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Chapter 6

Subsequences Clustering for

Events Modeling

6.1 Introduction

In this chapter, we investigate how to build a model of traffic activity events,

such as passing vehicles or traffic jams, from measurements data collected in

the context of Infrawatch, the Structural Health Monitoring project discussed

in Section 2.4.

It has been shown that the structural stress caused by heavy loads is one

of the main causes of bridge deterioration. Because of this, we focus here

on modeling traffic activity events in the strain measurements, such as pass-

ing vehicles or traffic jams. The produced model can then be employed for

real-time event classification or detection of anomalous responses from the

bridge.

A single moving vehicle is represented in the strain measurements as a bump-

shaped peak (see Figure 6.1 (right)) with an intensity proportional to the

vehicle’s weight and a duration in the order of seconds. On the other hand,

events like traffic jams represent significantly larger time spans and cause

an overall increase in the average strain level, due to the presence of many

slow-moving vehicles on the bridge. Because we are dealing with events of
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78 CHAPTER 6. SUBSEQUENCES CLUSTERING

varying nature, straightforward algorithms based on peak detection will not

suffice.

In order to model all the different kinds of traffic events represented in the

strain data, we investigate the effectiveness of time series subsequence clus-

tering [41, 49, 30, 43], which essentially employs a sliding window technique

to split the data stream in individual subsequences (observations), which

can then be clustered. However, the naive implementation of subsequence

clustering (SSC) using a sliding window and k-Means is controversial, as it

is prone to producing undesirable and unpredictable results, as was previ-

ously demonstrated and analyzed in several publications, e.g. [49, 30, 43].

Indeed, within our strain data application, we notice some of the mentioned

phenomena, although not all. We provide an analysis of how the different

phenomena can be explained, and why some of them are not present in the

data we consider. Finally, we introduce a novel Snapping distance measure

which, employed in SSC based on k-Means, removes the artifacts and pro-

duces a correct clustering of the traffic events. We believe that the proposed

distance measure can lead to a rehabilitation of SSC methods for finding

characteristic subsequences in time series.

6.2 InfraWatch and the Strain Sensor Data

In this section, we describe what the strain data looks like and how the

different types of traffic activities are represented in the strain measurements,

in order to motivate the technical solutions employed in Section 6.3.

As mentioned, we focus on modeling traffic events, such as vehicles passing

over the bridge or traffic jams, represented in the strain measurements of

the InfraWatch data. The data is being sampled at 100 Hz which amounts

to approximately 8.6 · 106 measurements per sensor per day. As the sensor

network is highly redundant, and the different strain sensors are fairly cor-

related or similar in behavior, we selected one sensor that is reliable and low

in measurement-noise (less than 1.0 µm/m). The strain gauge considered is

placed at the bottom of one of the girders in the middle of a 50 meter span
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Figure 6.1: Detailed plots of strain, showing a traffic jam during rush hour

(left) and individual vehicles (right).
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Figure 6.2: One full week day of strain measurements. All y-axis units in

this chapter are in µm/m (µ-strain).

near one end of the bridge. The strain data is thus related to this portion

of the infrastructure. Every load situated on this span will have a positive

effect, with loads in the middle of the span contributing more to the strain

than loads near the supports of the span. Figure 6.2 shows an overall plot of

the measurements for a single (week)day.

At the time scale of Figure 6.2, it is not possible to identify short-term

changes in the strain level (except for notable peaks), such as individual ve-

hicles passing over the span. However, long-term changes are clearly visible.

For instance, there is a slightly curved trend of the strain baseline which

slowly develops during a full day, which is due to changes in temperature,
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slightly affecting both the concrete and gauge properties. The sudden rise

of the average strain level between 9am and 10am is caused by a traffic jam

over the bridge (as verified by manual inspection of the video signal). A

traffic jam involves many slowly moving vehicles, which causes high vehicle

densities. This in turn produces a heavy combined load on the span, and the

strain measurements record this fact accordingly. Figure 6.1 (left) shows a

detailed plot of the traffic jam event.

