
Gram-Schmidt versus Bauer-Rutishauser in alternating
least-squares algorithms for three-way data
Kroonenberg, P.M.; Berge, Jos M.F. ten; Brouwer, P.; Kiers, H.

Citation
Kroonenberg, P. M., Berge, J. M. F. ten, Brouwer, P., & Kiers, H. (1989).
Gram-Schmidt versus Bauer-Rutishauser in alternating least-squares
algorithms for three-way data. Computational Statistics Quarterly, 4, 81-87.
Retrieved from https://hdl.handle.net/1887/11629
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/11629
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/11629


Computational Statistics Quarterly 2, 81-87
© Physica-Verlag 1989

Gram-Schmidt Versus Bauer-Rutishauser in Alternating
Least-Squares Algorithms for Three-Mode Principal
Component Analysis

R M. Kroonenberg,1 J. M. E ten Berge,2 P. Brouwer,1 and H. Kiers2

'Department of Education, Leiden University, R O. Box 9555,2300 RB Leiden,
The Netherlands
2University of Groningen

Summary

The effect of replacing a Bauer-Rutishauser step using an eigendecomposition by
a Gram-Schmidt orthogonalization step in an algorithm for three-mode principal
component analysis was explored both theoretically and empirically. The results
showed that the latter procedure has a slight to moderate advantage over the
former one.

Introduction
In nonlinear data analysis, alternating least squares algorithms are frequently

employed. The basic principle underlying these algorithms is that for a specific loss
function the parameters can be divided into blocks, which can be estimated
separately with least squares conditionally upon the other blocks. By estimating
each block in turn, the overall loss function can be shown to converge in a
monotone fashion to at least a local optimum. A large number of applications of
alternating least squares algorithms have been reviewed by Young (1981).

Many alternating least squares algorithms initially used the singular value
decomposition (SVD) in one of their steps. However, as shown by Gifi (1981, p.
180), the SVD can sometimes be replaced by (modified) Gram-Schmidt orthogonaliza-
tion. The reason for using Gram-Schmidt (GS) orthogonalization rather than a
singular value decomposition is that one GS-step is cheaper than one SVD step (see
Schwarz, Rutishauser, & Stiefel, 1968, p. 186).
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Three-mode principal component analysis
In this paper, we will explore the possibility of replacing an eigendecomposition

by a Gram-Schmidt orthogonalization for TUCKALS3, an alternating least squares

algorithm for three-mode principal component analysis. The model for such an
analysis is called the TuckerS model, first developed under the name of three-mode

factor analysis by Tucker (1966). The model is generally used to describe patterns
present in (or underlying) three-mode data, i.e. data which can be arranged in a
block of I-by-J-by-K elements. Three-mode data arise, for instance, if I subjects are
measured on a battery of J tests on K occasions, but many other designs exist as

well. Three-mode principal component analysis is used to derive both components

for each of the modes and the links between components of different modes. For a
short introduction see Kroonenberg (1988), a longer treatise is Kroonenberg (1983),
while the TUCKALS3 algorithm was first described in Kroonenberg and De Leeuw

(1980). These authors also described another algorithm, TUCKALS2, for a different
three-mode model, and everything discussed in this paper is valid for that algorithm
as well.

In matrix notation the Tuckert model is

X = AG(C'aB') + E, (1)

where the (Ixp) matrix A, the (Jxq) matrix B, and the (Kxr) matrix C are the
component matrices for the first, second, and third mode, respectively, G is the

(pxqxr) core matrix (here written as a p-by-qr matrix) with the weights for the
combinations of components of the three modes, X the (IxJxK) data matrix (written
as an I-by-JK matrix), E is the I-by-JK matrix of errors of approximation, and a is

the (right) Kronecker product. Without loss of generality, the matrices A, B, and C

are constrained to be orthonormal columnwise. In general, not all components are
needed, but only the first p, q, and r of them for the first, second and third

modes, respectively. To find the estimates for the parameters in the model we have
to mimimize the loss function

f ( A , B , C , G ) = ||X - AG(C'BB') | |2 (2)

where AG(C'sB') contains the reconstructed or estimated data on the basis of the

model with fixed numbers of components, p, q, and r.
The loss function may be rewritten in three ways by focussing on either A, B, or

C; we will look here only at the A version, the other ways can be found by

cyclically permuting A, B, and C. First, minimizing (2) with respect to G leads to a

unique G = A'X(CaB), so that (2) can be rewritten (for details, see Kroonenberg &
De Leeuw, 1980) as
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f (A ,B ,C) = ||X - AA'X(C«B)(C'KB') | |2 =
= tr X'X - tr A'{X(CaB)(C'iaB')X'}A =

= tr X'X - tr A'PA, (3)

with P implicitly defined. Clearly, P is nonnegative definite, and in practical

applications positive definiteness can always be achieved by choosing a small enough
number of components. Minimizing f over A is equivalent to maximizing p(A) = tr
A'PA (and analogously for B and C).

