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CHAPTER 9

M o d e c o u n tin g in h ig h -d im e n s io n a l o rb ita l a n g u la r

m o m e n tu m e n ta n g le m e n t

We s tu d y th e h igh -d im en s io n al o rb ital an gu lar m o m en tu m (OA M ) en tan glem en t c o n -

tain ed in th e s p atial p ro fi les o f tw o q u an tu m -c o rrelated p h o to n s . Fo r th is p u rp o s e, w e

u s e a m u lti-m o d e tw o -p h o to n in terfero m eter w ith an im age ro tato r in o n e o f th e in terfer-

o m eter arm s . B y m eas u rin g th e tw o -p h o to n vis ib ility as a fu n c tio n o f th e im age ro tatio n

an gle w e m eas u re th e az im u th al S c h m id t n u m b er, i.e., w e c o u n t th e n u m b er o f OA M m o d es

in vo lved in th e en tan glem en t; in o u r s etu p th is n u m b er is tu n ab le fro m 1 to 8 .

M .P. van E x ter, P.S .K . L ee, S . D o es b u rg, an d J.P. Wo erd m an , s u b m itted to Ph y s . R ev. L ett.
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9. M o d e c o u n tin g in h ig h -d im e n s io n a l o rb ita l a n g u la r m o m e n tu m e n ta n g le m e n t

The m os t p op u lar variety of q u an tu m en tan g lem en t in volves the polarization d eg ree of

freed om of two p hoton s ; in this c as e we d eal obviou s ly with two (p olariz ation ) m od es p er

p hoton [7, 8 , 23 ] . R ec en tly, there has been a lot of in teres t in s patial en tan g lem en t of two

p hoton s ; in this c as e the n u m ber of m od es p er p hoton c an be m u c h larg er than two s o that

en tan g lem en t is c orres p on d in g ly (in fac t, ex p on en tially) ric her [ 8 9 – 9 1, 9 9 – 103 ] . This in -

teres t is m otivated , fu n d am en tally, by the d es ire to u n d er s tan d the n atu re of q u an tu m en -

tan g lem en t in a hig h-d im en s ion al H ilbert s p ac e. F rom the p oin t of view of ap p lic ation s the

hig h-d im en s ion al c as e is im p ortan t s in c e it hold s p rom is e for im p lem en tin g hig h-d im en s ion al

alp habets for q u an tu m in form ation , e.g . for q u an tu m key d is tr ibu tion [104 ] . A p op u lar ba-

s is for the s p atial m od es is the bas is in whic h the m od es are d is tin g u is hed on ac c ou n t of

their orbital an g u lar m om en tu m (OAM ) [100– 102]. An is s u e of m u c h d is c u s s ion in hig h-

d im en s ion al en tan g lem en t, OAM or otherwis e, is how m an y m od es are in volved , beyon d

the s tatem en t that this n u m ber is (m u c h) larg er than 2 [3 9 , 9 9 – 102, 105 ]. I n this c hap ter we

d em on s trate a p rac tic al m ethod to q u an tify the n u m ber of OAM s p atial m od es in volved in

bip hoton en tan g lem en t; in ou r ex p erim en t this n u m ber has been varied in a c on trolled way

from 1 to 8 . This res u lt has been ac hieved by u s in g a s p ec ial two-p hoton in terferom eter.

Ou r two-p hoton in terferom eter c on tain s an im ag e rotator in on e of its ar m s (s ee F ig . 9 .1).

S im ilar in terferom eters with bu ilt-in rotation have on ly been tes ted at the one -ph oton level,

where the rotation has been lin ked to a top olog ic al (B erry) p has e [106 ] . A on e-p hoton in -

terferom eter with an im ag e revers al has been s hown to ac t as a s orter between even an d od d

s p atial m od es [107, 108 ]. We will in s tead c on s id er tw o-ph oton in terferen c e in an in terferom -

eter with bu ilt-in rotation .

