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We discuss the fine-tuning of the optical properties of self-assembled quantum dots by the strain perturbation
introduced by laser-induced surface defects. We show experimentally that the quantum dot transition redshifts,
independently of the actual position of the defect, and that such frequency shift is about a factor five larger than
the corresponding shift of a micropillar cavity mode resonance. We present a simple model that accounts for
these experimental findings.
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Self-assembled quantum dots (QDs) have attracted much
interest as systems that show atom-like properties in the solid
state and can be integrated in semiconductor heterostructures
and devices. Numerous applications have been devised in
different fields, such as nanophotonics, optoelectronics and
quantum information.

In quantum optics, single quantum dots are often embedded
in microcavities to enhance the interaction with weak light
fields, either in the weak or strong coupling regimes of
cavity quantum electrodynamics. Efficient and reliable single-
photon sources1–5 have been demonstrated with a quantum
dot in a microcavity, thanks to the enhancement in the
spontaneous emission due to the Purcell effect. Moreover,
quantum information schemes employing cavity quantum
electrodynamics with quantum dots coupled to semiconductor
microcavities have been proposed and implemented.6–10 Such
system can provide a scalable platform for hybrid quantum
information protocols, in which photonic qubits are used for
long-distance transmission and matter qubits for local storage
and processing.11,12

In the case of epitaxially grown self-assembled quantum
dots,13,14 a thin semiconductor film is deposited by molecular
beam epitaxy on a semiconductor substrate with a different
lattice constant. Due to lattice mismatch, elastic strain energy
builds up in the process, which is minimized by the formation
of strained islands at the surface. These islands are transformed
in quantum dots capping them with a larger band-gap material.
Epitaxial growth gives a very strong three-dimensional carrier
confinement, which results in atom-like quantization of the
energy levels. It has, however, the drawback that the quantum
dot position and size are poorly controlled. Techniques have
been developed to control the position of quantum dots using
a nanohole as a nucleation center and then fabricating a
cavity around15 or to position a nanocavity around a randomly
located emitter.16,17 The optical properties of a given dot are
determined by its composition, its size, and the local strain:
therefore it is not possible to have a deterministic control on
the frequency of the quantum dot optical transition. This is a
crucial problem for cavity quantum electrodynamics, since the
frequency of the emitter and the cavity mode resonance must
be matched with high precision.18 Moreover, several quantum
information applications based on photon polarization9,10

require the cavity mode to be polarization degenerate. In

general, fabrication imperfections and residual strain break
the symmetry of the microcavity and the fundamental cavity
mode is split into two linearly polarized submodes. Techniques
are therefore needed to fine-tune the optical properties of
microcavities and match the resonance frequencies of the
emitter and the cavity.

Permanent or reversible frequency shifting of the reso-
nances of photonic crystal cavities can be achieved with
different tools: wet chemical digital etching,19 photodarkening
of a thin chalcogenide glass layer20 or a photochromic
thin film21 deposited on top of the device, atomic force
microscope nano-oxidation of the cavity surface,22 infiltration
of liquids,23,24 or absorption of xenon.25 Such techniques,
however, only work for photonic crystals, where the cavity
is on the surface of the device and can be easily accessed.
For micropillar cavities, on the other hand, the cavity region
is buried under a multilayered mirror structure and it is not
accessible for fabrication tuning processes.

Alternatively, the quantum dot transition has to be shifted
onto resonance with a cavity mode. By embedding the dots in
a diode structure and applying a voltage, the optical transition
frequency can be shifted via the quantum confined Stark
effect.26,27 The Stark shift can be finely tuned but is limited to
a range of hundreds of μeV; it is therefore most effective
in combination with some other coarse-tuning techniques.
Temperature-tuning, either of the whole sample28 or of a local
spot,29 has been shown as an effective way to get energy shifts
on the order of 1–2 meV. Temperature variation has been
shown to have a stronger effect on the quantum dot transition
(40 μeV/K, dominated by the temperature dependence of the
band gap) than on the cavity mode (5 μeV/K, dominated
by the temperature dependence of the refractive index).7 The
available temperature range, however, is limited to 50 K,
beyond which the dot luminescence quenches and is affected
by phonon-induced dephasing.

