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Abstract

We compute the direct current resistivity of a scale-invariant, d-dimensional strange metal with

dynamic critical exponent z and hyperscaling-violating exponent θ, weakly perturbed by a scalar

operator coupled to random-field disorder that locally breaks a Z2 symmetry. Independent cal-

culations via Einstein-Maxwell-Dilaton holography and memory matrix methods lead to the same

results. We show that random field disorder has a strong effect on resistivity: charge carriers in

the infrared are easily depleted, as the relaxation time for momentum is surprisingly small. In the

course of our holographic calculation we use a non-trivial dilaton coupling to the disordered scalar,

allowing us to study a strongly-coupled scale invariant theory with θ 6= 0. Using holography, we are

also able to determine the disorder strength at which perturbation theory breaks down. Curiously,

for locally critical theories this breakdown occurs when the resistivity is proportional to the entropy

density, up to a possible logarithmic correction.
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I. INTRODUCTION

One of the remarkable puzzles in quantum critical phases is the universality of the resis-

tivity across widely different systems. In particular strange metals exhibit almost exclusively

a dc-resistivity that scales linear in temperature. This is in contrast to the array of mod-

els that exist for quantum critical systems. A wide class of such quantum critical models

can be characterized by non-trivial dynamic critical (“Lifshitz”) exponent z associated with

the relative scaling of time and space (t ∼ xz), and a hyperscaling-violating exponent θ

corresponding to the deviation of the scaling of the low-energy critical degrees of freedom

from pure dimensional arguments: i.e. the degrees of freedom “effectively live in” (spatial)

dimension d− θ [1].1

At the same time the intimate tie-in of the dc-resistivity with translational symmetry

breaking allows for a universal mechanism to emerge if there is a dominant such mechanism

1 For example, in a theory with a Fermi surface, with low energy excitations described by chiral fermions,

θ = d− 1.

2



at low energies. One such mechanism is random-field disorder [2]. In this paper, we will

study its effects on the resistivity in a hyperscaling violating Lifshitz quantum critical system.

The difficulty is that most such theories are thought to be (strongly) interacting in the

regime of interest. We resort to two well-established techniques that can address the charge

dynamics nevertheless: the memory matrix method [3] and gauge-gravity duality [4–6], with

generalizations to Lifshitz [7] and hyperscaling-violating [8–12] geometries. The latter gives

us an explicit description of a strongly coupled hyperscaling violating Lifshitz quantum

critical system in terms of a dual Einstein-Maxwell-Dilaton (EMD) system. Strictly put

this gravity-dual only describes the large N -matrix limit of the quantum critical theory, but

arguably the scaling behavior we are interested does not depend strongly on this. This is

confirmed by the memory matrix computation, which works universally when translational

symmetry is only weakly broken.2 With a necessary refinement of EMD holography that

we explain below, we show that these two approaches agree. Our holographic computation

shows that for random fields of typical size ε, which couple to a random field of dimension

∆, the leading-order perturbative contribution to the d.c. resistivity is given by

ρdc ∼ ε2T 2(1+∆−z)/z +O
(

ε4
)

. (1)

Interestingly, this result is independent of the hyperscaling-violation exponent θ. Some

limiting cases of this result have been obtained earlier [13, 14] by memory matrix methods.

From Eq. (1), we conclude that random-field disorder has an extremely strong effect

on the resistivity in hyperscaling violating Lifshitz quantum critical systems. This is in

contrast to the recent result [15] which studied the same question in the locally critical limit

z → ∞ of some holographic models and found the enticing identity ρdc ∼ s (where s is

the thermal entropy density). This scaling suggests a possible universal explanation for the

linear-in-temperature resistivity of the strange metals. However, we found that for finite

Lifshitz scaling z 6= ∞ this identity does not hold. Even at z = ∞, we recover this result

in a rather curious way — although this identity does not appear to follow from Eq. (1),

we will see that ρdc ∼ s precisely at the onset of the regime where disorder must be treated

non-perturbatively.