I n two-p hoton in terferen c e ex p erim en ts , two p hoton s are c om bin ed on a beam s p litter,

before bein g d etec ted . Thes e ex p erim en ts , whic h have been p ion eered by H on g , Ou an d

M an d el (H OM ) [27], d em on s trate an effec tive bu n c hin g between the p hoton s in eac h p air,

bu t on ly if the op tic al beam s have g ood s p atial an d tem p oral overlap . M ore rec en t vers ion s of

thes e “ H OM ” ex p erim en ts s tu d y the g en eration of s p atial an ti-bu n c hin g [ 9 0], an d the effec t

of a m od ifi ed p u m p p rofi le (TE M 01 vers u s TE M 00) on the in terferen c e p attern (bu n c hin g

vers u s an ti-bu n c hin g ) [ 8 9 , 9 1].

The key q u es tion that we will ad d res s is what the obs erved two-p hoton in terferen c e in

ou r two-p hoton -in terferom eter-with-bu ilt-in -rotation tells u s abou t the s p atial en tan g lem en t

between the two m u lti-m od e beam s . As ou r g eom etry lead s to an effec tive s ep aration of

the rad ial an d az im u thal d eg rees of freed om , the ex p erim en t p rovid es in form ation on the

en tan g lem en t between the orbital an g u lar m om en ta (OAM ) of the two p hoton s [100– 102].

We will s how that the ex p erim en t allows to m eas u re the az im u thal S c hm id t n u m ber, i.e., it

allows to c ou n t the n u m ber of en tan g led OAM m od es .

F ig u re 9 .1 s hows a s c hem atic overview of ou r two-p hoton in terferom eter. We m ild ly

foc u s lig ht from a kryp ton ion las er (λ = 4 07 n m , θp = 0.5 0 m rad d iverg en c e) on to a 1-m m -

thic k β -bariu m borate (B B O) c rys tal to g en erate q u an tu m -en tan g led p hoton p air s at 8 14 n m

via (typ e-I) s p on tan eou s p aram etr ic d own -c on vers ion . Thes e twin p hoton s travel alon g the

in d ivid u al in terferom eter arm s , on e of them throu g h an im ag e rotator, before they are c om -

bin ed at a beam -s p litter. Two-p hoton in terferen c e is obs erved by rec ord in g the n u m ber of

c oin c id en c es as a fu n c tion of the d elay ∆t between the two arm s with s in g le-p hoton c ou n ter s

(S P C ). The lim ited d etec tion ban d wid th (5 n m ) an d d etec tion an g le (< 7 m rad ) as s u re op er-

ation in the s o-c alled thin -c rys tal lim it [ 3 4 ] , where p has e-m atc hin g is au tom atic ally fu lfi lled .
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9. Mode counting in high-dimensional orbital angular momentum entanglement

Figure 9 .1 : Schematic view of the experimental setup, representing a two-photon inter-

ferometer with an image rotator R(θ ) in one arm. T he image rotator R(θ) consists of

four out-of-plane mirrors.

In this limit, the spatial properties of the detected two-photon field are solely determined by

the pump profile.

We study the effect of an image rotation R(θ) on the two-photon interference under a

symmetric TEM00 pump profile and for different aperture sizes, positioned approximately in

the far field at L = 1.5 m from the crystal. The apertures allow us to control the detected

number of entangled spatial modes which, together with the rotation angle θ , are the essen-

tial parameters in our experiment. We typically use an asymmetric configuration, where one

circular aperture is much larger than the other and thereby effectively “fully open”. We call

the setup depicted in Fig. 9.1 “even”, as it has an even number of mirrors in the interferom-

eter (M1 and M2). The experimental results depicted in Figs. 9.2-9.4 have, however, been

obtained with an “odd” number of mirrors (see below).

