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CHAPTER 2

S p o n ta n e o u s p a ra m e tric d o w n -c o n ve rs io n a n d q u a n tu m

e n ta n g le m e n t o f p h o to n s

We b r iefl y d es c r ib e ho w s p o n ta n eo u s p a r a m etr ic d o w n -c o n v er s io n c a n b e u s ed to gen er -

a te q u a n tu m -en ta n gled p ho to n s a n d w hic h lim ita tio n s this im p o s es . T he s p ec ifi c c a s es o f

p o la r iz a tio n en ta n glem en t a n d s p a tia l en ta n glem en t a re d is c u s s ed .
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2. S p o n ta n e o u s p a ra m e tric d o w n -c o n ve rs io n a n d q u a n tu m e n ta n g le m e n t o f p h o to n s

2.1 I n t r o d u c t io n

Mathematically s p eak in g , two p articles 1 an d 2 are s aid to b e en tan g led if their join t q u an tu m

s tate can n ot b e factoriz ed in to the q u an tu m s tates of the in d ivid u al p articles . The p hys ical

in terp retation of en tan g lemen t is that meas u remen t of a q u an tu m ob s ervab le on p article 1

in s tan tan eou s ly d etermin es the ou tcome of this ob s ervab le for p article 2 an d vice vers a, ir re-

s p ective of the in terp article d is tan ce an d withou t an y man ip u lation of p article 2. Two p hoton s

can b e en tan g led in their p olariz ation , tran s vers e momen tu m or freq u en cy, which imp lies that

their two-p hoton wavefu n ction is n on -factoriz ab le in either of thes e d eg rees of freed om.

The s tan d ard s ou rce for p rod u ction of q u an tu m-en tan g led p hoton p air s is the n on -lin ear

p roces s of s p on tan eou s p arametric d own -con vers ion ( S P D C ) in a b irefrin g en t crys tal [ 5 , 8 ] .

I n this p roces s , a s in g le p u mp p hoton is s p lit in to two p hoton s (often called s ig n al an d id ler

p hoton ) s u ch that the en erg ies an d tran s vers e momen ta of the d own -con verted p hoton s ad d

u p to thos e of the p u mp p hoton . The b as ic s cheme for g en eratin g an d d etectin g en tan g led

p hoton - p air s is s chematically s hown in F ig . 2.1. The p u mp lig ht is d irected on to the n on -

lin ear crys tal to create en tan g led p air- p hoton s that are emitted alon g p ath 1 an d 2 an d travel

to d etectors p laced in each p ath. The en tan g lemen t is meas u red via s ome (q u an tu m) corre-

lation s in the n u mb er of p hoton p air s that are cou n ted as coin cid en ce click s b etween the two

d etectors .

Figure 2 .1 : Basic scheme for generation and detection of entangled photon pairs.

I n this chap ter we will fi r s t g ive a d es crip tion of S P D C as a s ou rce of en tan g led - p hoton

p air s . S ection 2.2 con tain s a g en eral rep res en tation of the b ip hoton en tan g led s tate tog ether

with the p has e-matchin g p hys ics that g overn s the d is tr ib u tion of the emitted S P D C lig ht. I n

S ec. 2.3 we will s p ecifi cally focu s on the p olariz ation -en tan g led s tate an d relate its s p atial

an d freq u en cy d ep en d en ce to the d eg ree of p olariz ation en tan g lemen t. We als o p res en t, in

s ome more d etail, a g en eral s etu p for meas u rin g p olariz ation en tan g lemen t with p hoton s . I n

an an alog ou s way, we will in trod u ce the s p atial en tan g lemen t of p hoton s in S ec. 2.4 . We will

en d with s ome con clu d in g remark s in S ec. 2.5 .

