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Cardiovascular disease (CVD), which is mainly due to atherosclerosis, is currently the 
leading cause of death in the Western world 1. One of the most important risk factors 
for atherosclerosis is dyslipidemia, hallmarked by increased plasma levels of (V)LDL-
cholesterol (C) and triglycerides (TG), and decreased plasma levels of HDL-C. Lipid-
lowering agents (especially statins) improve dyslipidemia and have proven to reduce 
major cardiovascular events 2, 3. However, since these drugs only partially improve 
the mortality and morbidity due to CVD, other drug targets to combat CVD are being 
explored. Since HDL-C is inversely correlated with cardiovascular risk 4, novel strategies 
to raise HDL-C levels are currently under development, aiming at further reduction of 
atherosclerosis. Because the cholesteryl ester transfer protein (CETP) plays a pivotal 
role in HDL-C metabolism 5, CETP has become one of the most important targets for 
development of HDL-raising strategies.

Another risk factor for CVD is non-alcoholic steatohepatitis (NASH), characterized by 
accumulation of triglycerides and immune cells including macrophages in the liver. The 
prevalence of NASH is increasing steadily 6. In contrast to atherosclerosis, no established 
pharmacological agents have been identified thus far to treat NASH. Lifestyle 
modifications, such as weight loss, exercise, and restriction of nutrient intake, are still 
the mainstays for the treatment of NASH 7. Additionally, the non-invasive diagnosis for 
NASH is cumbersome in routine clinical practice, and no easily accessible biomarker with 
sufficient sensitivity and specificity is available to detect increased hepatic macrophage 
content, a hallmark of NASH. 

The studies described in this thesis 1) demonstrated the cellular origin of CETP 
expression and its implications for NASH and CVD, 2) elucidated the effects of 
pharmacological and dietary lipid-lowering interventions on plasma CETP levels, 3) 
investigated a novel target for treatment of atherosclerosis and NASH, and 4) evaluated 
the role of the brain in peripheral TG metabolism. 

The cellular origin of CETP, and its implications for NASH and CVD
Previous studies have demonstrated that CETP mRNA is abundantly expressed in adipose 
tissue and liver of several mammalian species, including human, monkey, rabbit, pig 
and hamster 8. In addition, CETP is expressed to a lower extent in the spleen, heart, small 
intestine, adrenal gland, and skeletal muscle 9-12. A small human cohort study suggested 
that CETP expression in adipose tissue correlates with plasma CETP concentration 13. 
In Chapter 6, our data showed much more prominent CETP expression in the liver as 
compared to adipose tissue. In addition, we observed no association between central 
obesity measured as waist circumference and plasma CETP level in a large cohort of the 
general population (n~1,500), implying that central adipose tissue does not correlate 
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with plasma CETP concentration. Rather, by analyzing liver biopsies from obese patients 
undergoing bariatric surgery, we found that plasma CETP concentration was strongly 
correlated with CETP expression in the liver but not with that in the adipose tissue, 
indicating that liver is the main site of CETP expression and is a determinant of the total 
plasma CETP pool in humans. Few studies suggested that changes in the degree of 
adiposity induced by body weight reduction reduced CETP expression and improved 
lipoprotein metabolism 14, 15. However, we (Chapter 4) and others 16 showed that body 
weight reduction, in addition to reducing adiposity, significantly reduced hepatic lipid 
content and attenuated hepatosteatosis. Moreover, we also showed in this thesis that 
a decrease in hepatic lipid content was accompanied by a decrease in plasma CETP 
level (Chapter 3 and 4). It is thus tempting to speculate that bodyweight reduction via 
attenuation of hepatosteatosis reduces the production of CETP by the liver, and via this 
mechanism reduces plasma CETP concentration. 