2 In principle the memory matrix method always works for a clean separation of fast and slow modes. In

practice one needs to know the correlation functions of the slow modes, which are not always universal. If

translational symmetry is weakly broken, however, then the universality of the energy-momentum current

as a slow mode allows one to obtain universal analytic answers.
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Our refinement of EMD theory is to include non-trivial dilaton coupling into the action

of the disordered scalar. From the perspective of supergravity trunactions, this is a natu-

ral coupling to include. This non-trivial dilaton coupling allows us to construct a strongly

coupled hyperscaling-violating theory via holography which maintains scale invariant corre-

lation functions, a simple but important result which has been noted in [16, 17]. We expand

on this result by explicitly deriving correlation functions, as well as criteria for the relevance

of operators in terms of their boundary dimension ∆, both with and without disorder, in a

hyperscaling-violating background.

II. SCALE-INVARIANT HYPERSCALING-VIOLATING HOLOGRAPHY

The Einstein-Maxwell-Dilaton models that can capture through gauge-gravity duality the

physics of hyperscaling-violating quantum critical field theories are described by the action

SEMD =

∫

dd+2x
√
−g
(

R− 2(∂Φ)2 − V (Φ)

2κ2
− Z(Φ)

4e2
F 2

)

(2)

The deep infrared (IR) of these theories is controlled by the leading exponent of the arbitrary

functions V (Φ) = −V0eβΦ + . . . and Z(Φ) = Z0e
αΦ + . . .. Truncating these functions to this

exponent, the theory has black brane solutions dual to the hyperscaling violating quantum

critical ground states supported by a charge density Q [9–11]. These solutions have a metric

ds2 =
L2

r2

[

G(r)

f(r)
dr2 − f(r)H(r)dt2 + dx2

]

. (3)

with non-vanishing Maxwell flux

F =
eL

κ
h′(r)dr ∧ dt (4)

which sources a constant charge density Q, which can be determined from Gauss’ Law:

eκ

Ld−1
Q ≡ Q̂ = −Z

√
−ggttgrrh′, (5)

and a running dilaton

Φ =
2

α

(

d+
θ

d− θ

)

log
r

r0
. (6)

The functions G, H , h′ scale with r as follows:

G(r) = G0r
2θ/(d−θ) (7a)

H(r) = H0r
−2d(z−1)/(d−θ) (7b)

h′(r) = h0r
−1−d−dz/(d−θ) (7c)
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The choice of the coefficients α, β in Z(Φ), V (Φ) determine the dynamical critical exponent

z and hyperscaling violation as

θ =
d2β

α+ (d− 1)β
, (8a)

z = 1 +
θ

d
+

8(d(d− θ) + θ)2

d2(d− θ)α2
(8b)

The emblackening factor

f(r) = 1−
(

r

rh

)d(1+z/(d−θ))

(9)

places the system at a small but finite temperature T , related to the horizon radius rh as

rh ∼ T−(1−θ/d)/zQ−1/d. (10)

The entropy density of this black hole manifestly exhibits hyperscaling violation:

s ∼ r−dh ∼ T (d−θ)/z. (11)

In these coordinates r → rh captures the low energy regime of the dual QFT. At the opposite

high energy end r → 0, this IR solution can be connected to a complete asymptotically

AdSd+2 EMD solution; see, e.g., [8]. We will not do so explicitly here. Based on the insight

that the radial direction corresponds to the Wilsonian scale of the theory, we shall cut-

off the metric beyond this IR region and apply the holographic dictionary at this cut-off.

Recalling that the IR geometry is completely controlled by the charge density Q: it sets

the ultraviolet (UV) cut-off. As we will show later, ρdc is quantitatively controlled by the

IR geometry, and therefore a precise characterization of a UV completion is not necessary

to understand scaling. For more on matching procedures to asymptotically AdS spaces (in

the UV), see [18]. For completeness let us mention that the ratio Ld/κ2 roughly counts the

degrees of freedom in the holographic theory, and must be large for classical gravity to be

valid; e is the unit of charge.

