
Separating computation and coordination in the design of parallel and
distributed programs
Chaudron, M.R.V.

Citation
Chaudron, M. R. V. (1998, May 28). Separating computation and coordination in the design of
parallel and distributed programs. ASCI dissertation series. Retrieved from
https://hdl.handle.net/1887/26994
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/26994
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/26994


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/26994  holds various files of this Leiden University 
dissertation 
 
Author: Chaudron, Michel 
Title: Separating computation and coordination in the design of parallel and distributed 
programs 
Issue Date: 1998-05-28 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/26994


2 The Computational Model

The aim of this thesis is to develop a methodology which supports the separate design of

the computation and coordination aspects of programs. In order to realize this approach,

we need a programming model that supports this separation between computation and

coordination. Existing programming models usually stress only one of these aspects.

For instance, functional and logical programming languages emphasize their declarative

nature and the advantages it has for proving correctness, but deny the programmer

effective means for determining the program’s behaviour. With imperative languages

the programmer has complete control over the operational behaviour of his program.

However, because the control-flow is an integral part of imperative programs, it is difficult

to focus on correctness while abstracting from operational details.

In this chapter we will present the Gamma programming model which has shown to

be well suited for specifying the computation component of a program without imposing

premature constraints on the coordination component. We present a concise semantics

for Gamma programs and a formal logic for reasoning about their correctness.

2.1 The Gamma Programming Model

We start with a brief introduction to Gamma. For more details the reader is referred to

[13] which includes a series of example programs.

The uniform data structure in Gamma is the multiset. Multisets can be formed over

arbitrary domains of values, including integers, reals, booleans and tuples. The simplest

Gamma program is a conditional multiset rewrite-rule, written as x 7→m ⇐ b. Here x

denotes a sequence of variables x1, . . . , xn, m is a multiset expression, and b is a boolean

expression. The free variables that occur in m and b are taken from x1, . . . , xn.

Application of the rule x 7→m ⇐ b to a multiset proceeds by replacing elements in

the multiset satisfying the condition b by the elements that result from evaluating the

multiset expression m. This step is repeated until no more elements are present that

5



6 CHAPTER 2. THE COMPUTATIONAL MODEL

satisfy b. The resulting multiset denotes the outcome of the program.

Example 2.1.1 We introduce a Gamma program for sorting a sequence of numbers into

ascending order. The input sequence is represented by a multiset consisting of value-index

pairs. The Gamma program consists of a single multiset rewrite rule which is defined as

follows

swap =̂ (i, x), (j, y) 7→ (i, y), (j, x) ⇐ x > y ∧ i < j (2.1)

The program executes by exchanging ill-ordered values until there are no more pairs

that satisfy this condition. At that point the resulting multiset represents a well-ordered

sequence. Disjoint pairs can be compared and exchanged in parallel, but this need not

necessarily be the case.

A possible execution for the sorting program is depicted in Figure 2.1.

Figure 2.1: Possible execution of the program swap in a multiset M0 =
{(1, D), (2, C), (3, B), (4, A)}

It is important to note that the Gamma program does not specify in which order

pairs of values are compared and exchanged. Hence the program can be seen as a highly



2.1. THE GAMMA PROGRAMMING MODEL 7

nondeterministic specification of a wide spectrum of sorting strategies. This opens up

the opportunity for a separate specification of the operational aspects of the program.

This gap will be filled by the coordination language that we will present in Chapter 3.

More complex Gamma programs can be built using two basic combinators. Individual

rules can be composed into so-called simple programs [65] using the parallel combinator,

denoted “+”. The constituent rules in parallel composition are executed in any order

(possibly in parallel) until none of the rules can be successfully applied.

Simple programs can in turn be composed using the sequential combinator , denoted

“ ◦ ”. If P1 and P2 are simple programs, then P1 ◦ P2 first executes P2 until its rules

can no longer be applied, after which P1 is executed on the resulting multiset.

The abstract syntax of Gamma programs can be specified as follows. We use r, R

and P to range over the syntactic categories of multiset rewrite-rules, simple programs,

and programs respectively. We use P to denote the set of all Gamma programs.