The liver consists of multiple cell types including hepatocytes and non-parenchymal 
cells such as endothelial cells and macrophages (i.e. Kupffer cells). Therefore, we set out 
to evaluate the cell type responsible for the hepatic expression of CETP. In this thesis, we 
demonstrated that the expression of established macrophage markers (e.g. Cd68, Abcg1 
and Marco) in the liver strongly correlated with the hepatic expression of CETP both in 
human CETP transgenic (Tg) mice (Chapter 5) and in humans (Chapter 6). Moreover, 
CETP appeared to be specifically co-localized with F480+ macrophages in the mouse 
liver and with CD68+ macrophages in the human liver (Chapter 6). Mechanistic studies 
in APOE*3-Leiden.CETP (E3L.CETP) mice showed that depletion of macrophages from 
liver following administration of clodronate liposomes virtually abolished hepatic CETP 
expression and largely reduced plasma CETP level, fully corroborating our findings in 
humans that hepatic macrophages, rather than hepatocytes, are the main cellular origin 
of hepatic CETP expression and the plasma CETP pool.

Previously, hepatic expression of CETP has been attributed to both macrophages 
and hepatocytes. This dogma was mainly derived from studies assessing hepatic CETP 
expression 8 weeks after transplantation of bone marrow from wild-type (WT) 
littermates into human CETP Tg mice and vice versa, suggesting that hepatic 
macrophages contribute ~50% to total hepatic CETP expression 17. However, it should 
be realized that the turnover of liver macrophages after bone marrow transplantation 
occurs slowly. In the same study, it was found that only 50% of Kupffer cells were 
replaced by the donor cells 8 weeks after bone marrow transplantation, accompanied 
by 50% reduction in plasma CETP as well as 2-fold lower hepatic CETP expression in  
WT   CETP Tg mice as compared to control transplanted CETP Tg   CETP Tg mice 17. 
Interestingly, we found hepatic CETP expression to be decreased by approximately 
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-90% at 12 weeks after transplantation when more Kupffer cells had been replaced 
(Berbée et al. unpublished), again confirming that hepatic macrophages are the main 
predominant source of CETP expression. 

 In contrast to the liver (i.e. Kupffer cells), we could hardly detect CETP expression 
in extrahepatic macrophage-rich organs, including adipose tissue and spleen, or in 
isolated peritoneal macrophages. It has been reported that that CETP gene promoter 
contains a liver X receptor α (LXRα) responsive element 10, and CETP expression is 
regulated by the activation of LXRα 18, which is highly expressed in multiple organs. 
Recently, Gautier et al. 19 reported that hepatic CETP expression is also upregulated by 
activation of the farnesoid X receptor (FXR), for which bile acids are the natural ligands. 
In addition to an LXRα responsive element in the CETP gene promoter, the CETP gene 
was shown to contain an ER8 FXR response element in its first intron. Since FXR is highly 
expressed in the liver and its natural ligand bile acids are produced by hepatocytes, the 
specific liver environment may be essential for maintaining high expression of CETP in 
hepatic versus extrahepatic macrophages. Although treatment of CETP Tg mice with 
both LXR agonists 18 and FXR agonists 19 induces CETP expression in the liver, the leading 
regulator for CETP expression in hepatic macrophages in vivo is still unknown yet, which 
should be investigated by future studies. 

Our findings that whole body CETP expression is predominantly derived from hepatic 
macrophages reveal that plasma CETP may be a biomarker for hepatic macrophage 
content, a hallmark of NASH. NASH is characterized by accumulation of fat (steatosis) in 
combination with inflammation (e.g. infiltrated macrophages) in the liver 20. Although 
several imaging modalities have been advocated as non-invasive diagnostic method for 
liver steatosis, they are insufficient to distinguish NASH from simple non-inflammatory 
fatty liver disease (NAFLD). Liver biopsies are currently the golden standard methods for 
the diagnosis of NASH. However, there are several severe limitations to liver biopsies, 
such as sampling error, differences in histopathologic interpretation, as well as patient 
stress and discomfort, risk of bleeding and long hospitalizations. In this thesis, we 
showed that hepatic macrophages are the main cellular origin of the plasma CETP 
pool (Chapter 6), and that the plasma CETP level significantly correlates with hepatic 
macrophage content in CETP Tg mice (Chapter 5). More importantly, treatment of 
E3L.CETP mice with niacin (Chapter 5) and exendin-4 (Chapter 10) reduces hepatic 
macrophage content accompanied with the reduction in plasma CETP level. Taken 
together, these data suggest that measurement of the plasma CETP concentration can 
be developed as a diagnostic and predictive test for the hepatic macrophage content in 
clinical practice, which should be tested in large population cohorts. 