Via the holographic dictionary, additional fields in the bulk correspond to additional

operators in the boundary theory. For simplicity, we focus on bulk scalar fields. To quadratic

order the action of an additional bulk scalar field ψ will be of the form

Sψ = −
∫

dd+2x
√
−g
(

1

2
(∂ψ)2 +

B(Φ)

2
ψ2

)

. (12)

The function B(Φ) will be fine-tuned such that the correlation functions of ψ exhibit manifest

scaling behavior.
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To compute the Green’s functions of the operator O dual to ψ, we solve the equation of

motion for the bulk field ψ in the background of Eq. (3):

∂M
(√−ggMN∂Nψ

)

=
√−gB(Φ)ψ. (13)

To do this, we look for a simple choice of B(Φ). In [12], the choice B(Φ) = m2 was used,

and the result was a non-scale invariant quantum field theory, with a length scale set by the

AdS radius L. We make a different choice: it is easy to see that choosing

B(Φ(r)) ≡ B0

L2G(r)
=

B0

L2G0

r−2θ/(d−θ) , (14)

equivalent to the choice B(Φ) ∼ eγΦ with

γ = − αθ

d(d− θ) + θ
(15)

leads to a field theory which has both hyperscaling violation and scale invariance. Generating

scale invariance by adding dilaton couplings has been noted in [16, 17]. Below we elaborate

on the consequences. At T = 0, the zero-frequency solutions to the scalar equation of motion

are now the usual Bessel functions

ψ(k, r) = r
1
2
(d+ dz

(d−θ)
)
(

αK (d−θ)
2d

(ν+−ν−)

(

Cd,θ|k|rd/(d−θ)
)

+βI (d−θ)
2d

(ν+−ν−)

(

Cd,θ|k|rd/(d−θ)
)

)

(16)

with Cd,θ = (d−θ)
√
G0

d
. ν− < ν+ correspond to the power laws of the two solutions to the

equations of motion at zero momentum and frequency: ψ(k = 0, ω = 0, r) ∼ rν± with

2ν± ≡ d+
dz

d− θ
±

√

(

d+
dz

d− θ

)2

+ 4B0. (17)

Following the usual dictionary of gauge-gravity duality, the ratio of the subleading solution

(α = 0) in Eq. (16) to the leading solution (β = 0) in the limit r → 0 gives the scaling

behavior of the zero-frequency Green’s functions of the operator O in the dual field theory.3

By construction the choice of B(Φ) gives the scaling solution:

G(k, ω = 0) ∼ k(1−θ/d)(ν+−ν−). (18)

3 We ignore subtleties between Euclidean and Lorentzian signature. For the scaling argument, this does

not matter.
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We denote by ∆ the scaling dimension of the O operator. Then, in position space

G(x, t = 0) ∼ x−2∆, and we find

d− θ

d
ν+ = ∆− θ

2
, (19a)

d− θ

d
ν− = d+ z −∆− θ

2
. (19b)

The corresponding value of B0 for any ∆ can be straightforwardly found. The requirement

that a operator not be described by “alternate quantization” (i.e. the requirement that

ν+ > ν−) is ∆ > (d + z)/2. The condition that an insertion of the operator O in the

boundary theory is a relevant perturbation, i.e. the scaling dimension of the uniform field

h0 is positive (where the insertion is h0
∫

dd+1xO(x)) is the same as the requirement that

ν− > 0, which corresponds to

∆ < d+ z − θ

2
. (20)

We do not allow such uniform field insertions in the present paper.

III. CONDUCTIVITY WITH RANDOM FIELD DISORDER.

We now discuss the impact of random field disorder on the resistivity at zero frequency

and momentum, ρdc, in the field theory dual to the EMD black brane at finite T and Q, in

two spatial dimensions. In a translation invariant background, the symmetry enforces that

ρdc = 0 [3]. However, no realistic condensed matter system has true translational invariance.

