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Chapter 5

Mining Variable-Length Motifs

at Multiple Scales

5.1 Introduction

This chapter is concerned with the discovery of temporal patterns in large

time series, produced from physical sensors. In all but the most trivial appli-

cations, such sensor data will reflect the complexity of the physical system

under investigation, and will show a combination of multiple effects. Some of

these effects will be of interest, and central to the sensoring system, but oth-

ers, such as noise and environmental effects, will merely be a disturbance and

a hindrance to the identification of the phenomena of interest. The complex

physical systems we aim to investigate here often have two important char-

acteristics: a) multiple phenomena are at play in the sensor signal, and they

typically occur at different time scales, b) each phenomenon will involve re-

curring events that will show up in the signal as repeating segments of data,

often deformed and warped. In this chapter, we introduce a method that

elegantly combines these two characteristics in order to discover recurring

events at multiple time scales.

As a motivating example, we consider again the bridge data from the In-

fraWatch project. In fact, such data fits our topic well as it is subject to a
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Figure 5.1: The plot on the left shows twelve days of strain measurements,

sampled at 10 Hz from the Hollandse Brug bridge. The data exhibits recur-

ring events, often superimposed, at multiple time scales, such as individual

vehicles, traffic jams and daily fluctuations due to temperature changes. On

the right it is shown an example of motif due to a passing vehicle.

number of effects that both show recurring events (traffic, daily temperature

cycles), as well as largely varying time scales. The vertical displacement of

the bridge, measured through strain gauges, is of course dependent on indi-

vidual vehicles passing the bridge, over a period of several seconds (several

tens of measurements). On a medium scale, the strain signal will show traffic

jams, lasting up to an hour, that appear as clearly delineated intervals where

the strain is increased due to the higher number of vehicles on the bridge. Fi-

nally, on a large scale, the strain is highly sensitive to the temperature of the

bridge, such that the signal is dominated by a slow movement of the baseline,

most notably with a day/night rhythm. Figure 5.1 shows 12 days of data

collected at this bridge (some 10 million readings). Note that these different

effects appear in a mixed fashion, and events at different time scales will

often overlap. For example, traffic jams and individual vehicles will simply

appear superimposed on the continually changing baseline of temperature

effects on the strain. Additionally, vehicle peaks (shown as a detail on the

right) will appear in the signal, even during traffic jams, as these often only

affect one direction of traffic.

The recognition of repeating phenomena in time series is an important task

in many applications, as it enables further processing of the data at a more

conceptual level. For example, in SHM, it permits determining traffic load

statistics or various load-induced vibration patterns because it is vital to

know when exactly certain events occur (such as heavy trucks). We assume
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that the recurring events will appear in a relatively small set of classes (e.g.

trucks, cars), which we will refer to as motifs. The (scale-aware) motif dis-

covery method presented here will then determine what the relevant motifs

are, and when the different instances of each motif occur. In the specification

of motifs, we intend to allow for a certain degree of flexibility in terms of du-

ration and magnitude of the event. For example, a truck will be recognized

as such, despite minor variations in speed and weight of the truck. Note that

our definition of ‘motif’ is somewhat different from the use in other papers

dealing with a similar problem [74], where a more strict matching based on

Euclidean distance of a segment of fixed duration is employed. Although

this approach works well in many scenarios, more flexibility is needed in the

applications we consider.

In the motif discovery task in complex data, an important challenge we deal

with is the possibility of superimposed events. Instances of motifs in one scale

will overlap those in other scales, and the recognition of similar instances will

be disturbed, if the possibility of multi-scale interference is not taken into

account.

In this work, we propose an approach based on scale-space images [103] and

the minimum description length (MDL) principle to address this problem

[34]. The reason for choosing an MDL-based approach is that it allows us

to find sets of motifs that represent a good trade-off between representation

power and model simplicity. This guarantees that the reported motifs are

actual recurring phenomena, rather than accidental coincidences, and that

the motifs found are not too similar to each other. The novelty of our code,

compared to an earlier approach [78] to the same problem, is that it explicitly

supports the discovery of, potentially overlapping, multi-scale motifs.