Lasers can also be used to tune quantum dot optical
transitions30 by altering their composition through local
annealing: the heat caused by a laser beam creates temperatures
sufficiently high that the the indium atoms contained in the
QDs start to intermix with the gallium atoms in the surrounding
matrix, resulting in a blueshift of the quantum dot transition.

Strain also affects the optical properties of materials and
can be exploited for tuning purposes31–34 both of quantum dot
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transitions and cavity mode resonances. Recently, it was shown
that the strain created by laser-induced surface defects can
be used to fine-tune the optical properties of semiconductor
microcavities.35–37 Focusing a strong laser beam on a small
spot, far away from the cavity center so that the optical
quality of the device is not degraded, the refractive index
can be changed so that the fundamental cavity mode can
be made polarization degenerate and tuned to a different
absolute wavelength. Moreover, we showed38 that a careful
combination of isotropic and anisotropic strain can be used
to tune a quantum dot optical transition into resonance with
a polarization-degenerate cavity mode, without affecting the
cavity mode degeneracy.

Here we provide experimental and theoretical support for
the technique, focusing on the physics involved with strain-
tuning of quantum dot transitions. In particular, in Sec. I we
will show experimentally that

(1) The quantum dot line always redshifts, independent of
the actual position of the hole with respect to the cavity region.

(2) The frequency shift for the quantum dot optical transi-
tion is larger than the corresponding absolute shift of the cavity
mode resonance.

In Sec. II we will discuss a simple two-band model
which can explain these results, giving sufficient qualitative
information on the involved physics.

I. EXPERIMENTAL RESULTS

We investigated a sample with quantum dots embedded
in micropillar cavities, grown by molecular-beam epitaxy on
a GaAs [100] substrate. The microcavity consists of two
distributed Bragg reflector (DBR) mirrors, made by alternating
λ/4 layers of GaAs and Al0.9Ga0.1As. Within the mirrors
there is a λ-thick GaAs layer, embedding InGaAs/GaAs
self-assembled quantum dots, below an AlAs layer. Trenches
are etched down to the bottom DBR, leaving a circular pillar
with a diameter of the order of 30 μm, and the sample is
placed in a steam oven to create an AlOx oxidation front
in the AlAs layer, leaving a small un-oxidized area in the
center, with a diameter of 3–5 μm.39 The difference in the
effective refractive index between the oxidized and unoxidized
regions provides gentle transverse optical confinement, which
results in high-quality factors (Q ∼ 30 000) and small mode
volumes.38,40 By using micropillars defined by trench shapes,
intracavity electrical gating of multiple devices is possible
by the fabrication of a PIN-diode structure. An electric field
can be applied through the PIN diode structure which enables
controlled loading of electrons into the QDs41 and tuning of
the emission wavelength of the QDs by the quantum-confined
Stark effect.26

Defects can be created on the sample surface by a laser beam
(about 500 mW power on a few μm2 spot, λ = 532 nm) tightly
focused on the structure for about 30 seconds by a high-NA
aspheric lens L1 (focal length f0 = 4.2 mm, NA = 0.6). The
whole process is done under vacuum in a helium-flow cryostat,
at a temperature of 4 K. As shown in the AFM image in Fig. 1,
the material is locally melted and evaporated, leaving a hole
which is approximately 2 μm wide and 2 μm deep. The hole is
precisely positioned, with a μm accuracy, onto the sample by
means of an optical system consisting of the focusing lens L1,

FIG. 1. (Color online) Sketch of the micropillar samples with
embedded quantum dots (see text for details). A laser beam (about
500 mW power, λ = 532 nm) is tightly focused on the sample to
create small defects, far away from the cavity area. Such defects (see
AFM image in the inset) appear as holes, about 2 μm wide and 2 μm
deep, with some material removed and deposited on the edges.

mounted on a piezoelectric translational stage, and a second
lens L2 (focal length f = 150 mm) which images the sample
onto a CCD camera. All holes are burned at least 20 μm away
from the unoxidized cavity area, so no appreciable change in
the quality factor of the micropillars was detected.