One source of translational symmetry breaking is an underlying lattice, or any other periodic

potential, whose effects on transport coefficients have been intensively studied recently with

holography [19–30]. The other noted source of translational symmetry breaking is disorder

[13, 14, 31–33]. Because disorder preserves translation symmetry on average, it is likely a

much more tractable approach analytically. Indeed there are arguments that holographically

the phenomology of disorder can be simply captured by a theory with massive gravity [34, 35],

even non-perturbatively.4

Below we will consider the limit of weak random-field disorder explicitly and compute the

leading order temperature scaling of ρdc with two independent calculations: first, using EMD

4 However, it may be the case that non-perturbative disorder causes horizon fragmentation, which certainly

is not captured by massive gravity. It is known that this is possible in d = 1 [36]. This is an important

open question in higher dimensions. We thank Sho Yaida for bringing up this possibility to us.
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holography, and second using memory matrix methods. In the holographic calculation, we

will exploit recent weak-field results [17, 37, 38] to compute ρdc, though we will use some of

the language of massive gravity. The disorder is made manifest through the addition in the

field theory side, of a random-field term to the Hamiltonian:

Hrf =

∫

ddx g(x)O(x), (21)

where g(x) is a (t-independent) Gaussian random variable:

E[g(k)] = 0, (22a)

E[g(k)g(q)] = ε2δ(k+ q). (22b)

Here O is the operator dual to the scalar field ψ introduced above and ε is a small dimen-

sionful number characterizing the scale of the disorder. Note that this disorder will locally,

but not globally, violate the Z2 symmetry ψ → −ψ (corresponding to O → −O in the field

theory). We choose O to be a relevant operator even with random field disorder. As we

derive shortly, this leads to a hyperscaling-violating generalization of the Harris criterion

[14]:

∆ <
d− θ

2
+ z. (23)

Disorder may thus be treated perturbatively in the UV; disorder is relevant in the IR, but we

use finite temperature to serve as an IR regulator, allowing us to treat disorder perturbatively

everywhere. We will discuss the IR as T → 0 in more detail below. Due to scattering off of

the random field disorder, we expect that ρdc ∼ ε2.

IV. HOLOGRAPHY

We now discuss our holographic computations related to the computation of ρdc. We

proceed in three steps: first, we use holography to derive the Harris criterion, as advertised.

Then, we compute ρdc using the massive gravity analogy. Finally, we discuss the breakdown

of perturbation theory.

A. The Harris Criterion and a Dirty Black Hole

From standard holography, we immediately see that the Gaussian variable g(x) can be

directly translated to the source of ψ(x). In order to compute ρdc, we therefore perturbatively
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construct a statistical ensemble of EMD black holes with sourced scalar hair, one for each

value of the source ψ(x), and then take the statistical average. From this black hole with

“dirty” scalar hair, we then compute ρdc using the technique of [37, 38]. Before beginning, we

must ensure that the scalar hair is perturbative in both the UV and the IR, and so we must

find a generalization of the Harris criterion to hyperscaling-violating theories. This can be

seen by an elegant holographic argument: the contribution to the stress tensor TMN from the

scalar fields must be small compared to RMN (e.g.) in the UV. For a hyperscaling-violating

geometry we have Rrr ∼ r−2; the contribution from the scalar fields will be r2ν−−d2/(d−θ)−2.

We conclude when ν− > d2/(d − θ) the disorder will be perturbative. This results in the

generalized Harris criterion, Eq. (23).

If the disordered hair is perturbative, to leading order in ε, we can simply solve Eq. (13)

to determine the ψ background. The correct solution is the one which is regular in the

interior deep IR of the geometry. E.g. at T = 0 the solution is

ψ0 = g(k)rν− + · · · = Cr d
2
(1+ z

d−θ
)K(1−θ/d)(ν+−ν−)/2

(

Cd,θ|k|rd/(d−θ)
)

(24)

C is dependent on k and g(k) and is chosen to ensure the correct UV scaling. At finite T ,

the solution will be modified slightly, although this description is quantitatively accurate for

large momentum modes. To leading order in ε this is a complete solution [38]; corrections to

EMD fields are ∼ ε2. Although this is the same order as ρdc, the inhomogeneous corrections

cannot affect ρdc, and the homogeneous corrections are subleading to the background, so for

the purposes of computing ρdc, we can treat the EMD background as unchanged [38].

B. DC conductivity

The analytic computation of ρdc due to a scalar perturbation at a single fixed momentum

kL has been shown in [38]. We will generalize their formalism to an infinite number of

random momentum modes with the distribution Eq. (22). It is not entirely obvious that

this generalization is possible. A calculation of the conductivity naively requires considering

coupling a spatial component of the gauge field δAx to all spin 1 moments of the distribution
∫

ddkkxk
2nδψ.5 We will see that a judicious choice of scalar perturbations effectively reduces

5 Note that this infinite tower automatically collapses for a single momentum mode, as ∂2 cos(kx) =

−k2 cos(kx), so all of these modes are proportional. This is not true when we have modes at differ-

ent momentum.
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the number of spin 1 perturbations to three as before. We will also find that we can compute

ρdc before averaging over the disorder.

