atomen. Om precies te zijn is het aantal deeltjes typisch
van de orde 1023. Afhankelijk van de randvoorwaarden, temperatuur bijvoorbeeld, kan het
water in het zojuist genoemde glas verkeren in een gas, vloeibaar of vaste toestand. Deze
eigenschappen op macroscopische schaal worden bepaald door processen op microscopische
schaal. Typisch hebben de atomen waaruit de vaste stof is opgebouwd een kinetische
energie en doordat ze met elkaar wisselwerken hebben ze ook een potentiele energie. Een
van de belangrijke grootheden die de fase van het fysische systeem bepaald is de verhouding
van deze potentiele en kinetische energie.

In de afwezigheid van interacties tussen de deeltjes gedraagt het systeem zich als een
ideaal gas dat zich ofwel klassiek, zoals in het geval van waterdamp, ofwel bij lage tem-
peraturen quantum mechanisch gedraagt. In het laatste geval blijkt dat de deeltjes zich
op twee fundamenteel verschillende manieren gedragen, en beschreven worden door óf de
Fermi-Dirac statistiek óf de Bose-Einstein statistiek.

Als we de interacties tussen de deeltjes meenemen dan blijkt dat we in de limiet van
zwakke wisselwerking het gas kunnen beschrijven door een ideaal gas van ‘aangeklede’ of
quasi-deeltjes. Het fysische beeld dat hierbij hoort is dat een deeltje dat door het gas heen
vliegt de aanwezigheid van omringende deeltjes voelt en deze met zich meetrekt. Effectief
vormt zich dan een deeltje plus wolk van deeltjes die collectief door het gas propageren.
Van der Waals gassen, de conventionele BCS supergeleiders, Bose-Einstein condensaten,
electronen in metalen en neutronen in neutronensterren zijn slechts enkele voorbeelden van
wisselwerkende veel-deeltjes systemen die zich gedragen volgens dit beeld.

Echter, er zijn systemen waarvoor de interactie-energie tussen de deeltjes domineert en
de kinetische energie verwaarloosbaar is. Voor de beschrijving van deze systemen kunnen
we het hierboven geschetste beeld van een gas van individuele quasi-deeltjes niet langer
toepassen.

Gelukkig is er een manier om ook deze gevallen te behandelen. De fase waarin het
systeem verkeert als de interactie energie veel groter is dan de kinetische energie kan worden
beschouwd als een “ultiem gecorreleerde” toestand omdat elk deeltje sterk wisselwerkt met
alle andere deeltjes. In het algemeen heeft de interactie tussen de deeltjes een localizerend
effect en ordent het systeem zich volgens een roosterstructuur opdat de interactie energie
wordt geminimaliseerd. Het Wigner kristal is hier een voorbeeld van. Voor de beschrijving
van deze sterk gecorreleerde of geordende fase kunnen we niet langer gebruik maken van de
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individuele deeltjes maar gebruiken we een nieuwe “duale” theorie. De collectieve excitaties
van de sterk-gecorreleerde grondtoestand van de duale theorie nemen nu de rol van deeltjes
op zich. Om dit punt toe te lichten kan men denken aan phononen, die geluid voortbrengen
in de vaste stof fysika.

Door sterk-gecorreleerde systemen te beschrijven in termen van hun collectieve vrijhei-
dsgraden is het mogelijk om het oorspronkelijke zeer gecompliceerde veel-deeltjes prob-
leem sterk te vereenvoudigen. Bekende voorbeelden van dit soort systemen zijn de hoge-
temperatuur supergeleiders die zijn waargenomen in de zogenaamde “cuprates”. Door
onzuiverheden in de kristal-structuur te introduceren verandert de chemische struktuur
van deze materialen en wordt een overgang tussen twee verschillende grondtoestanden van
de sterk-wisselwerkende electronen vloeistof geinduceerd. De mate waarin onzuiverheden
zijn toegevoegd wordt de doping genoemd. In de afwezigheid van onzuiverheden domineert
de coulomb interaktie en is het systeem een antiferromagnetische isolator. Zodra de dop-
ing toeneemt wordt de antiferromagnetische orde van de grondtoestand verwoest en vindt
een overgang naar de supergeleidende fase plaats. Het blijkt dat er tussen de AF isolator
en de supergeleidende fase nog een fase aanwezig is. In deze zogenaamde ‘stripe phase’
organiseren de gaten zich door de sterke interacties in lijn-achtige structuren. Deze ‘stripe
phases’ is experimenteel waargenomen.