The main contribution of this work is an algorithm for effectively finding

multi-scale motifs that score well with respect to the MDL principle. Our

algorithm combines several key ideas to achieve this:

• it uses scale-space images to characterize the contribution of the motifs

at different temporal scales;

• it uses the zero-crossings of derivatives of the time series at different
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scales to identify repeating linear segments in the time series;

• it uses a a symbolic representation in combination with suffix trees to

identify promising motifs consisting of these linear segments;

• it uses a greedy algorithm to select characteristic motifs that score well

with respect to an MDL score.

We evaluate our method on a number of sensor-based time series from various

applications. Results show that our approach can effectively discover a small

set of characteristic motifs in the data, often directly related to particular

events in the corresponding application domain.

The structure of this chapter is as follows. Section 5.2 will introduce the no-

tation and present necessary background information, including MDL, and

the problem statement. In Section 5.3, we will motivate and define our

method. Section 5.4 will evaluate and discuss experimental results. Sec-

tion 5.5 presents related work. Finally, in Section 5.6, we draw conclusions

and present ideas for future work.

5.2 Background and Problem Setting

In this section, we introduce the notation, provide necessary background

information and formally define the problem.

5.2.1 Notation and Preliminaries

We deal with finite sequences of numerical measurements (samples), collected

by observing some property of a system with a sensor and represented as time

series as defined in 3.1. Moreover, and without loss of generality, we assume

that the values are collected at a constant rate and none of them are missing

and that the data has been z-normalized.

As motivated in the introduction, our goal is to find characteristic motifs

in the input time series at multiple temporal scales. There are two equiva-
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lent ways of looking at motifs. The first is that a motif is a structure that

approximately repeats itself in a large number of places in the time series.

The second is that a motif is a set of subsequences in the data, each pair

of which is similar to each other [74]. We will refer to a structure that is

approximately repeated in the data as a motif ; subsequences of the data in

which this motif occurs are referred to as motif instances.

An important feature of the motifs that we are looking for is that their

instances can be warped or deformed to deal with potential slight variations

in the duration and intensity of the events. This motivates our choice to

represent motifs using linear segments as follows.

Definition (Motif). A motif m is a sequence of linear segments

[(a1, b1), (a2, b2), . . . , (ak, bk)]

where ai indicates the length of a segment (the duration) and bi indicates

the difference in value between the begin and end points of the segment.

In principle, higher order polynomials or other more complex functional rep-

resentations may also be used to represent the segments, but we found that

linear segments are simpler, have the advantage of avoiding overfitting, and

are accurate enough in most cases.

We will be looking for instances of these motifs in the data.

Definition (Motif Instances). Given a set of motifs M , let I be a func-

tion that maps a motif m ∈ M and a segment t of this motif to a set of

subsequences of x:

I(m, t) = {x[a1t : b1t], . . . ,x[akt : bkt]}

for some ait, bit ∈ {1, . . . , n} such that ait = bi(t−1) + 1 for t > 1 (i.e., the

end of a segment determines the start of the next segment). Then I(m, t)

determines the set of instances in x of segment t of motif m.

Some choices for I are better than others; ideally instances closely resemble

their associated motifs. The MDL score introduced in the next section will

be used to evaluate the quality of a set of motifs M and of a function I.
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Note that subsequences for the same motif and motif segment can have dif-

ferent lengths. This is necessary to deal with time warping.

From a high-level perspective, the problem that we are interested in is to

identify a set of motifs that characterizes the data well. Taking into account

the multi-scale nature of the data, it is desirable that instances of different

motifs can overlap. In this way, one motif can reflect a regularity at a coarse

scale, and another can reflect a regularity at a finer scale superimposed on

top of the coarse structure. The next section defines more precisely how we

evaluate a set of motifs and its instances to reflect these requirements.