In addition, our findings that CETP expression in the hepatic macrophages 
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determines the plasma CETP level as well as the metabolism of plasma lipoproteins 
sheds new light on the development of new strategies involving CETP inhibition for the 
treatment of dyslipidemia and CVD. Although a past CETP inhibitor (i.e. torceptrapib) 
and current CETP inhibitors (e.g. dalcetrapib, anacetrapib, evacetrapib) convincingly 
demonstrate HDL-raising effects, they show uncertain results for the treatment of CVD. 
For example, although torcetrapib 21 and dalcetrapib 22 increase the plasma HDL-C level 
effectively, both of them failed to reduce CVD outcome in trials. Torcetrapib even caused 
a marked increase in deaths 21, and dalcetrapib had no beneficial effects on carotid 
artery wall index, endothelial function or CVD outcomes 23-25. Although the precise 
mechanism(s) by which torcetrapib and dalcetrapib inhibit CETP activity is not known, 
these CETP inhibitors directly act on the plasma CETP protein and induce tight binding 
of CETP to HDL particles 26. However, the tight binding of CETP with HDL particles might 
compromise the function of HDL to generate large CE-rich HDL particles instead of 
small HDL particles and nascent discoidal HDL, as observed with torcetrapib 27.

The development of CETP inhibitors to raise HDL-C is based on epidemiological 
studies showing a strong inverse correlation of HDL-C level with CVD risk 4. The classical 
“HDL cholesterol hypothesis” predicted that interventions to raise the HDL-C level will 
result in reduction of CVD risk. However, recent studies showed that HDL functionality 
perhaps is a more important consideration than the circulating HDL-C level for the 
treatment of CVD. Indeed, the reverse cholesterol transport capacity of HDL has been 
shown a much better predictor of CVD than the concentration of HDL-C 28, 29. Therefore, 
within the field of HDL-targeting therapeutics a gradual transition takes places from 
the simple “HDL cholesterol hypothesis” to the “HDL functionality hypothesis” aimed at 
increasing the HDL particle number and improving HDL functionality for the treatment 
of CVD 28-30. Based on this perspective, to avoid potentially adverse effects of the current 
CETP inhibitors on the function of HDL, strategies focusing on inhibiting CETP synthesis 
at its cellular origin may be a promising alternative. 

Regulation of plasma CETP by pharmacological and dietary lipid-
lowering interventions
Previously, we have shown that several classical lipid-lowering drugs including statins 31, 
fibrates 32 and niacin 33, increase the plasma level of HDL-C in addition to decreasing the 
plasma level of (V)LDL-C and TG by reducing hepatic CETP expression and decreasing 
plasma CETP activity in preclinical studies using E3L.CETP transgenic mice. In this thesis, 
we again demonstrated in Chapter 6 that fenofibrate and niacin raise the HDL-C level 
accompanied by reduced hepatic CETP expression and plasma CETP level in E3L.CETP 
mice. In line with those classical lipid lowering drugs, in Chapter 10 we observed that 
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exendin-4, a glucagon like peptide-1 (GLP-1) receptor agonist that was approved in 
2005 for the treatment of T2DM, decreased plasma VLDL-C and increased HDL-C also 
accompanied with decreased hepatic CETP expression as well as plasma CETP level 
in E3L.CETP mice. Moreover, in Chapter 3, we found that although both pioglitazone 
(PPARγ agonists) and metformin decreased plasma TG and apoB level equivalently, only 
pioglitazone significantly increased the plasma HDL-C level associated with a reduction 
in hepatic triglyceride and plasma CETP level in patients with type 2 diabetes mellitus 
(T2DM). In addition to pharmacological interventions, in Chapter 4, prolonged caloric 
restriction markedly decreased the plasma CETP level and increased the plasma apoAI 
level in obese patients with T2DM. These collective results from human studies are in 
full accordance with the findings in E3L.CETP mice, suggesting that reduction of (liver-
derived) CETP plays an important role in the HDL-raising effects of both pharmacological 
and dietary lipid-lowering interventions.