2.2 S p o n t a n e o u s p a r a m e t r ic d o w n - c o n ve r s io n

2.2.1 T h e b ip h o t o n w a ve f u n c t io n

I n g en eral, the two-p hoton s tate p rod u ced via s p on tan eou s p arametric d own -con vers ion in a

n on lin ear crys tal can b e rep res en ted b y the wavefu n ction [ 3 2, 3 3 ]
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2.2 Spontaneous parametric down-conversion

|Ψ〉 =
∫

dq1

∫
dq2

∫
dω1

∫
dω2 ∑

i=H,V

∑
j=H,V

Φi j(q1,ω1;q2,ω2)â
†
i (q1,ω1)â

†
j(q2,ω2)|0〉 .

(2.1)

The creation operators â
†
i (q1,ω1) and â

†
j (q2,ω2) act on the vacuum state |0〉, and create a

photon in beam 1 with transverse momentum q1, frequency ω1 and polarization i, and a pho-

ton in beam 2 with transverse momentum q2, frequency ω2 and polarization j, respectively.

The polarizations of photon 1 and 2 are labelled by indices i and j where the summation is

over the horizontal (H) and vertical (V ) polarization. Conservation of energy and transverse

momentum in the down-conversion process requires ωp = ω1 +ω2 and qp = q1 +q2.

The physics of the SPDC process and the quantum entanglement are contained in the

biphoton amplitude functions Φi j(q1,ω1;q2,ω2). In fact, these amplitude functions depend

on three different aspects that embody (i) the transverse profile of the pump field Ep(qp,ωp),
(ii) the phase mismatch built up during propagation inside the generating crystal and (iii)

the two-photon propagation from the crystal plane to the detection plane. For a convenient

description of a certain type of entanglement, one does not incorporate all three contributions

but often neglects one of them. For instance, in the study of spatial entanglement one often

assumes the crystal to be “ sufficiently thin” so that the phase mismatch can be neglected [34].

This so-called thin-crystal limit is only a relative concept: the crystal is only thin enough in

relation to the spectral detection bandwidth and spatial opening angle of the detected SPDC

light.

E quation (2.1) provides a full description of the two-photon state that is in principle si-

multaneously entangled in polarization, frequency (time entanglement) and transverse mo-

mentum (spatial entanglement), i.e., non-separable in all three corresponding variables. The

quantum entanglement is contained in the threefold labeling of the biphoton amplitude func-

tion Φ. To describe one of the three types of entanglement, one isolates the relevant variable

by integrating over the other two. In the Secs. 2.3 and 2.4 we will discuss in which way the

symmetry properties of Φ contains the polarization and spatial entanglement information.

2.2.2 P has e m atching in ty pe-I I S P D C

The generation of SPDC light is among others determined by the phase-matching func-

tion which is incorporated in the biphoton amplitude Φ and describes the phase mismatch

φ(q1,ω1;q2,ω2) built up in the crystal. Phase matching ex ists in two different forms which

are known as type-I and type-II phase matching. In type-I phase matching, the down-converted

photons have the same polarizations, i.e. i = j = H for a V -polarized pump photon. Twin

photons generated under type-II phase matching have orthogonal polarizations (i = H and

j = V , or vice versa).

In this section we restrict our description to type-II phase matching, where the crystalline

c-ax is lies in the yz -plane and where the horizontal and vertical polarization are defined along

the x- and y-ax is of the crystal frame, respectively (see Fig. 2.2). We consider the pump

polarization to be vertical (e → o + e) and relabel the H- and V -polarization as the ordinary

(o) and ex tra-ordinary (e) polarization. The average phase mismatch, being the mismatch

for propagation over half the crystal length L/2, is then given by φ = ∆kzL/2 where ∆kz =
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2. S p o n ta n e o u s p a ra m e tric d o w n -c o n ve rs io n a n d q u a n tu m e n ta n g le m e n t o f p h o to n s

Figure 2 .2 : The c r y s ta l fr a m e.

kp,z − ko,z − ke,z is th e wave-vec tor m ism atc h in th e z-d irec tion p arallel to th e su rfac e n orm al.

