
Mining sensor data from complex systems
Vespier, U.

Citation
Vespier, U. (2015, December 15). Mining sensor data from complex systems. Retrieved from
https://hdl.handle.net/1887/37027
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/37027
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/37027


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/37027 holds various files of this Leiden University 
dissertation. 
 
Author: Vespier, Ugo 
Title: Mining sensor data from complex systems 
Issue Date: 2015-12-15 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/37027
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 7

Interactive Time-Series

Visualization

When approaching a new data science problem, it is most of the time prefer-

able to spend some time to get an idea of the properties and the features of

the data at hand. This exploratory phase is not only useful to get a better

understanding of the application domain, but it can provide fundamental

insight about the data and inform all the subsequent modeling, feature con-

struction and algorithm design choices. Moreover, freely looking at the data

before diving into the actual modeling could spot fundamental issues on how

it was collected and processed in the first stage, issues which could potentially

render any derived analysis flawed if not pointless.

This preliminary exploration phase of a given dataset is widely known in

the community under the name of exploratory data analysis (EDA) [92, 93].

Typical EDA activities include generating statistical summaries, computing

aggregations, fitting distributions and, last but not least, visualizing the data

in several ways in order to spot patterns and gain insight, mostly driven by

the intuition of the practitioner.

Effective visualization, in fact, is one of the most powerful and immedi-

ate ways of analyzing a dataset, relying on the ability of the human brain

to abstract, summarize, spot trends and anomalies through visual inspec-

93



94 CHAPTER 7. INTERACTIVE TIME-SERIES VISUALIZATION

tion [46].

Most data analysis software suites allow practitioners to perform visualization

easily on moderately sized datasets. However, when the data at hand is too

big to be handled by off-the-shelf software solutions, it becomes difficult to

perform effective visualization and more advanced solutions, able to cope

with big data, are required.

This chapter discusses visualization in the context of EDA of massive time

series data. In particular we focus on the following problem:

Given a massive time series dataset, how can we support inter-

active visualization, enabling fast browsing and zooming from

coarser to finer levels of detail?

Note how the emphasis is put on the interactivity of the process as required

by effective EDA. Although it is reasonably easy to visualize small datasets

with current software suites, this simple task becomes quite challenging when

dealing with large amount of data, especially when it is required to do this

interactively. Throughout the chapter, we will see how this problem can be

addressed by working on sampled versions of the original data, organized as

a hierarchy.

The solution has been implemented and tested on a real-world scenario, the

InfraWatch project, and resulted in a software package called VizTool, which

will be introduced throughout the chapter.

The rest of the chapter is organized as follows. Section 7.1 introduces the con-

cept of sub-sampling hierarchy which lays the foundation for the subsequent

sections. Section 7.2 discusses how we exploit the sub-sampling hierarchy in

order to support interactive visualization of massive time series data. Sec-

tion 7.3 introduces VizTool, a web application implementing the concepts

discussed in the chapter. Finally, Section 7.4 draws the conclusions.



7.1. HIERARCHICAL TIME SERIES SUBSAMPLING 95

7.1 Hierarchical Time Series Subsampling

When dealing with large univariate time series, there are mainly two prop-

erties that affect dimensionality: the extent of the measured period and its

sampling frequency. By reducing the considered period, the sampling fre-

quency, or both, one can directly reduce the amount of data to be processed

at once, in some cases without losing relevant information for the task at

hand.

Take, for example, the case of InfraWatch where data from sensors is sampled

at 100 Hz. If we are interested in spotting seasonal trends in strain measure-

ments, it suffices to consider a moderately sub-sampled version of the data,

possibly containing one measurement every hour or, even, every day.

In general this means that, depending on the task at hand, it is often enough

to consider a sub-sampled version of the data in order to speed up calculations

and support interactivity if required.

In this section, we propose a storage scheme for large time series based on pro-

gressively sub-sampled versions of the original data to support this idea.

7.1.1 Sub-sampling Hierarchy Construction

The problem of effectively reducing the dimensionality of a time series, in-

terpreted as its number of data points, boils down to producing a reduced

representation such that it resembles the original data as much as possible.

From now on, and without loss of generality, we will assume we are dealing

with constant rate time series1.

The most trivial way to reduce the dimensionality of such a time series is

to consider every nth point, thus reducing its size by a factor n. This ap-

proach, however, has a drawback as it is too sensitive to outliers. In fact,

rare events, such as spikes in the data or errors in the measurements, could

1It is always possible to add or remove points of a time series, by interpolation, to make

its sampling rate constant.



96 CHAPTER 7. INTERACTIVE TIME-SERIES VISUALIZATION

be selected in the sampling, rendering the resulting approximation, and its

shape, skewed.

A more robust way of producing a low dimensionality approximation is by

taking the average of the points to be aggregated. More formally, given a

time series x of length n, we want to compute an approximation of length

M

A(x,M) = x̂ = x̂[1], . . . , x̂[M ]

where:

x̂[i] =
M

n

(n/M)i∑
j=n/M(i−1)+1

x[j] .