5.2.2 Minimum Description Length

Our main idea is to approach the problem of selecting motifs as a model selec-

tion problem. This allows us to employ the Minimum Description Length [34]

principle, introduced in Section 3.4, to rank motifs.

In our setting, a model consists of a set of motifs M . Following the two-part

MDL principle, the best set of motifs to describe the time series x is the one

that minimizes the sum L(M) + L(x |M), where

• L(M) is the length, in bits, of the description of the motifs, correspond-

ing to a model;

• L(x |M) is the length, in bits, of the description of the time series when

encoded with the help of the motifs M , that is the residual information

not represented by M .

In order to apply the MDL principle in practice, the input data has to be

discretized. We do this as discussed in Section 3.4.1. Moreover, we need to

define an encoding scheme for a given set of motifs M and, consequently,

how to compute both L(M) and L(x | M). These aspects are addressed in

the following sections.
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Encoding of the model

We will first discuss the encoding of the model, i.e. a set of motifs M . Each

motif essentially consists of a sequence of linear segments, each described by

two integers. The length of a segment cannot be longer than the total length

of the time series; hence, we use log2 n bits to encode it. The difference in

value between the begin and end point is limited by the quantization used;

in our setting 8 bits are sufficient. Finally, with log2 n bits we can encode

the number of segments in a motif. Summing up we have

L(M) =
m∑
i=1

(log2 n+ ki(log2 n+ 8))

where m is the number of motifs and ki is the number of segments in motif i.

We assume that these motifs are ordered in the encoding. We use this order

to distinguish the scales at which the motifs are present.

Encoding the data

We will now describe how we compute L(x | M), that is the description

length of the time series when encoded with the help of a set of motifs M .

In the definition of the code, we will also use the instances I associated to

each motif in M . Our assumption is that a good selection of motifs M and

associated instances I will help to encode the data more concisely.

We will first define the entropy of a time series as it is a key concept we will

need in the following paragraphs.

Definition (Time Series Entropy). The entropy of a time series x, dis-

cretized according to a set of values D, is defined as below

H(x) = −
∑
v∈D

P (x[i] = v) log2 P (x[i] = v)

where P log2 P = 0 in the case of P = 0 and P (x[i] = v) indicates the

fraction of points in the time series which has value v.

Given the definition of entropy, we can define the description length of a time

series as follows, assuming we have not identified any motifs.
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Definition (Time Series Description Length). Given a time series x of

length n, its description length (in bits) is given by

L(x) = nH(x) .

Our main idea is now that a good choice of motifs M and associated instances

I(m, t) should lead to a code for the time series with a description length

shorter than L(x). To this aim, we introduce a code for x given a choice of

M and I(m, t). It will be the task of the search algorithm to determine the

best configuration.

Concretely, for each chosen motif m and corresponding motif instances I(m, t),

we first encode the time stamps and the (vertical) values at which the in-

stances of the first segment of m start. For one motif with ` instances, this

requires log2 n+ `(log2 n+ 8) bits, where log2 n bit are needed to encode the

number of instances, and log2 n and 8 are the bits needed to code the starting

time stamp and vertical value, respectively.

There are instances for each segment in a motif. While encoding these, we

need to allow for a certain amount of time warping, and hence the segment in

each instance may deviate both in length and in amplitude from the segment

in the motif. Both vertical and horizontal differences from the segment in the

motif can be represented by sequences of integers: the deviations of segment

lengths can be represented in one sequence

[aijk | 1 ≤ i ≤ m, 1 ≤ j ≤ `i, 1 ≤ k ≤ ki]

where m is the number of motifs, `i the number of instances of motif i and ki

the number of segments in the motif; similarly, the differences in value can

be listed. In order to favor only small numbers of values, we compute the

description length of these sequences employing an entropy-based encoding

as in Definition 5.