After a hole has been burned on the structure, the quantum
dot optical properties are investigated by pumping the cavity
region above the GaAs band gap (λp = 780 nm, a few μW
power on a few μm2 spot size) and characterizing spectrally
the photoluminescence. Tuning the voltage applied to the pin
diode, we switch between different charged states for the
quantum dot while the corresponding optical transitions are
frequency shifted by the Stark effect. Typical results are shown
in Fig. 2. We see that by burning more holes on the sample, the
QD transitions redshift more and more, while the cavity modes
are much less perturbed. Each hole shifts the dot transition by
about 60–100 μeV. Figure 3 presents the energies of four
QD transitions for holes burned in different positions around
the cavity area. The dot emission almost always redshifts,

FIG. 2. (Color online) Spectrally resolved photoluminescence as
a function of the applied bias voltage for increasing number of holes
burned around 20 μm away from the dot. The energy-shifting lines
correspond to quantum dots (Stark shift), while the constant ones
refer to the emission from cavity modes. Due to the effect of the
holes burned, the QD transitions (labeled as QD-1 and QD-2 in the
figure) shift to lower and lower energies (about about 50–100 μeV
for each hole burned).

075306-2



STRAIN TUNING OF QUANTUM DOT OPTICAL . . . PHYSICAL REVIEW B 84, 075306 (2011)

FIG. 3. (Color online) The top plot shows the energy of four
QD optical transitions with respect to their original energy for 6
holes burned in total on the sample in different positions at the same
distance from the cavity region (see inset for hole location). All
transitions always redshift (�EQD keeps decreasing for each hole
burned), independently of the orientation of the hole position with
respect to the cavity and the crystal axes. On the bottom plot the
corresponding energy difference for the two orthogonally polarized
submodes Mx

00 and My

00 of the fundamental cavity mode with respect
to their original (0 holes) resonance energy. Mx

00 and My

00 can either
blueshift or redshift depending on the position of the hole. The
dependence of the cavity mode shift on the hole position is described
by the model in Sec. IIB. Resonant frequencies were determined by
a Lorentzian fit of the photoluminescence spectrum peaks, with an
accuracy of the order of 4–5 μeV.

independently of the angle θ along which the hole is burned.
In total, we only saw two cases of weak blueshift out of tens
of holes burned. On the bottom graph in Fig. 3 we plot the
resonance energy for the two linearly polarized submodes Mx

00
and My

00 of the fundamental cavity mode with respect to their
original values. The frequencies of the two modes redshift or
blueshift depending on the position of the hole.

In Fig. 4 we plot the shift in the dot energy �EQD as
compared to the shift �Ecav of the cavity mode for each
hole burned for six different dots in the same sample. Since
the fundamental cavity mode consists of two orthogonally

FIG. 4. (Color online) Energy shifts for quantum dot and optical
cavity mode for six different quantum dots. The dotted red line is a
linear fit. On the inset histogram of the ratios between the shift of the
dot and the shift of the cavity mode. On average the dot frequency
shifts about 5 times more than the cavity mode resonance.

polarized submodes which are energy-shifted by �E1 and
�E2, we take as the total shift �Ecav = |�E1 + �E2| as the
absolute shift of the cavity mode. From the plot, the shift of the
dot and the cavity mode appear to be correlated, and �EQD

is larger than �Ecav. The average ratio η between the shift
of the dot and the cavity mode, calculated as the slope of the
linear fit in Fig. 4, is η̄ = 4.5 ± 0.3. The error on η is the error
for the slope of the linear fit and the correlation coefficient
is r = 0.88. Values for η for different quantum dots are all
compatible with each other within errors.

Summarizing, experimental data suggest that, due to hole
burning, the quantum dot optical transition always redshifts,
independently of the orientation of the laser-induced defect
with respect to the crystal axes, and that this shift is about
a factor 5 larger than the corresponding shift for the cavity
mode. In the following section we will discuss a model to
explain these observations.

II. THEORETICAL MODEL

A. Strain introduced by laser-induced surface defects

Strain-tuning via the creation of small surface defects by
means of a strong focused laser beam was first investigated as
a tool to control the polarization properties of planar vertical-
cavity semiconductor lasers by van Doorn et al.35,36 They
propose a theoretical model42 to interpret their experimental
data, showing that local heating in the vicinity of the device
causes thermal expansion that results in the application of
a controllable amount of strain. Calculating the thermal
expansion due to a point heat source in a bulk material, using
the relations between the temperature of the point heat source
and the elastic properties, one finds that for a hole burned at
position (x0,y0,0), the σij stress component at position (x,y,z)
is given by (xi = x,y,z):42

σij = γ
A0

r

[
δij −

(
xi − x

(0)
i

)(
xj − x

(0)
j

)
r2

]
, (1)
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where γ = (C11 − C12)(C11 + 2C12)/C11 and x − x0 =
r cos θ cos ϕ, y − y0 = r sin θ cos ϕ, z − z0 = r sin ϕ. Cij are
the elastic constants of the material, while A0 is a phenomeno-
logical coefficient, of dimension length, which depends on
the laser power and on the thermal expansion coefficient and
thermal conductivity of the material. A0 is assumed to be
positive in the case of compressive stress and negative for
tensile stress. The 1/r factor gives a stronger effect near the
position of the hole.