Present algorithm
Under the condition that A, B, and C are columnwise orthonormal, the function f

is minimized using an alternating least squares algorithm, in which in each main
iteration step, A, B, and C are updated in turn, while keeping the other two

parameter matrices fixed. In the A-substep tr A'PA is maximized under the
columnwise orthonormality constraint on A by computing eigenvectors of P. If one
would indeed carry out a full eigendecomposition of the I-by-1 matrix P at each

substep of the main iteration procedure (and those for the J-by-J and K-by-K
matrices, Q and R, respectively, to find B and C as well), huge amounts of
computing time would be necessary irrespective of the eigendecomposition procedure

used. To circumvent this, Kroonenberg and De Leeuw (1980) used only the first step

of the simultaneous iteration procedure of Bauer-Rutishauser (Schwarz, et al. , 1968;
Rutishauser, 1969; and Nikolai, 1979, for an algorithm), to find a new A. (It is not
entirely clear in the literature who actually is the originator of this procedure,

neither of the above references are explicit about it; we follow here Kroonenberg
and De Leeuw's nomenclature.) The basic updating of A after a steps has the form

Aa+l = PaVTaV*. (4)

where Ta is an eigenvector matrix of Aa'Pa
2Aa, and La the diagonal matrix with

the corresponding eigenvalues. By choosing a small enough number of components,
the eigenvalues in La will always be positive, so that their reciprocals exist. The
advantage of using the eigendecomposition of Aa'Pa

2Aa is that it requires only the
eigendecomposition of a p-by-p matrix, where p, the number of components of A, is

in practice very much smaller than I, and usually 2 or 3, and seldom bigger than 5.

It turns out that the eigendecomposition can be fruitfully solved by a Jacobi
eigendecomposition technique, because in the later stages of the algorithm, Aa'Pa

2Aa

becomes more and more a diagonal matrix because Aa converges to the eigenvector

matrix of Pa2, and thus also of Pa. In Kroonenberg and De Leeuw (1980, p. 93, 94)
it was shown that (4) decreases the function f , which is all that is required during
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the iteration procedure. Note that because Aa+} in (4) is not yet the eigenvector
matrix of Pa, it does not maximize p(A) = tr A'PA, but only improves its value.
Furthermore, equation (4) shows that one step of a Bauer-Rutishauser iteration is in
fact an orthonormalization of PQAa.

The Gram-Schmidt alternative
As mentioned above, the central part of a substep of the main algorithm is to

maximize p(AQ) = tr Aa'PaAa, or rather improve the objective function f by finding
a new Aa+j under the condition that Aa'Aa =1. Furthermore, the Bauer-Rutishauser
step is equivalent to an orthonormalization of PaAa. By applying the Gram-Schmidt
orthonormalization procedure to PaAa an update of Aa, Aa+^=GS(PaAa), is produced.
As two orthonormal versions of the same matrix are in the same space, this Aa+^ is
a rotated version of the Bauer-Rutishauser one in (4 ) . Because p(A) is insensitive to
this kind of orthonormal transformations the same value of p(A) results for both
procedures. In other words, the Bauer-Rutishauser step may be replaced by a
Gram-Schmidt step without changing the value of p(A) and the objective function.
Moreover, the objective function should converge in the same number of steps for
both procedures.

Theoretically, per iteration step Gram-Schmidt should computationally be cheaper
as the procedure uses less floating point operations. How this works in practice,
will be taken up in the next section.

Another question is whether after convergence of f over A, B, and C, the
orientation of Aa+} and Aa+} (and their B and C counterparts) is the same with
both procedures. Schwarz, et al. (1968, p. 182ff) showed that for a fixed matrix the
iteration vectors in the Gram-Schmidt orthogonalization converge to eigenvectors. In
the present algorithm, Pa changes every main iteration step because B and C are
updated as well. However, at the convergence point PQ changes no longer, so that
also here the Gram-Schmidt procedure will converge to the same values for the
components, as the Bauer-Rutishauser algorithm does. It is, however, a matter of
numerical convergence speed whether the same number of iterations are necessary
to reach the same components, even after the loss function has converged. In
theory, in the Gram-Schmidt procedure the convergence to the eigenvectors should
take longer, as the Bauer-Rutishauser procedure was especially designed to
accelerate such a convergence (Rutishauser, 1969), and this is borne out by practice.