This code for motifs and instances leads to an approximation of the data, as

follows. For each position in the time series, we determine the last motif in

the ordered set of motifs which has an instance at this position. Whether a

position is covered by an instance is determined by taking into account the
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starting positions of the first segment of the motif, the lengths of the other

segments in the motifs, and the deviations from these lengths as encoded in

the code of deviations. The reason for using the order of motifs is that we

explicitly allow motifs to overlap. This allows us to deal with the multi-scale

aspects of the data.

The approximated value of a position in the time series covered by a motif is

determined by linear interpolation between the two end points of the motif

segment in which the position is included. These end points are determined

similarly from the encodings of locations, motifs and deviations.

Our remaining code for the data now consists of two parts. First, for each

position in the data covered by a motif, the error is encoded with respect to

the approximation. An entropy encoding is used for these errors. Second,

for the remaining time stamps, which are not covered by a motif, an entropy

encoding is used as well to code the original value for that position.

Note that in this code we have a constant number of dictionaries (for dura-

tion, difference in value, errors, and remaining original time points). Hence,

we do not need to calculate the size of these dictionaries explicitly.

The final description length L(x |M) is given by the sum of the lengths (in

bits) of the code components described above.

5.2.3 Problem Statement

We have now introduced the necessary definitions and background material

to state our problem.

Given a time series x, we want to find a set of motifs M and

associated instances, such that the sum L(M) + L(x | M) is

minimized.

Clearly, this problem is hard to solve exactly. Hence, in the next section we

define a step-wise heuristic algorithm that works well in practice.
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5.3 Motif Selection Algorithm

The proposed heuristic motif discovery algorithm consists of several steps,

which will be shown to perform well in the next section. The first steps will

identify a set of promising candidate motifs; the last steps select a charac-

teristic subset of the motifs based on the MDL scoring function discussed

earlier. Figure 5.2 shows a high level overview of our method and the steps

involved.

5.3.1 Finding Candidates Motifs

In this section, we describe our candidate motif generation procedure. Several

key ideas underly this procedure.

• It uses the scale-space image to characterize the contribution of the

motifs at different temporal scales;

• It effectively identifies promising segments at multiple scales by dis-

cretizing the time series using the derivatives of the signal in scale-space

in combination with k-means clustering;

• In the discretized representation, it merges recurring sequences of ad-

jacent segments by employing a suffix tree based approach.

The subsequent sections discuss this in more detail.

Scale-Space Image

We rely on the concept of scale-space image introduced in Section 3.3. As

noted, in practice the scale-space image is quantized along the scale dimen-

sion by computing the Gaussian convolution only for a limited number of

scale parameters. The number of scale parameters considered, and thus the

resolution of the quantization, depends on the final application and on the

distribution of the motifs across the scale dimension. If, for instance, the

motifs appear at considerably different scales, a coarser quantization would
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Figure 5.2: Overview of the proposed motif discovery and selection algorithm.

suffice to isolate them across the scale dimension. On the other hand, if

different motifs appear at similar scales, a finer quantization is needed to

effectively separate their corresponding contributions to the signal.

In order to support both scenarios, we define two sets of scale parameters

Scoarse = {2i | 0 ≤ i ≤ σmax ∧ i ∈ N} and Sfine = {
√

2i | 0 ≤ i ≤ 2σmax ∧ i ∈
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N} which well adapt to the practical cases we consider.

We deal with multi-scale aspect of the data by identifying motifs in each of

the scales in the scale image.

Finding candidate segments

Before identifying candidate motifs, we first identify candidate linear seg-

ments. A useful tool to quickly identify promising boundaries for linear

segments in the time series are the zero-crossings of derivatives.

Given a time series x and one of the components of its scale-space image

Φx(σ), let

z(j) = {t1, . . . , tm}, such that
djΦx(σ)

dt
(ti) = 0,

Z = z(1) ∪ · · · ∪ z(dmax)

be the sorted locations in Φx(σ) of the zero-crossing of its derivatives until

order dmax. Note that dmax will typically be low, e.g. just 1 or 2.

