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CHAPTER 8

S p atial lab e lin g in a tw o -p h o to n in te rfe ro m e te r

We stu d y the sp atial c oheren c e of en tan gled p hoton p airs that are gen erated via ty p e-I

sp on tan eou s p aram etric d ow n - c on version ( S PD C ) . B y m an ip u latin g the sp atial overlap

b etw een the tw o d ow n - c on verted b eam s in a H on g-O u - M an d el in terferom eter w e ob serve

the sp atial in terferen c e of m u ltip le tran sverse m od es for an even an d an od d n u m b er

of m irrors in the in terferom eter. We d em on strate that the tw o-p hoton sp atial c oheren c e,

w hic h is q u an tifi ed in term s of a tran sverse c oheren c e len gth, d iffers c om p letely for the

tw o m irror geom etries an d su p p ort this resu lt b y a theoretic al an d ex p erim en tal ex p lan a-

tion in term s of p hoton lab elin g.

P.S .K . L ee an d M .P. van E x ter, Phy s. R ev. A 73, 0 6 3 8 2 7 ( 2 0 0 6 ) .
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8. S p atial lab e lin g in a tw o -p h o to n in te rfe ro m e te r

8.1 I n t r o d u c t io n

In th e las t two d ec ad es , th e u s e of entang led p h oton p air s h as b ec om e a p op u lar tool for

s everal ex p erim ental s tu d ies on b oth th e fou nd ations [ 5 , 8 , 2 7 ] and ap p lic ations [ 1 5 , 5 9 ] of

q u antu m m ec h anic s . O ne of th e m os t fas c inating am ong th es e ex p erim ents h as b een intro-

d u c ed b y H ong , O u and M and el in ord er to m eas u re th e c oh erenc e leng th of a two-p h oton

wavep ac k et p rod u c ed u nd er s p ontaneou s p aram etr ic d own-c onvers ion [2 7 ] . In th is orig inal

two-p h oton interferenc e ex p erim ent, wh ic h we will s im p ly c all th e H O M ex p erim ent, two

entang led p h otons th at arr ive s im u ltaneou s ly at th e two inp u t p orts of a b eam s p litter will

effec tively ’b u nc h ’ and tog eth er ex it one of th e two ou tp u t p orts . A s a c ons eq u enc e, no c o-

inc id enc e events are m eas u red b etween p h oton d etec tors p lac ed in eac h ou tp u t c h annel. A s

s oon as th e two p h otons b ec om e d is ting u is h ab le d u e to a tim e d elay b etween th e two inp u t

b eam s , th e c oinc id enc e rate will reap p ear. Th erefore, th e c oinc id enc e rate m eas u red as a

fu nc tion of th e relative tim e d elay s h ows a m inim u m at z ero d elay, wh ic h is now k nown as

th e H O M d ip .

P ittm an et a l. [ 8 3 ] s h owed th at H O M interferenc e is als o p os s ib le if th e two p h otons

arr ive at d ifferent tim es at th e b eam s p litter, p rovid ed th at th e d etec tors c an not d is ting u is h one

p rob ab ility p ath from anoth er; th e interferenc e ac tu ally oc c u r s b etween th e two p rob ab ility

p ath s of th e p h oton p air and not b etween th e ind ivid u al p h otons . R arity and Tap s ter [ 8 4 ]

d em ons trated th at two-p h oton (H O M ) interferenc e is even p os s ib le b etween two u n c o r rela ted

p h otons from ind ep end ent s ou r c es . Th is ex p erim ent, wh ic h h as b een rep eated b y s everal

g rou p s [ 8 5 , 8 7 ] , is h owever only p os s ib le if th e two p h otons are c om p letely ind is ting u is h ab le.

M ore p rec is ely, th es e p h otons h ave to arr ive at th e s am e tim e (with in th e invers e d etec tion

b and wid th ) and in th e s am e s p atial m od e. E x p er im entally, th is req u ires p u ls ed p u m p ing [ 8 4 ]

and s ing le-m od e (fi b er- c ou p led ) d etec tion, res p ec tively. In c as e of c w p u m p ing , th e ex is tenc e

of two-p h oton interferenc e is in fac t a p roof of tim e entang lem ent; wh ile th e ind ivid u al arr ival

tim es of th e p h otons in th e g enerated p air s are u nd eterm ined , th es e two tim es are s trong ly

q u antu m - c orrelated . If th e d etec tors ob s erve m any trans vers e m od es , a s im ilar arg u m ent

s h ows th at two-p h oton interferenc e is only p os s ib le if th e two p h otons are s p atially entang led ;

wh ile th e s p atial p rofi les of eac h of th e p h otons is u nd eterm ined , a m eas u rem ent on one

p h oton c o-d eterm ines th e p os ition and m om entu m of th e oth er.

S inc e its initial d em ons tration in 1 9 8 7 , th e H O M interferom eter h as b een em p loyed in

s everal ex p erim ental s c h em es . L ik e th e orig inal ex p erim ent, m os t of th es e H O M ex p eri-

m ents foc u s m erely on th e tem p oral c oh erenc e of th e two-p h oton wavep ac k et [ 8 6 – 8 8 ] . O nly

rec ently, s om e p ap ers h ave rep orted on th e s p atial as p ec ts of th e H O M ex p erim ent [ 8 9 – 9 1 ] .

Walb orn et a l. [ 8 9 ] h ave d em ons trated h ow th e trans vers e s p atial s ym m etry of th e p u m p

b eam affec ts th e two-p h oton interferenc e: for a s ym m etr ic two-p h oton p olariz ation s tate, one

c an m ak e th e trans ition from a H O M d ip to H O M p eak b y c h ang ing th e p u m p p rofi le from

even to od d . C aetano et a l. [ 9 0 ] and N og u eira et a l. [ 9 1 ] h ave p erform ed c oinc id enc e im ag -

ing ex p erim ents , m eas u r ing th e c oinc id enc e rate b eh ind two s m all d etec tors as a fu nc tion

of th eir trans vers e p os ition. U s ing an anti- s ym m etr ic p u m p p rofi le, th ey ob s erved s p atial

anti- b u nc h ing of th e two p h otons in th e c oinc id enc e im ag e.

S o far, all rep orted ex p erim ents h ave u s ed p erfec t s p atial overlap b etween th e s ig nal and

id ler b eam s and s tu d ied th e two-p h oton interferenc e m os tly as a fu nc tion of th e tem p oral

d elay in th e H O M interferom eter. S p atial as p ec ts of a H O M interferom eter, in a c ollap s ed
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8.2 T heoretic al d es c ription

type-II collinear geometry, have been studied via the shape, size and displacement of the

detection apertures, but the generated beams remained unchanged [26]. The effect of a pos-

sible size difference between two non-overlapping beams has been studied theoretically in

few-photon interference [92], but beam displacements were not considered. In this paper, we

will present the first experimental results on two-photon interference under the infl uence of

a physical separation of the signal and idler beams in the transverse plane. For this purpose,

we have used a more general HOM interferometer which employs not only a longitudinal and

but also a transverse displacement of one beam with respect to the other.

B y measuring coincidences as a function of the beam displacement we determine the

transverse coherence length of the two-photon wavepacket for different detection geome-

tries, i.e., different numbers of interfering transverse modes. The key question is how the

two-photon spatial coherence manifests in an interferometer with either an even or an odd

number of mirrors in the combined signal and idler path. We find that the mirror geometry of

the interferometer does indeed play a crucial role. When the total number of mirrors is even,

the observed spatial interference is sensitive only to the sum of both coordinates and thereby

to the profile of the pump. In case of an odd number of mirrors, one probes the two-photon

coherence in the difference coordinate, and thereby basically observes the spherical wave-

fronts of point sources. Most of our experiments have been performed with an odd number

of mirrors, a geometry that has not been studied before.

This paper is organized as follows. In Sec. 8.2 we present a theoretical description of

two-photon (HOM) interference for both an even and an odd mirror geometry, including both

temporal and spatial degrees of freedom. Our experimental results can be found in Sec. 8.3,

which is split into the following subsections. After introducing the experimental setup in

Sec. 8.3.1, we present our experimental results on temporal labeling in Sec. 8.3.2 and on

spatial labeling in Sec. 8.3.3. In Sec. 8.3.4 we analyze the spatial aspects from a different

perspective, using a discrete modal basis. We end with a concluding discussion in Sec. 8.4.