We proceed. The conductivity follows from the response to a finite frequency, zero-

momentum perturbation δAx(ω,k = 0, r). As in [38] this perturbation couples to δg̃tx(ω, r) =

δgtxr
2/L2, δg̃rx(ω, r), and

δψ(ω,k 6= 0, r) = ψ0(k, r)δP (ω,k, r). (25)

where ψ0(k, r) is the perturbative solution in Eq. (24). To lowest order none of these

couple to dilaton perturbation, despite the nontrivial functions Z(Φ), V (Φ), B(Φ), because

the dilaton is a spin zero mode, and the dilaton background is at zero spatial momentum.

Following [38] we can set δg̃rx = 0 by a gauge choice. Its corresponding equation of

motion —the rx-component of Einstein’s equations— is a constraint. Projecting on the

zero-momentum mode one finds

Q̂δAx − LκeδPx =
eLδg̃′tx
rdκ

√
GH

(26)

where we have defined

f

ωrd

√

H

G

∫

ddk

(2π)d
kxψ0(k, r)

2δP (ω,k, r)′ ≡ δPx(ω, r). (27)

In deriving Eq. (26) the contribution proportional to ψ0ψ
′
0δP which survives if δP is a

constant has been ignored. It should be considered as an ǫ2 contribution to the background,

whereas we only keep terms up to ǫ. The other equations are the x component of Maxwell’s

equation:
(

eL

κ
δg̃txQ̂ − r2−d

√

H

G
fZδA′

x

)′

+ r2−dZ

√

G

H

ω2

f
Ax = 0, (28)

and the scalar equation
√

G

H

ψ0(k)
2kx(−iωδg̃tx)

frd
=

(

fψ0(k)
2δP (k)′

rd

√

H

G

)′

+
ω2

frd

√

G

H
ψ0(k)

2δP (k) (29)

The rt-component of Einstein’s equations is not independent and follows from the previous

equations.

The key observation is as follows: “averaging” the scalar equation over its momentum

distribution with weight kx
∫

ddk
(2π)d

kx, we can turn it into

δP ′
x = − δg̃tx

dfrd

√

G

H

∫

ddk

(2π)d
k2ψ0(k)

2 +
ω

ifrd

√

G

H

∫

ddk

(2π)d
kxψ0(k)

2δP (k) (30)
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In the first term on the right-hand side we have used isotropy of the random disorder to

substitute k2/d for k2x.

For the dc-conductivity we wish to know the ω → 0 solution to these equations. This

limit is subtle, due to the presence of the horizon where f(rh) = 0. Note, however, that away

from the horizon, where in the ω → 0 limit we can ignore the higher order ω contributions

in (28) and (30), the system of equations closes to a finite set of differential equations for

δAx, δPx, and δg̃tx.
We now proceed to compute the conductivity following the steps in [37], generalized to

higher dimensions. Integrating once, Eq. (28) is equal to
(

r2−d
√

H

G
fZδA′

x − δg̃tx
eLQ̂
κ

)

= C −
∫

dr r2−dZ

√

G

H

ω2

f
δAx (31)

in terms of an unknown integration constant C. We eliminate δg̃tx using the scalar equation

of motion Eq. (30) and obtain

C =

√

H

G
f

[

r2−dZδA′
x + δP ′

x

eLQ̂
κ

drd
(
∫

ddk

(2π)d
k2ψ0(k, r)

2

)−1
]

+ ω2

√

G

H

1

frd

[

∫ r

r2ZδAx −
eLQ̂
iωκ

∫

ddk

(2π)d
ψ0(k, r)

2δP (k)

]

. (32)