Above a certain laser power and burning time threshold, the
strain effect becomes permanent and irreversible.35 In a previ-
ous experiment,37 we successfully explained the experimental
data on the tuning of micropillar cavity modes by permanent
laser-induced defects, assuming that the spatial distribution of
stress is the same for reversible and permanent defects. Here we
again assume that the stress given by permanent laser-induced
defects has the form in Eq. (1).

The applied stress induces strain (tensor εkl) in the crystal
lattice, via the elastic compliance tensor, with components
sijkl :

εij = sijklσkl . (2)

In matrix form, for a 43̄m trigonal crystal (such as GaAs),

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 S12 0 0 0

S12 S11 S12 0 0 0

S12 S12 S11 0 0 0

0 0 0 S44 0 0

0 0 0 0 S44 0

0 0 0 0 0 S44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

The coefficients Sij relate to the elastic constants
Cij as S11 = (C11 + C12)/[(C11 − C12)(C11 + 2C12)], S12 =
−C12/[(C11 − C12)(C11 + 2C12)], and S44 = 1/C44.

Experimentally, the holes are burned far from the position
of the dot and the cavity center, not to degrade the optical
quality of the device. Therefore, the angle ϕ, which describes
how deep the dot position is in the z direction with respect to
the hole, can be considered to be very small (cos ϕ � 1). We
can then calculate the components of the strain tensor to be

εxx � [1 − η1 cos2 θ ](A0/r),

εyy � [1 − η1 sin2 θ ](A0/r), εzz � A0/r, (4)

εxy � −η2 sin θ cos θ (A0/r),

where η1 = (1 + 2C12/C11) and η2 = (C11 − C12)(C11 +
2C12)/(C11C44). The strain components εyz and εxz are very
small, since they are proportional to sin ϕ.

B. Effect on cavity modes

The effect of laser-induced surface defects on the frequency
of micropillar cavity modes has been thoroughly analyzed.37

Stress generated by the laser-induced defects (tensor σij )
creates strain in the semiconductor material (tensor εij ), via
the elastic compliance tensor Sijkl . Strain modifies the optical
properties of the material through the elasto-optic tensor pijkl .

The change in the dielectric impermeability tensor Bij induced
by a hole is37

δB =
[
δBxx δBxy

δBxy δByy

]
, (5)

where, for a 43̄m cubic crystal, δBxx = c0[�1σxx −
�2σyy], δByy = c0[−�2σxx + �1σyy], δBxy = p44

C44
σxy , c−1

0 =
(C11 − C12)(C11 + 2C12), �1 = p11C11 − p12C12, and �2 =
p11C12 − p12C11. Since Bi = 1/n2

i , in the case of the small
perturbation,

�ni

n
∼ −n2 �Bi

2
. (6)

For a cavity with length L and material refractive index n,
the mth resonant mode wavelength is λm = 2nL/m, where
the refractive indices n1 and n2 of the two submodes can be
calculated from the eigenvalues B1 and B2 of the dielectric
impermeability tensor B. A spatially uniform change �n

in refractive index results in a change in wavelength of the
resonant mode �λm = λm(�n/n). As an estimate of the
isotropic shift of the cavity modes, we take the center of mass of
the shift of the two resonance wavelengths �λ = �λ1 + �λ2.
This quantity is proportional to the sum of the eigenvalues of
δB, which corresponds to the trace of δB, and does not depend
on its off-diagonal elements:

�λ � λm

n2

2
(δBxx + δByy)

� λm

n2

2
(p11 + p12)

(
1 − C12

C11

) (
A0

r

)
. (7)

The important point is that this quantity is independent of the
angle θ along which the hole is positioned and is therefore
a suitable definition to compare the effect of different holes
on the cavity modes. Using the values in Table I for the
elastic and elasto-optic coefficients (n ∼ 3.5 for GaAs), the
total wavelength shift is

�λ[nm] ∼ 1100
A0

r
, (8)

where A0 is positive for tensile strain (redshift) and negative for
compressive strain (blueshift). Measurements on the shift of
the cavity mode suggest that the mode preferentially redshifts
when the cavity is far from polarization degeneracy,37 which is
an indication that tensile strain is being applied to the material
by the laser-induced defects. Experimentally we have little
control on the parameter A0, so we cannot test this relation
by its own. Instead, we need to compare it with the similar
expression for the quantum dot shift.

