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Abstract

One-third of the world population is infected with Mycobacterium tuberculosis and multi-drug resistant strains are rapidly
evolving. The noticeable absence of a whole organism high-throughput screening system for studying the progression of
tuberculosis is fast becoming the bottleneck in tuberculosis research. We successfully developed such a system using the
zebrafish Mycobacterium marinum infection model, which is a well-characterized model for tuberculosis progression with
biomedical significance, mimicking hallmarks of human tuberculosis pathology. Importantly, we demonstrate the suitability
of our system to directly study M. tuberculosis, showing for the first time that the human pathogen can propagate in this
vertebrate model, resulting in similar early disease symptoms to those observed upon M. marinum infection. Our system is
capable of screening for disease progression via robotic yolk injection of early embryos and visual flow screening of late-
stage larvae. We also show that this system can reliably recapitulate the standard caudal vein injection method with a
throughput level of 2,000 embryos per hour. We additionally demonstrate the possibility of studying signal transduction
leading to disease progression using reverse genetics at high-throughput levels. Importantly, we use reference compounds
to validate our system in the testing of molecules that prevent tuberculosis progression, making it highly suited for
investigating novel anti-tuberculosis compounds in vivo.
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for more efficient vaccines, as well as novel antibiotics targeting
either the pathogen or the host, has begun [3,10,11]. While w2 vitro
models have shed light on processes that are central to the uptake
and survival of the bacterium, they cannot recapitulate the full

Introduction

Tuberculosis (TB) is an ancient chronic disease caused by M.
tuberculosis. With one-third of the world population infected, the

predominant outcome is a latent and persistent infection
controlled by type I immune responses [1,2,3,4]. An important
characteristic of this infection is the formation of granulomatous
lesions, consisting of clusters of infected macrophages and other
immune cells [5,6]. Paradoxically, the main purpose of the host
macrophages, which M. tuberculosis infects and where it persists, is
to clear bacterial infection [7,8]. M. tuberculosis achieves persistent
infection through rapid changes in its gene expression profile in
order to counteract host cell biological and immune processes,
such as antigen presentation, pro-inflammatory cytokine secretion
and phagosome maturation [9].

The alarming rate of emergence of new drug resistant (MDR/
XDR) M. tuberculosis strains isolated from patients, in particular
HIV-infected individuals, is cause for global concern, and the race
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phenotype of latent M. tuberculosis infection. This has been partly
circumvented through the use of non-human primate models,
which develop a form of TB that exhibits many of the hallmarks of
the human infection [12]. Other @ vivo systems include the guinea
pig model, used to validate anti-TB vaccines and drugs [13], and
mouse models, which offer extensive arrays of genetic tools.
However, neither rodent model fully recapitulates essential aspects
of TB lesion progression in man, including granuloma formation
and maturation [10,14].

The low-cost and high clutch-size zebrafish (D. rerio) is, at the
embryonal and larval stages, optically transparent, permitting
visualization of pathogens and lesions in real time [15], as well as
offering exciting possibilities for high-throughput imaging [16].
Zebrafish are also amenable to forward genetic screening, or
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reverse genetics techniques such as injection of morpholinos
(inhibitory of mRNA translation) [17,18]. An ectotherm, the
zebrafish is one of the natural hosts of M. marinum, the closest
relative of the M. tuberculosis complex [19]. Of crucial relevance, as
shown by the pioneering work of the Ramakrishnan group, M.
marinum nfection of zebrafish closely mimics the mammalian TB
pattern of infection, both in terms of bacterial numbers which
increase rapidly in early infection, and of the formation of caseous
granulomas that present characteristics typical of their human
counterparts [20,21,22,23].

The indirect study of human TB via the infection of the
zebrafish embryo with M. marinum has already led to the
clarification of many important processes in the life cycle of the
infection, in particular those underlying the mechanisms of
granuloma formation [22,23,24,25,26,27]. The importance of
studying mycobacterial infections at a whole organism level was
highlighted in the report that induction of mmp9 expression,
enhancing macrophage recruitment to granulomas, was localized
to epithelial cells near infected macrophages [26]. Another
example of the use of zebrafish larvae to uncover a host-pathogen
interaction relevant to human mycobacterial infection is the recent
forward genetic screen by Tobin and Ramakrishnan, who mapped
a hypersusceptibility mutation to the leukotriene biosynthesis gene,
lta4h, and showed that heterozygosity at the LTA4H locus
correlated with susceptibility of human populations to both TB
and leprosy [28]. It is therefore clear that the zebrafish
mycobacterial infection model is quickly becoming an attractive
and advantageous alternative for analyzing granuloma and disease
progression i vivo.