Short-term changes, on the other hand, can be identified when considering

a narrower time window, in the order of seconds. A passing vehicle is repre-

sented in the data by a bump-shaped peak, reflecting the load displacement

as the car moves along the bridge’s span. Figure 6.1 (right) shows a time

window of 22 seconds where the big peak represents a truck while the smaller

ones are caused by lighter vehicles such as cars.

The examples above show how different traffic events, though all interesting

from a monitoring point of view, occur with different durations and features

in the strain data. Our aim is to characterize the different types of traffic

the bridge is subjected to by analyzing short fragments of the strain signal,

in the order of several seconds. The remainder of this chapter is dedicated

to the clustering of such subsequences obtained by a sliding window.

6.3 Subsequence Clustering for Traffic Events

Modeling

In this section, we introduce the rationale behind the subsequence clustering

technique. We review the known pitfalls of SSC considering the features

of the strain data and we show how its naive application produces results

affected by artifacts. We finally propose a novel distance measure for SSC

designed to remove the artifacts.
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Figure 6.3: Two plots of the same data, showing the original data as a

function of time (left), and a projection on two selected dimensions in w-

space and the four prototypes generated by k-Means (red circles). Clearly,

the sliding window technique creates a trajectory in w-space, where each loop

corresponds to a bump in the original signal.

6.3.1 Subsequence Clustering

Subsequence clustering is a time series clustering techniques based on the

concept of subsequences set :

Definition (Subsequences Set). The subsequences set D(X,w) = {Si,w |
1 ≤ i ≤ m− w + 1} is the set of all the subsequences extracted by sliding a

window of length w over the time series X.

The subsequences set D(X,w) contains all possible subsequences of length w

of a time series X. The aim of subsequence clustering is discovering groups of

similar subsequences in D(X,w). The intuition is that, if there are repeated

similar subsequences in X, they will be grouped in a cluster and eventually

become associated to an actual event of the application domain.

6.3.2 Subsequence Clustering equals Event Detection?

Subsequence clustering is an obvious and intuitive choice for finding charac-

teristic subsequences in time series. However, in a recent paper by Keogh

et al. [49], it was shown that despite the intuitive match, SSC is prone to

a number of undesirable behaviors that make it, in the view of the authors,
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unsuitable for the task at hand. Since then, a number of papers (e.g. [43]

and [30]) have further investigated the observed phenomena, and provided

theoretical explanations for some of these, leading to a serious decline in

popularity of the technique. In short, the problematic behavior was related

to the lack of resemblance between the resulting cluster prototypes and any

subsequence of the original data. Prototype shapes that were observed were

collections of smooth functions, most notably sinusoids, even when the orig-

inal data was extremely noisy and angular. More specifically, when the time

series were constructed from several classes of shorter time series, the result-

ing prototypes did not represent individual classes, but rather were virtually

identical copies of the same shape, but out of phase. Finally, it was observed

that the outcome of the algorithm was not repeatable, with different random

initializations leading to completely different results.

The unintuitive behavior of SSC can be understood by considering the nature

of the subsequence set D(X,w) that is the outcome of the initial sliding

window step. Each member of D(X,w) forms a point in a Euclidean w-

dimensional space, which we will refer to as w-space, illustrated in Figure

6.3. As each subsequence is fairly similar to its successor, the associated

points in w-space will be quite close, and the members of D(X,w) form a

trajectory in w-space. Figure 6.3 shows an example of a (smoothed) fragment

of strain data, and its associated trajectory in w-space (only two dimensions

shown). Individual prototypes correspond to points in w-space, and the task

of SSC is to find k representative points in w-space to succinctly describe

the set of subsequences, in other words, the trajectory. Figure 6.3 (right)

also shows an example of a run of k-Means on this data. As the example

demonstrates, the prototypes do not necessarily lie along the trajectory, as

they often represent an (averaged) curved segment of it.