This method of reducing the dimensionality of a time series is also at the

base of a well known segmentation technique called Piecewise Aggregate

Approximation [47]. In the segmentation task, however, the final outcome is

not a time series with a reduced number of points (a lower sampling rate) but

a cheaper representation of the same data, obtained by reducing segmented

data points to horizontal lines centered around their mean.

The average function, however, is not the only possible choice for aggregating

time series data. Ideally, the choice of an aggregation function should be

based on its ability to preserve the perceptual features of the data, although

this ability may depend on the properties of the data itself and how it evolves

over time. A review of several possible aggregation functions and analysis of

how well they cope with the task of visualization can be found in [6].

We also note that even basic aggregation functions can be of practical im-

portance when dealing with time series data, especially for visualization pur-

poses. Consider, for example, the case of temperature sensors where one is

often interested in knowing what are the changes in temperature at any given

time frame. In such cases, computing multiple types of aggregations, such as

minimum, maximum and average, can support band visualizations.

Having a way to reduce the length of a time series, we can now define a hier-

archical storage scheme which materializes different levels of approximation

given an input time series.



7.1. HIERARCHICAL TIME SERIES SUBSAMPLING 97

Definition (Hierarchical Storage Scheme). Given a time series x of length

n, a hierarchical storage scheme is defined by materializing a sequence of

log2n+1 consecutively coarser approximations A(x, n/2i), for 0 ≤ i ≤ log2n.

Note that we apply the floor operation on log2n to handle time lengths that

are not strictly a power of two.

In other words, we store consecutively coarser versions of the original time

series, where every version has half the size of the immediately finer one.

This approach creates a pyramid of approximations which, when fully stored

on disk, permits to quickly retrieve portions of a time series at a resolution

that is as close as possible to the desired one. Figure 7.1 depicts this concept

visually.

We note that, for any given time series x of length n, the total number of

data points of all levels of approximation in the storage scheme is 2n. As the

storage capacity quickly increases over time and its price quickly drops, a

twofold increase of the required storage represents a good compromise, espe-

cially considering the huge gain in retrieval speed provided by this approach

for visualization purposes.

The concept of considering data stored at different resolutions and com-

plexities in order to speed up retrieval and rendering is also at the base of

many computer graphics methods. In texture mapping [39], for example, a

technique called mipmapping [102] involves pre-calculating sequences of pro-

gressively lower resolution versions of the same texture image, each of which

is half the size of the previous one. The approach permits to reduce render

time and reduce artefacts, such as aliasing, by choosing the right level of

resolution depending on the pixel density of the object. Objects closer to the

camera will be rendered with high resolution textures while, on the contrary,

for distant objects, using less-defined texture images will suffice.

The same concept, again in computer graphics, is behind LOD (level of de-

tail) based 3D rendering [66], where the polygonal complexity of an object is

lowered, by employing polygonal reduction algorithms [65], as it moves away

from camera. Although more advanced continuous LOD methods exist, ba-

sic (discrete) LOD approaches are based on storing pre-computed polygonal



98 CHAPTER 7. INTERACTIVE TIME-SERIES VISUALIZATION

x = A(x, n/20)

A(x, n/2)

A(x, n/4)

A(x, n/8)

A(x, n/16)

A(x, n/32)

A(x, n/64)

January 1
2014

December 31
2014

Start May 1 2014
End July 1 2014

Viewport

VizTool Storage Scheme VizTool Server VizTool Web Application

(1) Data Request
Start - End Period
Viewport Size

(2) Data
Retrieval

(3) Data 
Visualization

Figure 7.1: The three main components of VizTool. On the left, it is shown

the pyramidal storage scheme for time series introduced in 7.1.1. A schematic

example of a VizTool user session is shown on the right side. The web

application makes a data retrieval request to the VizTool server providing

the desired period and the size of the viewport. Given these parameters,

the server accesses the best resolution level from the storage and sends the

approximated data back to the web application for visualization.

representations of objects at different resolutions.

7.2 Interactive Visualization

We will now show how the time series storage scheme introduced in Sec-

tion 7.1 can be leveraged to support interactive visualization of large time

series.

First, let us consider a typical time series visualization scenario. The follow-

ing parameters affects the produced visualization at a given time:

• the requested time period (tstart, tend),

• the sampling rate of the original data,



7.3. VIZTOOL SOFTWARE 99

• the width in pixels of the visualization viewport w.

Any given configuration of time period and sampling rate results in a number

of data points, from the original time series, to be visualized. As this number

of points can potentially exceed the pixel width of the viewport, some sort of

aggregation has to take place. Performing such an aggregation task on the

fly, starting from the original time series, can be an expensive process and

could severely harm the interactivity of the visualization.