Figure 9.2 shows the measured coincidence rate as a function of the time delay ∆t at a

fixed rotation angle of θ = −30◦. The reduced coincidence rate around ∆t = 0 demonstrates

how two-photon interference produces an effective bunching of the two incident photons in

either of the two output channels [27]. The shape of the interference pattern is the same

for both geometries: its width of ≈ 260 fs (FWHM) is Fourier-related to the transmission

spectrum of our filters (not shown in Fig. 1) and agrees within a few percent with the value

expected for a ∆λ = 5 nm bandwidth. The modulation depth or so-called HOM visibility,

however, is quite different, being 89.5±0.5 % for the 1 mm aperture and only 15.5±0.5 %

for the 10 mm aperture, the other aperture being “fully open” in both cases.

The reduced visibility implies a loss of entanglement and indicates the presence of spatial

labeling. If the aperture size and image-rotation angle allow one to decide which of the two

photons exiting the beamsplitter travelled which path in the interferometer, the two-photon

interference will disappear. This discrimination can be realized by any possible imaging de-

vice (between beamsplitter and detector) and even does not need to be applied; it is sufficient

if it can be done “only in principle”. Experiments with an even number of mirrors always

yielded visibilities close to 100% irrespective of rotation angle; apparently labeling occurs

only when the total number of mirrors in the interferometer is odd.

Coincidence measurements like those presented in Fig. 9.2 were repeated for various
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9. Mode counting in high-dimensional orbital angular momentum entanglement

Figure 9.2 : Two-photon coincidence rate versus the time delay ∆t between the two

interferometer arms, measured at a fixed rotation angle of θ = −30
◦ behind a 1 mm

aperture (dots) and a 10 mm aperture (squares). The coincidence rate measured for the

1 mm aperture has been multiplied by the area ratio (≈ 100×) for a direct comparison

with the other geometry.

aperture sizes. Combining these results lead to Fig. 9.3, which shows the HOM visibility at a

fixed rotation angle of θ =−30◦ as a function of the aperture diameter. The drop in visibility

at larger apertures illustrates the above discussion on spatial labeling. The diffraction limit

imposed by the smaller apertures frustrates the observation of such labeling.

Figure 9.3 : Two-photon visibility versus the aperture diameter 2a, measured at a fixed

rotation angle of θ = −30
◦. The solid curve represents a fit. The two encircled data

points correspond to the interference patterns shown in Fig. 9 .2 .

By repeating the measurements shown in Fig. 9.3 for a series of fixed rotation ang les

we obtain a two-dimensional table of visibilities V (a,θ). By interchanging the rows and
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9. Mode counting in high-dimensional orbital angular momentum entanglement

Figure 9.4 : Two-photon visibility measured as a function of the rotation angle θ be-

hind different aperture geometries (specified by the azimuthal Schmidt number Kaz) a n d

b e h in d sin g le - m o d e fi b e r s ( K az = 1). T h e th r e e d a sh e d lin e s h a v e b e e n c a lc u la te d fr o m

E q . ( 9 .1 ).

columns in th is tab le, we now also ob tain th e visib ility V (θ) as a function of rotation ang le

θ for various fi x e d d e te c tio n ge o m e tr ie s . Fig ure 9 .4 sh ows th ese results for four d ifferent

g eometries, wh ich are sp ecifi ed b y th eir az imuth al S ch mid t numb er Kaz (see b elow). A ll

curves are symmetric und er th e op eration θ ↔−θ (θ = 0◦ corresp ond s to no imag e rotation)

and p eriod ic in θ ↔ θ +18 0◦.

For d etection b eh ind sing le-mod e fi b ers (lab eled as Kaz = 1) th e ob tained visib ilities of at

least 9 8 % , ind ep end ent of θ . A s th e fund amental mod e d etected b y th ese fi b ers is rotationally

symmetric, sp atial lab eling and th us loss of interference will not occur und er any imag e

rotation. For free-sp ace d etection b eh ind small ap ertures (small Kaz) we ob serve a relatively

mild effect of imag e rotation on th e sp atial entang lement. For larg er ap ertures, th is effect

is much more d rastic and lead s to a visib ility as low as 4% at θ = 9 0◦ for Kaz = 8 . T h e

reason for th is red uction is th at f ree-sp ace d etectors also monitor th e h ig h er-ord er mod es. A s

linear comb inations of th ese h ig h er-ord er mod es are no long er invariant und er rotation, th e

correlated imag es at th e two d etectors now p rovid e lab eling information th at allows one to

d isting uish b etween th e interference p ath s followed b y th e two p h otons; a lower visib ility

results.