If d etec tion oc c u rs far en ou g h from th e c rystal, we c an rep lac e th e tran sverse m om en ta q b y

extern al an g les θ = (θx,θy) via θ ≈ (c/ω)q. Th e p rojec ted wavevec tors c an th en b e written

as

ki,z ≈ ni

(

ωi,
θi,y

ni

)

ωi

c
c os

(

θi,x

ni

)

c os

(

θi,y

ni

)

, (2.2)

wh ere th e in d ex i = p,o or e an d ni are th e c orresp on d in g refrac tive in d ic es. C on sid erin g

th e p araxial ap p roxim ation (|θi| ¿ 1), we c an Taylor-exp an d E q . (2.2) arou n d th e an g les

θi = 0 to ob tain th e p h ase m ism atc h [ 3 5 ]

φ(θp,θo,θe) ≈
LΩ

2c

{

−C + (n0 −ne(Θc))
δω

Ω
+ ρ(2θp,y −θe,y)+

1

2n

(

θ 2

o,x +θ 2

o,y +θ 2

e,x +θ 2

e,y

)

}

. (2.3 )

We h ave u sed δω = Ω−ωo = ωe −Ω ¿ Ω, wh ere Ω = ωp/2 is th e S P D C d eg en erac y

freq u en c y. Th e c on stan t C d ep en d s on m aterial p rop erties, th e c rystal tilt an d th e c u ttin g

an g le Θc, b ein g th e an g le of th e c rystal axis with resp ec t to th e su rfac e n orm al. I n th e last

“ q u ad ratic ” an g u lar term s we h ave n eg lec ted th e (relatively sm all) d ifferen c e b etween th e

g rou p refrac tive in d ic es no an d ne(Θc) an d rep lac ed th em b y th e averag e in d ex n. Fu r th er-

m ore, th e in ter n al walk -off an g le is g iven b y ρ = ∂ ln [ne(Θc)]/∂Θc [ 3 5 ] . I t c an also b e

rewritten in ter m s of th e extern al walk -off an g le θo ff (see b elow) as ρ = (2/n)θo ff.

A c loser in sp ec tion of E q . (2.3 ) reveals th e em ission p rofi les of th e S P D C lig h t wh ic h are

d efi n ed b y th e c on d ition φ ≈ 0 . For p lan e-wave p u m p in g (θp = 0) an d freq u en c y d eg en erac y

(δω = 0 ), th e ord in ary an d extra-ord in ary lig h t are em itted alon g two id en tic al c on es th at are

m ir ror-fl ip p ed im ag es of eac h oth er an d are sp ac ed with resp ec t to th e p u m p over −θo ff an d

θo ff, resp ec tively. Th e op en in g an g les of th e lig h t c on es are d eterm in ed b y th e c on stan t C an d

c an b e tu n ed b y tiltin g th e c rystal. Fig u re 2.3 sh ows typ ic al S P D C p attern s th at we ob served

with an in ten sifi ed C C D c am era for d ifferen t tiltin g an g les of th e c rystal. Th e rig h th an d p ic -

tu re d ep ic ts th e stan d ard exp erim en tal g eom etry wh ere th e p erp en d ic u lar ly in tersec tin g c on es

d efi n e th e lig h t p ath s 1 an d 2 sh own in Fig . 2.1. I t is easy to verify th at b oth in tersec tion s

are th en also sp ac ed b y th e extern al an g le θo ff with resp ec t to th e p u m p . I n C h ap ter 6 we
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2.2 Spontaneous parametric down-conversion

will show that the condition of focused pumping (θp,y 6= 0) can drastically affect the emitted

SPDC pattern.

Figure 2.3 : Intensified C C D images o f S P D C emissio n fo r different tilting angles o f the

crystal. The o rtho go nal cro ssings 1 and 2 in the righthand p ictu re define the regio ns fo r

ex p erimental stu dy o f p o lariz atio n entanglement.

