d
A
&
15,

Universiteit

*dlied) Leiden
'Mﬁ The Netherlands

E
3
H oo
B
=
=)
@\
-3

o

Quantum entanglement in polarization and space
Lee, Peter Sing Kin

Citation
Lee, P. S. K. (2006, October 5). Quantum entanglement in polarization and space.
Retrieved from https://hdl.handle.net/1887/4585

Version: Corrected Publisher’s Version

Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4585

License:

Note: To cite this publication please use the final published version (if applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4585

CHAPTER 3

Simple method for accurate characterization of birefringent
crystals

We present a simple method to determine the cutting angle and thickness of birefringent
crystals. Our method is based upon chromatic polarization interferometry and allows for
accuracies of typically 0.1° in the cutting angle and 0.5% in the thickness.

PS.K. Lee, J.B. Pors, M.P. van Exter, and J.P. Woerdman, Appl. Opt. 44, 866-870 (2005).
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3. Simple method for accurate characterization of birefringent crystals

3.1 Introduction

Birefringent crystals play a key role in various optical applications ranging from polarization
manipulations in linear optics to frequency conversion in nonlinear optics. As the speci-
fication of ready-made crystal slabs is often limited by manufacturing tolerances, accurate
inspection after production is usually required. Properties of birefringent materials are gener-
ally characterized by applying interferometric [41-44] or ellipsometric techniques [45—47].
All these techniques enable one to determine the axes of orientation or the refractive indices
(or both) of the birefringent material, but not its thickness (apart from [47]). We present here a
simple method for simultaneous determination of both the precise cutting angle and thickness
of a birefringent crystal. Our method uses the refractive indices of the crystal as input, since
these indices are already well-known to high precision for most of the relevant crystals [48].
We combine this input with chromatic polarization interferometry to determine precisely the
absolute order of the crystal (acting as a waveplate) at several angles of incidence.

3.2 Theory

When considering plane-wave illumination of a uniaxial waveplate, the accumulated phase
difference A¢ between the ordinary and extraordinary light upon propagation through a bire-
fringent crystal is given by

A =d(koz—kez) (3.1

where d is the crystal thickness and k, ;, k., are the internal longitudinal wavevector
components of the ordinary and extraordinary light in the (z-)direction parallel to the surface
normal. In detail, the wavevector components are given by

ko . = koy/n2(A) —sin?(8) (3.2)

ke = ko\/n2(1.©) —sin®(6) (3.3)

where ko =27/ is the wavevector of the incoming beam, 6 is the angle of incidence and
no(A) and n.(A,®) are the refractive indices at the specified wavelength A and angle ®, with

1 cos2® sin’@®
= . 3.4
e\ e e G4

Here, ® = 0. + 0’ is the angle between k. and the crystalline c-axis, 6, is the cutting
angle (= angle between c-axis and surface normal), and 6’ is the internal refraction angle. All
relevant angles are indicated in Fig. 3.1.

Despite the simplicity of the above equations, the analysis of data obtained from chro-
matic polarization interferometry requires some thought. Experimentally, we measure the
wavelength-dependent optical transmission 7" of the waveplate when it is positioned between
two parallel polarizers. By fitting the measured spectral fringe pattern with the theoretical
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3.2 Theory

air crystal

c-axis

Figure 3.1: Definition of the relevant angles: angle of incidence 0, internal angle of
refraction 0, crystalline cutting angle 6., and internal angle ©.

expression [49] T = acos?>{A¢(A,0 = 0)/2} + b, with a and b constant, we can extract not
only the fractional but also the integer order of the waveplate for any specific wavelength Ag
(total order is A (Ay)/27).

Another issue is the dependence of A¢ on both crystal cutting angle 6. and thickness d. A
single polarization-resolved transmission spectrum contains insufficient information to deter-
mine both 6, and d individually, as a variation of one parameter can be largely compensated
for by a change in the other parameter. The basis for this approximate interchangeability of 8,
and d is the observation that Eq. (3.4) is well approximated by its first-order Taylor expansion
(as |n, — ne| < n,), making the refractive index difference An(A,®) = np(1) —n.(1,0) =
An(2,® = 90°) x sin@. As a result An(2,6,) shows a similar wavelength dependence at
various cutting angles and differences occur primarily in the prefactor.

To find the individual values of 6, and d we measure a set of polarization-resolved trans-
mission spectra at various angles of incidence 6. We analyze the spectra obtained at non-
normal incidence by using the interchangeability mentioned above: we fit the polarization-
resolved transmission spectrum at each incident angle 6 by that of a fictitious crystal of effec-
tive thickness deg(0) illuminated at normal incidence, i.e., we write A@ (1, 0) =~ 27d.(0) X
An(A,® = 6,)/A . This trick yields a single fitting parameter d.g(0) for every spectrum. As
a last step in our analysis we combine the data of all spectra, by plotting de(6) (or actu-
ally the phase difference A¢ (Ao, 0) at a fixed wavelength Ag) versus 0 and fitting it with the
appropriate expression to extract both the real 6, and d individually.