So how does SSC by k-Means fare on the strain data from the Hollandse

Brug? Experiments reported in Section 6.4 will show that not all the prob-

lematic phenomena are present in clustering results on the strain data. In

general, cluster prototypes do resemble individual subsequences, although

some smoothing of the signal as a result of averaging does occur, which is

only logical. The relatively good behaviour can be attributed to some cru-
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Figure 6.4: Multiple representation of events. The left plot shows the proto-

types computed by the classic k-Means. The right plot shows, in black, the

portion of the data assigned to the two bump-shaped prototypes.

cial differences between the nature of the data at hand, and that used in

the experiments of for example [49, 43]. Whereas those datasets typically

were constructed by concatenating rather short time series of similar width

and amplitude, the strain data consists of one single long series, with peaks

occurring at random positions. Furthermore, the strain data shows consid-

erable differences in amplitude, for example when heavy vehicles or traffic

jams are concerned. There remains however one phenomenon that makes the

regular SSC technique unsuitable for traffic event modeling: the clustering

tends to show multiple representations of what is intuitively one single event

(see Figure 6.4 for an example). Indeed, each of the two bump-shaped pro-

totypes resembles a considerable fraction of the subsequences, while at the

same time having a large mutual Euclidean distance. In other words, our

notion of traffic event does not coincide with the Euclidean distance, which

assigns a large distance to essentially quite similar subsequences. In the next

section, we introduce an alternative distance measure, which is designed to

solve this problem of misalignment.

6.3.3 A Context-Aware Distance Measure for SSC

As showed in the previous section, applying SSC to the strain data employ-

ing the classic k-Means leads to undesirable multiple representations of the
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same logical event. The problem is that comparing two subsequences with

the Euclidean distance does not consider the similarity of their local con-

texts in the time series. Below we introduce a novel distance measure which

finds the best match between the two compared subsequences in their local

neighborhood.

Given a time series X and two subsequences Sp,w ∈ X and Sfixed of length

w, we consider not only the Euclidean distance between Sfixed and Sp,w, but

also between Sfixed and the neighboring subsequences, to the left and to the

right, of Sp,w. The minimum Euclidean distance encountered is taken as the

final distance value between Sp,w and Sfixed.

Formally, given a shift factor f and a number of shift steps s, we define the

neighbor subsequences indexes of Sp,w as:

NS =

{
p+

fw

s
· i

∣∣∣∣ −s ≤ i ≤ s

}

The extent of data analyzed to the left and to the right of Sp,w is determined

by the shift factor while the number of subsequences considered in the interval

is limited by the shift steps parameter. The Snapping distance is defined

as:

Snapping(Sp,w, Sfixed) = min{Euclidean(Si,w, Sfixed) | i ∈ NS} (6.1)

We want to employ the Snapping distance in a SSC scheme based on k-

Means. k-Means is a well known clustering/quantization method that, given

a set of vectors D = {x1, . . . , xn}, aims to find a partition P = {C1, . . . , Ck}
and a set of centroids C = {c1, . . . , ck} such that the sum of the squared

distances between each xi and its associated centroid cj is minimized.

The classic k-Means heuristic implementation looks for a local minimum by

iteratively refining an initial random partition. The algorithm involves four

steps:
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Sp,w

Ck

Figure 6.5: A subsequence Sp,w is compared against the centroid Ck. The

minimum Euclidean distance between Ck and the neighbor subsequences of

Sp,w, including itself, is taken as a distance. Here, the best match is outlined

in gray at the right of Sp,w.

1. (initialization) Randomly choose k initial cluster prototypes c1, . . . , ck

in D.

2. (assignment) Assign every vector xi ∈ D to its nearest prototype cj ac-

cording to a distance measure. The classic k-Means uses the Euclidean

distance.

3. (recalculation) Recalculate the new prototypes c1, . . . , ck by computing

the means of all the assigned vectors.

4. Stop if the prototypes did not change more than a predefined threshold

or when a maximum number of iterations has been reached, otherwise

go back to step 2.

In our SSC scheme, the set of vectorsD to be clustered is the subsequences set

D(X,w), where X is a time series and w the sliding window’s length. In the

assignment step, we employ the Snapping distance defined in Equation 6.1.