We now show that the constant C(ω,k) is proportional to the dc-conductivity. Note that

in the derivation of Eq. (31) and (32) we have only used the form of the metric and

the background solution, but not any specific expressions. In particular, a full solution

interpreting from an asymptotically AdS boundary to an hyperscaling violating quantum

critical IR will have solution that is of exactly the same form. For the background we now

take such a fully asymptotically AdS completed solution, and evaluate the solution near the

AdS-boundary. There f ≈ G ≈ H ≈ Z ≈ 1 as r → 0. Consider first Eq. (26). As ψ0 by

construction corresponds to a relevant operator, ψ0 behaves as ψ0 = g(k)r∆UV + . . . with

∆UV > 0, it follows that δg̃tx ∼ rd+1, as δAx ∼ r0.6 Consider then Eq. (31). It means

that δg̃tx is always subleading near r → 0 and we can solve for the AdS-boundary behavior

of the fluctuation δAx = C0 +
1
d−1

Crd−1 + . . .. The AdS/CFT dictionary tells us that the

dc-conductivity is equal to

σdc =
1

e2
lim
ω→0

−1

iω
lim
r→0

r2−d
δA′

x(r)

δAx(r)
=

1

e2
lim
ω→0

C

C0
, (33)

6 Note that this is precisely the expected scaling for δg̃tx in the absence of a source.
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and therefore

C = −iωσdce
2δAx(r = 0). (34)

The coefficient C can be evaluated at the horizon, as follows. We know that, near the

horizon, where f(r)
√

H/G ∼ T (r − rh) + . . . :

δAx, δPx,
δg̃tx
f(r)

∼
(

f

√

H

G

)−iω/4πT

∼ (T (rh − r))−iω/4πT . (35)

For δAx ∼ O(1), it then follows that near the horizon δA′
x, δg̃tx, δP ′

x ∼ ω. Therefore, to

leading order in ω, as ω → 0, only the first line of Eq. (32) contributes. Now taking the

limit ω → 0 the near-horizon limit of Eq. (26) reduces to

Q̂δAx(r = rh, ω = 0) = Leκ δPx(r = rh, ω = 0). (36)

Thus

C = lim
r→rh

√

H

G
f

[

r2−dZ +
Q̂2

κ2
drd
(
∫

ddk

(2π)d
k2ψ0(k, r)

2

)−1
]

δA′
x(r = rh, ω = 0). (37)

Substituting for the asymptotic behavior of δA′
x near the horizon given in Eq. (35), we find

C = −iω

[

r2−dh Z +
Q̂2

κ2
drdh

(
∫

ddk

(2π)d
k2ψ(k, rh)

2

)−1
]

δAx(rh). (38)

We conclude that, as ε is small, to leading order in ε:

ρdc =
1

σdc
∼
(
∫

ddk k2ψ(k, rh)
2

)

r−dh

δAx(r = rh, ω = 0)

δAx(r = 0, ω = 0)
. (39)

Now, the fact that C ∼ ω implies that, δA′
x ∼ ω, or that δAx is, to leading order in ω,

independent of r.7 Noting that s ∼ r−dh , we obtain

ρdc ∼ s

∫

ddk k2ψ(k, rh)
2 ≡ sm2(rh). (40)

In analogy with [38], we have noted this is an effective graviton mass.

The remaining task is to determine m2(rh). To do so we need to evaluate ψ0(k, r) at the

horizon r = rh. For momenta where k ≫ r
−d/(d−θ)
h , i.e. k ≫ T 1/zQ1/(d−θ), we may neglect

the effect of temperature and approximate ψ0(k, r) with its T = 0 Bessel function solution

Eq. (24). For these momenta the Bessel function is exponentially small at r = rh, and we

7 This assumes that, generically in the bulk, δA′
x
and δP ′

x
do not cancel each other. See [37, 38] for more.
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can ignore their contribution. T 1/z thus serves as an effective UV cut-off in the momentum

integral in m2. The integral over k will give us an overall factor of T (d+2)/z – as we will see,

the scaling due to ψ2 is approximately independent of k in this regime.

For the remaining modes k ≪ T 1/zQ1/(d−θ) we evaluate ψ0(k, r) by a matching procedure.