Syntactic Categories
r ∈ Rule
R ∈ Simple
P ∈ Program

Definition
r ::= x 7→m ⇐ b
R ::= r | R +R
P ::= R | P ◦ P

Figure 2.2: Abstract Syntax of Multiset Transformer Programs

The program terms derivable in this way are “products of sums”; i.e. are of the form

(r1+· · ·+ri) ◦· · ·◦ (rj+· · ·+rn). The purpose of limiting the syntax of program terms to

this form is to exclude the parallel composition of programs that contain sequential com-

position; e.g. P1+(P2 ◦P3). There are two reasons for excluding these forms: firstly, the

syntax thus obtained describes exactly the same set of programs that are definable by the

original Gamma model presented in [12] and [13]. Secondly, the excluded terms present

difficulties with the compositionality of semantics [34]. An additional justification for

the focus on programs in product-of-sums form is a result of Sands [106] which entails

that every Gamma program can be refined by a program that is in product-of-sums form.



8 CHAPTER 2. THE COMPUTATIONAL MODEL

We use the method of structural operational semantics [96] to define the meaning

of Gamma programs. To this end we introduce configurations, denoted 〈P,M〉, where
P is a Gamma program and M is a multiset. A configuration represents the state of

a computation. A configuration can move to another configuration by performing an

action. Such actions are modelled by a relation between configurations. To define the

semantics of Gamma, we use a labelled multi-step transition relation.

A transition is written as 〈P,M〉 σ
 〈P ′,M ′〉 where the label σ is a multiset substitu-

tion which formally describes the rewrite action that transforms M into M ′. A terminal

configuration is written 〈P,M〉√.

The semantics of Gamma is collected in Figure 2.3. The multi-step transition relation

is defined in terms of a single-step transition relation. The latter is distinguished from the

multi-step transition relation by decorating it with a subscript “1”:
σ
 1. This single-step

transition relation will be used in Chapter 3 to link the semantics of the coordination

component to that of the computation component.

The various notations that we use in defining the semantics are best explained by

considering the semantic rule for execution of an individual rewrite rule r = x 7→m ⇐ b:

if v ⊆M : b[x := v] then 〈r,M〉 σ
 1〈r,M [σ]〉 where σ = m[x := v]/v

We write b[x := v] to denote the boolean expression that results from replacing each

free occurrence of xi by vi. We write σ = M/N to denote a multiset substitution σ

which replaces N by M . By M [σ] we denote the multiset that results from applying the

substitution σ to M . More formally, let M ′ = m[x := v], then M [M ′/v] = (M ⊖ v) ⊕
M ′, where ⊕ and ⊖ denote multiset addition and subtraction respectively (their formal

definition can be found in Appendix A.2). Note that for ease of notation we confuse the

sequence v with the multiset consisting of the same elements as v.

When multiple transitions transform disjoint parts of the multiset, then these tran-

sitions do not interfere with each other, hence they can also happen in parallel. This

observation directly leads to the multi-step transition semantics of Gamma, in particular

semantic rule (C4), as defined in Figure 2.3.

We present two variants of a formal definition of non-interference . The first notion is

the most strict: it requires the elements that are retrieved from the multiset to be strictly

disjoint. The second is more flexible: it allows elements to be read1 concurrently by mul-

tiple multiset substitutions. This difference corresponds to exclusive read/exclusive write

1The removal and insertion of identical elements by a single multiset-substitution is interpreted as
reading of those elements.



2.1. THE GAMMA PROGRAMMING MODEL 9

and concurrent read/exclusive write mechanisms found in the classification of architec-

tures for parallel computers. By default, we use Definition 2.1.3.

Definition 2.1.2 Given a multiset M and two multiset substitutions σ1 = M1/N1 and

σ2 = M2/N2, we say that σ1 and σ2 are independent in M , denoted M |= σ1⋊⋉E σ2, if

N1 ⊕N2 ⊆M .

Definition 2.1.3 Given a multiset M and two multiset substitutions σ1 = M1/N1 and

σ2 =M2/N2.

1. We say that σ1 is independent from σ2 in M , denoted M |= σ1 ⊳ σ2, if N1 ⊆
(M ⊖N2) ∪M2.

2. We write M |= σ1⋊⋉σ2 if σ1 and σ2 are mutually independent in M ; i.e. if M |=
σ1 ⊳ σ2 and M |= σ2 ⊳ σ1

The label assigned to a multi-step transition is a combination of the labels of the con-

stituent transitions. The concurrence of multiple multiset substitutions can be formally

described using the composition operator.