8.2 T h e ore tica l de s crip tion

8.2.1 T h e g e n e r a t e d t w o - p h o t o n fi e ld

The calculation of the two-photon interference observed in a general HOM interferometer,

with a combined temporal delay and transverse spatial shift in one of the arms, is mainly a

matter of good bookkeeping. This bookkeeping deals to a large extent with the coordinate

changes between two reference frames. The lab fram e, having its z-axis along the pump beam

and the surface normal of the crystal, is the natural choice for the generated field. The two

local beam fram es that are oriented along the two beam directions are the natural coordinate

systems at the detectors. To simplify the notation we will display only one spatial direction,

being the x coordinates in the plane through the signal and idler beam.

We consider two-photon emission by spontaneous parametric down-conversion (SPD C)

in the so-called thin-crystal limit, where the detected space angle and spectral bandwidth have

to be much smaller than the generated SPD C ring size and bandwidth, respectively. In this

limit, the generated two-photon wave function is [34]
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8. Spatial labeling in a two-photon interferometer

ψz(xs,xi;∆ω) =
∫

Ep(x)h(xs,x;ωs)h(xi,x;ωi)dx (8.1)

where Ep(x) is the field profile of the pump beam at z = 0, and xs and xi are transverse

coordinates in the lab frame. The one-photon propagators h(xs,x;ωs) = 1/(iλLs)
2 exp(iksLs)

and h(xi,x;ωi) = 1/(iλLi)
2 exp(ikiLi) describe the propagation of the signal and idler photon

from the crystal to the detection plane. They contain the wavevector amplitudes ks,i = ωs,i/c

and the path lengths Ls,i. We will consider almost frequency-degenerate SPDC, where the

frequency difference ∆ω ≡ ωs −ωi and where the sum ωs + ωi = ωp = ckp is fixed by the

quasi-monochromatic pump.

Next we introduce “ beam coordinates” δxs and δxi that are defined with respect to the

two beam axes in the signal and idler direction, which themselves are oriented at angles −Θ

and Θ with respect to the pump laser (see Fig. 8.1). Beam coordinates are more convenient to

evaluate the effect of beam reflections and translations and have the extra advantage that the

coordinates δxs,i remain relatively small. Substitution of δxs,i for xs,i in Eq. (8.1) immediately

yields the generated two-photon wave function in beam coordinates. Working in the paraxial

limit, we expand the path lengths as Ls,i ≈ L+ |δxs,i −x|2/2L±xΘ. The term ±xΘ describes

how a displacement at the crystal leads to a change of the signal/idler path on account of the

viewing angle.

By comparing the combined propagator of the two-photon field with the one-photon prop-

agator of the pump field to a detection plane at a distance L behind the crystal, we can solve

the integration in Eq. (8.1) to obtain the relatively complicated expression

ψ(δxs,δxi;∆ω) ≈ Ep,z

(

1

2
(δxs +δxi)− γ

)

×

exp

[

ikp

8L

(

|δxs −δxi|
2 +4γ(δxs +δxi)−4γ2

)

]

, (8.2)

where Ep,z is the pump profile in the detection p lane [31] and γ = LΘ∆ω/ωp is a transverse

displacement that appears only for ∆ω 6= 0. The approximation is almost perfect and only

refers to the removal of a small phase term (¿ 1) of the order of (∆ω/ωp)
2 times the Fresnel

number NF of the detected system.

Equation (8.2) gives a full description of the spatial and temporal coherence of the gen-

erated two-photon field in the considered thin-crystal limit. It shows among others that this

field has a completely different spatial coherence in the sum coordinate δxs +δxi than in the

difference coordinate δxs − δxi. Whereas the former is dictated by the profile of the pump

laser, the latter is characterized by the field curvature of a point source. This difference is

of vital importance in the rest of our discussion and causes the very different behavior of

two-photon interferometers with an even or odd number of reflecting mirrors (see Sec. 8.2.3).

If the detection bandwidth is too large to satisfy the quasi-monochromatic limit, we

should include the effects of γ 6= 0 in our discussion of Eq. (8.2). These effects are discussed

in Sec. 8.2.4. For the moment we will simply explain their origin. The extra phase terms

originate from the comparison of the [exp(ikL) terms in the] propagators of signal, idler and

pump beams. The argument of the pump profile Ep,z depends on ∆ω , because this argument

can also be written as the weighted sum (ksxs + kixi)/kp of the signal and idler positions xs
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8.2 Theoretical description

Figure 8 .1 : Optical-path geometry of a HOM interferometer with one mirror in the

signal beam and two mirrors in the idler beam, which also contains a displacement ∆x.

T he five circles denote the pump spot and four possible images thereof. T hese are used

to explain the occurence of spatial labeling (see Sec. 8.3.3 for details).

and xi in the lab frame [31]. In the non-monochromatic limit, the spatial and spectral degrees

of freedom become mixed, basically because the transverse momenta of the signal and idler

photon depend both on their emission angle (≈∓Θ) and photon frequency ω .

8.2.2 Two-photon interferenc e

In a standard (HOM) two-photon interferometer the signal and idler beam are combined on

a beamsplitter of which the two output beams are filtered spectrally and spatially, before

being detected by two photon detectors. The observed two-photon interference is most easily

described in the beam coordinates x1 and x2 of th e tw o loc al c oordinate s y s tem s th at are

c entered arou nd th e tw o ax es at detec tors 1 and 2 , res p ec tively . We th u s need to ex p res s th e

detec ted tw o-p h oton fi eld ψd e t(x1,x2;∆ω12) ( w ith ∆ω12 = ω1 −ω2) in term s of th e g enerated

fi eld. A s c oinc idenc e c ou nts in a H O M interferom eter c an b e g enerated b y tw o p os s ib le

rou tes , b eing eith er a refl ec tion of b oth s ig nal and idler p h oton at th e b eam s p litter or a dou b le
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8. S p atial lab e lin g in a tw o -p h o to n in te rfe ro m e te r

transmission, we can symbolically express the detected two-photon field as

ψdet(x1,x2;∆ω12) = −Rψrr(· · ·)+Tψtt(· · ·) , (8 .3 )

where the intensity reflection R and transmission T are eq ual to 1

2
only for the ideal beam-

splitter. T he coordinates in the two-photon fields ψrr and ψtt are left out on purpose. One

reason for this is that the transformation from detector to crystal coordinates is different for

the two possible routes. Another reason is that the actual transformation also depends on the

number of mirrors and on the time delay ∆t = ∆L/c and transverse displacement ∆x imposed

in one of the interferometer arms.

T he coincidence count rate Rc observed behind spatial apertures and spectral filters is

found by integrating |ψdet(· · ·)|
2 over the corresponding spatial and spectral coordinates, as

Rc =
∫

dω1dω2dx1dx2 |ψdet(x1,x2;∆ω12)|
2 . (8 .4 )

T he interference between the two-photon fields ψrr and ψtt is contained in the cross-terms

of |ψdet|
2. T his interference is only present close to z ero delay and perfect spatial overlap,

but disappears when either ∆t or ∆x are sufficiently large. In general we can thus write the

coincidence count as

Rc(∆t,∆x) = Rc,∞

(

1−
2RT

R2 +T 2
VH O M (∆t,∆x)

)

. (8 .5 )

In the rest of the discussion we will concentrate on the temporal and spatial dependence

of the visibility function VH O M (∆t,∆x), which contains the interesting physics. T he factor

VRT = 2RT/(R2 + T
2) just specifies the “ intensity unbalance” between the two probability

channels. T he visibility function

VH O M ≈
R e [2〈ψrr|ψtt〉]

〈ψrr|ψrr〉+ 〈ψtt |ψtt〉
, (8 .6 )

basically measured the spectral overlap between the two-photon fields ψrr and ψtt , where

we have used the shorthand notation 〈· · · 〉 =
∫

dω1dω2dx1dx2. Alternative, one could say

that VH O M measured the overlap between one two-photon field (ψrr) and a modified version

thereof (ψtt), and can thereby provide information on the spatial and/or temporal coherence

of this field. T he physical interpretation of the visibility function VH O M is that it q uantifies

the amount of temporal and/or spatial labeling of the two photons. If any properties of the

detected photons 1 and 2 allow one to decide which photon took the signal path and which

photon took the idler path, this so-called labeling will remove the interference between the

two probability channels.

8.2.3 W h y th e n u m b e r o f m ir r o r s m a t t e r s

In this subsection we will highlight the difference between two-photon interferometers with

an even or odd number of reflecting mirrors in the combined signal and idler path by pre-

senting detailed expressions of V (∆t,∆x) for both cases. B ased on these general expressions,

S ecs. 8 .2.4 and 8 .2.5 will separately treat the occurrence of temporal labeling (VH O M (∆t) at
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8.2 T heoretic al d es c ription

∆x = 0) and spatial labeling [VHOM(∆x) at ∆t = 0], again using the distinction between an

even and odd number of reflections.