With the above trick we avoid the problem that a single spectrum can be fitted with many
different (0.,d) combinations. The only alternative to our simplified procedure would be a
single combined fit of all measured spectra. However, such a fit is much more cumbersome.

A nasty detail of every method of analysis is the conversion from external to internal
angles; in order to find the internal angle ® = 6. + 6’ for a given external angle 6 and cutting
angle 6, Snell’s law sin @ = n,(1,®)sin 8’ has to be solved iteratively, since @ itself depends
on 0. In practice, three iterations are sufficient to find all angles with an error < 0.0001°.
As a typical example we take 6, = 24.9°, 6 = 25°, n, = 1.66736 and n, = 1.55012; we
find then on the first iteration 6] = arcsin{sin 0 /n.(® = 6.)} = 14.89° and ©; = 39.79, on
the second iteration 6 = arcsin{sin6/n,(®;)} = 15.158° and @, = 40.058°, on the third
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3. Simple method for accurate characterization of birefringent crystals

iteration 0 = arcsin{sin6/n.(0,)} = 15.164° and ©3 = 40.064° and the same to within
0.0001° on the fourth iteration. The advantage of our two-step fit procedure is that these
iterations are necessary only in the final fit of A¢ (4o, 0) versus 0. For the alternative approach
of a single complete fit of all data an enormous amount of iterations in the 2-dimensional
(4, 0) space is needed.

3.3 Experimental setup

Figure 3.2 shows the experimental setup. An incandescent lamp (GE 1460X) produces a
beam which is directed through two apertures (spaced by 10 cm, each 5 mm diameter) in
order to limit its divergence. Note that no lenses have been placed in the beamline. The
birefringent BBO crystal (specified cutting angle 6. = 24.9° +0.5° and specified thickness
d = 1.0 £ 0.1 mm) is positioned between two parallel polarizers and placed in a rotation
stage in such a way that the crystalline optical axis can be rotated in the horizontal plane. A
200 pm diameter optical fiber guides the collected light to a fiber-coupled miniature grating
spectrometer (Ocean Optics S2000), which contains a high-sensitivity CCD array for quick
and easy measurement of a complete spectrum.

birefringent
aperture  polarizer aperture crystal

polarizer
c fiber input

spectrometer

computer <€
Figure 3.2: Experimental setup used to measure the optical transmission spectrum
of a birefringent crystal sandwiched between two parallel polarizers. Light from an
incandescent lamp (not shown) is passed through apertures (to limit its divergence) and
the crystal before being spectrally analyzed by a fiber spectrometer. The crystalline
c-axis can be rotated in the horizontal plane with an accurate rotation mount.

In order to generate the phase difference between the ordinary and extraordinary ray,
we first orient the crystal’s c-axis in the horizontal plane, using both polarizers initially in a
horizontal-vertical crossed configuration. The polarizers are then rotated to the 45° setting to
get maximum fringe contrast in polarization-resolved transmission.

Since we measure at angles of incidence up to 30°, we paid attention to position the
crystal properly along the axis of the rotation stage to avoid (partial) cut off of the light beam
by the crystal holder. The scale of the rotation stage is calibrated regarding its zero setting by
carefully observing the reflection at normal incidence. Hereby, we could get an accuracy of
the zero setting of 0.1°, which is also the accuracy the scale offers for angle measurement.

We operate our spectrometer in the transmission mode, in which the wavelength-depen-
dent light intensity is normalized to the spectrometer signal obtained in the absence of the
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3.4 Measurements and results

crystal. Since this latter signal is relatively weak for wavelengths below roughly 350 nm,
the measured signal in the transmission mode is very noisy in this spectral regime. For this
reason, we measure in the wavelength domain 400-875 nm, though the fiber spectrometer can
operate in the regime 200-875 nm.

3.4 Measurements and results

The experimental part of our method consists of measuring wavelength-dependent transmis-
sion spectra T(A,0) of the BBO crystal for several angles of incidence 0. Figure 3.3 shows
a typical optical transmission spectrum 7' (A), measured at normal incidence (6 = 0). The
modulation depth of the experimentally observed fringes is limited to only ~ 80% for A >800
nm and smoothly decreases to =~ 30% at A =500 nm. We attribute this limitation to the finite
opening angle of the light beam, which is approximately 0.7° and mainly determined by the
second aperture (5-mm diameter) positioned at 40 cm from the (200 um diameter) detect-
ing fiber. Multi-beam interference [50] does not play a major role in our experiment since it
requires plane-wave illumination, whereas our light source has a finite opening angle and is
spatially incoherent.

