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The inclusion of calcineurin inhibitors such as cyclosporin A and tacrolimus in 

therapeutic regimens designed to prevent rejection in allograft recipients has contributed 

greatly to long-term survival after organ transplantation. However, one of the major long-

term complications of these immunosuppressive protocols is the alarmingly increased 

incidence of skin cancer. The risk of skin cancer development seems to be proportional to 

the level of immunosuppression. In fact, a recent series of publications by Giese and 

Sommerer and coworkers illustrates that there is only a rather narrow window in which 

therapeutic Cn inhibition is sufficiently effective, yet the risk of skin cancer development 

is not significantly higher than normal (1, 2). Therefore, individually tailored and 

thoroughly monitored immunosuppression seems to be of paramount importance in 

treatment protocols featuring calcineurin inhibitors.  

An intriguing conundrum is the prevailing opinion that topical CnI, despite some 

controversy and a black box warning issued by the FDA, do not increase risk of skin 

cancer (3-5). This could be a dose issue, as systemically administered CnI can accumulate 

in skin and body fat, whereas topical CnI are usually applied locally and typically for a 

limited amount of time and could therefore undergo swift metabolisation and/or 

excretion, which essentially voids the risk of accumulation in other skin regions. 

Moreover, only very small amounts of topically applied CnI reach the bloodstream, 

resulting in very low systemic exposure (6). 

UV radiation is the principal risk factor for skin cancer development; in addition to 

causing DNA damage, mutations and oxidative stress, it leads to both local and systemic 

immunodeficiency. The dependence of skin cancer incidence on CnI dosing and level of 

Cn signaling suggests a degree of interplay and maybe even synergism between Cn 

inhibition and UV radiation in the development of skin cancer that should be evaluated. 

This dissertation shows that UVA-1 radiation, in doses that could be obtained, for 

instance, by spending a day in the sun in Southern Europe, has the potential to negatively 

affect calcineurin activity in skin, supplemental to the effects of the CnI. This may 

represent an alternative explanation for the immunosuppressive features of UVA 

radiation. Photosensitization seems to be an important causal factor for the effects of 

UVA on Cn, involving both superoxide and singlet oxygen inflicting structural damage to 

the enzyme, which translates to diminished nuclear translocation of NFAT and decreased 

production of several pro-inflammatory cytokines (see chapters 3 and 4). The sensitivity of 

Cn to ROS also shows when cells are exposed to arsenite, which is thought to stimulate 

NADPH oxidase to produce large quantities of superoxide (chapter 5). Based on the 

known negative effects of UV radiation and CnI on Langerhans cell density and antigen 

presentation (7-9), a clearer dissection of the role of Cn signaling in Langerhans cells and 

the possible consequences of oxidative damage to Cn in relation to the efficacy and 

efficiency of tumor immunosurveillance in skin should be pursued. 

Meanwhile, studies into the functions of Cn in skin cells have led to growing 

awareness of the importance of Cn signaling for a variety of cellular processes in 
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keratinocytes, melanocytes, and fibroblasts that are part of our tumor suppression 

armamentarium, including control of proliferation, cell cycle regulation, control of 

apoptosis, and DNA repair (10-18). ROS are capable of damaging DNA directly, but 

unfortunately also affect the fail-safe against this damage: a number of pathways that 

guarantee an adequate response to this damage (e.g. apoptosis, cell cycle arrest, DNA 

repair) to suppress tumor formation. Thus, inactivation of the cellular protection 

machinery by UVA could enhance the mutagenic effects of UV radiation. Interestingly, 

long-term exposure to either UVA or arsenic leads to malignant transformation of HaCaT 

keratinocytes attended by resistance to apoptosis (19, 20). Oxidative stress can deactivate 

Cn directly or via induction of endogenous inhibitors (21). In transplant recipients treated 

with calcineurin inhibitors, excessive repression of Cn signaling – by either high 

concentrations of CnI or concerted action of UVA and CnI – could very well imply that 

Cn activity and Cn-dependent gene expression are pushed beyond “safe” limits.  

Unfortunately, despite the increasing amount of cellular and molecular evidence 

suggesting involvement of Cn in skin carcinogenesis, almost no studies exist that 

establish a more definitive relation between Cn activity levels and clinical outcome. We 

propose a few lines of research to fill this gap. 

First of all, it would be enlightening to verify whether the cumulative effect of 

UVA radiation and CnI presented in this dissertation is reflected at downstream levels as 

well, and whether the predictive value of the amount of NFAT-dependent gene expression 

in peripheral blood for cancer development, as described by Sommerer and Giese (1), can 

be extended towards Cn/NFAT signaling in skin cells. Ideally, it should be investigated 

how NFAT-dependent gene expression in peripheral blood correlates with CnI 

concentrations and markers of Cn activity in skin. Measurements of Cn activity and 

downstream markers such as NFAT in biopsies of UVA-irradiated and unexposed skin 

taken from transplant patients could deliver a fruitful contribution. Since the undertaking 

of such extensive studies is complicated by the invasive aspect of biopsy, the use of an 

engineered human skin model could be a viable alternative. 