The common route of infecting zebrafish embryos with AL
marinum 1s the injection of the pathogen into the caudal vein of the
1 day old embryo [23]. This method is labour-intensive and
generally considered to be a low-throughput technique, leading to
major bottlenecks in drug discovery, particularly in times of high-
throughput technology. Since infection by immersion is not an
effective alternative, we sought to achieve a reliable high-
throughput automatic injection system, drastically reducing the
man-hour requirement while vastly increasing the number of
reproducibly infected embryos. Large quantities of similarly-
mjected/infected embryos would then allow testing of sizeable
drug libraries for anti-bacterial activity targeting either the
pathogen or the host itself.

Here we show that the automatic injector we developed
provides a powerful and reliable high-throughput system for
infecting embryos with M. marinum. We also show that we can
couple the injector to a flow cytometer capable of sorting live
multicellular organisms (Complex Object Parametric Analyzer
and Sorter, COPAS) and rapidly test the efficacy of known anti-
TB drugs in infected embryos. Finally, and importantly, we
demonstrate that this system is ideally suited to test proliferation
and tissue spreading of the human pathogen, M. tuberculosis.

Results and Discussion

Proof of principle of the yolk sac as an early-stage
embryo injection site

We first demonstrated that the injection of 2040 M. marinum
colony-forming units (CFUs) into the yolk sac of embryos at
several early developmental stages (up to 1,024-cell stage) precisely
mimics the infection obtained with the well-established caudal vein
injection method. In our set-up, all injections were performed
using polyvinylpyrrolidone as a polymer-based carrier for the
bacteria, which showed several benefits: (1) restriction of early
bacterial spread into the embryo, precluding developmental
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problems arising from the early injection stage; (2) higher
concentration homogeneity; (3) clear visibility of injected inoculum
as a spheroid (Video S1). Besides extensive bacterial growth
within the yolk, we witnessed frequent formation of aggregates of
infected cells outside the site of injection, namely in the head, body
and tail of the larvae at 5 days post-infection (dpi) (Figure 1A).
These aggregates were highly similar to those previously shown to
represent initial stages of granuloma development [23]. No
adverse developmental effects were seen in any of the conditions
tested. Confirmation that yolk M. marinum injection resulted in
granuloma formation was obtained through GFP-labelled gag
(granuloma-activated gene) [23] activation at 7 dpi using an M.
marinum strain also expressing mCherry (Figure 1B-E). Addi-
tionally, immunohistochemistry using L-plastin showed clear co-
localization of M. marinum and leukocytes (Figure 1F-I). To
functionally analyze the role of the immune system in the
spreading and proliferation of mycobacteria after yolk injection,
we co-injected a morpholino targeting pu./ [29] and M. marinum at
the 1-2 cell stage. The results revealed the presence of
extracellular M. marinum and increased bacterial proliferation in
Pu.1 morphants (Figure 2A and B), consistent with previous data
demonstrating that macrophages in zebrafish embryos restrict
mycobacterial growth [25]. At 2 dpi, we observed cording
structures in Pu.l morphants, characteristic of extracellular
mycobacteria [27,28], in the tail region of infected embryos
(Figure 2C-E). Using a mag49 (macrophage-activated gene)-GIFP
[23] construct in mCherry-labelled bacteria, we were able to
confirm their extracellular location through the lack of mag49-GFP
expression, previously shown to be active only after phagocytosis
by macrophages [23] (Figure 2C and D).

High-throughput M. Marinum injection and drug screen

We subsequently developed an automatic injector system
around the yolk injection concept (Figure 3 and 4). All tests
performed demonstrated that this injector design, capable of 1,024
consecutive injections per run of 30 minutes, reproducibly reached
a success rate of over 99% (sample in Video S1) and produced
identical results to manual yolk injections of embryos. Importantly,
embryos occupied the hemi-spherical wells of the agarose cast
(Figure 4B and S1) in a centred and completely reproducible
manner, with the cell mass always resting to the side (Figure 4C).
No image recognition was thus required for the injections, unlike a
previously reported design that operates at a throughput level of
25 consecutive injections per run of 2 minutes [30]. The choice of
agarose as the casting material dramatically reduced light
refraction, resulting in a better image during calibration, and
helped maintain embryos humid and viable.