T h e fi ts in Fig s. 9 .3 and 9 .4 are b ased on th e following analytic ex p ression th at can b e

d erived for th e “ asymmetric od d ” confi g uration with h ard -ed g ed ap ertures [109 ]

V (asinθ) = (1− ex p (−ξ ))/ξ , (9 .1)

wh ere ξ = 2(a/wd)
2 sin2 θ and a is th e ap erture rad ius. T h e d iff raction waist wd = 2Lθp, or

ang ular sp read of one p h oton at a fi x ed p osition of th e oth er, is twice th e siz e of th e p ump in

th e (far- fi eld ) d etection p lane [3 1]. T h e solid curve in Fig . 9 .3 is a fi t b ased on wd = 1.4 mm,

in ag reement with th e mentioned values of L and θp. T h e th ree d ash ed curves in Fig . 9 .4 are
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9. M o d e c o u n tin g in h ig h -d im e n s io n a l o rb ita l a n g u la r m o m e n tu m e n ta n g le m e n t

based on the same value.

We now come to the essence of this chapter, being the q uestion “H ow can we count

the number of orbital angular momentum (OAM ) modes involved in the high-dimensional

entanglement”. The answer follows directly from an expression of V (θ) in terms of OAM

(or l) modes,

V (θ) = ∑
l

Pl cos(2lθ) (9.2)

(we will derive this expression at the end of the chapter). H ere Pl (with ∑l Pl = 1) is the

probability to detected a photon pair with orbital angular momenta (l,−l) (with −∞ < l < ∞).

E q uation (9.2) shows that the observed visibility V (θ) is a weighted sum over contributions

from each group of l-modes that oscillate, with their own angular dependence, between Vl = 1

(H OM dip) and Vl = −1 (H OM peak ). A Fourier transformation of V (θ) directly yields the

modal distribution Pl .

In order to convert the modal distribution Pl into a single number that counts the effective

number of entangled OAM modes, we use the azimuthal Schmidt number as Kaz ≡ 1/∑l P2

l ,

in analogy with the general form for modal decompositions [110,111]. The relation between

the azimuthal Schmidt number Kaz and the full 2D Schmidt number K2D, where the summa-

tion runs over both azimuthal and radial mode numbers, depends on the size of the detecting

apertures. For small apertures we find Kaz ≈ K2D; for large apertures we find Kaz ≈ 2
√

K2D

with a shape-dependent prefactor.

B ased on the above description, we count the number of entangled OAM modes in our

experiment in the following way: For the three lower curves in Fig. 9.4 we first performed

a Fourier analysis of the normalized V (θ)/V (0) to obtain the probability distribution Pl for

each curve. The azimuthal Schmidt numbers that we calculated from these distributions

ranged from Kaz = 1.13 for the 1 mm aperture, to Kaz = 2.9 for the 4 mm aperture, and

Kaz = 8 for the 10 mm aperture, with many values in between. The aperture clearly allows us

to tune the effective number of entangled modes.

We have repeated our measurement series for a symmetric configuration, with eq ual aper-

ture sizes in front of both detectors. The general appearance of this new set of visibilities V (θ)
(not shown) was similar to that measured with one aperture fully open. The small broadening

of the new V (θ) profile as compared to Fig. 9.4 indicates a slight reduction in the effective

mode number Kaz.

I t is instructive to also consider apertures with G au ssian instead of hard-edged trans-

mission profiles (T (r) = exp(−2r2/ã2)), as this allows for a complete (radial and azimuthal)

analytic Schmidt decomposition of the detected field, assuming two identical apertures [112].