Figure 8.1 depicts a possible HOM interferometer, which in this case has one mirror in

the signal path and two mirrors in the idler path and thus falls in the “odd” category. It

is also a sketch of the experiment, where we use 1 + 4 mirrors. The idler path contains an

adjustable transverse displacement ∆x (as shown) and an additional longitudinal displacement

∆L = c∆t (shown only in the experimental setup of Fig. 8.2). The beams are labeled such that

the doubly-reflected path links the coordinate indices (s ↔ 1) and (i ↔ 2), making ∆ω =
∆ω12, whereas the doubly-transmitted path links (s ↔ 2) and (i ↔ 1), making ∆ω = −∆ω12.

The crucial point to note, and the whole reason for the “odd/even” distinction, is that every

additional reflection in either signal or idler path leads to an inversion of the corresponding

beam coordinate δx ↔−δx.

We will first consider an interferometer with one mirror in the signal and one mirror in the

idler path, i.e., with an even number of mirrors. For this balanced interferometer the relation

between the detected and generated two-photon field (E q. 8.3) is

ψeven (x1,x2;∆ω12) = −Rψ(x1,x2 +∆x;∆ω12)e
iω2∆t

+T ψ(−x2,−x1 +∆x;−∆ω12)e
iω1∆t , (8.7 )

where the longitudinal delay ∆t and transverse displacement ∆x are both imposed on

the idler beam. N ote that the arguments in the two contributions ψrr and ψtt are related

through a swap of the labels 1 ↔ 2 in combination with an inversion x j ↔−x j (for j = 1,2).

Substitution into E q. (8.2) shows that the two contributions have the dominant part of the

exponential factor in common, as δxs − δxi = x1 − x2 −∆x for both terms, but differ in the

argument in the pump field. For this “even” geometry, the visibility function VHOM thus

becomes

Veven (∆t,∆x) ≈

Re

[

2

∫
ei∆ω12∆te(ik p/L)γ12∆xE∗

p,z

(

−α +
1

2
∆x

)

Ep,z

(

α +
1

2
∆x

)]

∫ ∣

∣

∣

∣

Ep,z

(

−α +
1

2
∆x

)∣

∣

∣

∣

2

+

∣

∣

∣

∣

Ep,z

(

α +
1

2
∆x

)∣

∣

∣

∣

2
, (8.8)

where the integration runs over x1,x2,ω1 and ω2 and where we have introduced α =
− 1

2
(x1 + x2) + γ12 as help variable, with γ12 = LΘ ∆ω12/ωp. The sensitivity of Veven to a

transverse displacement ∆x is thus found to be determined mainly by the shape of the pump

beam, in combination with the limitations set by the finite integration range over the detection

apertures. E specially the symmetry of the pump beam under reflection in the y z plane plays

a crucial role. If this beam is symmetric under reflection, the two-photon interference will

result in the familiar HOM dip (VHOM > 0), if this beam is anti-symmetric a HOM peak

(VHOM < 0) will result instead [89 ] .

The above result applies to any geometry where the total number of mirrors in the signal

and idler beam is even. Officially, one should still distinguish two subclasses, but these give

basically the same result. If both signal and idler beam contain an odd number of mirrors

we obtain expressions identical to the ones found above for the case of “1+1 mirror”. If both
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8. Spatial labeling in a two-photon interferometer

signal and idler beam contain an even number of mirrors all positions x j should be inverted,

but Veven is again described by Eq. 8.8 with a new α = − 1

2
(x1 + x2)− γ12.

Next we consider the interferometer of Fig. 8.1, which contains one mirror in the signal

path and two mirrors in the idler path, and thus falls in the “odd” category. For this unbalanced

interferometer, the relation between the detected and generated two-photon field (Eq. 8.3) is

ψo dd(x1,x2;∆ω12) = −Rψ(x1,−x2 −∆x;∆ω12)e
iω2∆t

+T ψ(−x2,x1 −∆x;−∆ω12)e
iω1∆t

, (8 .9 )

wh ic h d iffers from E q . (8 .7 ) on ly by a s ig n in th e id ler c oord in ate δxi. S u bs titu tion in to

E q . (8 .2) s h ows th at th e two term s n ow h ave s lig h tly d ifferen t ex p on en tial fac tors , bu t alm os t

id en tic al arg u m en ts in th e p u m p fi eld , as th e c om bin ation δxs +δxi is th e s am e for both ψrr

an d ψtt . For th is “ od d ” g eom etry, th e vis ibility fu n c tion VH O M is

Vo d d (∆t,∆x) ≈

R e

[

2

∫
e

i∆ω12∆t
e
−(i2kp/L)γ12β

e
−(ikp/2L)(x1+x2)∆x

E
∗

p,z(β − γ12)Ep,z(β + γ12)

]

∫
∣

∣Ep,z(β − γ12)
∣

∣

2
+

∣

∣Ep,z(β + γ12)
∣

∣

2
,

(8 .1 0)

wh ere th e in teg ration ag ain r u n s over x1,x2,ω1 an d ω2 an d wh ere we h ave n ow in trod u c ed

β = 1

2
(x1 − x2 −∆x) as h elp variable. T h e s en s itivity of Vo d d to a tran s vers e d is p lac em en t ∆x

is m ain ly d eterm in ed by th e ex p on en tial fac tor in E q . (8 .2), ag ain in c om bin ation with th e

lim itation s s et by th e fi n ite in teg ration ran g e over th e d etec tion ap ertu res an d p u m p p rofi le.

T h e “ od d ” g eom etry th ereby p robes th e two-p h oton c oh eren c e in th e d ifferen c e c oord in ate

δxs − δxi, wh ereas th e “ even ” g eom etry p robed its c oh eren c e in th e s u m c oord in ate δxs +
δxi. T h e above res u lt ag ain ap p lies to all g eom etr ies with an od d n u m ber of m ir rors in th e

c om bin ed s ig n al an d id ler p ath s ; E q s . (8 .9 ) an d (8 .1 0) rem ain bas ic ally th e s am e, ap art s om e

tr ivial m in u s s ig n s an d a p os s ible red efi n ition of β .

8.2.4 Te m p o r a l la b e lin g

I n th is s ec tion we will d is c u s s th e tem p oral labelin g in a H O M in terferom eter with p erfec tly

alig n ed beam s (∆x = 0), bu t u n balan c ed arm len g th s (∆t 6= 0). T h e c alc u lated VH O M (∆t) is

d ifferen t for th e two g en eric c as es , wh ere th e total n u m ber of m ir rors is eith er even or od d .

Wh ereas th e even c as e ex h ibits on ly tem p oral labelin g , th e od d g eom etry als o ex h ibits a

c om bin ed tem p oral an d s p atial labelin g , wh ic h c an red u c e VH O M even fu r th er.

We will s tart by an alyz in g th e even c as e for a s ym m etr ic p u m p (Ep,z(x) = Ep,z(−x)) . S u b-

s titu tion of ∆x = 0 in E q . (8 .8 ) an d rem oval of th e s p atial in teg ration (u n d er th e as s u m p tion

th at th e s h ift γ12 d oes n ’t affec t th is in teg ration in an y s eriou s way) yield s

Veven (∆t) =

R e

[∫
dω1e

i(2ω1−ωp)∆t
T1(ω1)T2(ωp −ω1)

]

∫
dω1T1(ω1)T2(ωp −ω1)

, (8 .1 1 )
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where T1 and T2 are the intensity transmission spectra of filters located in front of the detectors

1 and 2, respectively. We thus obtain the well-k nown result that the HOM dip has the same

shape, but is twice as narrow, as the Fourier transform of the product T1(ω1)T2(ωp−ω1) [88].

For identical filters with a sharp block -shaped transmission spectrum of width ∆ω f centered

around 1

2
ωp, Eq. (8.11) yields

Veven(∆t) =
sin(∆ω f ∆t)

∆ω f ∆t
. (8.12)

The full width at half maximum (FWHM) of this visibility function is 1.21 × π/∆ω f =
1.21×λ 2/(2c∆λ f ). If the transmission spectra of the filters are not properly centered, the

product T1T2 will sharpen up and the temporal coherence of the detected two-photon field

will increase.