Moreover, we force the initialization step to choose the random subsequences

such that they do not overlap in the original time series. Figure 6.5 illustrates

the intuition behind the Snapping distance measure in the context of k-

Means clustering. In the next section, we evaluate this SSC scheme on the

InfraWatch strain data.



86 CHAPTER 6. SUBSEQUENCES CLUSTERING

0 50 100 150 200 250 300 350 400
9.0

9.5

10.0

10.5

11.0

11.5

12.0

Figure 6.6: Improved results using the Snapping distance (see Figure 6.4).

6.4 Experimental Evaluation

In this section, we introduce the experimental setting and we discuss the

results of applying the SSC scheme defined in Section 6.3.3 to the strain

data.

We considered the following strain time series: 100Seconds has been col-

lected during the night in a period of low traffic activity across the Hollandse

Brug, and consists of 1 minute and 40 seconds of strain data sampled at

100 Hz. The series contains clear traffic events and does not present rele-

vant drift in the strain level due to the short time span. A more substantial

series, FullWeekDay, consists of 24 hours of strain measurements sampled

at 100 Hz, corresponding to approximately 9 millions values. The data has

been collected on Monday 1st of December 2008, a day in which the Hol-

landse Brug was fully operational. All the traffic events expected in a typical

weekday, ranging from periods of low activity to congestion due to traffic

jams, are present in the data. The temperature throughout the chosen day

varied between 4.9 and 7.7 degrees. Figure 6.2 shows an overall plot of the

data.

In order to run the defined k-Means SSC scheme, we need to fix a number of

parameters. The window length w has been chosen to take into account the

structural configuration of the bridge and the sensor network. Considering

the span in question is 50 meters long, and a maximum speed of 100 km/h,
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a typical vehicle takes in the order of 2.5 seconds to cross the span. In order

to capture such events, and include some data before and after the actual

event, the window length was set to 400, which corresponds to 4 seconds. The

number of clusters k directly affects how the resulting prototypes capture the

variability in the data. For the 100Seconds data, we found k = 3 a reasonable

choice because, considering its short duration, the time series does not present

drift in the strain baseline and the variability in the data can be approximated

by assuming three kind of events: no traffic activity (baseline) and light and

heavy passing vehicles. On the other hand, the FullWeekDay data presents

much more variability, mostly due to the drift in the measurements which

vertically translates all the events to different levels depending on the external

temperature. Moreover, traffic jams cause underlying variability in the data.

In the FullWeekDay, we found k = 10 to be large enough to account for

most of the interesting, from an SHM point of view, variations in the time

series, though we will also show the result with k = 4 for comparison. The

f parameter affects the size of the neighborhood of subsequences considered

by the Snapping distance. As the neighborhood gets smaller, the Snapping

distance converges to the Euclidean. A big neighborhood, on the other hand,

could include subsequences pertaining to other events. We experimented

with f = 0.25, f = 0.5 and f = 0.75, yelding comparable outcomes. The

presented results were all computed using f = 0.5. The shift steps parameter

imposes a limitation on the number of Euclidean distances to compute for

each comparison of a subsequence with a centroid; we fix it to s = 10.

6.4.1 Results

Given the chosen parameters, we run both the classic k-Means SSC and the

Snapping distance variant on the 100Seconds and FullWeekDay data.

Figure 6.6 depicts the results obtained by applying the k-Means SSC based

on the Snapping distance on the 100Seconds data. Comparing this with

the results using the Euclidean distance on the same data in Figure 6.4, in

this case, the big bump-shaped peak, caused by a heavy passing vehicle,

is represented by a single prototype, while the remaining prototypes model
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Figure 6.7: Prototypes produced by applying k-Means respectively with Eu-

clidean and Snapping distance on the FullWeekDay data, for both k = 4

(left) and k = 10 (right).

lighter passing vehicles and the strain baseline (whose assignments are not

shown in the picture).