These zero-crossings are informative as they indicate points in the time se-

ries at which the direction of the signal changes; these positions are good

candidates for a change of the linear coefficients as well. Thus, each segment

bounded by two consecutive zero-crossings could be an instance of a segment

in a motif. We use k−means clustering to identify a small set of prototype

segments, as follows. Each segment between zero-crossings can be thought

of as a data point in a feature space, where the features are the duration

and difference in value between the zero-crossings of the derivatives. More

precisely, we consider the data points FΦx(σ) = {fi = (hi, vi)} where

hi = ti+1 − ti , 1 ≤ i < n

is the time between each pair of consecutive zero-crossings and

vi = Φx(σ)[ti+1]− Φx(σ)[ti] , 1 ≤ i < n

is their vertical distance. Figure 5.3 illustrates this concept.
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Figure 5.3: Example of the feature space based on the zero-crossings of

the derivatives (only order one in this figure) and the clustered candidate

segments identified by letters.

These data points are clustered using the k−means clustering algorithm,

where k is a parameter that determines the number of candidate segments.

Preliminary experiments show that setting the parameter k in practice is not

a critical problem.

The centers of the identified clusters are the candidate reference segments,

which will be combined into motifs in the next step. Note that the clustering

algorithm ensures that candidate segments will be not too dissimilar from

each other. This procedure is repeated for each scale in the scale-space

independently.

Finding candidate motifs

The key idea in identifying motifs is to represent time series symbolically (see

Figure 5.3). Each symbol in this representation corresponds to the candidate

segment identified by the k−means algorithm for that segment.

After transforming each scale-space image component into the symbolic rep-

resentation defined above, we identify motifs by looking for repeating subse-
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quences in the obtained string as similarly done by previous approaches [50,

60], although using different kinds of representations such as SAX [61].

Algorithm 1 Find candidate motifs

Require: a time series x, a set of scales parameters S = {σ1, . . . , σk}, the

maximum order for the derivatives roots dmax, the cardinality A of the

symbolic representation, the number of motifs considered per scale r

Ensure: a set of candidate motifs M = {Ms,r} indexed by scale parameter

s and rank r.

M = {}
Φx(σ1), . . . ,Φx(σk) = ScaleSpaceImage(x, S)

for i = 1 . . . k do

Zi = ComputeZeroCrossings(Φx(σi), dmax)

Si = SymbolicQuantization(Φx(σi), Zi, A)

Σi = FindRecurringSubstrings(Si)

Mσi,r1 , . . . ,Mσi,rm = RankMotifsByCoverage(Σi, r)

M =M∪ {Mσi,r1 , . . . ,Mσi,rm}
end for

Our candidate motifs generation procedure is summarized in pseudo-code in

Algorithm 1.

ScaleSpaceImage(x, S) returns the scale-space image of x defined over the

scale parameters S.

ComputeZeroCrossings(Φx(σi), dmax) calculates the zero-crossings of the deriva-

tives for each scale.

SymbolicQuantization(Φx(σi), Z, A) transforms each time series Φx(σi) into

a symbolic string given the zero-crossings Z and cardinality A.

FindRecurringSubstrings(Si) returns the set of all maximal substrings of

length at least 2 that appear at least twice in the data (maximal in the sense

that no longer substring occurs twice). In general, we could parameterize

this; however, in our experiments we found these parameters to work in all

cases. Furthermore, an important advantage of this setup is that we can

calculate this set of substrings in linear time by using suffix trees.
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RankMotifsByCoverage(Σi, r) selects the best scoring r motifs from this set

of substrings. The evaluation is as follows: the occurrences of each string

in the time series are determined; these occurrences are mapped back to the

original time series; the total length of the original time series covered by

these occurrences is determined. The main motivation is that we can expect

the best coding motifs to be those that cover large parts of the time series.

The final selection from the resulting set of candidate motifs is done in the

next step.

5.3.2 Selecting Characteristic motifs

The naive way to select the best set of motifs would be to enumerate all poten-

tial subsets and choose the one that minimizes the sum L(M) + L(x | M).