Definition 2.1.4 Given two multiset substitutions σ1 = M1/N1 and σ2 = M2/N2, the

composition of σ1 and σ2 is defined as σ1 · σ2 = (M1 ⊕M2)/(N1 ⊕N2).



10 CHAPTER 2. THE COMPUTATIONAL MODEL

(C0) 〈x 7→m ⇐ b,M〉√ if ¬(∃v ⊆M : b[x := v])

(C1) 〈x 7→m ⇐ b,M〉 σ
 1 〈x 7→m ⇐ b,M [σ]〉 if v ⊆M ∧ b[x := v]

where σ = m[x := v]/v

(C2)
〈R,M〉 σ

 1 〈R,M ′〉
〈R,M〉 σ

 〈R,M ′〉

(C3)
〈R1,M〉 σ

 1 〈R1,M
′〉

〈R1 +R2,M〉 σ
 1 〈R1 +R2,M

′〉
〈R2 +R1,M〉 σ

 1 〈R2 +R1,M
′〉

(C4)

〈R,M〉 σ1 1 〈R,M1〉
〈R,M〉 σ2 〈R,M2〉

〈R,M〉 σ1·σ2 〈R,M [σ1 · σ2]〉
if M |= σ1⋊⋉σ2

(C5)

〈R1,M〉√
〈R2,M〉√

〈R1 +R2,M〉√

(C6)

〈P1,M〉√
〈P2,M〉 σ

 〈P ′
2,M

′〉
〈P2 ◦ P1,M〉 σ

 〈P ′
2,M

′〉

(C7)
〈P1,M〉 σ

 〈P ′
1,M

′〉
〈P2 ◦ P1,M〉 σ

 〈P2 ◦ P ′
1,M

′〉

(C8)

〈P1,M〉√
〈P2,M〉√

〈P1 ◦ P2,M〉√

Figure 2.3: Semantics of Multiset Transformer Programs



2.1. THE GAMMA PROGRAMMING MODEL 11

The semantics of Gamma as defined in Figure 2.3 differs from the one presented

in [65]. The latter uses a single-step transition relation which suggests an interleaved

semantics.

The idea behind the coordination language that we will present in Chapter 3 is

that it restricts the otherwise nondeterministic behaviour of Gamma programs, hence it

cannot introduce new behaviour. Consequently, the semantics we choose for programs,

limits the behaviours we can obtain using a coordination language. Because we want to

distinguish between parallel and sequential execution at the coordination level, we need

this distinction to be present in the semantics of Gamma.

In Section 9.2.3 of Chapter 9 we will describe a technical anomaly of single-step se-

mantics that occurs in the context of refinement. The fact that multi-step semantics does

not exhibit this anomaly is another reason for preferring it over single-step semantics.

The multi-step operational semantics of Figure 2.3 and the single-step operational

semantics of [65] endow Gamma programs with different behaviour (in the sense of the

possible (sequences of) transitions), but induce the same functionality (input-output

relation) for programs.

To prove the functional equivalence between the multi-step and single-step semantics,

we formalize the notion of input-output relation. To this end, we first define the reflexive

transitive closure of the transition relation and a “may diverge” predicate.

Definition 2.1.5 We define the reflexive transitive closure of the transition relation,

denoted  *, by

〈P,M〉 〈 〉
 *〈P,M〉 〈P,M〉 σ

 〈P ′,M ′〉
〈P,M〉 σ

 *〈P ′,M ′〉

〈P,M〉 σ1 *〈P ′,M ′〉
〈P ′,M ′〉 σ2 *〈P ′′,M ′′〉
〈P,M〉σ1·σ2 *〈P ′′,M ′′〉

The reflexive transitive transition relation uses labels σ which denote sequences of

individual labels. For convenience we identify the singleton sequence 〈 σ 〉 with its only

element σ.

Definition 2.1.6 A configuration 〈P,M〉 may diverge, denoted 〈P,M〉↑, if and only if

〈P,M〉 = 〈P0,M0〉 and for all i ≥ 0 there exists a σi such that 〈Pi,Mi〉 σi−→〈Pi+1,Mi+1〉.