If the combined number of mirrors in the signal and idler path is odd, we should substi-

tute ∆x = 0 in Eq. (8.10) instead of Eq. (8.8). It is now in general not possible to separate

the spatial and spectral integration, because the displacement γ12 ∝ ∆ω12 appears both in the

argument of Ep,z and in the exponential factor exp[−(i2kp/L)γ12β ]. Separation is only pos-

sible in two cases: if either the detection apertures are small enough to sufficiently limit the

integration range over β , or if the displacement γ12 is sufficiently small, we retain the result

we had for the even case [Eq. (8.12)].

We will first discuss the physical origin of this combined labeling, before quantifying

what we mean with “sufficiently small”. In general, the visibility V (∆t) decreases when

the time difference between the photons arriving at detector 1 and 2 allows one (even only

in principle) to distinguish which photon took the signal path and which one took the idler

path. The important point to note is that this time difference is only equal to the set value

∆t = ∆L/c for photon pairs that originate from the center of the pumped region. P hoton pairs

that originate from the outer parts of the pumped region can experience an additional temporal

delay of typically ∆tex tr a = ±2Θwp/c between their signal and idler photon, for a G aussian

pump beam of waist wp. This delay alone doesn’t reduce the visibility, as the contributions

on either side of the pumped area can compensate each other, and actually do so for the even

case. For the odd case, this extra term can lead to a degradation of the visibility, but only

if the integration in Eq. (8.10) is large enough, i.e., if the apertures are opened wide enough

in comparison to the pump divergence. The degradation will be small only if ∆ω f tex tr a ¿ π .

This criterium roughly translates into ∆ω f /ωp ¿ θp/Θ, θp being the far-field opening angle

of the pump laser.

From an experimental perspective, the extra term in Vodd mak es two-photon interferome-

ters with an odd number of mirrors more difficult to operate than interferometers with an even

number of mirrors. In practice, great care has to be tak en to avoid the mentioned additional

labeling. A two-photon interferometer with an odd number of mirrors will only provide a

good visibility for apertures much larger than the pump size if three conditions are satisfied:

(i) the spectral filters should be narrow enough, (ii) the opening angle Θ should be small

enough, and (iii) the pumped region should be compact enough. Together these three con-

ditions translate into the requirement that the dimensionless ratio of the detection bandwidth

over the pump frequency should be much smaller than the ratio of the pump divergence over

the opening angle, i.e., ∆ω f /ωp ¿ θp/Θ. If this is not the case, the combined spatial and

spectral labeling will lead to a reduction of Vodd(∆t = 0) and a widening of the Vodd(∆t)
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8. S patial lab eling in a tw o-photon interferom eter

profile as compared to Eq. (8.12). The precise amount of which depends mainly on the di-

mensionless product
(

∆ω f /ωp

)

(Θ/θp) and to a lesser extent on the position of the detectors

in relation to the near/far field of the pump.

8.2.5 S patial labeling

N ext we will discuss spatial labeling in a HOM interferometer with balanced arms (∆t = 0)

and sufficiently narrow spectral filters to validate the quasi-monochromatic (∆ω = 0) limit.

We again distinguish between interferometers with an even and odd number of mirrors.

For the “even” case, Eq. (8.8) can be easily solved if the integration range over x1 and x2

is large enough to change it into an effective integration of x1 + x2 and x1 − x2 over [−∞,∞].
The integration simplifies even further when one realizes that the overlap 〈ψ|φ〉 between two

wave functions |ψ〉 and |φ〉 does not change upon propagation, due to the unitary character

of the propagator h(x,x′). The visibility Veven(∆x) is thereby found to be a direct measure

for the overlap of the pump profile with a displaced version thereof. If this pump profile is a

fundamental Gaussian function with beam waist wp, we obtain the simple result

Veven(∆x) = exp

(

−
1

2
∆x2/w2

p

)

. (8.13 )

For the “odd” case, we have to substitute ∆t = 0 and ∆ω = 0 in Eq. (8.10) instead of

Eq. (8.8) to obtain

Vodd(∆x) ≈

Re

[∫ ∫
dx1dx2

∣

∣

∣

∣

Ep,z

(

1

2
(x1 − x2 +∆x)

)∣

∣

∣

∣

2

exp

(

ikp

2L
(x1 + x2)∆x

)

]

∫ ∫
dx1dx2

∣

∣

∣

∣

Ep,z

(

1

2
(x1 − x2 +∆x)

)∣

∣

∣

∣

2
(8.14 )

If the aperture diameters are much larger than the size of the pump beam in the detection

plane, we can again rewrite the integrations over x1 and x2 into integrations over x1 + x2 and

x1 − x2 and use x1 ≈ x2 as the outcome of the latter integration to obtain

Vodd(∆x) ≈

Re

[∫
dx1dy1 exp

(

ikp

L
x1∆x

)]

∫
dx1dy1

≈
2J1 (πd∆x/(λpL))

πd∆x/(λpL)
. (8.15 )

In the final step, we have expressed the integration over a circular aperture with diameter

d in terms of the first-order B essel function J1. We define the typical transverse coherence

length ∆xc oh as the full width at half maximum (FWHM) of Vodd(∆x), which is 1.16 times the

peak-to zero width of ∆x = 1.22L(λp/d). The sensitivity of a two-photon interferometer with

an odd number of mirrors to transverse displacement is thus found to be determined solely
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8.3 E x perimental resu lts

by the size of the detecting apertures. More specifically, Vodd(∆x) has the same shap e, bu t

is ju st twic e as n arrow, as the d iffrac tion limit at the c rystal fou n d for a u n iform bu t foc u sed

illu min ation of on e of the d etec tin g ap ertu res with the d etec ted wavelen g th 2λp.

To arr ive at E q . ( 8 .15 ) we had to assu me that the ap ertu re siz es were larg e as c omp ared

to the siz e of the p u mp beam. If on ly on e of the two ap ertu res satisfi es this c r iter iu m, we

c an still c on ven ien tly rep lac e the in teg ration s over x1 an d x2 by in teg ration s over x1 + x2 an d

x1−x2 an d solve the latter. For this c ase of asymmetric ap ertu re siz es, the resu ltin g E q . ( 8 .15 )

thu s remain s valid . If the ap ertu res have eq u al siz es, bu t are n ot very larg e as c omp ared to

the siz e of the p u mp beam, the ap ertu re d iameter in E q . ( 8 .15 ) shou ld rou g hly be red u c ed

from its p hysic al siz e d to an effec tive siz e de ff ≈ d −w to ac c ou n t for the red u c ed d etec tion

effi c ien c y of p hoton p airs that fall c lose to the ed g e of either ap ertu re. H ere, w is the siz e of

the p u mp beam in the d etec tion p lan e an d thereby half the p osition al sp read in on e p hoton

for a fi x ed p osition of the other p hoton .

8.3 E x p e rim e n t a l re s u lt s

8.3.1 E x p e r im e n t a l s e t u p

O u r ex p erimen tal setu p , rep resen tin g a two-p hoton ( H on g - O u - M an d el typ e) in terferometer,

is shown in Fig u re 8 .2. A c w k ryp ton ion laser op erates at a wavelen g th of 4 0 7 n m an d

emits 7 0 mW in a p u re TE M 0 0 mod e. This lig ht is mild ly foc u sed (measu red op en in g an g le

typ ic ally θp ≈ 0 .5 0 mrad an d waist wp ≈ 260 µm) on a 1-mm-thic k typ e-I B B O c rystal

( c u ttin g an g le 29 .2◦) . The c rystal is tilted su c h that the emitted S P D C c on e ex ten d s over

a fu ll op en in g an g le of 2× 1.6◦ arou n d the p u mp d irec tion . Two en tan g led beams s an d i

(sig n al an d id ler ) , selec ted from this lig ht c on e by ap ertu res behin d a broad ban d beamsp litter

at 1.20 m from the c rystal, serve as in p u t c han n els of the beamsp litter. I n on e of the two in p u t

beams, a refl ec tin g op en p r ism is p lac ed on top of two p erp en d ic u lar ly mou n ted tran slation

stag es to en able ac c u rate c on trol of both the p ath-len g th d ifferen c e ∆L an d the tran sverse

beam d isp lac emen t ∆x, u sin g motoriz ed ac tu ators. I n most of the ex p erimen ts, the ou tp u t

beams of the beamsp litter are foc u sed on to free-sp ac e sin g le p hoton c ou n ters ( P erk in E lmer

S P C M -AQ R -14 ) by f = 6 c m len ses loc ated at 1.5 0 m from the c rystal. We n ote that these

c ou n ters still op erate as g ood bu c k ets u n d er typ ic al tran sverse beam d isp lac emen ts of ∆x = 1

mm in ou r ex p erimen ts as the d emag n ifi ed d isp lac emen t at the d etec tor is then still on ly

6/15 0 ×∆x = 4 0 µm whereas the ac tive area of the d etec tor is typ ic ally 20 0 µm in d iameter.