This decomposition yields the simple Airy profile [109]

V (θ) =
1

1+(K2D −1)sin2 θ
, (9.3)

where K2D = 1+ 1

2
(ã/wd)

2 is the 2D Schmidt number. The Airy profile has almost the same

shape as the function described by E q . (9.1).

We conclude now with the promised derivation of E q . (9.2). This is based on a description

of the two-photon field as a sum over discrete spatial modes, instead of an integral over a

plane-wave continuum. In this so-called Schmidt decomposition [14], the two-photon field is
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9. Mode counting in high-dimensional orbital angular momentum entanglement

represented by the pure state:

|Ψ〉 = ∑
i

√

λi|ui〉⊗ |vi〉 , (9.4)

where |ui〉 and |vi〉 are two sets of orthonormal transverse modes. The Schmidt number

K = 1/
(

∑i λ 2

i

)

, with ∑λi = 1, quantifies the effective number of participating modes.

G enerally, the Schmidt decomposition of the generated field is very difficult to calculate,

as its spatial extent depends both on the pump geometry and on phase matching [39, 105 ].

We instead consider only the relevant detected field, being the two-photon field behind the

detection apertures. The Schmidt decomposition of this field is quite different and can often

be done analytically [112] when the apertures are small enough to neglect phase-matching,

as is the case in our experiment. The inclusion of the aperture transmission in the detected

two-photon field is the key element in our present analysis.

For the rotationally-symmetric (l = 0) pump that we use, the symmetry of the two-photon

field is such that the Schmidt decomposition of the detected field factorizes as

|Ψ〉in = ∑
l

∑
p

√

λl,p|l, p〉′⊗|− l, p〉′′ , (9.5 )

where l and p are the azimuthal and radial quantum numbers and |l, p〉′ and | − l, p〉′′ are

the Schmidt eigenmodes of the detected field. The mentioned symmetry restricts these

modes to “L aguerre-G aussian-like” field profiles of which the precise radial distribution is

co-determined by the detection apertures. As our amplitude coefficients
√

λl,p already con-

tain the effects of aperture filtering, they will decrease rapidly both for high p and high l

values (high l-states are quite extended even for p = 0). A summation over the radial mode

number p yields the OAM probability Pl = ∑p λl,p.

As a last step, we propagate the two-photon field of Eq. (9.5 ) through our interferom-

eter and calculate the expected two-photon visibility V (θ). This propagation will modify

the two-photon field in the following ways: every mirror refl ection changes the handedness

by inverting the OAM of each l-state from l to −l. The image rotation R(θ) adds a phase

factor exp(ilθ) to each l-state. The relevant beamsplitter operations are the double transmis-

sion, which leaves the l-states unaffected, and the double refl ection, which swaps the labels

and changes the handedness. N one of these operations affect the radial component. As the

detected (l, p) states form a complete orthogonal basis, two-photon interference is only ob-

served between states with identical (l, p) labels in the detection channels. The final result is

Eq. (9.2).

For a more general input state, the calculated visibility V (θ) for an interferometer with

an odd number of mirrors contains terms of the form cos [(l1 − l2)θ ], which translate into

cos(2lθ) if we apply the conservation of OAM (l1 = −l2 = l). For an interferometer with an

even number of mirrors, V (θ) contains terms of the form cos [(l1 + l2)θ ] instead. Our obser-

vation that V (θ)≈ 1 at any angle θ in the “even-mirror geometry”, can thus be interpreted as

a proof of the existence of OAM entanglement; any photon pair with l1 6= −l2 would make

V (θ) angular dependent.

In summary, we have demonstrated how the high-dimensional entanglement of orbital an-

gular momentum (OAM) can be characterized with a two-photon interferometer that contains
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9. Mode counting in high-dimensional orbital angular momentum entanglement

an odd number of mirrors and an image rotator in one of its interferometer arms. We have

shown how a Fourier analysis of the observed angle-dependent visibility V (θ) profile yields

the full probability distribution over the OAM modes involved in the entanglement. Finally,

we have calculated the azimuthal Schmidt number Kaz corresponding to the effective number

of entangled OAM modes.
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