Definition 2.1.7 The capability function for programs C : P × M → P(M) ∪ {⊥} is



12 CHAPTER 2. THE COMPUTATIONAL MODEL

defined as

C(P,M) = {⊥ | 〈P,M〉↑} ∪ {M ′ | 〈P,M〉 σ
 * 〈P ′,M ′〉√}

Example 2.1.8 Consider the sorting program from Example 2.1.1 and an initial se-

quence 〈 13, 7, 97 〉. Then C(swap, {(1, 13), (2, 7), (3, 97)}) = {{(1, 7), (2, 13), (3, 97)}}.

We show the functional equivalence of the multi-step and single-step semantics for

simple programs. The generalization to arbitrary Gamma programs is straightforward.

The multi-step semantics for simple Gamma program consists of the inference rules

(C0), (C1), (C2), (C3), (C4) and (C5) from Figure 2.3. The single-step semantics consist

of inference rules (C0), (C1), (C2), (C3) and (C5). We use C1 to denote the capability

function for the single-step semantics.

First, we show that for every multi-step transition there exists a sequence of single-

step transitions, denote  1
*, that has the same effect on the multiset.

Many of the lemmas in this thesis, for example Lemma 2.1.9, are of the form “if

some transition 〈P,M〉 σ
 〈P ′,M ′〉, then some conclusion”. The method of structural

operational semantics [96] ensures that every transition is derived by a finite number of

inferences using the semantic rules. This allows statements of the aforementioned type,

to be proven by induction on the depth of this inference tree. This method is called

proof by transition induction . This technique is used the proof of Lemma 2.1.9.

Lemma 2.1.9 Let P be a simple program. If 〈P,M〉 σ
 〈P,M ′〉, then there exists a

sequence of single-step transitions

〈P,M0〉 σ1 1 〈P,M1〉 . . .
σi 1 . . . 〈P,Mn−1〉 σn 1 〈P,Mn〉

such that M0 =M and Mn =M ′ and σ = σ1· . . . ·σn.

Proof By transition induction: consider the possible ways in which the last inference

of the transition 〈P,M〉 σ
 〈P,M ′〉 may have been made.

• by (C2) from 〈P,M〉 σ
 1 〈P,M ′〉. Then the result holds directly.

• by (C4) from 〈P,M〉 σ1 1 〈P,M ′′〉 and 〈P,M〉 σ2 〈P,M ′′′〉 where M |= σ1⋊⋉σ2. From

Lemma A.2.6 follows that these transitions may be applied in arbitrary interleaved

order; for instance

〈P,M〉 σ1 1 〈P,M ′′〉 and 〈P,M ′′〉 σ2 〈P,M ′〉



2.2. REASONING ABOUT GAMMA PROGRAMS 13

By the induction hypothesis we get for the latter transition that there exists a

sequence of single-step transitions

〈P,M0〉
σ′
1 1 〈P,M1〉 . . .

σ′
i 1 . . . 〈P,Mn−1〉

σ′
n 1 〈P,Mn〉

such that M0 = M ′′ and Mn = M ′′′ and σ2 = σ′
1· . . . ·σ′

n. The result follows from

concatenation of this sequence of single-step transitions to 〈P,M〉 σ1 1 〈P,M ′′〉.

�

Theorem 2.1.10 Let P be a simple program. Then, ∀M : C(P,M) = C1(P,M).

Proof We prove that C(P,M) ⊆ C1(P,M) and C1(P,M) ⊆ C(P,M).

• C(P,M) ⊆ C1(P,M): By Lemma 2.1.9 follows that every multi-step transition can

be mimicked by a sequence of single-step transitions. By induction on the length

of the transition sequence follows that the single-step semantics can mimic any

sequence of multi-step transitions (be it a finite or infinite sequence).

• C1(P,M) ⊆ C(P,M): This follows from the fact that the inference rules for the

single-step semantics are a subset of the inference rules for the multi-step semantics.

�

In the next section we will present a formal method for reasoning about Gamma

programs.

2.2 Reasoning about Gamma Programs

In this section we briefly introduce a method for reasoning about Gamma programs

that is inspired on the UNITY logic [23] and its application to multiset transformer

programming as first described in [79]. This method complements the methods proposed

in [12] in that it is suitable for the a-posteriori verification of programs. Furthermore,

it enables us to establish properties of Gamma programs that we can exploit in later

stages of development where we concentrate on refinement of coordination strategies for

Gamma programs.



14 CHAPTER 2. THE COMPUTATIONAL MODEL

We introduce a small repertoire of basic properties that suffices for the applications

in this thesis. It is straightforward to extend this repertoire with other properties (such

as appear in UNITY [23] or other temporal logics).