Secondly, a better specification of the exact role of components of the Cn signaling 

cascade in the etiology of tumor formation or facilitation of tumor growth should be 

pursued. Until recently, many experiments aimed to elucidate the link between Cn 

activity and procarcinogenic processes made use of CsA and/or TRL to modulate Cn 

activity. However, these CnI have secondary targets that have been related to tumor 

promotion (22, 23) and may cloud the assessment of actual Cn involvement in the 

processes under investigation. In the field of DNA repair, following up on the original 

findings by Canning and Yarosh that CnI decrease nucleotide excision repair (NER) (24, 

25), Thoms et al. established a clean and direct link between Cn and NER using a Cn 

knockdown system (18). It would be interesting to further explore the course of events by 

which Cn knockdown or inhibition affects DNA repair. Such studies should help clarify 

which component of the DNA repair machinery is involved and whether this is a direct 
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effect of Cn or proceeds via NFAT. A recent publication suggests that Cn inhibition 

results in downregulation of xeroderma pigmentosum A and G genes, although the 

mechanism is still unclear (26). Even if Cn signaling is indeed mechanistically involved, 

there is still the fundamental issue with what activity range of Cn and/or NFAT these 

effects can be associated. This knowledge is important in light of the complex regulation 

of Cn activity (27), as illustrated, for instance, by the fact that the dose-response 

relationship between UVA-1 radiation (and other sources of oxidative stress) and Cn 

activity seems to exhibit a hormetic effect: while low doses stimulate Cn, effects of higher 

doses vary from declined stimulation to strong inhibition of Cn activity. Paradoxically, 

NFAT proteins are overexpressed in many tumors and envisaged to aid in tumor growth, 

survival and metastasis (28-30). Cn activity is also increased in several types of tumor cells, 

although reports of the opposite effect have appeared as well (31, 32). The dual roles of 

NFAT genes as oncogenes and tumor suppressors may take shape in different isoforms 

(33, 34).  

It is evident that calcineurin is first and foremost an enzyme that is extremely 

sensitive to a multitude of external influences, particularly oxidative stress. Although it is 

plausible to assume that its redox sensitivity constitutes a basic regulation and adaptation 

mechanism, its universal involvement in Ca
2+

-regulated processes in practically all our 

major organ systems combined with the high exposure to oxidative stress characteristic of 

the current Western lifestyle, makes this susceptibility a precarious issue and something 

that should be meticulously monitored. ROS may affect Cn activity in practically any cell 

and tissue type. The outcome, however, may differ fundamentally from one cell type to 

another, due to the variety in substrates, substrate kinetics, Cn isoforms, NFAT isoforms, 

co-transcripion factors and the gene selections under influence of NFAT.  

 

The future of calcineurin inhibitors 

Transplant patients taking CnI are nowadays advised to avoid sun exposure as much as 

possible. In response to the growing awareness of the risks of UVA, there is a trend 

among manufacturers of cosmetics to add antioxidants such as vitamins C and E and 

certain phenolic compounds c.q. flavonoids, mainly from plant origin, to sunscreen 

formulations (35, 36). In this way, not only is the amount of UV that reaches the skin 

reduced, but ROS generated by UV are neutralized as well. Additives that offer more 

specifically tailored prevention of Cn inhibition, adapted to the specific type of UV-

induced damage (thiol compounds such as N-acetylcysteine being an obvious example 

(37)) may further improve the protection delivered by these suncreens and should be 

tested for efficacy against skin cancer development in transplant recipients. In addition, a 

new class of potentially viable alternatives to calcineurin inhibitors, mTOR inhibitors 

(sirolimus, everolimus), is emergent. mTOR inhibitors are characterized as antineoplastic 

(38) and do not display the severe nephrotoxicity seen with CsA and tacrolimus. 

Pioneering studies in which the use of CnI is completely abandoned, or studies in which 
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mTOR inhibitors are substituted for CnI before irreparable damage has befallen the 

kidneys have been undertaken, and show results that are undoubtedly very welcome to 

renal graft recipients in particular (39-41). This, however, does not alter the fact that the 

relation between Cn and skin cancer and other diseases is bound to remain a topic of 

broad interest. Cn inhibitors have at least one major advantage over mTOR inhibitors: a 

vast body of literature, consisting of extensive clinical as well as mechanistical and 

toxicological studies and reflecting over 30 years’ experience, which gives a fair indication 

what to expect in the long run (42). While it does not seem that mTOR inhibitors show 

improved rejection rates compared to CnI (43), side-effects such as hepatotoxicity and 

blood disorders are already starting to surface (44), which is hardly surprising, as mTOR 

is not specific to immune cells any more than Cn. Some studies even conclude that the 

use of sirolimus for certain types of transplants should be discouraged (45), although 

these claims are disputed by others (46). Meanwhile, upgrades and improvements to the 

current arsenal of CnI, as illustrated by the development of voclosporin – a next-

generation CnI that shows similar results to cyclosporine, yet is better tolerated (47) –, in 

combination with thorough individual monitoring in order to early diagnose adverse 

effects such as nephrotoxicity, could ensure that the moment to part ways with 

calcineurin inhibitors will not be anytime soon. 
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