Figure 6.7 shows the resulting prototypes obtained from the FullWeekDay

data for k = 4 (left) and k = 10 (right). The prototypes computed for k = 4

by both the classic and revised k-Means SSC are really similar. Setting

k = 4 does not account for all the variability in the FullWeekDay data and

the resulting prototypes try to represent the different strain levels more than

the actual events. In this case, the effect of considering the neighborhood of

each subsequence, as done by the Snapping distance, is dominated by the

presence of large differences in the strain values.

The prototypes for k = 10 better describe the variability in the data and rep-

resent both the different strain levels as well as the individual events (peaks).

In this case, the classic k-Means SSC introduces double representations of

the same logical events. This is avoided in our revised solution, thus bet-

ter representing the variability in the data: every prototype now models a

different strain level or event, as shown in Figure 6.7 (right).

Although Figure 6.7 gives an idea of the differences between the prototypes

produced by the classic k-Means SSC and the Snapping version, it does not



6.4. EXPERIMENTAL EVALUATION 89

Figure 6.8: Two examples of events represented by individual prototypes.

The central point of an associated subsequence is drawn in black.

show how the data is subdivided across them. Figure 6.8 shows two examples,

at different time scales, of events associated to a single prototype. The plot

on the left shows a heavy passing vehicle (in black), while the plot on the

right shows all the subsequences considered part of a traffic jam event.

6.4.2 A Scalable Implementation

Given the amount of data generated by the sensor network, it is important to

have a very scalable implementation of our clustering method. Therefore, we

have developed a parallelized version based on the MapReduce framework us-

ing Hadoop [101]. Indeed, the main bottleneck in clustering lies in calculating

the (snapping) distances between every subsequence and the cluster centers,

which need to be read from disk. With MapReduce, we can distribute the

data reads over a cluster of machines.

An overview of the resulting system is shown in Figure 6.9. In the first

stage, we ‘massage’ the data to prepare it for the clustering phase. Since

the computing nodes work independently, they need to be passed complete

subsequences, including the lead-in and lead-out, in single records. First,

we read the measurements of a single sensor for every timestamp, and its

value is mapped to the initial timestamp ts of every subsequence in which it

occurs. Then, all measurements for a specific ts are reduced to a complete

subsequence.

In the clustering phase, we first select k random centroids. Then, each sub-

sequence is mapped to the nearest centroid, using the snapping distance,
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Figure 6.9: MapReduce implementation of our clustering method. Every

map or reduce task can be run on any available computing core.

together with the combined points mapped by the same mapper. The re-

ducer receives all points mapped to a certain cluster and calculates the new

cluster centroid. This is repeated n times or until the clusters converge.

The k-Means implementation is an adapted version of k-Means found in the

Mahout library.1

We evaluated this implementation on a relatively small cluster of 5 quad-core

computing nodes. Compared to a sequential implementation that loaded all

the FullWeekDay data in memory, it yielded a 6-fold speedup in spite of the

extra I/O overhead. Moreover, it scales linearly, even slightly sub-linearly, to

time series of several months. For example, one month of data was clustered

(using 10 iterations) in less than 14 hours, and can be sped up further by

simply adding more nodes.

6.5 Conclusion

In this chapter, we have focused on the problem of identifying traffic activity

events in strain measurements, produced by a sensor network deployed on a

highway bridge. Characterizing the bridge’s response to various traffic events

represents an important step in the design of a complete SHM solution, as it

will permit implementations of real-time classification or anomaly discovery

1Mahout — Scalable Machine Learning Library. http://mahout.apache.org
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techniques.

The proposed solution is based on subsequence clustering, a technique shown

to be prone to undesired behaviors and whose outcome is strongly dependent

on the kind of data it is applied to. In view of this, we studied SSC in relation

to the features of the strain data, showing that only some of the documented

pitfalls (i.e., multiple representations) occur in our case. To solve this, we

introduced a context-aware distance measure between subsequences, which

also takes the local neighborhood of a subsequence into account. Employing

this Snapping distance measure, we showed that SSC by k-Means returns a

correct modeling of the traffic events.



92 CHAPTER 6. SUBSEQUENCES CLUSTERING