We write quantified predicates on multisets in the following way.

[[quantifier variable-list : range-expression : boolean-expression ]]multiset

The variables that occur in the variable-list range over all values in the range-expression

that are present in a given multiset.

[[∀x : ran(x) : p]]M ⇔ ∀v : v ⊆M ∧ ran(v) : p[x := v]

[[∃x : ran(x) : p]]M ⇔ ∃v : v ⊆M ∧ ran(v) : p[x := v]

For example, [[∀s, i, xi : (X , s, i, xi) : s ≥ 0]]M should be read as: ‘for all values s, i, xi

such that there is a tuple (X , s, i, xi) in multiset M , holds that s is greater than or equal

to zero”.

Following [23] we also use quantified expressions (over multisets) where a binary,

associative and commutative operator with a unit element is used instead of a quantifier2.

[[ operator variable-list : range-expression : numerical-expression ]] multiset

For example, [[ + t, i, z : (Z, t, i, z) : t]]M denotes the sum of all values t for which there

is a tuple (Z, t, i, z) for some t, i and i in multiset M . If the range of the quantification

is empty, then the value of the expression is the unit element of the operator. The unit

elements of min, max , +, ∗ are ∞, −∞, 0 and 1 respectively.

In addition, we use the symbol ‘#’ as a counting quantifier (as introduced by [61]).

Formally,

[[#x : p]]M = Σa∈Af(a) where f(a) =




M(a) if p[x := a]

0 otherwise

For example, [[(#s, i, x : (X , s, i, x)) : true]]M denotes the number of tuples of the form

(X , s, i, x) in the multiset M .

In contrast to [23], we define the properties of our logic in terms of the formal opera-

tional semantics of programs (Figure 2.3). Let q, q′ be quantified predicates on multisets,

2Although this notation is a debatable deviation from the mathematical convention, it constitutes
a uniform notation and avoids long subscripts (especially with

∑
or

∏
) which regularly occur when

working with tuples rather than numbers.



2.2. REASONING ABOUT GAMMA PROGRAMS 15

letMi,M
′ etc. denote multisets. Let 〈P,M0〉 be the initial configuration of some program

P .

• initially q iff [[q]]M0

• q unless q′ iff

(∀P ′, P ′′,M ′,M ′′ : 〈P,M0〉 *〈P ′,M ′〉 〈P ′′,M ′′〉 : ([[q ∧ ¬q′]]M ′ ⇒ [[q ∨ q′]]M ′′)

From an operational point of view, q unless q′ means that if q holds at some point of

the computation, and q′ does not, then after the next transition, either q continues

to hold or q′ starts to hold.

• stable q iff q unless false

A predicate q is stable, if, once predicate q holds at some point of the computation,

it will continue to hold. However, q may never start to hold.

• invariant q iff initially q ∧ stable q

A invariant q is a stable predicate that holds throughout the computation.

In addition to these, we introduce the termination condition, denoted †P , that char-
acterizes the final state(s) of a (simple) program. Enabledness of a (simple) program,

which is dual to termination, is denoted ♮P .

[[♮(r1 + . . .+ rn)]]M ⇔ ∃i : 1 ≤ i ≤ n : (∃v : v ⊆M : bi[x := v])

[[†(r1 + . . .+ rn)]]M ⇔ ∀i : 1 ≤ i ≤ n : (∀v : v ⊆M : ¬bi[x := v])

The termination condition of a program can be derived in a syntactical manner by

negating the conditions of the rewrite rules that constitute the program.

Lemma 2.2.1 Let P = r1 + . . .+ rn be a simple program.

If 〈P,M〉√, then ∀i : 1 ≤ i ≤ n : [[†ri]]M

Proof By transition induction using the semantics from Figure 2.3 follows that

〈P,M〉√ ⇔ (∀i : 1 ≤ i ≤ n : 〈ri,M〉√). The result follows from 〈ri,M〉√ ⇔ [[†ri]]M .

�

A specification of the desired output of a program is called that program’s postcon-

dition. The postcondition of Gamma programs can be specified using the quantified

predicates introduced above.



16 CHAPTER 2. THE COMPUTATIONAL MODEL

The correctness of a Gamma program can be established by showing that it satisfies a

number of properties which together imply the postcondition. A good start for deducing

properties of the output of a Gamma program is by calculating its termination condition.