In de supergeleidende fase van de cuprates zijn Cooper-paren met een speciale d-golf
symmetrie aanwezig. Echter, voor de beschrijving van de supergeleidende fase kunnen we
geen gebruik maken van de BCS theorie voor de ‘klassieke’ supergeleiders. De reden hier-
voor is dat de Cooper-paren in dit geval een hoge mate van correlatie vertonen. Er zijn
experimentele aanwijzingen dat de electronen vloeistof in de hoge-temperatuur supergelei-
der op het punt staat om een overgang naar een sterk gecorreleerde toestand met kristalijne
orde te ondergaan. Dit vormt mede een bron van inspiratie voor dit proefschrift.

In dit proefschrift wordt ingegaan op enkele aspecten van deze sterk gecorreleerde syste-
men. Een centraal thema hierbij is de zogenaamde “dualiteit”. In hoofdstuk 2 introduceren
we dit concept en als voorbeeld beschouwen we de Abelse-Higgs dualiteit in 2+1 dimensies.
Door gebruik te maken van zogenaamde duale ijkvelden kunnen zowel de geordende als
de ongeordende fase van het systeem worden beschreven. Expliciet laten we zien dat een
experiment dat de correlaties in geordende fase meet ook geschikt is om correlaties in de
ongeordende fase te meten.

In hoofdstuk 3 introduceren we elasticiteit door middel van een veldentheorie en geven
we een overzicht van zogenaamde topologische defecten. In het bijzonder beschouwen we
een belangrijke topologische kinematische randvoorwaarde, de zogenaamde glide constraint
van dislocaties.

Hoofdstuk 4 vormt de kern van dit proefschrift en richt zich op het gedeeltelijk verd-
wijnen van de kristalijne orde in de elektro-neutrale vaste stof. Om dit smeltproces te
beschrijven maken we gebruik van soortgelijke technieken als in hoofdstuk 2. Het blijkt
dat we de gesmolten fase kunnen voorstellen als een Bose-Einstein condensaat van dislo-
caties. Om preciezer te zijn kunnen we deze fase beschouwen als een intermediaire fase
tussen de superfluide en kristalijne fase.

In hoofdstuk 5 kijken we naar een vaste stof die opgebouwd uit geladen deeltjes. In
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het bijzonder is dit relevant voor de hoge-temperatuur supergeleiders. Wederom kunnen
we de duale theorie opstellen voor dit systeem en het blijkt dat dit een totaal nieuwe
manier is om naar supergeleiding te kijken. De gesmolten fase is een supergeleidende fase
maar het onderliggende mechanisme is totaal verschillend van dat in conventionele BCS
theorie. Bovendien leidt het nieuwe mechanisme tot voorspellingen van niet conventionele
eigenschappen die gemeten zouden kunnen worden. In het bijzonder ligt het binnen de
experimentele mogelijkheden om de theorie te toetsen door te kijken naar het electron
energy loss spectrum. We voorspellen dat in dat spectrum een nieuwe excitatie zal ver-
schijnen. Bovendien zal dit experiment uitsluitsel kunnen geven over de aanwezigheid van
fluctuerende orde in de hoge-temperatuur supergeleiders.
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Morozov, Falk Bruckman and Ana Achúcarro. Finally, few of the people that were not
directly involved in my work, but that I wish to explicitly mention include Dr. Dennis,
Kepa, Jurke, Juan and of course Jelena.