Although accumulating evidence indicates that lipid-lowering interventions exert 
HDL-raising capacity by reducing the plasma CETP level, the mechanisms underlying 
the CETP-reducing effects of those lipid-lowering interventions has thus far not been 
delineated. In Chapter 6, we demonstrated that hepatic macrophages are the main 
cellular origin of CETP expression, and that CETP expression in hepatic macrophages 
determines the plasma CETP level and modulates plasma lipoprotein metabolism. Thus, 
in Chapter 5, we set out to investigate the role of hepatic macrophages in the CETP-
lowering effect of niacin. Interestingly, our observations in vitro showed that niacin at 
various concentrations did not reduce CETP expression in cultured macrophages derived 
from CETP Tg mice, indicating that niacin does not directly regulate the CETP expression 
per se in macrophages. Rather, we observed that niacin reduced the hepatic cholesterol 
content in vivo. More importantly, in line with attenuated liver cholesterol accumulation, 
we observed that niacin decreased hepatic mRNA expression of macrophage markers 
(e.g. Cd68 and Abcg1) and the number of F4/80+ macrophages, as well as the hepatic 
expression of CETP. In fact, hepatic macrophage markers showed a high correlation 
and association with hepatic CETP expression. These data suggest that the reduction of 
hepatic CETP expression induced by niacin treatment is a direct consequence of reduced 
macrophage content in the liver. In addition to niacin, we demonstrated in E3L.CETP 
mice that fenofibrate (Chapter 6) and exendin-4 (Chapter 10) also reduce the hepatic 
lipid content and decreased the hepatic macrophage content thereby decreasing the 
hepatic expression and plasma level of CETP. 

In humans, we are able to measure hepatic TG content by proton (1H) magnetic 
resonance spectroscopy, although it is currently impossible to assess the hepatic 
macrophage content noninvasively. We observed that both pioglitazone (Chapter 3)  
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and prolonged caloric restriction (Chapter 4) decreased the plasma CETP level 
accompanied with a decrease in hepatic TG content in patients with T2DM. It has 
been reported that the reduction of hepatic TG content induced by e.g. weight loss is 
associated with a decrease in hepatic inflammation 34, and that the histological severity 
of inflammation is correlated with the number of CD68+ macrophages in patients 
with NASH 35. It is thus tempting to speculate that both pioglitazone (Chapter 3) and 
prolonged caloric restriction (Chapter 4) decrease not only the hepatic lipid content 
but also hepatic macrophage content in humans, thereby reducing hepatic expression 
and plasma level of CETP. This hypothesis needs to be evaluated in future studies, for 
which the assessment of macrophage number in the liver will ultimately be required. 

As summarized in Figure 1, we propose the current mechanism how lipid-lowering 
interventions reduce hepatic CETP expression and plasma CETP level. Albeit through 
different actions, they all reduce hepatic lipid content (i.e. TG and cholesterol). This 
reduction in hepatic lipid content subsequently attenuates hepatic inflammation, 
which leads to less macrophage infiltration into and/or increased macrophage efflux/
emigration out of the liver. Since liver macrophages are the main cellular origin of CETP 
expression, the decreased number of hepatic macrophages leads to an overall reduction 
in hepatic CETP expression, and, consequently, the plasma CETP level. Therefore, these 
lipid-lowering interventions induce a less atherogenic lipid phenotype, e.g. decreasing 
(V)LDL-C and TG, and increasing HDL-C.  