In addition to the termination condition, it may be necessary to find a suitable collection

of invariants such that their conjunction implies the postcondition.

In the next section we will briefly illustrate this method by proving the correctness

of the Gamma program swap for sorting from Example 2.1.1.

Correctness of the Sorting Program

We assume the input to the sorting program swap is a sequence a0 = 〈 a1, . . . , an 〉. The
sorting program is correct if it produces a rearrangement of the elements of the sequence

in nondecreasing order.

Definition 2.2.2 A sequence l = 〈 l1, . . . , ln 〉 is sorted iff

∀i, j : 1 ≤ i, j ≤ n : i < j ⇒ li ≤ lj (2.2)

A pair of elements from the sequence which violates (2.2), is called an inversion.

Hence, the sorted sequence is characterized by having no inversion.

The initial sequence a is represented by the multiset M0 = {(ai, i) | 1 ≤ i ≤ n}. The
Gamma program for sorting consists of the single rewrite rule swap which exchanges two

elements that form an inversion.

swap =̂ (i, x), (j, y) 7→ (i, y), (j, x) ⇐ x > y ∧ i < j (2.3)

Generally, the postcondition of a Gamma program falls into two parts: an existential

part and a universal part . The existential part states that certain elements are present

in the multiset and the universal part states that these elements are a solution to the

problem.

To formally express the postcondition for the sorting program we introduce the fol-

lowing auxiliary definition.

Definition 2.2.3 Let l be a sequence and let k be some value. Then l ↓ k denotes the

number of occurrences of k in l.

For an initial sequence a, the postcondition can be expressed as follows



2.2. REASONING ABOUT GAMMA PROGRAMS 17

1. Existential: ∀i : 1 ≤ i ≤ n : #(i, x) = 1

2. Universal:

(a) ∀i : 1 ≤ i ≤ n : a ↓ ai = (#(j, x) : x = ai)

(b) ∀i, j, x, y : (i, x), (j, y) : i < j ⇒ x ≤ y

We will proceed according to the following strategy. First, we will calculate the

termination predicate of the sorting program. Next, we examine which properties need

to hold in addition to the termination predicate such that the postcondition is met and

attempt to prove one or more invariants which imply these additional properties. Finally,

we prove that the program terminates.

Hence, for the sorting program, we first calculate the termination predicate. The

termination predicate †swap implies condition 2(b) of the postcondition. Next, we show

that the remaining properties 1 and 2(a) are invariants of the sorting program swap.

Lemma 2.2.4 invariant ∀i : 1 ≤ i ≤ n : a ↓ ai = (#(j, x) : x = ai)

Proof

• initially : follows from the definition of M0.

• stable : We show that the property is preserved by every possible individual ex-

ecution of swap. Assume the property holds in M and 〈swap,M〉 σ
 1 〈swap,M ′〉.

Hence σ = {(i, x), (j, y)}/{(j, x), (i, y)} where i < j and x > y. From the fact that

σ inserts the same values x and y as it removes, follows that the property continues

to hold.

�

Lemma 2.2.5 invariant ∀i : 1 ≤ i ≤ n : #(i, x) = 1

Proof Analogous to Lemma 2.2.4. �

We finish by showing that the program swap terminates. To this end, we define

a metric I that maps a multiset M onto the number of inversions in (the sequence

represented by) M

I(M) = (+i, j, x, y : (i, x), (j, y) ∈M : i > j ∧ x < y : 1)



18 CHAPTER 2. THE COMPUTATIONAL MODEL

Because the initial sequence is finite, the number of inversions is finite. Furthermore,

〈swap,M〉 σ
 1 〈swap,M ′〉 implies I(M ′) < I(M). The number of inversions is bounded

from below because there can be no fewer than zero inversions. We conclude that the

program terminates.

2.3 Concluding Remarks

In this chapter we have presented the Gamma model and provided it with a formal

semantics in terms of a labelled multi-step transition system. This semantics will be used

in the next chapter for defining the semantics of a coordination language for Gamma.

Based on the semantics of Gamma we have defined a logic for reasoning about pro-

grams. We illustrated a method for using this logic by showing how it can be used to

prove the correctness of a sorting program. A more elaborate example of the application

of the logic can be found in Chapter 7 where we use it to prove the correctness of a

Gamma program for solving triangular systems of linear equations.