Figure 2.3 already provides a nice illustration of polariz ation entanglement. The ordinary

and extra-ordinary ring have a well-defined horiz ontal and vertical polariz ation, respectively,

except at the intersections 1 and 2. At these crossings, the individual polariz ations of the

pair-photons 1 and 2 are undetermined but always perpendicular to each other (for the singlet

B ell state). The fact that one in pr inciple cannot distinguish which polariz ation will emerge

in which crossing makes these pair-photons polariz ation-entangled.

As we consider SPDC emission close to frequency degeneracy and as the SPDC crossings

are the only relevant regions to study the entanglement, we can lineariz e the phase mismatch

of Eq. (2.3) around these points (θx = ±θoff +δθx) to

∆φ = ∆kzL/2 ≈ π

(

δω

∆ωS P C D

+
±δθx −θy

∆θS P D C

)

, (2.4 )

where the plus and minus sign refer to the lineariz ations around θx = +θoff and θx =
−θoff, respectively. The advantage of Eq. (2.4 ) is that it characteriz es the phase mismatch as

a function of the local frequency detuning δω and angular displacement δθx relative to the

degenerate coordinates (Ω,±θoff). In Eq. (2.4 ) these local deviations are normaliz ed to the

SPDC spectral width ∆ωS P C D and angular width ∆θS P C D , respectively, where

∆ωS P D C =
2πc

[no −ne(Θc)]L
(2.5)

∆θS P D C =
λ

ρL
, (2.6)

and λ = 2πc/Ω is the degeneracy wavelength. Equation (2.6) gives the angular width

in either the x or y direction. The real angular width in the radial directions is a factor
√

2

smaller. Above equations obviously show that both the SPDC spectral and spatial width

becomes larger for thinner crystals (see also Chapter 4 ).
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2. Spontaneous parametric down-conversion and quantum entanglement of photons

2.3 Po la r iz a t io n e n t a n g le m e n t

2.3.1 T h e p o la r iz a t io n - e n t a n g le d s t a t e

For the study of polarization entanglement, we consider two-photon production via type-II

SPDC where the generated pair-photons have orthogonal polarizations, i.e., either i, j = H,V
or i, j = V,H. The two-photon state in Eq. (2.1) can now be written as

|Ψ〉 =
∫

dq1

∫
dq2

∫
dω1

∫
dω2{ΦHV (q1,ω1;q2,ω2)|H,q1,ω1;V,q2,ω2〉+

ΦV H(q1,ω1;q2,ω2)|V,q1,ω1;H,q2,ω2〉} . (2.7 )

Physically speaking, the pair-photons are polarization entangled if one in principle can-

not distinguish which photon (H or V ) has travelled which path (1 or 2) on the basis of the

measurement of any other variable than polarization. This is the case when the biphoton am-

plitude functions ΦHV and ΦV H overlap sufficiently well to prevent us to distinguish between

the two states |HV 〉 and |V H〉 on the basis of either frequency or spatial contents. The in-

terference between these two probability channels is quantified by the wavefunction-overlap

〈Ψ|Ψ〉 which is proportional to the coincidence count rate for simultaneous detection of one

pair-photon in each detector (see Sec. 2.3.3). As the polarization entanglement is hidden in

the interference terms (∝ Φ
∗

HV
ΦV H ), an ex p erim en tal m eas u re for th e d eg ree of en tan g lem en t

is g iven b y [3 7 ]

Vpol =
〈〈2 R e(Φ∗

HV
ΦV H) 〉 〉

〈〈|ΦHV |2 + |ΦVH)|2 〉 〉
. (2 .8 )