C. Effect on QD optical transitions

In the k · p approximation for III-V semiconductors, we
can treat the twofold degenerate conduction bands separately
from the valence bands, due to the large energy difference.
The valence band consists of a doubly degenerate band with
angular momentum j = 1/2 (spin-orbit split-off band) and
two doubly degenerate bands with total angular momentum
j = 3/2. We neglect the spin-orbit split-off bands which, for
typical semiconductors, are several hundred meV separated
from the four j = 3/2 bands. Such bands are described by
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TABLE I. Material parameters used in the model (Refs. 43 and 44).

GaAs InAs

Elastic constants (1010 N/m2) C11 11.879 8.329
C12 5.376 4.526
C44 5.94 3.964

Elasto-optic constants p11 −0.165 −0.040
p12 −0.140 −0.035
p44 −0.072 −0.010

Luttinger parameters γ1 6.8 20.4
γ2 1.9 8.3
γ3 2.73 9.1

Pikus-Bir potentials (eV) ac −7.17 −5.08
av 1.16 1.00
b −1.7 −1.8
d −4.55 −3.6

a 4 × 4 Luttinger-Kohn Hamiltonian.43 The states with larger
band curvature (mj = ±1/2) are called light holes (LH), while
the states with smaller band curvature (mj = ±3/2) are called
heavy holes (HH). The Luttinger-Kohn Hamiltonian, in the
basis {|mz = 3

2 〉,|mz = 1
2 〉,|mz = − 1

2 〉,|mz = − 3
2 〉}, is

HLK =

⎡
⎢⎢⎢⎣

Pk + Qk −Sk Rk 0

−S∗
k Pk − Qk 0 Rk

R∗
k 0 Pk − Qk Sk

0 R∗
k S∗

k Pk + Qk

⎤
⎥⎥⎥⎦ ,

(9)

where, for no strain,

Pk =
(

h̄2

2m0

)
γ1

(
k2
x + k2

y + k2
z

)
,

Qk =
(

h̄2

2m0

)
γ2

(
k2
x + k2

y − 2k2
z

)
,

(10)

Rk =
(

h̄2

2m0

) √
3

[−γ2
(
k2
x − k2

y

) + 2iγ3kxky

]
,

Sk =
(

h̄2

2m0

)
2
√

3γ3
(
kx − iky

)
kz.

Here γ1, γ2, and γ3 are the Luttinger parameters and m0 is the
free electron mass.

When strain is applied, the system is described by the Pikus-
Bir Hamiltonian which has the same form of the Luttinger-
Kohn Hamiltonian in Eq. (9), but the coefficients are modified
as P = Pk + Pε, Q = Qk + Qε, R = Rk + Rε, and S = Sk +
Sε. Here,

Pε = −av(εxx + εyy + εzz),

Qε = (b/2)(εxx + εyy − 2εzz), (11)

Rε = (
√

3b/2)(εxx − εyy) − idεxy, Sε = d(εxz − iεyz),

where ac, av , b, and d are the Pikus-Bir deformation potentials.
In the following we will discuss a simplified two-valence-

bands model, which accounts for the energy shift of the dot
optical transition. Such a model is not expected to predict
precisely the experimental results, but to give a phenomeno-
logical understanding of the physics behind the tuning process.

More complex and accurate theoretical models45–48 have been
developed to account for the effect of strain on the energy levels
of semiconductor nanostructures. Although these models can
be adapted to the problem we are considering, we believe
that our simple model is accurate enough to understand
qualitatively the results shown in the previous section and
to give sufficient guidance for the experimentalist when using
laser-induced defects to strain-tune quantum dot samples.