100

YIS EIEIRIRINL SN B

T (%)

40

550 600 650 700 750
A (nm)

Figure 3.3: Optical transmission spectrum T(A) of our BBO crystal, which is sand-
wiched between two parallel polarizers. The measured curve (solid) was taken at nor-
mal incidence (8 =0); its best fit (dotted) was found for degs = 1124 um and 6, = 24.7°
via the expression T = acos’[A¢(A,0 = 6,)/2] +b. Note that we present only a part
of the full pattern to limit the number of displayed fringes.

Next, each transmission spectrum is fitted by using the =0 expression for the phase
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3. Simple method for accurate characterization of birefringent crystals

difference, i.e., A@(A,0) ~ 2nde(0)An(A,® = 6,) /A, with the thickness de(0) acting as
fitting parameter and 6, fixed at the specified value of 24.9°, which could differ from the
real cutting angle. For the spectrum measured at normal incidence, dess = 1124 um gives
a perfect fit of the fringe period and phase (dotted curve in Fig. 3.3); a precise fit of the
fringe amplitudes is not relevant in our analysis. For spectra taken at non-normal incidence
(not shown) the fit is not always perfect, simply because the 8 = 0 expression is just an
approximation, though a good one, for the cases 8 # 0. To still obtain the correct order
Ad(Ay, 0)/27 at a specific wavelength Ay, we have to fit with an effective thickness deg such
that experimental curve and fit are exactly in phase at this wavelength (fractional order), while
both curves contain an equal number of fringes (= integer order) in the wavelength domain
[Ao, eo]. For A9 we choose a fixed value of 644 nm, because it is located in the center of our
spectral range and accurate refractive index data at this wavelength is available [48]: n, =
1.66736 and n, = 1.55012.

The described fitting procedure works well because we use accurate (at least four deci-
mals) values for the refractive indices n, and n,, as tabulated for some wavelengths at T =
293 K in [48] (originally from [51]). Due to the small temperature sensitivity (= 1075 K1)
of the refractive indices, temperature fluctuations within 5 K have negligible effect on the
refractive index difference, which is of the order of 0.05. The mentioned tabulated values
for n, and n, served as input to calculate data points for An(A,® = 6,), which are then fit-
ted with the standard dispersion relation (normally used for n) to obtain the full wavelength
dependence of An(A,® = 6,) necessary for fitting the observed spectral fringe pattern.

Figure 3.4(a) shows the measured order of waveplate A@ (Ao, 0)/27 as a function of the
incidence angle 6, where each point results from a single spectral measurement. These points
are fitted by using the full (6 # 0) Egs. (3.1-3.4) with cutting angle 6. and thickness d as
fitting parameters and A fixed at A9 = 644 nm, thereby getting the proper internal angle ® for
each 0 via iterations. The set of fitting parameters which produces the best fit (solid curve)
now gives us the real cutting angle and thickness of our BBO crystal, being 6, =24.95°£0.1°
and d = 1105+ 5 pum. To demonstrate the influence of the fit parameters, we have also
plotted two other fits. The dashed curve shows how a change in 6, (to 6, = 19.95°, keeping
d = 1105 pum) leads to something like a horizontal shift of the best fit. The dotted curve shows
how an additional change in d leads to a simple and exact scaling in the vertical direction.
The new (and incorrect) fit parameters (6, = 19.95°, and d = 1680 pm) are chosen such that
they give the same order of waveplate A¢(Ay)/27 at normal incidence.

To determine the best fit of the data points shown in Fig. 3.4(a), we have calculated

the normalized y? = Y, 87 /(N —2) for various sets of fitting parameters 6, and d (see

Table 3.1). Here, N is the number of data points and J; are the residuals between data points
and fit which, for the best fit, are randomly spread around zero with a standard deviation
of 0.10 [see Fig. 3.4(b)]. Besides the real cutting angle 6, and thickness d of the crystal
(minimal x?), Table 3.1 also indicates that our method allows for determination accuracies

of 0.1° for 6, and 0.5% for d.
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3.5 Discussion

Figure 3.4: (a) Order of the waveplate A¢ (Ao, ®) /27 at Ay = 644 nm as a function of
the angle of incidence 0. The dots are experimental values obtained from fits like the
one shown in Fig. 3.3. The solid, dashed and dotted curves are parametric fits (see text
for details). (b) Residuals 8 between experimental points and best fit shown in (a). The
residuals are randomly spread around zero with standard deviation of 0.10.