To demonstrate the applicability of our system to drug screens,
two independent large sets of embryos were injected with M.
marinum and treated with a combination of first-line anti-TB drugs
(Rifampicin and Isoniazid). After 3 days, immediately prior to the
start of the antibiotic treatment, embryos were run through the
COPAS flow cytometry system to determine the total level of red
fluorescence, representative of bacterial load. The embryos were
subsequently split into two random groups, whereby one was
subjected to the combinatorial treatment for 3 days. At 5 dpi, the
average signal per larva in the untreated group was approximately
3-fold higher than that of the treated group, and this difference
was even more pronounced (4-fold) at 6 dpi (Figure 5A and
Table S1). These results attest both to the efficacy of the
combinatorial drug treatment and to the ability of COPAS to
correctly discriminate treated and untreated groups.

Epifluorescence and bright-field imaging revealed little to no red
signal outside the yolk region of the treated larvae, which looked
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Figure 1. Outcome of M. marinum yolk sac injection of embryos between the 16- and the 512-cell stage. (A) 5 dpi fli1-egfp larva with
gfp-labelled vasculature showing spread of bacteria (red) throughout the body (scale bar: 250 um). (B and D) Bright-field/fluorescence overlay and (C
and E) confocal z-stack of red-fluorescent bacteria showing activation of green-fluorescent gags at the (B and C) edge of the yolk extension and on
the (D and E) tail of a 7 day-old larva (scale bar: 25 um). (F and H) Bright-field confocal plane and (G and I) confocal z-stack of red-fluorescent bacteria
co-localizing with green-fluorescent leukocytes detected by L-plastin immunostaining (scale bar: 25 um). The lesions caused by the granulomas can

be clearly seen in F and H.
doi:10.1371/journal.pone.0016779.g001

healthy and phenotypically normal. By contrast, untreated
embryos displayed varying bacterial loads in the head, body and
tail regions (Figure 5B, C, E and F). Additionally, the individual
profiles generated by COPAS correctly indicated whether bacteria
were present in the body of infected larva (Figure 5D and G). L-
plastin immunostaining further confirmed co-localization of M.
marinum and leukocytes in the body of the untreated larvae
(Figure 1F-I).

High-throughput M. tuberculosis injection and drug
screen

It is clear that much can be learned about TB from the study of
M. marinum infections in zebrafish, and the use of this pathogen
offers practical advantages when compared to M. tuberculosis, such
as lower biosafety restrictions and faster growth rate. That
notwithstanding, it was of interest to study the human pathogen,
M. tuberculosis, directly in zebrafish. Using our system, we overcame
all technical difficulties of manually injecting a BSL-3 pathogen
into zebrafish embryos. Two independent sets of embryos were
mjected with M. tuberculosis, and at 3 dpi were split into treated
(combinatorial Rifampicin and Isoniazid treatment) and untreated
groups. To support growth of M. tuberculosis, embryos were
maintained at a higher temperature (34°C) than in M. marinum
infections (28°C).

Confocal imaging of fixed infected larvae revealed the presence
of M. tuberculosis in their bodies after 5 dpi, indicating that the
bacteria survived and were transported outside the injected area
by macrophages, and that zebrafish larvae survive exposure to this

pathogen (Figure 6A). There was a highly significant correlation
(p =0.0004) between M. tuberculosis presence in the larvae and the
absence of treatment (Figure S$2). Supporting the survival of M.
tuberculosis in zebrafish, plating of lysates from 5 and 6 dpi
untreated larvae resulted in growth of M. tuberculosis colonies.
Noteworthy, treated larvae did not yield any colonies, implying
that the bacteria were eliminated during treatment.

L-plastin immunostaining showed leukocytes clustering around
infected regions throughout the body, suggesting the formation of
granuloma-like aggregates similar to those observed in M. marinum
infections (Figure 6B-D). Leukocytes in these aggregates showed
intracellular fluorescence of M. tuberculosis bacteria (Figure 6C
and D). In addition, we also observed bacterial accumulation in
cord-like structures characteristic of extracellular growth [27,28].