Novel strategies for treatment of atherosclerosis and NASH
Given the fact that current strategies are insufficient to reduce CVD and no established 
pharmacological agents have shown adequate and convincing benefits in NASH 
outcomes, novel strategies for the treatment of those two diseases are eagerly warranted 
and under development. Emerging evidence indicates that gut hormones regulating 
energy homeostasis and food intake, could also beneficially affect lipid metabolism, 
thus have the potential to treat atherosclerosis and fatty liver disease. Glucagon like 
peptide-1 (GLP-1) is one of those incretin hormones produced by intestinal L-cells and 
the brain 36, 37, and released in response to food intake to stimulate glucose-dependent 
insulin production 38. In addition, GLP-1 exerts multiple other functions, including 
inhibition of food intake 39, slowing the gastric emptying 40, inhibition of glucagon 
secretion 41, and improving glucose metabolism 41, 42. In addition, we (Chapter 10) and 
others 43, 44 observed that GLP-1 receptor agonists decrease plasma TG and VLDL-C level, 
and increase HDL-C level. Thus, GLP-1 receptor agonism may be a valuable target for 
both atherosclerosis and NASH. 
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Figure 1. Proposed mechanism underlying the CETP-lowering effects of lipid-lowering interventions. 
(A) Under diseased conditions (e.g. NASH and atherosclerosis), macrophages infiltrate into both the vessel wall 
and the liver. In the liver, increased hepatic macrophages result in an overproduction of CETP, and consequently 
to an elevated plasma CETP pool. (B)  Lipid-lowering interventions, including both pharmacological (e.g. 
fenofibrate, niacin, pioglitazone and exendin-4) and dietary (e.g. caloric restriction) interventions, reduce 
the hepatic lipid content and concomitantly attenuate macrophage infiltration into the liver. The decreased 
number of hepatic macrophages leads to a reduction in hepatic CETP expression and plasma CETP level, as a 
result, generating a less atherogenic lipid phenotype. See text for further explanation.
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In Chapter 8, we first investigated the mechanisms underlying the beneficial effects 
of GLP-1 receptor agonism on liver TG metabolism in E3L mice fed a high fat diet (HFD). 
We found that GLP-1 receptor agonists decreased hepatic VLDL particle production 
and completely reversed HFD-induced hepatic steatosis reflected by largely decreasing 
the hepatic lipid content to the low levels observed in chow-fed control mice. GLP-1 
receptor agonists decreased the expression of the nuclear transcription factor Srebp‑1c 
and its targets Fasn and Dgat1, implying that GLP-1 receptor agonism primarily reduces 
hepatic lipogenesis, thereby causing a reduction in hepatic lipid content. Taken together 
with the concomitantly reduced Apob expression, GLP-1 receptor agonism lowers the 
hepatic availability of TG, thereby reducing the production of VLDL particles. In addition 
to decreasing hepatic lipogenesis and increasing fatty acid oxidation, GLP-1 receptor 
agonists activate AMP-activated protein kinase (AMPK) and SIRT (sirtuin) dependent on 
GLP-1 receptor expressed in hepatocytes 45, thereby improving hepatic glucose and lipid 
metabolism and relieving NAFLD. Recently, several clinical trials have confirmed that 
GLP-1 receptor agonists largely reduce the hepatic TG content in obese patients with 
T2DM 45, 46, indicating that the GLP-1 receptor is a promising novel target for treatment 
of NAFLD.

Moreover, in Chapter 10, we observe that only 4 weeks of exendin-4 infusion 
markedly decreases total atherosclerotic lesion area, accompanied by a reduction in 
plaque macrophage content. Notably, in contrast to classical lipid-lowering compounds 
that reduce atherosclerosis mainly by improving dyslipidemia, exendin-4 only slightly 
decreased (V)LDL-C and TG, and increased HDL-C. Furthermore, exendin-4 also 
decreased hepatic inflammation reflected by reduced expression of inflammatory 
markers (e.g. TNFα, IL-1β and Il-6), as well as hepatic macrophage content. The GLP-1 
receptor is thus not only a promising target for NAFLD, but also NASH and atherosclerosis. 
It is interesting to note that atherosclerosis and NASH are strongly associated and 
share common etiologies, involving monocyte recruitment and macrophage foam 
cell formation 47. We demonstrated a reduced number of both adhering monocytes 
to the vessel wall and infiltrated macrophages into the liver after the treatment of 
exendin-4. In addition, exendin-4, via the GLP-1 receptor, reduced the uptake of oxLDL 
by macrophages, which may implicate reduced foam cell formation in the vessel wall 
and in the liver. Taken together, these data corroborate the hypothesis that exendin-4 
reduces the development of atherosclerosis and NASH simultaneously by acting directly 
on monocyte/macrophage recruitment/maturation into both the vessel wall and liver. 

So far, exendin-4 has been approved for the treatment of T2DM in the clinical practice. 
We show that GLP-1 receptor agonism not only suppresses diet-induced NAFLD, but 
also reduces the development of NASH and atherosclerosis, at least when administered 
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chronically by using an osmotic minipump. Therefore, we propose that GLP-1 receptor 
agonism is a novel strategy for treatment of atherosclerosis and NASH in addition to 
T2DM, in particular in patients who display a combination of these diseases. 