Thou g h omitted in Fig . 8 .2 for simp lic ity, ou r sc heme allows an easy switc h between free-

sp ac e an d fi ber- c ou p led c ou n ters ( P erk in E lmer S P C M -AQ R -14 -FC ) , c on n ec ted to sin g le-

mod e fi bers (N A = 0 .12) an d 10 x objec tives. B an d wid th selec tion is d on e by in terferen c e

fi lters (10 n m FWH M ) in c ombin ation with red fi lters ( M elles G r iot R G 7 15 ) . An elec tron ic

c ir c u it rec ord s c oin c id en c e c ou n ts within a time win d ow of 1.7 6 n s.

I n ord er to ac hieve the p rec ise temp oral alig n men t that a H O M in terferometer req u ires,

i.e., simu ltan eou s arr ival of en tan g led p air- p hoton s at the beamsp litter, we u se a similar tr ic k

as p resen ted in [ 9 3 ] . We emp loy a fl ip -mirror to in jec t lig ht from a d iod e laser (visible

wavelen g th ≈ 64 0 n m) in to the setu p , su c h that its emitted lig ht vir tu ally c overs both sig n al

an d id ler p aths (see Fig . 8 .2). B y tu n in g this laser below threshold , where it ac ts as a brig ht
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8. S p atial lab e lin g in a tw o -p h o to n in te rfe ro m e te r

Figure 8 .2 : Sch em a tic v iew o f th e ex p er im en ta l s etu p ( s ee tex t fo r d eta ils ) .

LED with a limited coherence length, the path-length difference can be set to within a few

µm. Final fine-tuning of the path-length difference and the angular alignment between the

two beams (within a few µrad) is done by motorized actuators (Newport LTA-HL; submicron

stepsizes) attached to both translation stages and beamsplitter.

In our main experiments, we measure the coincidence count rate as a function of the time

delay ∆t = ∆L/c and relative beam displacement ∆x between the signal and idler beam, in

order to quantify the two-photon temporal and spatial coherence, respectively. We have em-

ployed both an even and an odd number of mirrors to demonstrate the essential role of the mir-

ror number in two-photon HOM interference. Most of our measurements are however done

with the odd configuration (see Fig. 8.2) as this is the most unexplored case. Furthermore,

we have applied free-space detection behind both 4 mm and 14 mm apertures, corresponding

to detection angles of θdet = 1.7 mrad and θdet = 5.8 mrad, respectively. These values are

well within the angular width of the SPDC ring of θS P D C = 18 mrad that we calculate and

observe for our (type-I) geometry. In addition, we use spectral filters with bandwidths that

are much narrower than the generated SPDC bandwidth (> 50 nm). These two conditions

ensure operation in the thin-crystal limit.

8.3.2 Tempo ral lab eling

In Figure 8.3(a) the measured coincidence count rate behind 14 mm apertures is plotted versus

time delay ∆t. Fitting the data points with Eq. (8.12) yields a full width at half maximum

(FWHM) of 133±2 fs. For 4 mm apertures we obtain the same value. These values agree very

well with the theoretical coherence time of 133 fs, calculated for a block-shaped transmission

filter with a measured spectral bandwidth of ∆λ = 10 nm centered around λ =814 nm. The

observed sidelobe structure is Fourier-related to the spectral cut-off produced by the sharp-

edged interference filters. Slight deviations between data points and fits are attributed to the

non-perfect block-shape of the filter transmission function.

The quality of the two-photon interference can be quantified by the measured peak visi-

bilities, being V = 85.0±0.5% and V = 81.0±0.5% for 4 mm and 14 mm apertures, respec-

tively. For fiber-coupled detection, we measure a much higher visibility of V = 94.0±0.5% .
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Figure 8.3 : Two-photon temporal coherence, measured as the coincidence count rate

(dots) versus time delay ∆t, for (a) free-space detection b ehind 1 4 mm apertures and

(b ) fi b er-coupled detection. Sinc-shaped fi ts and the measured sing le count rates (solid

curves; rig hthand scale) are plotted as well.

This value is very close to the theoretical limit of VRT = 95% of our beamsplitter, having a

measured T/R-ratio of 58/42. Fig. 8.3b shows the temporal coherence measured with fiber-

coupled detectors scheme but now with a better high-quality 50/50 laserline beamsplitter.

We again obtain a FWHM of 133±2 fs, but the peak visibility is considerably higher at

V = 99.3±0.2%. The lower peak visibilities obtained with free-space detection is attributed

to the spatial labeling observed by the bucket detectors (see Figs. 8.5 and 8.6).

Apart from the coincidence dips, Fig. 8.3 also shows prominent dips in the measured sin -

g le count rates. The occurence of a ‘single dip’ has first been reported by Resch e t a l. [94].

This extra dip occurs as a result of the limitation of a photodetector to record two simultane-

ously arriving pair-photons as two single clicks. As these arrivals are more numerous for a

balanced HOM interferometer than for an unbalanced one, a dip will show up in the measured

single count rate as well.

In Fig. 8.4 we highlight the single dip that we measured behind 14 mm apertures [data

copied from Fig. 8.3(a)]. This data is of much higher quality than the one presented in

Ref. [94]; though sampling only 10 s for each data point, we obtain a statistical error of
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8. Spatial labeling in a two-photon interferometer

Figure 8.4 : Single count rate measured in a H O M experiment (dots) with sinc-shaped

fit [ detail of Fig. 8 .3 (a)] . The solid curve shows the sum of the single count rates mea-

sured when either the signal or the idler path is blocked. A ll displayed count rates are

corrected for 5 0 ns deadtime of the detector.

<0.1% that is even too small to display. This allows us to observe the clear sinc-shaped

profile identical to the coincidence dip with a FWHM of 133±2 fs. Based on measured rates

of 7.13×105 s−1 and 7.81×105 s−1 at zero and infinite delay, respectively, we determine a

dip visibility of Vs c ≈ 9%. A calculation from Vs c = V η/(4−η) [94] yields the same value,

thereby using V =81% and an overall detection efficiency of η = 0.40, as deduced from

the measured quantum efficiency (=coincidences/singles ratio) of ηq = 0.20. All count rates

shown in Fig. 8.4 have been multiplied by a factor of 1/(1− τdRdet) ≈1.04 to correct for the

detector deadtime of τd =50 ns and compare with the calculation mentioned above.

To further illustrate the origin of the single dip, we have also plotted the sum of the

measured single count rates in absence of HOM interference as the solid curve in Fig. 8.4.

This rate of 8.54×105 s−1 shows no dip as it is obtained by adding the individual signal

and idler rates of 5.00×105 s−1 and 3.54×105 s−1, where the rate imbalance is due to the

beamsplitter ratio T/R = 58/42. We thus measure a single count rate reduction of 16.5% for

the balanced interferometer (∆t = 0), but also obtain an 8.5% reduction in ab sence of HOM

interference (∆t = ∞). This latter reduction of course results from a random 1/4 probability

that both photons arrive at the detector under study. At a finite detection efficiency η we

expect the single count rate to be reduced by a factor (1−η /4) and (1−η /4(1+ V )) in an

interferometer off and on resonance, as compared to the sum of the individual rates. For our

conditions of V = 81% and η = 0.40, we expect reductions of (1+V )η/4 = 18% and η/4 =
10% for the balanced and unbalanced interferometer, respectively, which agree reasonably

well with the measured values.

As an aside we note that our count rates are large enough to experience some visibility

reduction through the influence of double photon pairs. We estimate this reduction to be

∆V = 8Rcτcc(1/η2
− 1/2η), based on a generated pair rate R = 2Rc/η2 and a coincidence

time window τcc. Our measured visibility of V = 78% for 17 mm apertures is expected to

suffer from a reduction of only ∆V ≈ 1%, based on a measured coincidence rate of Rc =
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Figure 8.5 : Measured peak visibility Vodd versus aperture diameter (at 1.2 m from crys-

tal) for ∆λ = 10 nm interference filters and three different pump siz es: wp = 260 µm

(d o ts ) , wp = 4 00 µm (tria n g le s ) a n d wp = 7 00 µm (s q u a re s ) . Th e d a s h e d h o riz o n ta l

lin e a t V = 9 5 % in d ic a te s th e v is ib ility limit s e t b y th e b e a ms p litte r T/R ra tio o f 5 8 /4 2 .