3.5 Discussion

As this chapter stresses the high accuracy of our method, we will separately discuss the
possible errors in the horizontal and vertical scale of Fig. 3.4(a). The error in the determined
angle of incidence 8 comes, in the first place, from the scale accuracy of the rotation stage,
being 0.1°. In addition, 6 can exhibit a systematic error of 0.1° due to the limited accuracy
in the calibration of the zero setting of this scale, resulting in a total error in 8 of 0.2°. As a
consequence of Snell’s law, the error in the internal refraction angle is a factor n smaller.
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3. Simple method for accurate characterization of birefringent crystals

Table 3.1: Normalized x* as calculated for various cutting angles 6. and thicknesses
d.

d(um), 6, || 24.85° | 24.90° | 24.95° | 25.00°

1100 0.301 | 0.170 | 0.079 | 0.145
1105 0.106 | 0.038 | 0.010 | 0.022
1110 0.023 | 0.018 | 0.054 | 0.130
1115 0.050 | 0.109 | 0.209 | 0.351

Inaccuracy in the measured order of the waveplate Ad(Ay)/2n comes from improper
matching of the experimental curve and fit at Ap in the fitting procedure shown in Fig. 3.3.
The potential mismatch is, however, not more than a few times 1072 of a fringe, which
implies that A¢(Ay)/2x has its error only in the second decimal and can thus be determined
more accurately than 8. As we use a simplified fitting procedure (based on defr), there is a
small risk, particularly for large 6, that we miscount Ad (o) /27 by a full integer unit due to
a miscalculation of the number of fringes in the range [Ag, «]. Fortunately, such gross errors
show up immediately in Fig. 3.4(b) and can thus be easily corrected for.

As an alternative check for the cutting angle, but not for the crystal thickness, we have also
used our BBO crystal for type-I second harmonic generation. Starting from a weakly focused
laser beam at a wavelength of A;, = 980 nm, we found optimum conversion to 490 nm at
a measured angle of incidence of 1.2° 40.1°, corresponding to an internal angle of 8’ =
0.7°. With a free software package [52], we determined the angle ® for optimum conversion
[phase-matched by n,(A;) = n.(A./2,0)]to be ® = 24.3°. Adding the two values mentioned
above leads to a cutting angle 6, = 25.0°, which agrees well with the value found with our
method.

As a test of our method, we have also determined the precise cutting angle and thickness
of a second crystal (with specified values 6, =41.8° £0.5° and d = 200420 um). Table 3.2
summarizes the results of a series of spectral measurements by giving x> for various 6, and
d. This leads to an actual cutting angle 6, = 41.01+0.1° and thickness d = 238.5+£0.5 um.
These small error tolerances are in good agreement with those found with our first crystal,
and once more confirm the high accuracy of our method.

We stress that the simplicity of our method is due to the use of well-known refractive
indices as input. In solid state optics, characterization of newly developed crystals cannot
benefit from this method, as their refractive indices are still unknown, and a much more ex-
tensive method is needed. Such a method has been developed by Hecht ef al. [47], where
ellipsometric and polarization transmission intensity measurements are simultaneously ana-
lyzed to determine the optical properties of a specific crystal. In addition to its simplicity, our
method also allows for easy measurement of any practical crystal thickness, contrary to what
is reported in Ref. [47].
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3.6 Conclusions

Table 3.2: Normalized x? for a second crystal as calculated for various cutting angles
0. and thicknesses d.

d(um), 6, || 40.85° | 40.90° | 40.95° | 41.00° | 41.05° | 41.10°

237.5 0.0322 | 0.0210 | 0.0124 | 0.0063 | 0.0028 | 0.0019
238.0 0.0183 | 0.0102 | 0.0046 | 0.0016 | 0.0012 | 0.0034
238.5 0.0086 | 0.0036 | 0.0011 | 0.0012 | 0.0039 | 0.0091
239.0 0.0032 | 0.0012 | 0.0018 | 0.0050 | 0.0108 | 0.0192
239.5 0.0019 | 0.0030 | 0.0068 | 0.0131 | 0.0220 | 0.0335

3.6 Conclusions

In this chapter, we have presented a simple method, based upon chromatic polarization inter-
ferometry, to determine the cutting angle and thickness of birefringent crystals. In spite of
its simplicity, the method allows for accuracies of 0.1° in the cutting angle and 0.5% in the
thickness, which are generally much smaller values than specified by the manufacturer.

In the present experiment, these accuracies are limited by the quality of the rotation
mount. This is, however, not a fundamental limitation. With a more accurate mount, in
combination with a better alignment scheme and a less divergent optical beam, even higher
accuracies are expected.
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