The role of brain in triglyceride metabolism  
The brain plays an important role in maintaining energy homeostasis, with the 
hypothalamus being its key regulator 48. Two major neuronal populations within 
the hypothalamic arcuate nucleus are involved in the regulation of energy intake, 
including pro-opiomelanocortin/cocaine and amphetamine-regulated transcript-
expressing neurons and neuropeptide Y (NPY)/agouti-related protein-expressing 
neurons. Although the role of brain in the regulation of glucose metabolism has been 
firmly established 49, only a few studies have focused on its function in maintaining TG 
homeostasis. Recently, accumulating evidence have suggested that various neuronal 
populations, such as NPY expressing neurons and the melanocortin (MC) expressing 
neurons, modulate sympathetic outflow from the hypothalamus towards target organs 
involved in TG metabolism, such as liver, white adipose tissue (WAT) and brown adipose 
tissue (BAT), and thereby modulate peripheral TG metabolism. For example, a recent 
study in rats showed that central administration of NPY acutely increases hepatic 
VLDL-TG production 50. Also, Bruinstroop et al. 51 further confirmed that hypothalamic 
NPY regulates hepatic VLDL secretion in rats via the sympathetic outflow, as selective 
sympathetic denervation of the liver abolished the effect of central NPY administration. 
In contrast to NPY signaling, central administration of melanocortin receptor (MC) 
receptor agonists decrease hepatic lipogenic gene expression in diabetic mice 52 and 
decrease hepatic TG content in rats 53. 

Hypertriglyceridemia, associated with increased hepatic VLDL-TG production 
and/or decreased VLDL-TG clearance, is an important risk factor for CVD 54, 55. Since 
atherosclerosis is generally studied in hyperlipidemic mice rather than in rats, in 
Chapter 7, we set out to validate the effect of central NPY signaling on hepatic VLDL-
TG production in mice, with the ultimate goal to investigate whether NPY, by affecting 
VLDL-TG synthesis, contributes to the development of atherosclerosis. Although we 
confirmed that central administration of NPY acutely increases food intake in mice, 
similarly as in rats 56, surprisingly we were unable to detect any increase in hepatic VLDL-
TG production in mice after central NPY infusion. Likewise, antagonizing central NPY 
signaling by either PYY3-36 or Y1 receptor antagonism did not affect VLDL production in 
mice. Apparently, central NPY signaling exerts different effects on TG metabolism in rats 
versus mice. One potential explanation is that the hepatic VLDL metabolism in itself is 
differentially regulated in rats versus mice, as rats display lower basal hepatic VLDL-TG 
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production rates 50, 51 when compared to that in mice. Secondly, the expression of the 
several NPY receptors in rats versus mice is different. Both rats and mice express similar 
Y1-Y5 receptors 57, while only mice express the Y6 receptor 58. Although the exact function 
of Y6 receptor in appetite regulation remains elusive, if activation of this receptor by 
NPY would exert an opposing effect on hepatic VLDL production, this might explain our 
negative findings in mice. Notably, genetic association studies in humans have reported 
conflicting results on the association of polymorphisms in the NPY gene with plasma 
TG levels 59, 60. Collectively, these data emphasize the requirement of further research, 
particularly in humans, on the role of hypothalamic NPY in peripheral TG metabolism. 

In addition to hypothalamic NPY, gut hormones regulate energy homeostasis via 
activation of their receptors expressed in the brain. The GLP-1 receptor is abundantly 
expressed in various tissues 61, not only in the gastrointestinal tract, pancreatic islands, 
kidneys, and heart, but also in the central nervous system 62. After showing that GLP-1 
receptor agonism decreased hepatic VLDL-TG production and hepatic lipid content in 
mice (Chapter 8), we next investigated whether the effects of GLP-1 receptor agonism 
on lipid metabolism would be dependent on central GLP-1 receptor signaling. We found 
that chronic central administration of the GLP-1 receptor antagonist exendin-9 did not 
counteract the peripherally administered exendin-4-induced decrease in hepatic VLDL-
TG production, suggesting that the beneficial effects of exendin-4 on hepatic lipid 
metabolism is not mediated by the central GLP-1 receptor signaling (unpublished). 
In contrast to our findings, Panjwani et al. 63 recently showed that acute central 
administration of exendin-4 rapidly decreased hepatic VLDL-TG production, indicating 
that central GLP-1 signaling might regulate hepatic lipid metabolism. There are several 
possible explanations for the distinct results obtained from our study and Panjwani’s 
study: (1) the dosage of exendin-9 used in our study is insufficient to block the effects of 
central GLP-1 receptor activation on hepatic lipid production, and (2) acute activation 
of the central GLP-1 signaling plays a more important role in hepatic VLDL production 
than chronic activation. Experiments combining central and/or peripheral GLP-1 
administration with hepatic denervations might prove an effective strategy to elucidate 
the exact role of central GLP-1 signaling in the regulation of hepatic TG metabolism. 