Concluding remarks

Our work has shown that the automatic injector, coupled with
COPAS analysis and sorting, provides an extremely powerful
high-throughput pipeline for infecting and analyzing zebrafish
embryos, and offers a new i vivo tool for rapidly testing the efficacy
of large panels of molecules on the propagation of the pathogen
studied. Gene-disruption tools, such as morpholinos, can be easily
integrated into our set-up. Moreover, our results clearly demon-
strate, for the first time, the potential of using fish larvae to
investigate M. tuberculosis directly, and highlight the importance of
the automatic injector in enabling a high biosafety-level study that
would otherwise be technically extremely difficult to accomplish.
Interestingly, we have recently demonstrated the applicability of

Figure 2. Effect of yolk sac co-injection of Pu.1 morpholino and M. marinum on bacterial localization and proliferation within
embryos. (A and B) 3 day-old infected mpx-gfp transgenic embryos (A) with and (B) without Pu.1T morpholino (scale bar: 250 um). Greater numbers
of (extracellular) bacteria throughout body of morphant embryo seen in A contrast with lower amount of more localized (phagocytosed) bacteria
seen in B. Very low number of mpx-gfp labelled neutrophils in A confirms Pu.1 morpholino effect. (C) Bright-field/fluorescence overlay and (D)
confocal z-stack of mag49-GFP/mCherry bacteria in body of 2 dpi embryo (scale bar: 25 um). Red-fluorescent bacteria form a cording structure
adjacent to a few cells containing green-fluorescent (mag49-activated) bacteria. Lack of green fluorescence in cording bacteria indicates no
phagocytosis by macrophages and extracellularity. (E) Close-up (digital zoom: 5.2) of cording structure formed by extracellular bacteria (scale bar:
10 um; only red channel shown).

doi:10.1371/journal.pone.0016779.9g002
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Figure 3. Pipeline of high-throughput infection of zebrafish embryos and subsequent drug testing. (A) After fertilization eggs are
harvested, washed and distributed on injection plate. (B) Appropriate inoculum is injected in early stage embryos (up to 1,024-cell stage). (C) Injected
embryos are dispensed into appropriate containers and drug screens take place between 3 and 6 dpi. (D) Groups of treated and untreated embryos
are separately screened using COPAS during (when appropriate) and after drug exposure. Detailed optical analyses are performed on selected larvae.

doi:10.1371/journal.pone.0016779.g003

our robotic injection system for the xenotransplantation of human
tumour cell lines into zebrafish embryos (data not shown), showing
its general relevance in the high-throughput study of diseases that
benefit from the use of whole vertebrate organisms.

Materials and Methods

Automated injection system

A polycarbonate substrate featuring a honeycomb pattern of
1,024 hemi-spherical wells (1.3 mm diameter) was used to create a
negative mould in flexible polydimethylsyloxane (PDMS, Sylgard
184, Dow Corning) using standard moulding techniques. A 1%
agarose gel (Sphaero) was poured onto an agarose-coated glass
plate and the PDMS mould was pressed to touch the glass. After

gelling the mould was removed and the grid was placed in a
leakage-free steel support (sized to a 96-well plate) (Figure 4B).

The embryo grid was placed in a motorized stage (MTmot
200x100 MR, Mairzhauser) connected to a controller (Tango,
Mirzhauser).

A motorized micro-manipulator (Injectman II, Eppendorf) was
adjusted to a vertical position above the stage, and connected to a
pump (Femtojet Express, Eppendorf) featuring an external
compressor (lubricated compressor, model 3—4, JUN-AIR).

A firewire camera (DFK41BF02.H, The Imaging Source)
equipped with a 4Xx macro lens (MR4/0, The Imaging Source)
was placed beneath the stage for imaging.