T h e d ou b le b rac k ets 〈〈· · · 〉 〉 are ju s t a s h orth an d n otation of th e s ix -fold in teg ration over

th e ran g e of m om en tu m an d freq u en c y variab les d eterm in ed b y th e two ap ertu res an d th e

tran s m is s ion of th e two b an d wid th fi lter s , res p ec tively. M ax im al en tan g lem en t (Vpol = 1 )

is ob tain ed wh en ΦHV = ΦV H , i.e., wh en th e am p litu d e fu n c tion s are s ym m etr ic u n d er ex -

c h an g e of lab els . A s s oon as th es e fu n c tion s d iffer d u e to a d ifferen t m om en tu m or freq u en c y

d ep en d en c e, lab elin g c om es in to p lay an d th e en tan g lem en t will b e weak er, th e m ore s o th e

larg er th e in teg ration ran g es . We n ote th at th e s ix -fold m om en tu m an d freq u en c y in teg ration ,

ac tin g on th e rath er c om p lic ated fu n c tion Φ
∗

HV
ΦV H , m ak es th e evalu ation of E q . (2 .8 ) n ot as

tran s p aren t as on e wou ld wis h . For a m ore c on ven ien t d es c r ip tion of p olariz ation en tan g le-

m en t, th e b ip h oton am p litu d e fu n c tion ΦHV is often s im p lifi ed as th e p rod u c t of th e p u m p

fi eld p rofi le an d th e p h as e m atc h in g fu n c tion on ly, th ereb y om ittin g th e c on tr ib u tion of th e

two-p h oton p rop ag ation . We n ote th at th is is s tr ic tly c orrec t on ly in th e far- fi eld lim it.

2.3.2 L im it a t io n s t o t h e d e g r e e o f p o la r iz a t io n e n t a n g le m e n t

I n g en eral, th e en tan g lem en t in on e of th e th ree d eg rees of freed om , b ein g p olariz ation , tran s -

vers e m om en tu m an d freq u en c y, will b e affec ted b y th e d ep en d en c e of th e am p litu d e fu n c tion

Φ on th e oth er two d eg rees of freed om an d th e in teg ration over th es e variab les . T h e c om p li-

c ated s ix -fold in teg ration in E q . (2 .8 ) for ex am p le d es c r ib es h ow th e s p atial an d freq u en c y

lab elin g in form ation , c on tain ed in th e am p litu d e fu n c tion s ΦHV an d ΦV H , affec ts th e ob tain ed
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2.3 Po la riz a tio n e n ta n g le m e n t

polarization entanglement. In C hapter 7 we will discuss in more detail how the four-fold mo-

mentum integration will lead to lower degrees of polarization entanglement if the integration

extends to larger apertures. As soon as detection occurs behind single-mode fibers instead

of apertures, the spatial information will be reduced to that of a single transverse mode, the

spatial labeling will thus disappear, and Eq. (2.8) will contain only a two-fold frequency in-

tegration. The degree of polarization entanglement is then no longer limited by the aperture

size but only by the detected spectral bandwidth of the filters.

2.3.3 E x perimental sc heme for measu rement of polarization entangle-

ment

Figure 2 .4 : Experimental s etu p fo r meas u ring po lariz atio n entang lement.

In Fig. 2.4 we show the detailed experimental setup that we typically employ to generate

and detect polarization-entangled photons. A krypton ion laser, operating at 4 0 7 nm, pro-

duces a light beam that is weakly focused (typical beam waist ≈ 0 .3 mm) onto a 1-mm-thick

non-linear χ (2) crystal made of β -barium borate (B B O ). The perpendicular intersections of

the generated S P D C cones are realized by a proper tilt of the crystal. These intersections

form the two paths along which all optics are placed. A half-wave plate H WP , oriented at 4 5◦

with respect to the crystal axes, and two 0 .5-mm-thick B B O crystals (cc) form the device that

compensates for both the longitudinal and transverse walk-off built up between the ordinary

and extra-ordinary light in the birefringent crystal. B y tilting one of these two compensating

crystals we can set the overall phase factor of the two-photon state which allows us to operate

either in the singlet or one of the triplet states. The two light beams pass f = 4 0 cm lenses

(L1) at 80 cm from the down-conversion crystal and propagate over an additional 120 cm

before being focused by f = 2.5 cm lenses (L2) onto free-space single-photon counters S P C