The hypothalamus not only regulates, via the modulation of sympathetic outflow, 
TG metabolism in the liver but also in white adipose tissue (WAT). For example, chronic 
central NPY infusion promoted lipogenesis in WAT, independent of its effects on food 
intake 64. Likewise, inhibition of central MC signaling induced the expression of lipogenic 
genes in WAT 65. In contrast, activation of central MC signaling by chronic infusion of 
an MC3/4 receptor agonist, increased the expression of lipolytic genes in WAT of rats. 
Additionally, central GLP-1 was implicated to regulate TG metabolism in WAT, as a mouse 
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study showed that central infusion of GLP-1 decreased TG content in WAT 66.
Unlike WAT, BAT combusts TG in the process of thermogenesis. Recently, evidence has 

accumulated to suggest that hypothalamic signaling also influence BAT thermogenesis. 
We and others showed that central infusion of NPY decreased BAT activity and 
thermogenesis, both in mice (unpublished) and in rats 67. Also, central infusion of MC4R 
antagonist resulted in decreased BAT thermogenesis in rats 68. Since those studies 
investigating the effect of neuroendocrine factors on BAT thermogenesis have neither 
focused on lipid metabolism nor performed TG clearance experiments, future studies 
should therefore emphasize the effect of central signaling on TG clearance by BAT.

Taken together, the brain, in particular the hypothalamus is an important regulator 
of peripheral TG metabolism. However, the exact role of specific neuroendocrine factors 
that mediate TG metabolism in liver and BAT needs to be determined by future research. 

Concluding remarks
The current strategies for the treatment of atherosclerosis, i.e. lipid-lowering strategies, 
are insufficient, and at the start of the studies described in this thesis no pharmacological 
agents had been identified thus far to treat NASH. Therefore, novel strategies for 
the treatment of those two diseases were eagerly warranted and currently under 
investigation. In addition to classical lipid-lowering agents, HDL-raising strategies, e.g. 
CETP inhibitors, are currently still considered as promising methods to treat dyslipidemia 
and ultimately CVD. However, current CETP inhibitors may affect the functionality of 
HDL. Therefore, other ways to reduce CETP levels may be advantageous. 

In this thesis, we demonstrated CETP to be involved in the HDL-raising effects 
of both lipid-lowering agents (i.e. fenofibrate, niacin, pioglitazone and the GLP-1 
receptor agonist exendin-4), as well as dietary lipid-lowering interventions (i.e. caloric 
restriction). In fact, we found that all of these interventions reduced plasma CETP level 
accompanied by reduction in hepatic lipid content. More mechanistic studies revealed 
that CETP is predominantly expressed by hepatic macrophages, and that reducing the 
hepatic macrophage content by lipid-lowering strategies reduces the hepatic CETP 
expression and plasma CETP level. Therefore, targeting the hepatic macrophage may be 
a promising alternative for CETP inhibitors to reduce the plasma CETP level and increase 
the HDL level. In addition, the fact that plasma CETP is mainly derived from hepatic 
macrophages, a hallmark of NASH, implies that measuring plasma CETP concentration 
may provide a useful relatively non-invasive biomarker for the hepatic macrophage 
content in NASH in clinical practice. In addition, we identified, by using E3L.CETP mice, 
the GLP-1 receptor as a novel target for the treatment of atherosclerosis and NASH in 
addition to T2DM, which need to be confirmed in future human studies.  
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