2.0× 1 05 s−1 an d η = 0.40. To c h ec k th at h ig h er c oin c id en c e rates lead to larg er red u c tion s,

we h ave also u sed a 4 m m c r y stal. A t a m easu red rate of Rc = 8× 1 05 s−1 we m easu re a lower

visibility of V = 7 3 % , wh ic h is in d eed c om p atible with th e ex p ec ted red u c tion of ∆V ≈ 5% .

Th e th eory in S ec . 8.2.4 p red ic ts th at th e p eak visibility in a H O M in ter ferom eter with

an od d n u m ber of m ir rors c an be lim ited by a c om bin ed tem p oral an d sp atial labelin g th at

d ep en d s on th ree d ifferen t p aram eters: th e ap ertu re siz e, th e p u m p siz e at th e c r y stal an d th e

d etec ted sp ec tral ban d wid th . Th e fi rst two lim itation s are d em on strated in Fig . 8.5, wh ic h

sh ows th e m easu red visibility as a fu n c tion of th e ap ertu re d iam eter for th ree p u m p siz es

wp, u sin g a ∆λ = 1 0 n m in ter feren c e fi lter. Th e larg est p u m p sp ots y ield th e lowest visibili-

ties, as ex p ec ted . N ote h ow th e visibilities in c rease steep ly for th e sm allest ap ertu res wh ere

d iff rac tion rem oves th e sp atial labelin g .

A n in c rease of th e p u m p sp ot n ot on ly lead s to a red u c tion of th e p eak visibility bu t also to

a wid en in g of th e VH O M (∆t) c u rve. A t an ap ertu re siz e of 1 4 m m we m easu re (FW H M ) c oh er-

en c e tim es of 1 3 3 fs for wp = 26 0 µ m , 1 47 fs for wp = 400 µ m , an d 1 80 fs for wp = 7 00 µ m ,

all at ∆λ =1 0 n m . For th ese th ree g eom etr ies th e d im en sion less q u an tity (∆ω f /ωp)(Θ/θp)

th at q u an tifi es th e ex tra labelin g in c reases from 0.3 4 to 0.49 an d 0.86 .

Th e lim itation of th e visibility by th e d etec ted sp ec tral ban d wid th is sh own in Fig . 8.6 ,

wh ere th e m easu red visibility is p lotted versu s ap ertu re siz e for both ∆λ = 5 n m an d 1 0 n m

in ter feren c e fi lters, an d a p u m p waist of wp = 26 0 µ m . Th e n arrower fi lters y ield h ig h er

visibilities. A ll observation s m ad e in relation to Fig s. 8.5 an d 8.6 are c om p atible with th e

p red ic tion m ad e in S ec . 8.2.4 on c om bin ed tem p oral an d sp atial labelin g . For an ev en n u m ber

of m ir rors in ou r in ter ferom eter (with on e ex tra m ir ror in sig n al p ath ; see below) we h ave

observed n on e of th ese c om bin ed -labelin g effec ts, ag ain in ag reem en t with S ec . 8.2.4.
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Figure 8 .6 : Measured peak visibility Vodd versus aperture diameter for ∆λ = 5 nm

(solid dots) and ∆λ = 1 0 nm interference fi lters (triangles), and a pump size of wp =

260 µm. The dashed horizontal line at V = 95% indicates the visibility limit set by the

beamsplitter T/R ratio of 58/42. The error margins of 0 .0 0 5 in the vertical scale are

too small to display.

8.3.3 S p a t ia l la b e lin g

As our key experiment we have measured the spatial coherence of the generated two-photon

wavepacket. Figures 8.7(a) and 8.7(b) show the coincidence count rate measured as a function

of the relative transverse beam displacement ∆x for 4 mm and 14 mm apertures, and perfect

temporal coherence (∆t = 0). Fitting the data points with E q. (8.4) yields (FWHM) trans-

verse coherence lengths of ∆xcoh = 184±10 µm and ∆xcoh = 54±4 µm, respectively. These

values are only slightly larger than the values of ∆xcoh = 175 µm and 50 µm, expected from

E q. (8.15). We ascribe these minor deviations to a reduced detection efficiency of photon

pairs close to the aperture edges, which leads to effectively smaller aperture sizes and thus in-

creased coherence lengths. This correction disappears if we employ the asymmetric geometry

of a 4 mm aperture in one arm and a 14 mm one in the other, and perform the same mea-

surement [see Fig. 8.7(c)]. We then indeed obtain a somewhat smaller transverse coherence

length of 166±10 µm that is solely determined by the smallest aperture. Our measurements

clearly demonstrate that two-photon interference measured behind smaller apertures results

in a larger spatial coherence length, and vice versa.

The observations that a transverse displacement in one of the beams leads to a reduction

of the two-photon interference can be easily understood in terms of spatial labeling. This

is schematically shown in Fig. 8.1, where the upper circle depicts the pumped area at the

crystal. The four lower circles depict images of this pumped area that can potentially be made

at both detectors if the appropriate lenses are used (for simplicity we assume perfect imaging

without inversion). These images are represented by solid and dashed circles corresponding

to whether the photons have travelled the signal (solid) or idler (dashed) path, respectively.

C onsequently, a solid circle at detector 1 matches a dashed circle in detector 2, and vice versa.

The transverse displacement ∆x of the idler beam is shown as light-dashed lines.
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Figure 8.7 : Tw o-photon spatial coherence, measured as the coincidence count rate

(dots) versus relative transverse displacement behind (a) 2×4 m m , ( b ) 2×1 4 m m an d

( c ) 4+ 1 4 m m ap ertu res . T he s o lid c u rv es rep res en t the m eas u red s in g le c o u n t rates an d

fi ts o f the c o in c id en c e c o u n t rates . E s p ec ially , the fi t in ( b ) is o f ex c ellen t q u ality . T he

lo w er s in g le c o u n t rate in ( c ) , w hic h w as m eas u red b ehin d the 4 m m ap ertu re, has b een

m u ltip lied b y a fac to r o f 1 0 in o rd er to v is u aliz e the d ip - s tru c tu re. N o te the d ifferen c es

in the ho riz o n tal s c ales .
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Now s u p p os e we d etec t a p h oton at d etec tor 1 at th e lower-left c ros s -mark . Trac in g th is

p h oton bac k res u lts in two d ifferen t bir th p os ition s ( c ros s -mark s in u p p er c ir c le) s ep arated by

∆x at th e c rys tal p lan e. Trac in g its p ar tn er p h oton bac k to d etec tor 2 th en yield s two p os s ible

imag in g p os ition s ( lower-r ig h t c ros s -mark s ) in c ir c le s2 an d i2, s ep arated by 2∆x. I f th e res -

olu tion of ou r imag in g s ys tem is g ood en ou g h to d is tin g u is h between th es e two p os s ibilities ,

th e “ wh ic h -p ath ” in formation p rovid ed by th is s p atial labelin g will d es troy th e two-p h oton

in ter feren c e. A s d iff rac tion by th e ap ertu res limits th e d is tin g u is h ability, larg er tran s vers e c o-

h eren c e len g th s will be attain ed with s maller ap ertu res , an d vic e vers a. A s we n eed th e c om-

bin ed p os ition al in formation of both p h oton s to d ec id e u p on th eir p ath s , th e d iff rac tion limit

of th e s malles t of th e two ap ertu res will larg ely d etermin e th e obs erved c oh eren c e len g th . A s

an as id e, we n ote th at a s imilar reas on in g c an be ap p lied to th e res u lts in R ef . [26 ] , wh ere

larg e ap ertu res c orres p on d to a s mall d iff rac tion limit, g ood d is tin g u is h ability between th e

two p robability p ath s , an d a low H O M vis ibility.

We will n ex t foc u s ou r atten tion on Fig . 8 .7 ( c ) , wh ic h refers to an as ymmetric in ter fer-

ometer with ap ertu res of 4 mm an d 14 mm in fron t of th e two d etec tors . A t fi r s t th ou g h t, on e

mig h t ex p ec t th e s in g le d ip to follow th e c oin c id en c e d ip , ir res p ec tive of th e ap ertu re g eome-

try. Th is is h owever n ot th e c as e: we meas u re d ifferen t wid th s (FWH M ) of 19 0 ±10 µm an d

5 4±4 µm for th e ‘s in g le d ip s ’ beh in d th e 4 mm an d 14 mm ap ertu re, res p ec tively, wh ereas

th e c oin c id en c e wid th is 16 6 ±10 µm. Th es e valu es are p rac tic ally th e s ame as th e wid th s of

th e s in g le an d c oin c id en c e d ip s obs erved for a s ymmetric s etu p with 2×4 mm an d 2×14 mm

ap ertu res , res p ec tively [s ee Fig s . 8 .7 (a) an d 8 .7 (b)] .