However, the space of motif sets grows exponentially with the number of

candidate motifs and this makes an exhaustive evaluation computationally

infeasible for large time series. Because of this, we propose a heuristic se-

lection strategy that overcomes these computational limitations. Our motif

selection heuristic is shown in pseudo-code in Algorithm 2.

Algorithm 2 Select characteristic motifs

Require: a time series x, a set of candidate motifsM = {Ms,r} indexed by

scale parameter s and rank r.

Ensure: a set of selected motifs C ⊆M.

C = {}
for i = k . . . 1 do

j = arg min
j∈{1,...,m}

L(C ∪ {Mσi,j}) + L(x | C ∪ {Mσi,j})

C = C ∪ {Mσi,j}
end for

Essentially this algorithm traverses the candidate motifs starting at the coars-

est scale and, for each scale, it adds the motif that improves the MDL score

the most.
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5.3.3 Computational Complexity

The construction of the scale-space image requires to compute |S| convo-

lutions. This can be done efficiently using the Fast Fourier Transform in

O(|S|n log2 n) time. The computation of the zero-crossing of the derivatizes

can be done with a linear scan and thus has O(n) complexity. The com-

plexity of the symbolic transformation, carried out by k-means in O(Ik |Z|)
time depends on the number of zero-crossings features to cluster which, given

a property of the scale-space image [103], can only decrease as the scale is

increased; here I is the number of iterations of the k−means algorithm.

Preliminary experiments even show that the decrease in |Zi| is exponential.

Locating recurring substrings in the symbolic representation can be done in

linear time employing a suffix tree; the number of such strings (|M|) is O(n)

in the worst case and much smaller in practice. We calculate the instances

of the corresponding motifs in O(n) time for each motif identified. Sorting

the resulting motifs takes O(|M| log |M|) time. During the final traversal of

this set, we need to calculate the MDL score for each intermediate model.

This calculation takes O(|C|n) time; note that the size of the dictionaries

can be considered constant. Overall, this gives our method a complexity of

O(n log2 n+ |M|(log |M|+ |C|n) time.

5.4 Experimental Evaluation

In this section, we evaluate our method experimentally, on two real-life sensor

datasets, one describing physical exercise, and one collected from the sensor

network of the highway bridge mentioned in the introduction. Moreover,

we compare our method with another published approach on a common

dataset.

5.4.1 Snowboard Data

The first experiment relates to physiologic data collected during a day of

snowboarding in the Austrian Alps. The data was collected by a Zephyr Bio-



5.4. EXPERIMENTAL EVALUATION 69

0 2000 4000 6000 8000
2

0

2

4

6

0 500

2

0

2

0 2000 4000 6000 8000
2

0

2

4

6

0 20 40 60

2

0

2

Figure 5.4: Selected motifs in the Snowboard data. Left side: motif occur-

rences in the series. Right side: motifs at the respective scale-space compo-

nent after z-normalization.
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Figure 5.5: Detail of the short-term motifs depticted in Figure 5.4 (bottom).

Harness1 3 breast strap, which monitors several key physiological parameters

and logs them at a sampling rate of 1 Hz. Alpine sports are an interesting

domain for our method, as it naturally contains the cyclic phenomenon of

ascending by ski lift and descending ‘on foot’. This produces a recurring pat-

tern of intense exercise while descending and clear signs of recuperation while

being transported up. Especially when the same lift and slope are repeatedly

taken, this will lead to motifs in the measured time series. Additionally, on a

smaller scale, the natural tendency of the human body is to introduce shorter

cycles of activity and rest, especially when dealing with intense activity and

high altitude.

The data considered here describes heart rate measurements taken during 2.5

hours of mixed activity, starting at 11:00 AM, with some 40 minutes actually

spent on the slopes. We employed Sfine as scale parameters, set dmax = 1 and

the cardinality of the symbolic representation to 10. Figure 5.4 shows two

1http://www.zephyranywhere.com/products/bioharness-3
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key selected motifs, which correspond to the phenomena described above.