How the different behaviour of the two procedures with respect to the eigenvec-
tors affects the overall convergence given that one wants to have convergence of
both the objective function and the eigenvectors, depends a great deal on the
relative accuracies for convergence of the objective function, and that of the
component matrices. In the TUCKALS2 and TUCKALS3 programs (Kroonenberg &
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Brouwer, 1985a,b), the default accuracies have been set in such a way that the
components nearly always converge before the objective function does.

Numerical results
Below, some numerical results for comparing the two algorithms are summarized.

As in both cases the outcomes of the analyses are identical after convergence, only
computing time, number of iterations, and the estimated time per iteration are
given. Computations were performed on an Amdahl 5860; execution times pertain to
the complete run of the TUCKALS3 program.

Table 1

Execution Time Differences between Bauer-Rutishauser (BR) and
Gram-Schmidt (GS) Procedures

Components
of modes

1 2 3

2 x 2 x 2
4 x 2 x 2

2 x 2 x 2
4 x 4 x 4
5 x 4 x 10

2 x 2 x 2
3 x 2 x 6

CPU sees Niter Msecs/it

BR GS BR & GS BR GS

Tongue Shape Data (10x13x5)
.24 .23 14 17 16
.56 .52 27 21 19

Assimilation Resistance Data (8x6x13)
.57 .55 19 30 29

2.32 2.16 47 49 46
7.21 6.13 81 89 76

Strange Situation Data (7x5x431)
47.29 46.17 31 1525 1489

224.71 221.02 71 3165 3113

Notes: The "msecs/it" are only estimates, as the CPU sees include the overhead of
running the rest of the program.

Data sources: Tongue shape data: Harshman, Ladefoged, & Goldstein, 1977;
Assimilation resistance data: Eckblad (unpublished, see Kroonenberg & Snyder, in
press, and Eckblad ,1981); Strange situation data: Sagi, Van IJzendoorn, & Koren
(1989).

Discussion
The single Bauer-Rutishauser step (4) contains a Jacobi eigenroutine, which is

iterative itself, and its number of iterations depends on the diagonality of Aa'Pa
2Aa,

on its dimensions and, of course, on the accuracy conditions. The Gram-Schmidt
algorithm on the other hand is not iterative, so that it executes faster. The
practical results listed above show that Gram-Schmidt, indeed, executes consistently
faster per iteration, even though its advantage ranges from minimal to modest. From
the numerical information it is not clear which factors are most important in
determining when appreciable gains occur for Gram-Schmidt over Bauer-Rutishauser.
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As Gram-Schmidt consistently outperforms Bauer-Rutishauser this not really a

problem in practice.
The disappointingly little gain in execution speed can a posteriori easily be

explained by performing some calculations on the computational process. Assuming

that the Jacobi routine needs 20 iterations for each of the Jn(n-l) of f-diagonal
elements of Aa'Pa

2Aa, the number of floating point operations (flops) for Jacobi can
be calculated for each iteration step. For the 7x5x431 data matrix collected by Sagi

(Sagi, Van Uzendoorn, & Koren, 1989), extracting 3, 2, and 6 components respec-

tively, the total number of flops in Jacobi for one main iteration of the TUCKALS3
algorithm amount to 21 860 flops. In each iteration, however, the matrices P, Q,
and R (the latter defined via permutations of A, B, and C) must be computed and

the number of flops to achieve this is over 782 000. If we ignore the matrix
multiplications in the Bauer-Rutishauser step, even the (probably) overestimated

execution time in Jacobi accounts for only about 3% of the total time for one
iteration. Thus Gram-Schmidt, which needs the same P, Q, and R, cannot but

provide a small improvement. Especially when the number of components are small,
as is true in most cases (also for the Sagi data), the relative gain is small.
However, as Gram-Schmidt outperforms Bauer-Rutishauser in all cases, replacing the

latter procedure with the former seems called for. In future versions of the

programs TUCKALS3 and TUCKALS2 this will be implemented. There is a certain
irony in this replacement. To compute the eigenvectors of a fixed matrix,
(probably) Rutishauser devised the Bauer-Rutishauser step as an acceleration of the

Gram-Schmidt procedure. In the present context, it turns out that it is wiser to fall

back on Gram-Schmidt, because it is cheaper.
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