Th e in tr ig u in g as ymmetry in th e s in g le d ip s c an be u n d ers tood as follows . Pair-p h oton s

orig in atin g f rom th os e p arts of th e s ig n al an d id ler beam th at are c ap tu red by th e 14 mm

ap ertu re bu t n ot by th e 4 mm on e, will be reg is tered on ly by th e d etec tor beh in d th e larg er

ap ertu re. S imu ltan eou s arr ivals of th es e p h oton s d u e to bu n c h in g will th erefore affec t on ly

th e s in g le d ip meas u red with th is d etec tor, bu t will n ot c on tr ibu te to th e c oin c id en c e d ip .

A s p h oton bu n c h in g oc c u r s with in a s maller ran g e of tran s vers e d is p lac emen ts for larg er

ap ertu res , th e meas u red s in g le d ip for th e 14 mm ap ertu re in Fig . 8 .7 ( c ) is as n arrow as

th e c oin c id en c e d ip th at wou ld be meas u red with 14 mm ap ertu res in both ou tp u t c h an n els .

C on s eq u en tly, th e 4-mm-ap ertu re s in g le d ip in th e s ame fi g u re is almos t as broad as th e

meas u red c oin c id en c e d ip .

To d emon s trate th at th e two-p h oton s p atial c oh eren c e is very d ifferen t for in ter ferome-

ters with an even or od d n u mber of mirrors , we h ave ad d ed a s ec on d mirror in th e s ig n al

p ath , u s in g n ow s ix (2+ 4) mirrors in total. I n Fig s . 8 .8 (a) an d 8 .8 (b) we h ave p lotted th e

c oin c id en c e rate vers u s th e tran s vers e d is p lac emen t ∆x, meas u red in th is even g eometry for

2×4 mm an d 2×14 mm ap ertu res , res p ec tively. Th e c oin c id en c e d ip s are fi t with th e p rofi le

aex p
[

−(∆x)2/b
2
][

1− cex p (∆x)2/2v
2)

]

, wh ere th e fi t p arameter v is ex p ec ted to yield th e

s ame n ear-fi eld wais t wp of th e G au s s ian p u mp p rofi le for both ap ertu re s iz es . We in d eed

obtain s imilar wid th s of v = 25 3 µm an d v = 23 7 µm for 4 mm an d 14 mm ap ertu res , re-

s p ec tively. Th es e valu es ag ree well with th e meas u red p u mp wais t of wp ≈ 26 0 µm. Th e

ex p on en tial p refac tor rou g h ly q u an tifi es h ow th e obs erved c oin c id en c e rates d ec reas es wh en

very larg e beam d is p lac emen ts s h if t th e lig h t ou ts id e th e ac tive area of th e d etec tors . For th is

even g eometry, we h ave meas u red 20 % lower s in g le c ou n t rates as c omp ared to th e od d g e-

ometry (s ee Fig s . 8 .7 (a) an d 8 .7 (b)] bec au s e of th e in c reas ed c rys tal-ap ertu re d is tan c e from

1.20 m to 1.3 7 m.
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8.3 E x perimental res u lts

Figure 8 .8 : Two-photon spatial coherence for an even number of mirrors. The coin-

cidence count rate (dots) is plotted versus relative transverse displacement behind (a)

4 mm and (b) 14 mm apertures. C oincidence counts fits and single count rates (solid

curves) are plotted as well.

In contrast to the odd geometry, the above result clearly shows that the two-photon spatial

coherence for an even number of mirrors is only determined by the pump beam profile and is

insensitive to the aperture size. The picture of spatial labeling, shown in Fig. 8.1 for the odd

geometry, can also be applied to the even geometry. If we observe a certain photon position

at detector 1 (lower-left cross-mark), we can again reconstruct two similar birth positions

of this photon at the crystal (upper cross-marks). However, we now find only one position

for the corresponding photon at detector 2, as the s2 and i2 positions lie precisely on top of

each other. This means that, irrespective of the aperture size, one cannot distinguish which

probability channel (double refl ection or double transmission) the pair-photons has travelled

by judging from the detected positions of the partner photon. As the spatial labeling is only

contained in the different birth positions for this even geometry, the ‘which-path’ information

comes now from the pump beam profile and is no longer determined by the aperture size if

the later is much larger than w. Only the spatial symmetry of the pump beam and a possible

transverse displacement ∆x matter.
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8. Spatial labeling in a two-photon interferometer

Figure 8.9 : Measured quantum efficiency ηq versus aperture diameter for equal aper-

tures (solid dots), and for a geometry with one aperture fully open (open circles). The

fit (solid curve) yields an asymptotic value of A = 0.2 17 and a pump beam waist at the

aperture plane of w = 0.6 3 mm.

8.3.4 M o d a l a n a ly s is o f s p a t ia l e n t a n g le m e n t

Next we will analyze the two-photon field in terms of a finite number of discrete modes. The

shape of the pump laser defines a natural basis for this discrete modal analysis. This natural

size will show up in an experiment where one fixes the position of one photon and measures

the positional spread θdiff = 2θp of its partner photon in coincidence imaging [30, 31].

To determine this natural size, we have performed a different experiment instead, where

we vary the size of both apertures, working in a symmetric situation at (much) higher count

rates. The solid dots in Fig. 8.9 depict the measured quantum efficiency ηq, being defined

as the ratio of the coincidence count rate over the single rate, as a function of the aperture

diameter d. The sharp decrease in ηq at small apertures results from the positional spread

within the photon pair that was mentioned above. This spread is solely determined by the

shape of the pump profile and can be fit with the expression [95]

ηq(d) =
A

1+2w2/d2



1−

√
πerf

(

√

1+d2/(2w2)
)

2
√

1+d2/(2w2)



 , (8.16)

where the asymptotic value A and the pump beam waist w at the aperture plane (1.2 m

from crystal in our case) are fitting parameters. The diameter of ddiff = 1.8 mm where the

measured quantum efficiency is 50% of its asymptotic value (see Fig. 8.9) gives the typical

size of the fundamental transverse mode. The solid curve is a fit based on A = 0.217 and

w = 0.63 mm. The latter value agrees well with a calculated waist at the aperture plane of

w = 0.65 mm, that is based on a Rayleigh range of zR = 0.52 m, a near-field pump waist of

wp = 260 µm, and a pump opening angle of θp = 0.50 mrad; these numbers are obtained from

a measured pump waist of wz = 1.8 mm at z = 3.6 m from the crystal. The SPD C diffraction

angle θdiff = 2θp (SPD C wavelength λ = 2λp) will be used below for the calculation of the
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8.4 C onc lud ing d isc ussion

mode number.

The number of transverse modes detectable behind a far-field aperture of radius a and

angular size θdet = a/L is N = N2
1D , where the one-dimensional mode number

N1D ≈
θdet

θdiff

= π
apa

λL
, (8.17)

ap being the radius of the pump spot at the crystal, i.e., the near-field radius of the SPDC ra-

diation. The approximation sign is related to the precise definition of the mode size (FWHM,

Gaussian or sharp-edge).

The second equality of E q. (8.17) enables an easy link to a different measure for the

number of interfering transverse modes, being the well-known Fresnel number NF given by

NF =
a2

λL
≈

a

2.8∆xc o h

. (8.18)

Here ∆xc o h is the (FWHM) transverse coherence length that we defined below E q. (8.15),

and the prefactor 1/2.8 ≈ 1.16×1.22/4 results from our definition of ∆xc o h . For a one-photon

field the Fresnel number denotes the number of Fresnel zones that contribute, with alternating

signs, to the field transmitted through a rotational symmetric aperture. A comparison between

the two quantities defined in E q. (8.17) and E q. (8.18) yields NF = N(L/zR)(2/π), where

zR = 1
2
kpw2

p is the Rayleigh range of the pump. As we typically work at L/zR ≈ 2.3, the

numbers N and NF should be comparable.

From our experimental results we can estimate the mode number N and Fresnel number

NF in three different ways. First of all, we can use E q. (8.17) and divide the detection angle

θdet by the measured diffraction angle θdiff to find N ≈ 3 and N ≈ 34 for 4 mm and 14 mm

apertures, respectively. Secondly, we can use E q. 8.18 and compare the measured transverse

coherence length ∆xc o h to the aperture size to obtain Fresnel numbers NF ≈ 4 and NF ≈ 46 for

4 mm and 14 mm apertures, respectively. The third measure for the transverse mode number

can be deduced by comparing the single count rates shown in Figs. 8.3(a) and 8.3(b). As

fiber-coupled detection per definition addresses a single transverse mode, division of these

mentioned count rates yields a mode numbers of N = 34. A similar exercise for a 4 mm

aperture (not shown) yields N = 7× 104/2.1× 104 ≈ 3. These numbers compare well with

the mode numbers N from the first estimate. All estimates show that our experiment addresses

typically 4 or 40 modes for the 4 or 14 mm apertures, respectively.