All components were connected to the controlling computer
(Ubuntu AMD64). A multi-threaded control program was written in

Figure 4. Pictures depicting automatic injector system. (A) the automatic injector system inside a laminar flow cabinet; (B) the embryo holder,
showing the agarose grid within the steel support; (C) the embryo-filled grid, demonstrating the highly reproducible alignment of the embryos, with
the cell mass resting to the side. Although size variation is observed, the embryos are always precisely in the centre of each well (the point of

calibration for injection).
doi:10.1371/journal.pone.0016779.g004
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Figure 5. Automatic yolk sac injection of M. marinum and effect of treatment on infected larvae. (A) Effect of treatment on bacterial
growth (measured by COPAS) in 5 and 6 day-old fli1-egfp larvae with gfp-labelled vasculature. Blue bars represent treated embryos, red bars
represent untreated embryos. (B-D) Untreated versus (E-G) treated 5 day-old larvae, depicted whole in (B and E) bright-field and (C and F)
fluorescent images, and (D and G) profiled by COPAS (scale bar: 250 um). The localization of bacteria (red) in C and F correlates well with COPAS
profile peaks in D and G, respectively (peaks in the tail region are shown enlarged in the inset; arrowheads depict two representative locations).

doi:10.1371/journal.pone.0016779.9005

Python, using PySerial and wxPython. Coriander software (http://
damien.douxchamps.net/ieee 1394/ coriander) was used for imaging.

The camera height was adjusted to focus on the top plane of the
agarose grid, and a grid calibration was performed.

The grid was removed for loading with embryos (Figure 4C).
The injection needle (pulled borosilicate glass capillary, Harvard
Apparatus) was placed in the Injectman and moved to the central
focal position. The x and y coordinates were stored and the needle
was elevated to replace the filled grid.

The injection height was calibrated using the first embryo by
moving the needle downwards through the chorion until touching
the yolk (400 pm above injection point).

Bacterial culture and inoculum preparation
M. marinum strain E11 stably expressing mCherry (pSMT3-
mCherry vector) [31] was grown as previously described [32], in

the presence of 50 pg/ml hygromycin. Injection inocula were
prepared from glycerol stocks (frozen at OD600 = 0.75) by washing
three times in sterile 0.05% Tween80/PBS solution (BD Difco),
assessing optical density at 600 nm and resuspending in a 2%
polyvinylpyrrolidone40 (PVP40) solution (CalBiochem) in PBS.

M. marinum Mma20 strains expressing, in addition to mCherry,
mag49-GFP or gag7-GFP plasmids [23] were cultured in medium
containing 20 pg/ml kanamycin and 50 pg/ml hygromycin.

M. tuberculosis strain H37Rv stably expressing mCherry was
maintained in logarithmic phase at all times in 7H9 medium (BD
Difco Middlebrook) containing 50 pg/ml hygromycin in a BSL-3
laboratory. Prior to injection, optical density at 600 nm was
assessed, the bacteria were washed three times in sterile water and
resuspended in 2% PVP40.

The number of CFU in each inoculum was verified by plating
out serial dilutions and the injected inoculum in triplicate.

Figure 6. Automatic yolk sac injection of M. tuberculosis and effect of treatment on infected larvae. (A) Confocal z-stack (8 x2 stitching) of
a 6 day-old whole larva (fli1-egfp with gfp-labelled vasculature) showing spread of bacteria (red) throughout the body (scale bar: 250 um). (B)
Confocal z-stack of red-fluorescent bacteria co-localizing with green-fluorescent leukocytes detected by L-plastin immunostaining (scale bar: 25 pm).
(€) Close-up (digital zoom: 4.2) of bacteria-containing leukocyte depicted in B by straight arrow (scale bar: 10 um). (D) Close-up (digital zoom: 4.3) of
bacteria-containing leukocyte depicted in B by arrowhead (scale bar: 10 um).

doi:10.1371/journal.pone.0016779.g006
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Ethics statement

Zebrafish lines (wild-type, albino/flil-egfp [33] and mpx-gfp
[34]) were handled in compliance with the local animal welfare
regulations and maintained according to standard protocols
(zfin.org). The breeding of adult fish was approved by the local
animal welfare committee (DEC) of the University of Leiden. All
protocols adhered to the international guidelines specified by the
EU Animal Protection Directive 86/609/EEC.

Zebrafish infections

Infections including the Pu.l morpholino [29] (I mM, Gene
Tools) were performed by yolk injection (1 nl) at the 1-2 cell stage,
whereas all other injections of M. marinum (2040 CFUs) or M.
tuberculosis (100 CFUs) took place between 16 and 512 cells.
Control embryos were injected with carrier solution.