(P erkin Elmer S P C M-AQ R-14 ). S patial selection of the crossings is performed by circular

apertures with variable diameter in front of the lenses L1. S pectral selection is accounted for

by interference filters IF (∆λ = 10 nm FWH M centered around 814 nm) and red filters RF

in front of the photon counters. P olarizers P are used for polarization selection. The output

signals of the photon counters are combined in an electronic circuit that registers coincidence

counts (simultaneous clicks) within a time window of 1.76 ns. This time window is suffi-

ciently small to detect the individual photons of a single pair only, but is also much larger

than the coherence time of the two-photon wavepacket, which is proportional to the inverse

bandwidth of the interference filters and typically 0 .1 ps (at ∆λ = 10 nm).

The above description of the experimental setup is just a general one. S light modifications

of this general scheme are required for specific studies on polarization-entanglement, using

11



2. S p ontaneou s p arametric d ow n-c onvers ion and q u antu m entanglement of p h otons

different crystal thicknesses, pump foci and fiber-coupled photon counters, as presented in

Chapter 4, Chapter 6 and Chapter 7, respectively.

In a typical measurement of the degree of polarization entanglement, we measure the co-

incidence count rates for an orthogonal and a parallel polarizer setting. These settings are

reached by fixing one polarizer at +45◦ and rotating the other to −45◦ and +45◦, respec-

tively. When we operate in the two-photon singlet state, we expect to measure a maximal

coincidence rate Rmax for the orthogonal setting and a minimum rate Rmin for the parallel

setting. In fact, the coincidence rate measured as a function of the orientation of the rotating

polarizer is a sinusoidal fringe pattern that corresponds to the two-photon interference. The

degree of polarization entanglement [see Eq. (2.8)] can now be experimentally measured by

the two-photon fringe visibility, given by

V4 5 ◦ =
Rmax −Rmin

Rmax +Rmin

. (2.9 )

2.4 S p a t ia l e n t a n g le m e n t

2.4.1 T he spatially entangled state

Figure 2.5 : Transv erse momenta of pair-ph otons 1 and 2 generated und er ty pe-I S P D C .

For the study of spatial entanglement, we consider type-I phase matching (one polariza-

tion) and monochromatic light (ω1 = ω2). The two-photon state in Eq. (2.1) then changes

into

|Ψ〉 =
∫

dq1

∫
dq2Φ(q1,q2)|q1,q2〉 . (2.10)

At first sight, Eq. (2.10) does not represent a spatially-entangled state as the ampli-

tude function Φ(q1,q2) seems to lack the symmetry property shown in Eq. (2.7) for the

polarization-entangled state. The reason is that the continuous momentum variables q1 and

q2 are not limited to two discrete values, as was the case for the polarizations H and V . By

definition, the spatial entanglement is then contained in the non-separability of the ampli-

tude function, i.e., Φ(q1,q2) 6= f (q1)g(q2), rather than in the symmetry of Φ. However, the

12



2.4 Spatial entanglement

symmetry of Φ(q1,q2) does emerge once we linearize the momenta around q0 and -q0, be-

ing the transverse momenta associated with the central axes of beam 1 and 2, respectively

(see Fig. 2.5). The momenta q1 and q2 are then given by q0 + ξ1 and −q0 + ξ2, res p ec -

tively , wh ere |ξ1,2| ¿ |q0|. F u r th er m ore, we defi ne Φ12(ξ1,ξ2) ≡ Φ(q0 +ξ1,−q0 +ξ2) and