In order to speed up the process above, we can employ the storage scheme

introduced in Section 7.1.1 to directly retrieve the data from the most suitable

aggregation level, without performing on the fly expensive operations.

Ideally, given a configuration of time period and sampling rate, we would

like to retrieve a number of points that takes into account the size of the

viewport in order to reduce the amount of data to be aggregated at render

time.

Given a time series x[tstart, tend] to be visualized, let R = (tend − tstart)/w be

the ratio between the requested number of points in the original time series

and the viewport width. The value of R indicates how many data points

per pixel are to be shown using the original time series. We can reduce

this factor by retrieving the data from the right approximation level in the

storage scheme. More formally, the best option is to retrieve the data at level

A(x, n/2k) where k = blog2Rc.

This approach links the size of selected data to the resolution of the screen

by retrieving the largest aggregation level that has enough data points for

the current viewport. One clear advantage is that data retrieval time is

reduced as the complexity of the visualization is now dependent on the actual

resolution of the screen used.

7.3 VizTool Software

The storage scheme and the interactive visualization method introduced in

the previous sections are the core concepts behind VizTool, a visualization



100 CHAPTER 7. INTERACTIVE TIME-SERIES VISUALIZATION

software for large time series data. VizTool has been developed in the context

of the InfraWatch project to aid interactive visualization of the bridge’s data

and facilitate the discussions with the domain experts.

The software has been designed with the following goals in mind:

• fast and interactive visualization of large time series data collected from

sensors,

• ability to adapt the details in the visualization to the actual viewport

size,

• possibility of comparing data from multiple sensors by stacking multiple

time series line charts,

• support for band visualization based on minimum, maximum and av-

erage aggregation functions,

• ability to export any portion of the data at any given sampling rate,

• ability to bookmark and add notes to portions of the data to support

data annotation activities,

• possibility to compute correlations between any chosen set of sensors.

The second goal, in particular, was fundamental to run VizTool effectively

on large monitors or multi-screen setup when discussing data and presenting

projects results.

Moreover, because of the sensitiveness and size of InfraWatch’s data, Viz-

Tool’s architecture is based on a client-server model which permits to host

all the data on the server side, while allowing client hosts to browse and

export portions of it.

VizTool’s server-side application has been developed in Python [77] using the

web framework Django [23] and HDF5 [38] as data storage library to support

effective and efficient caching of data from disk into memory. On the client-

side, the web application is written in pure Javascript and HTML/CSS em-

ploying the Highcharts [40] graphing library for plotting the time series.

VizTool has been used to visualize InfraWatch’s data at scale, allowing one



7.4. CONCLUSIONS 101

Figure 7.2: The VizTool web application interface.

to browse and inspect a terabyte sized dataset of sensor time series sampled

at 100 Hz for a period of three months.

An example of a VizTool session is shown in Figure 7.2. Figure 7.3 shows

VizTool running on a multi-screen setup.

7.4 Conclusions

In this chapter, we introduced the task of large time series visualization in the

context of Exploratory Data Analysis (EDA) and we discussed the challenges

linked to effective interactive visualization of big data.

As we observed that the amount of visible data points is always limited by



102 CHAPTER 7. INTERACTIVE TIME-SERIES VISUALIZATION

the size of the visualization viewport, we proposed a storage scheme to hold

sub-sampled versions of the original data in order to speed up data retrieval

at different levels of resolution.

We introduced a data retrieval mechanism for visualization based on such

storage scheme and presented VizTool, a software solution that leverages

these concepts to support fast and interactive visualization of large time

series data collected from sensors.

VizTool proved to be an effective tool for the practical exploration of the

InfraWatch data, not only supporting the EDA process but also serving as a

practical demonstration for public exposition of the project’s results.

VizTool was also instrumental in discovering important properties and events

in the data such as dead sensors, re-calibration activities, correlation between

temperature and strain response, differences of traffic activity between work

days and weekend days. Moreover, VizTool made even more evident the

multi-scale nature of InfraWatch data and how different scales (monthly,

daily, hourly) reveal new complex phenomena and events inherent to certain

time resolutions.

Future work includes the extension of the VizTool software to support on the

fly operations that leverage the storage scheme we presented. For example, it

would be possible to compute approximate correlations between time series

in an anytime fashion by starting the computation at the coarsest level,

progressively refining the results while moving to finer levels.

The same concept could be applied to motif discovery. Anytime approximate

motif discovery could be implemented by exploiting the sub-sampling hierar-

chy. A naive solution would involve running the exact MK algorithm [74] at

each level of the hierarchy, from coarser to finer resolutions, and presenting

intermediate results to the user.



7.4. CONCLUSIONS 103

Figure 7.3: VizTool running on a multi-screen setup at the Leiden Institute

for Advanced Computer Science. The setup mounted a total of 16 screens (4

by 4) for a total resolution of 5120x4096.



104 CHAPTER 7. INTERACTIVE TIME-SERIES VISUALIZATION