For these solutions the presence of the horizon is relevant. Near the horizon, the equation

of motion for the background ψ0 becomes

∂2rψ +
1

r − rh
∂rψ − M2

(1− r/rh)
= 0 , (41)

M2 ≡ k2G(rh) +B0/r
2
h

d(1 + z/(d − θ))
. (42)

The solution regular at the horizon is the Bessel function

ψnear−hor(k, r) = βI0

(

2Mrh

√

1− r

rh

)

. (43)

For the small momenta range of interest k . r
−d/(d−θ)
h , Mrh is essentially a number inde-

pendent of temperature. Therefore at a matching point r ∼ rh, the Bessel function has no

non-trivial scaling. Knowing that ψfar ∼ rν−, we determine β ∼ r
ν−
h . Note that this estimate

is independent of k . T 1/z. It is straightforward from here to recover the full temperature

dependence of the graviton mass:

m2 ∼ ρdc
s

∼ T (d+2−2(1−θ/d)ν−)/z ∼ T (2−d+2∆−2z+θ)/z . (44)

Evidently, ρdc/s generically carries temperature dependence, showing that a conjecture of

[15] only holds in special cases. Studying ρdc directly, we find

ρdc ∼ ε2T 2(1+∆−z)/z +O
(

ε4
)

, (45)

as we quoted in Eq. (1).

It is useful to express our main result in Eq. (1) in a condensed matter notation. It is

conventional to determine the scaling dimension, ∆, of the “order parameter” O coupling

to the random field by its “anomalous” dimension η. For a theory with dynamic scaling

exponent z, the relationship between ∆ and η is [1]

∆ =
d+ z − 2 + η

2
. (46)

Then Eq. (1) becomes

ρdc ∼ ε2T (d−z+η)/z , (47)

a result quoted in Ref. [2].
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C. Breakdown of Perturbation Theory

It is also worth asking for what value of ε we expect perturbation theory to break down.

To do this, we check when the scalar hair non-perturbatively back-reacts on the geometry:

i.e., when is the ψ contribution to Einstein’s equations of the same order as the contributions

of the solution we are perturbing around. A quick check at r ∼ rh reveals that all components

of Einstein’s equations break down at the same scale, if the disorder strength is strong

enough. For example, using the xx component of Einstein’s equations at r ∼ rh, the scalar

backreaction becomes nonperturbative when

Rxx ∼ r
−2d/(d−θ)
h ∼ T 2/z ∼

∫

ddk k2ψ2 ∼ m2, (48)

or when the temperature falls below

T (z−∆+(d−θ)/2)/z . ε (49)

Because the dilaton couples in a universal, exponential manner to each term in the matter

stress tensor in the IR, the dilaton equation of motion will break at the same scale.

It is easy to check, given this result, that it is impossible to have a regime where we

can trust the calculation where ρdc → ∞ (i.e., the strange metal becomes an insulator) as

T → 0, without the perturbative approximation breaking down. When perturbation theory

breaks down, at ε ∼ T (z−∆+(d−θ)/2)/z we universally find

ρdc ∼ T (2+d−θ)/z ∼ T 2/zs, (50)

independent of the choice of ∆. This is in fact the scaling one finds for ε fixed and ∆ =

d−θ
2

+ z saturating the Harris bound. It self-consistently shows that the effect of random-

field disorder from operators with dimensions that violate the Harris criterion is always non-

perturbative. Comparing to the conjecture of [15] we find agreement in the limit z → ∞, up

to a possible logarithmic correction, despite the fact that Eq. (1) appears to badly violate

ρdc ∼ s.

Interestingly, this result also qualitatively agrees with a memory matrix based argu-

ment for the AdS4-Reissner-Nördstrom geometry (z = ∞, θ = 0), which found that

ρdc ∼ (log T−1)−1 due to random-field disorder [19].8 Due to the presence of 1/z correc-

8 This agreement is especially interesting, as [19] used irrelevant operators to add disorder, whereas we used

relevant operators.
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tions, it is natural to expect such logarithmic correction factors to appear in Eq. (50) as

well.