After M. marinum infection, embryos were collected in
92x16 mm petri dishes (Sarstedt), with a maximum of 100
embryos per dish, and maintained at 28°C in egg water. At 3 dpi
embryos were analyzed by the COPAS system (see below) and
randomly split into two equal groups. One group was exposed to a
combination of 200 uM Rifampicin (Sigma-Aldrich) and 2 mM
Isoniazid (Sigma-Aldrich) for 3 days (exposure to the drugs
achieved by adding compounds to egg water; antibiotics refreshed
once daily) and the other was followed without treatment (water
refreshed once daily). Uninjected controls were similarly split into
treated and untreated groups to account for antibiotic effects. At 5
and 6 dpi, the different larva groups were analyzed by the COPAS
system, and the bacterial load was assessed by the total red
fluorescence detected.

After M. tuberculosis infection, embryos were collected in tanks
containing 1 litre of egg water with a maximum of 300 embryos
per tank, and maintained at 34°C. At 3 dpi embryos were
randomly split into treated and untreated groups as described
above. Twenty larvae per group were homogenized at 5 and 6 dpi
and plated out to assess the number of live bacteria per larva.
Batches of 40-100 larvae per group were fixed at 5 and 6 dpi for
optical analyses.

Immunohistochemistry
Larvae were fixed in 4% paraformaldehyde in PBS overnight at
4°C and immunolabeled using the L-plastin antibody as previously

described [35].

Microscopy

Fluorescence in embryos and larvae was observed using a Leica
MZ16 FA fluorescence stereomicroscope equipped with LAS AF
software (Leica Microsystems), a Leica DMI400 B confocal
microscope equipped with LAS AF software (Leica Microsystems)
and a Zeiss LSM5 Exciter/Axio Observer confocal microscope
equipped with ZEN software (Carl Zeiss). The following objectives
were used: Leica stereomicroscope PlanaP0 1x (Figure 1A,
2A and B and 5B, C, E and F); Leica confocal HCX PL Fluotar
40x/0.75 dry (Figure 1B-I, 2C-E and 6B-D); Zeiss confocal EC
Plan-Neofluar 10x/0.30 dry (Figure 6A). Images were processed
using the public domain program Image] (W. Rasband, Image]
1.42q, http://rsb.info.nith.gov/1j/).

Complex Object Parametric Analyzer and Sorter (COPAS)

The COPAS™ X1 (Union Biometrica) large particle sorter has
been designed for the analysis, sorting and dispensing of objects up to
1.5 mm in diameter based on size, optical density and fluorescence
intensity. It is equipped with 488 nm and 561 nm Solid State lasers,
and mCherry is detected through a 615/24 Band-Pass filter.

@ PLoS ONE | www.plosone.org
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The Profiler IT Option simultaneously detects and analyzes up to
8,000 data points per object for each of the channels of extinction
and fluorescence, and includes advanced imaging options. The
resulting profiles can be used to set sorting parameters.

The COPAS parameters used were as follows: optical density
threshold (extinction) =390 mV (COPAS value: 20); minimum
time of flight =280 us (COPAS value: 700); red photomultiplier
tube (PMT) voltage =450 V; green PMT voltage =0 V; yellow
PMT voltage =0 V.

Statistics

The effect of drug treatment on M. marinum mCherry
fluorescence in zebrafish larvae was statistically analyzed using a
2-tailed T-test. The correlation between drug treatment and the
presence or absence of M. tuberculosis was determined by a y*-test.

Supporting Information

Figure S1 Embryo holder designs. Possible designs of the
agarose embryo holder, demonstrating that the hemi-spherical
alternative provides the largest injection target volume, taking embryo
size variability into account (indicated by arrows). Three embryo sizes
are depicted, where the embryo designated by “100” is of average size.
(TIF)

Figure S2 Combinatorial treatment of M. tuberculosis-
infected larvae. Effect of combinatorial treatment on presence or
absence of bacteria in 6 day-old larvae from two independent
experiments.

(TIF)

Table S1 Difference in mCherry-labelled M. marinum
load between treated and wuntreated groups. Both
experiments indicate a highly significant reduction of bacterial
numbers (measured by COPAS) as a direct result of treatment
with first-line anti-TB drugs, as determined by a 2-tailed T-test.
DOC)

Video S1 Sample of automated injection of M. marinum
into the yolk of early-stage zebrafish embryos. The left
panel allows a side-view of the injection process, whereas the right
panel allows the visualization of the inoculum as it is injected into
the yolk (camera located beneath the embryo). The video runs at
normal speed.

(MP4)
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