Φ21(ξ1,ξ2) = Φ12(ξ2,ξ1) ≡ Φ(q0 + ξ2,−q0 + ξ1) T h e p air- p h otons are fu lly indis ting u is h -

able in m om entu m , and th u s s p atially entang led, if th e am p litu de fu nc tion Φ(q1,q2) is invari-

ant to th e exc h ang e of th e loc al variables ξ1 and ξ2 [ 3 6 ] , i.e., if Φ12(ξ1,ξ2) = Φ21(ξ1,ξ2).
A nalog ou s to th e c as e of p olariz ation entang lem ent, th e s p atial entang lem ent is ag ain

q u antifi ed by th e overlap between th e am p litu de fu nc tions Φ12 and Φ21. In C h ap ter 8 we

will s tu dy th e s p atial interferenc e of th es e am p litu de fu nc tions in a two-p h oton exp erim ent

th at em p loy s a s o-c alled H ong - O u - M andel (H O M ) interferom eter [27 ] . In th is interferom -

eter p h oton c oinc idenc es are m eas u red only wh en th e two inc ident p h otons are eith er both

refl ec ted or both trans m itted at th e beam s p litter. T h es e two p robability c h annels are rep re-

s ented by Φ12 and Φ21 and, in es s enc e, p robed by a s witc h in beam labels . T h e deg ree of

s p atial entang lem ent is th erefore g iven by

Vs p a t =
〈2R e{Φ

∗

12Φ21 } 〉

〈|Φ12|2 + |Φ21|2〉
. (2.1 1 )

T h e s ing le brac k ets now denote th e integ ration over th e loc al m om enta ξ1 and ξ2 only .

In c as e of non-m onoc h rom atic lig h t (ω1 6= ω2) , dou ble brac k ets s h ou ld be introdu c ed as we

th en h ave to integ rate over f req u enc ies as well. E q u ation (2.1 1 ) s h ows th at we ag ain obtain

m axim al entang lem ent if th e bip h oton am p litu des are s y m m etr ic u nder exc h ang e of th e beam

labels .

2.4.2 S tate re p re s e n tatio n in a m o d al b as is

T h e s p atially -entang led s tate in E q . (2.1 0 ) is rep res ented in a p lane-wave bas is of two-p h oton

s tates |q1,q2〉 th at are exp res s ed in th e c ontinu ou s m om entu m variables q1 and q2. A s an

alternative, th is entang led s tate c an als o be rep res ented in a m odal bas is of dis c rete eig ens tates

ψni with i= 1 or 2 [3 4 , 3 8, 3 9 ] . In th is bas is , E q . (2.1 ) c an be written as th e ins ep arable s tate

|Ψ〉 = ∑
n

Φn|ψn1〉|ψn2〉 , (2.1 2)

wh ic h rep res ents a s u p er p os ition of (s ep arable) p rodu c t s tates |ψn1〉|ψn2〉. T h e index n

refers to th e m odal indic es of th e eig enfu nc tions th at form a c om p lete orth onorm al s et of

s olu tions for th e p araxial wave eq u ation in a s p ec ifi c beam direc tion [4 0 ] . I f we u s e th e

s et of L ag u erre-G au s s ian (L G ) m odes , we c an defi ne n as n ≡ (l, p) wh ere l and p are th e

az im u th al and radial L G p oly nom ial indic es th at label th e trans vers e p rofi le of th e lig h t beam .

T h e s p atial entang lem ent th at is h idden in th e ins ep arable c h arac ter of E q . (2.1 2) s im p ly

bec om es trans p arent f rom th e m eas u rem ent p rojec tion. T h e s p atial m ode of eac h individu al

p air- p h oton is u nk nown beforeh and, bu t m eas u rem ent of th e m ode of one p h oton fi xes th e

m ode of its p ar tner p h oton.
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2. S p o n ta n e o u s p a ra m e tric d o w n -c o n ve rs io n a n d q u a n tu m e n ta n g le m e n t o f p h o to n s

2.5 C o n c lu d in g re m a rk s

In this chapter we have described the process of spontaneous parametric down-conversion

(S P D C) as a source of quantum-entangled photons. We have used the generated two-photon

state as the basis for an analogous description of polarization and spatial entanglement in

general. Elsewhere in this thesis, we will present the specific consequences of the crystal

thickness (Chapter 4), focused pumping (Chapter 6) and fiber-coupled detection (Chapter 7)

on the polarization entanglement. For a detailed study of spatial entanglement that originates

from HOM interference we refer to Chapters 8 and 9.
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