8.4 Concluding dis cus s ion

We h ave in ves tig ated th e tw o - p h o to n s p atial c o h eren c e o f en tan g led p h o to n p air s b y m ea-

s u r in g th e c o in c id en c e rate in a H o n g - O u - M an d el in ter fero m eter as a fu n c tio n o f th e relative

tran s vers e b eam d is p lac em en t f o r d ifferen t ap ertu re s iz es . T h e c alc u lated an d o b s erved c o -

h eren c e is c o m p letely d ifferen t f o r an in ter fero m eter w ith an o d d o r even n u m b er o f m ir r o r s .

Fo r th e o d d c as e w e h ave d em o n s trated th at th e tran s vers e c o h eren c e len g th is in vers ely p r o -

p o r tio n al to th e ap ertu re s iz e. We als o o b s erved a w ell- d efi n ed d ip in th e s in g le c o u n t rate

an d d em o n s trated th e ex is ten c e o f a c o m b in ed tem p o ral an d s p atial lab elin g th at c an lead to a
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8. S p atial lab e lin g in a tw o -p h o to n in te rfe ro m e te r

reduction of the HOM visibility under certain conditions. For the even case, we have shown

that the transverse coherence length is basically determined by the pump waist.
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8.A A freq u enc y non-d egenerate two-photon interferometer

Ap p endix

8.A A fr eq uency non-degener a te two-p h oton inter fer ome-

ter

In this chapter we have observed the two-photon temporal coherence by measuring the co-

incidence rate as a function of the relative delay ∆t between the two interferometer paths.

The obtained coincidence patterns (see Fig. 8 .3 ) exhibit a profile that is given by the function

sinc(x) = sin(x)/x and determined by the sharp-edged transmission spectrum of the interfer-

ence filters. This profile is however only sinc-shaped if the filter spectrum is block-shaped

and the interference is freq uency degenerate, i.e., if the transmission spectra of the filters

are both centered around the degeneracy freq uency ωp/2. B elow we will show that non-

degenerate spectra cause an additional modulation of the coincidence pattern. This effect has

been studied before for different detection arrangements of photon pairs [96 ] . The spatial

analogue of this modulation effect, which is caused by non-perfect angular beam overlap in

the same two-photon interferometer, has been demonstrated in R ef. [97 ] . A slightly different

two-photon interferometer for measuring a similar modulation of the spatial interference has

been proposed in R ef. [98 ] .

Consider the even mirror-geometry under perfect spatial coherence (∆x = 0 ) , where the

two-photon visibility is given by E q . (8 .11). In the measurements presented below, we will

again use sharp-edged filters but add a (narrower) G aussian filter in one of the two interfer-

ometer arms to remove the freq uency degeneracy. For T1(ω1) = exp[−(ω1 −ωc1)
2/2∆ω2]

and T2(ω2) = 1 E q . (8 .11) now translates into

Veven (∆t) =

R e

[∫ +∞

−∞

dω1e
i(2ω1−ωp)∆t

e
−(ω1−ωc1)2/2∆ω

2

]

∫ +∞

−∞

dω1e
−(ω1−ωc1)2/2∆ω

2

= cos(ω̃∆t) · e−2(∆ω∆t)2

. (8 .19)

E q uation (8 .19) shows an interference pattern which exhibits a G aussian envelop and a

cosine modulation. The modulation or beat freq uency ω̃ = 2(ωc1 −ωp/2) is exactly twice

the freq uency detuning of the 2 nm filter from degeneracy.

We have demonstrated this modulation effect by measuring the two-photon temporal co-

herence via fiber-coupled detection. In a “ q uick-and-dirty” way, we add a single 2-nm-wide

(FWHM) G aussian filter in front of one of the present 10 -nm-wide sharp-edged filters. We

rotate this 2 nm filter over an angle α from the incident beam to blue-shift its spectrum by

∆λ = λ0α2/2n
2, where n is the refractive index of the filter. The spectrum of the freq uency-

entangled photons observed in the other arm is then automatically red-shifted by the same

∆λ . In Fig. 8 .10 we show both these non-degenerate spectra (dashed curves) and the mea-

sured transmission spectra of the 2 nm and 10 nm filters under normal beam incidence (solid

curves). We note that the 2 nm filters are centered at λ0 = 8 13 nm, while the sharp-edged 10

nm filters are centered at λ0 = 8 11.5 nm.

In Fig. 8 .11 we show the measured coincidence rate for α = 5◦ ± 1◦ and α = 9◦ ± 2◦.

We use E q . (8 .19) to fit these coincidence patterns and obtain modulation freq uencies of
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8. Spatial labeling in a two-photon interferometer

Figure 8 .1 0 : Measured tran sm issio n sp ec tra o f th e 2 n m an d 1 0 n m in terferen c e fi lters

u n der n o rm al b eam in c iden c e (so lid c u rv es). T h e left-dash ed c u rv e rep resen ts th e ex -

p ec ted sp ec tru m o f th e 2 n m fi lter u n der an an g le α w h ile th e rig h t-dash ed c u rv e sh o w s

th e ex p ec ted sp ec tru m o f th e freq u en c y -en tan g led p h o to n s in th e o th er arm .

ω̃ = 9.4×1012 rad /s an d ω̃ = 2.0×1013 rad /s, wh ic h c o r resp o n d to (d o u b le) wavelen g th d e-

tu n in g s o f 2∆λ = λ 2

0
ω̃/2πc = 3.3 n m an d 2∆λ =7 .0 n m f o r α = 5◦ an d α = 9◦, resp ec tively.

T h ese valu es ag ree reaso n ab ly well with th e exp ec ted d etu n in g s o f 2∆λ = 2.8±0.6 n m an d

2∆λ = 8.9±2.0 n m , wh ic h we c alc u late fr o m α an d a fi lter refrac tive in d ex o f n ≈ 1.5. D e-

sp ite th e “ q u ic k -an d - d ir ty” ap p r o ac h o u r resu lts are ac c u rate en o u g h to d em o n strate th at th e

m o d u latio n f req u en c y is in d eed twic e th e freq u en c y d etu n in g . Fu r th er m o re, th e fi lter b an d -

wid th s o f ≈1.7 n m (FWH M ), o b tain ed f r o m th e en velo p e fi ts o f th e m easu red c o in c id en c e

p attern s, are c lo se to th e m easu red fi lter b an d wid th o f 2 n m .

B esid es h ig h er m o d u latio n f req u en c ies we h ave also o b served lo wer c o in c id en c e rates

fo r larg er an g les α . Fo r n o r m al b eam in c id en c e (α = 0) we m easu re a c o in c id en c e rate o f

Rc = 530 s−1 wh ile we o b tain o n ly Rc = 330 s−1 an d Rc = 260 s−1 f o r α = 5◦ an d α = 9◦,

resp ec tively. We c an illu strate th is d r o p in c o in c id en c es fr o m Fig . 8.10. T h e d etu n in g ∆λ at

larg er an g les α sh if ts th e n o n - d eg en erate sp ec tr u m o f th e f req u en c y-en tan g led lig h t (r ig h t-

d ash ed c u rve) to ward s th e ed g e o f th e 10 n m fi lter sp ec tr u m , wh ic h o b vio u sly c au ses a g rad u al

lo ss o f c o in c id en c es. Fo r th e d ep ic ted ∆λ = 3.5 n m , wh ic h c o r resp o n d s to th e m easu red valu e

fo r α = 9◦, th e 2-n m -wid e sp ec tr u m is sh if ted to th e very ed g e o f th e 10-n m -wid e sp ec tr u m .

T h e d esc r ib ed c o in c id en c e lo ss c o u ld h ave b een avo id ed if th e ac c o m p an yin g 10 n m fi lter

wo u ld h ave b een rem o ved .
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8.A A fre q u e n c y n o n -d e g e n e ra te tw o -p h o to n in te rfe ro m e te r

Figure 8 .1 1 : Coincidence count rate versus delay ∆t measured behind single-mode

fibers in a frequency non-degenerate system. The center frequency of the narrow 2 nm

interference filter was blue-shifted by rotating it (a) α = 5
◦ and (b) α = 9

◦ away from

the incident beam.
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