1. Two-valence-bands model

In bulk III-V semiconductors, the heavy-hole and light-hole
valence subbands are degenerate at k = 0. In low-dimensional
structures, however, the degeneracy is lifted by confinement
and strain. The typical energy splitting for self-assembled
quantum dots is on the order of a few tens of meV, which,
in first-order approximation, allows neglecting the LH bands
and just considering the conduction band and the HH valence
band. In the spirit of trying to get a qualitative explanation
of the experimental results, without complicated numerical
simulations, we just consider the band edge (k = 0).

In the effective mass and envelope function
approximations,43 we can consider the wave function
for a single particle in a QD to be described by the product
of a Bloch function uk(r), which has the periodicity of
the atomic lattice, and an envelope function f (r), which
describes the amplitude modulation of the wave function that
is imposed by the confinement potential: ψ(r) = f (r)uk(r).
The effective masses are m∗

e,t = m∗
e,z = m0/γe for electrons

and m∗
h,t = m0/(γ1 + γ2), m∗

h,z = m0/(γ1 − 2γ2) for heavy
holes, where m0 is the free-electron mass.

We consider small dots, whose size is smaller than the
corresponding bulk exciton radius (∼35 nm for InAs, ∼15 nm
for GaAs). In this case (strong-confinement approximation),
electrons and holes can be considered as independent par-
ticles with energy primarily determined by the confinement
potential, while the electron-hole Coulomb potential can be
neglected or treated as a perturbation.49–51

Consider a quantum dot spherically symmetric in the xy

plane (width 2Lt ) and with a depth 2Lz along the growth axis
z. Looking at the the band edges, we get the potential well
shown in Fig. 5 for each direction. At low temperature the
energy gap is Eg = 1.52 eV for GaAs and Eg = 0.42 eV for
InAs. We take the valence band offset to be V

(o)
h = 0.25 eV,43

which leaves V (o)
c = 0.87 eV for the conduction-band offset.

In the strong confinement approximation, we can neglect the
Coulomb interaction and take the energy of the exciton as

E0 = E(0)
g (InAs) + E(o)

v + E(o)
c , (12)

where E(o)
c and E(o)

v are the ground-state energies for the
potential wells for the conduction and valence potential
wells.

To get a simple analytical solution we approximate the
potential well with a three-dimensional parabolic potential:51

Vi(r) = 1
2ci,t (x

2 + y2) + 1
2ci,zz

2, i = e,h. (13)
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FIG. 5. (Color online) Parabolic confinement band-edge approx-
imation for the quantum dot potential.

The coefficients ci,j can be found by approximating the square
finite well with the parabola:

1

2
ci,jL

2
j = Vi

2
, (14)

which gives ci,j = Vi/L
2
j and i,j = (1/Lj )

√
Vi/m∗

ij . The
index i spans the conduction and valence bands (i = e,h),
while j identifies either the transverse coordinate in the xy

plane (j = t) or along the growth direction (j = z). m∗
ij is

the effective mass for the electron (i = e) or the heavy hole
(i = h) in the InAs potential well along the j direction. The
ground-state energy for the parabolic potential well is E

(0)
i =

h̄
2 (x + y + z), which gives

E(o)
c = h̄

2

√
Ve

m0

(
2

Lt

+ 1

Lz

)√
γe ,

(15)

E(o)
v = h̄

2

√
Vh

m0

[
2

Lt

√
γ1 + γ2 + 1

Lz

√
γ1 − 2γ2

]
.

The parabolic well approximation is excellent for the
potential well in the xy plane.52,53 Along the z axis the
potential well is more abrupt and the parabolic confinement
approximation is not so good. This is hardly important, as we
only look for a simple model to understand the physics and the
order of magnitudes of the effects we experimentally observe.

Taking into account the strain induced by a laser defect,
the band edges are modified as Ec = E(o)

c + �e and Ev =
E(o)

v + �h, with

�e = acεH , �h = avεH + b

2
εB. (16)

Using the expression for strain derived in Eq. (4),
we get for the hydrostatic strain component εH =
εxx + εyy + εzz = 2(A0/r) (1 − C12/C11) and for the biax-
ial component (assuming ϕ ≈ 0) εB = εxx + εyy − 2εzz =
−(A0/r) (1 + 2C12/C11). Therefore,

�e = 2ac

(
1 − C12

C11

) (
A0

r

)
,

(17)

�h =
[

2av

(
1 − C12

C11

)
− b

2

(
1 + 2

C12

C11

)] (
A0

r

)
.