V. MEMORY MATRIX METHOD

We will now confirm our holographic computation with an independent calculation via

the memory matrix method [3], which is especially suited to the computation of transport

quantities in the absence of long-lived quasiparticles [13, 19, 39]. The basic procedure was

reviewed recently in [2], and the main result for the resistivity is

ρdc ∼ ε2
T 1/z
∫

0

ddk k2 lim
ω→0

Im
GR

OO(ω, k)

ω
. (51)

The integral over k, and the k2 factor, give T (d+2)/z . Using the fact that for k ∼ T 1/z [40, 41]

lim
ω→0

Im
GR

OO(ω, k)

ω
∼ T (2∆−2z−d)/z , (52)

we arrive at Eq. (1).

VI. CONCLUSIONS

In conjunction with the recent result [2], our findings show that random-field disorder

can have an extremely strong effect on the low-temperature dc-conductivity. Unless there

is a mechanism which protects transport from random-field scattering, at low-temperatures

random-field disorder must always be taken into account. In particular, regardless of dis-

order strength, at low enough temperatures disorder due to relevant operators leads to

non-perturbative effects in the IR [42–45].

We noted that at the breakdown of perturbation theory ρdc ∼ T 2/zs. For z = ∞ this

reduces to a linear relation between the dc-resistivity and the entropy density. It would be

interesting if there is a deep reason why this must be the case.

The qualitative agreement in T -scaling between the effective graviton mass calculation,

and the memory matrix formalism, has been shown for a single momentum mode in [38].

Quantitatively we have shown that the agreement between the effective graviton mass cal-

culation, and the memory matrix formalism remains for a generic scaling theory with finite
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values of z and θ and for disorder, and when the memory matrix calculation is completely

independent of holography. Note that the agreement of these two calculations is not a trivial

consequence of dimensional analysis – Q/T d/z is a dimensionless quantity.

Although the memory matrix method appeared substantially faster, the holographic

method contains its own advantages. In particular, we are able to determine the disor-

der strength at which perturbation theory breaks down. Holographic methods also allow, in

principle, a determination of results to all orders in the disorder strength [46].

Looking forward, it would be interesting to extend these results to a quantum field theory

which is manifestly UV-completed to a conformal field theory, or by duality, studying a

geometry which is UV-completed to AdS. As [2] recently noted, such a UV-completion

may provide another universal mechanism for ρdc ∼ T at high temperatures, without the

requirement of local criticality. In addition, it would be interesting to determine the optical

(finite frequency) resistivity due to random-field disorder.
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We thank Richard Davison and Blaise Goutéraux for discussions. The research was sup-

ported by the U.S. National Science Foundation under grant DMR-1103860 and by the

Templeton Foundation. A.L. is supported by the Smith Family Graduate Science and En-

gineering Fellowship at Harvard University. K.S. is supported in part by a VICI grant of

the Netherlands Organization for Scientific Research (NWO), by the Netherlands Organi-

zation for Scientific Reseach/Ministry of Science and Education (NWO/OCW) and by the

Foundation for Research into Fundamental Matter (FOM).

[1] S. Sachdev. Quantum Phase Transitions (2nd ed., Cambridge Univ. Press, 2010)

[2] S. A. Hartnoll, R. Mahajan, M. Punk and S. Sachdev. “Transport near the Ising-nematic

quantum critical point of metals in two dimensions”, [1401.7012].

[3] D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions (Perseus

Books, 1975)

[4] S. A. Hartnoll. “Lectures on holographic methods for condenesd matter physics”, Class. Quant.

Grav 26 224002 (2009) [0903.3246].

16

http://arxiv.org/abs/1401.7012
http://arxiv.org/abs/0903.3246


[5] J. McGreevy. “Holographic duality with a view towards many-body physics”, Adv. High

Energy Phys. 1005 723105 (2010) [0909.0518].

[6] S. Sachdev. “What can gauge-gravity duality teach us about condensed matter physics?”,

Ann. Rev. Cond. Mat. 3 9 (2012) [1108.1197].

[7] S. Kachru and X. Liu and M. Mulligan. “Gravity duals of Lifshitz-like fixed points”, Phys.

Rev. D78 106005 (2008) [0808.1725].

[8] S. S. Gubser and F. D. Rocha. “Peculiar properties of a charged dilatonic black hole in AdS5”,

Phys. Rev. D81 046001 (2010) [0911.2898].
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