Note that the strain components that affect the conduction
band and the heavy-hole valence band do not depend on
relative angle θ . This explains the data shown in Fig. 3, where
the dot optical transition was shown to redshift independently
of the angle θ along which the hole was burned.

The perturbation in the band energies for the conduction and
valence bands for GaAs and InAs has two consequences. First
of all, the band-gap energy of InAs is modified as Eg(InAs) =
E(0)

g (InAs) + �EG, with

�Eg = �e(InAs) − �h(InAs) = (ac − av)εH − b

2
εB. (18)

Second, the depth of the potential wells is modified, due
to the relative shift between GaAs and InAs band edges,
giving a perturbation on the ground-state energies of the
potential wells (respectively �Ec and �Ev). The confining
potential for the electron is modified to Ve = V (o)

e + δe(A0/r),
with δe(A0/r) = �e(GaAs) − �e(InAs), while the one for the
holes is modified to Vh = V

(o)
h + δh(A0/r), with δh(A0/r) =

�h(GaAs) − �h(InAs).
Substituting the new expression for the confining potential

in the ground-state energies in Eq. (15) and using a first-order
Taylor expansion, since the perturbation due to a hole burned
is very small, we get

�Ei = ξiδi

(
A0

r

)
, i = c,v. (19)

As shown above, the δi depend on the elastic properties of the
materials, namely the elastic constants and the deformation
potential. The ξi , on the other hand, depend on the band
structure:

ξc = h̄

2

(
1

Lz

+ 2

Lt

) √
γe

moV
(o)
e

,

(20)

ξv = h̄

2

(
1

Lz

√
γ1 − 2γ2 + 2

Lt

√
γ1 + γ2

)√
1

moV
(o)
h

.

Let us consider a quantum dot 3 nm thick and 12 nm
wide (Lz = 1.5 nm and Lt = 6 nm). We get ξe ∼ 1.224 and
ξh ∼ 1.031. Using the values in Table I, we get �e(InAs) ∼
−4.638 eV(A0/r) and �h(InAs) ∼ 2.791 eV(A0/r). There-
fore, in the case of compressive strain the band-gap
energy for InAs increases as Eg[InAs] = E(0)

g [InAs] +
7.43 eV(A0/r), while it decreases by the same amount
for tensile strain. The shift in GaAs conduction band is
�e(GaAs) ∼ −6.546 eV(A0/r), so that the change in the depth
of the potential well is δe(A0/r) = −1.91 eV(A0/r). In the
same way, the shift for the valence band is �h(GaAs) ∼
−2.678 eV(A0/r), so that the change in the depth of the
corresponding potential well is δh(A0/r) = 0.113 eV(A0/r).
For both the conduction and valence band, the depth of the
potential well is increased by compressive strain and reduced
by tensile strain. The effect is, however, much stronger for the
conduction band than it is for the valence band.

Taking into account both the change in InAs energy
gap and in the potential well depth, in the case of tensile
strain, the considered quantum dot transition redshifts due to
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hole-burning by an amount �E ∼ −9.78 eV(A0/r), which
results in the following wavelength shift:

�λ[nm] ∼ 7800

(
A0

r

)
. (21)

To get an experimental value of about 100 μeV for the typical
dot transition shift given by one hole burned, the value of
(A0/r) is of the order of 10−5. Using this value the shift of
the InAs band gap for one hole burned is around 75 μeV. The
change in the conduction-band confinement potential is around
δe(A0/r) ∼ −20 μeV and for the valence-band confinement
well is δh(A0/r) ∼ 1 μeV.

Comparing Eq. (21) with Eq. (8), we get

η = �λQD

�λcav
∼ 6. (22)

In the case of compressive stress, A0 is negative and the
quantum dot transition blueshifts by the same amount.

Experimental data, discussed in Sec. I, show that the
quantum dot optical transition redshifts. According to our
model this suggests that the defect we burn in the sample
induces tensile strain on the dots. We think that by burning
holes and removing material, we release some of the built-in
compressive strain in the InAs quantum dot (due to the
lattice-mismatched growth), which acts as an effective tensile
strain. The relative magnitude η of the effects for the quantum
dot transition versus that for the cavity mode is plotted in
Fig. 6 for different dot sizes. It clearly depends on Lz and
Lt but the dependence is weak: for the values reported in
the figure, which cover emission energies ranging between 1
and 1.5 eV, η is bounded between 5.5 and 6.5. Our analysis
of the QD transition frequency shift can be considered then
relatively robust with respect to variations in the dot size,
and size variations cannot be held responsible for the large
spread in the experimental values for η shown in Fig. 4. This
claim is also supported by the fact the points corresponding
to different dots are not aligned along lines with different
slopes, which would be correlated to different dot sizes, but
they are randomly spread. The spread of the data points cannot
be attributed to a dependence on the angle θ along which the
hole is burned, either, since we find no correlation between
dot shift and hole orientation (the correlation coefficient is
only r = 0.1). This matches the theoretical predictions, since
we defined the absolute cavity mode shift in Eq. (7) to be
independent of θ . Therefore, the spread of the data points
should be attributed just to experimental errors and no physics
seems to be related to it. In conclusion, the predictions of our
simple model are in good agreement with the experimental
data shown in Fig. 3 and Fig. 4.

2. Beyond the two-valence-bands model

The model described in the previous section can qualita-
tively explain the absolute redshift of the transitions, but it
is clearly inadequate for a full understanding of the effect of
strain on the quantum dots.

First of all, the effect of valence-band mixing is neglected
in a two-band model. In the case in which the Luttinger-Kohn
Hamiltonian is diagonal (R = S = 0) the eigenfunctions are
either heavy-hole or light-hole states and the optical selection

FIG. 6. (Color online) Values of η, ratio between the frequency
shifts of the quantum dot optical transitions and cavity mode
resonance, for different dot dimensions.

rules are such that a σ+ photon creates a |↓〉-electron and
|⇑〉-heavy-hole pair and a σ− photon creates a |↑〉-electron
and |⇓〉-heavy-hole pair. However, in the general case, the
eigenfunctions have mixed heavy-hole/light-hole character. In
the case of sufficient valence-band mixing, the |⇓〉 heavy-hole
state is a superposition involving some light-hole components
which makes the previously forbidden transitions become
optically weakly active.54,55 The amount of mixing increases
for decreasing splitting between the heavy-hole and light-hole
bands; therefore the effective tensile strain we introduce could
potentially increase the valence-band mixing. However, since
the change in energy due to hole burning is on the order of
tens of μeV, while the splitting between the heavy-hole and
light-hole valence bands is on the order of tens of meV, we do
not expect the effect to be strong.

Second, strain has also effects on exchange interaction.
In particular, the bright neutral exciton state consists of a
linear-polarized doublet, split by few tens of μeV, due to
anisotropic electron-hole exchange interaction. Recent theory
and experiments showed that strain, as a symmetry-breaking
effect, can affect the polarization direction of the excitonic
emission and the magnitude of the fine-structure splitting.33,56

Therefore, particular care should be used when employing
strain-tuning techniques with neutral excitons. On the hand
hand, the effect of strain on the trion-singlet transition is
expected to be negligible, since there is no anisotropic
exchange interaction for a spin-zero singlet electron pair and a
hole. Therefore, strain-tuning could be extremely powerful and
safe for quantum information applications involving trions.10

III. CONCLUSIONS

We have studied experimentally and theoretically how the
strain introduced by laser-induced surface defects affects the
optical transition of QDs embedded in micropillar cavities.
We showed that the quantum dot transition redshifts, inde-
pendently of the actual position of the hole. The quantum dot
frequency shift is found to be about five times larger than the
shift of a micropillar cavity mode resonance. Each hole burned
results in a shift of about 50–100 μeV. We discussed a simple
theoretical model to explain the experimental data.

These results can be used for fine-tuning purposes.38

Briefly, the cavity mode can be reduced to polarization
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degeneracy changing the local birefringence in the cavity area
by hole burning. The amount and direction of the birefringence
strongly depends on the orientation of the hole with respect
to the cavity. Once the mode is polarization degenerate, a
blue-detuned quantum dot transition can be brought into
resonance with the cavity mode by burning pairs of holes
along orthogonal directions. In this way, the birefringence in
the cavity region is left unaffected, while the dot transition is
redshifted into resonance. We believe this tool can be useful

for the implementation of quantum information applications
based on solid-state cavity QED with self-assembled quantum
dots.
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