The top motif represents some 16 minutes, corresponding to recuperation

(decreasing heart rate while on the lift), exercise and recuperation again. A

full cycle of ascent and descent takes about 10 minutes, which corresponds

with the manual annotations. This pattern occurs three times in this dataset,

at the scale component Φx(
√

214), as indicated by the red segments in the

diagram. Note that two instances actually overlap, as the motif describes

more than a single cycle. These two instances actually relate to two descents

of a single slope. The second motif, at the scale component Φx(
√

27), has 10

instances of increasing and then decreasing heart rate, presumably related to

short exercise intervals of around 50 sec. A detail of this motif is shown in

the bottom diagram, showing just 20 minutes at 12:25.

The overall number of scale components considered for this data is 22 for a

total of 13 selected motifs. However, motifs selected at scales greater than

216 did not show motifs relevant to this particular application domain.

5.4.2 Highway Bridge Data

We subsequently evaluate our approach on the time series data previously

shown in Figure 5.1. The series has been collected in the context of a Struc-

tural Health Monitoring project,and consists of 12 days of strain measure-

ments (for a total of 10, 280, 939 data points) from one span of the monitored

highway bridge. As the bridge is affected by several phenomena operating

at multiple time scales, the strain measurements contain various classes of

recurring motifs reflecting this fact and represents an ideal dataset to test

our method. We employed Scoarse as scale parameters and set dmax = 1 and

the cardinality of the symbolic representation to 10. Figure 5.6 shows two of

the most interesting selected motifs, respectively at scale components Φx(2
3)

and Φx(2
15). The first motif identifies the most recurring events in the data,

i.e. passing vehicles. In the graph, a red pixel is drawn for each instance, for

a total of 58, 646 occurrences, which cover almost 22% of the data. On the

right, we plot all the motif instances (after normalization) superimposed, as

represented in the scale component Φx(2
3). The selected motif represents a
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Figure 5.6: Selected motifs in the highway bridge data. Left side: motif

occurrences in the series. Right side: motifs at the respective scale-space

component after z-normalization.

high variability of instances, in both duration and amplitude, that can be

directly related to the speed and weight of the vehicles. This information can

thus be used by bridge managers to evaluate the load patterns of the infras-

tructure and potentially aid the decision making when planning maintenance

activities. The second motif represents a much longer pattern occurring on a

daily basis due to changes in temperature that, in turn, affect the response of

the bridge to external forces. A total of 5 motif instances of this kind occur,

covering around 24% of the data. Note how occurrences of the first motif are

superimposed over the instances of this one.

The overall number of scale components considered is 19, although the motifs

selected at scales greater than 217 are not of any interest in relation to the

application domain.

5.4.3 Comparison with Related Work

To the best of our knowledge, there are no published methods dealing with

the discovery of characteristic sets of multi-scale and overlapping motifs in

time series data. As we cannot compare our method with others in a multi-

scale setting, we chose to also evaluate our algorithm on a time series pre-

sented in [78], in which no multi-scale events are present. A comparison on

such data is of interest as our method should be able to identify the non-
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Figure 5.7: Selected motifs in the bird calls data from [78]. Left side: motif

occurrences in the series. Right side: motifs at the respective scale-space

component after z-normalization.

overlapping motifs present in this data as well.

The considered time series was produced by extracting the first MFCC coef-

ficients from an audio file featuring two repeated kinds of bird calls, resulting

in two motifs present in the data. The time series has a total of 1367 mea-

surements. As the motifs in the data are rather similar in length, we do

not need to consider the whole scale-space image. Instead, we set the scale

parameters to S = {1,
√

2, 2,
√

8}. The result shown here was obtained by

setting the cardinality of the symbolic representation to 6. However, in order

to assess the sensitivity of the method in relation to the size of the alphabet,

we tried cardinalities ranging from 5 to 15 obtaining qualitatively similar

results. Figure 5.7 reports the motifs selected by our method. These motifs

are similar to those obtained by the clustering method proposed in [78] for

non-overlapping motifs. Although in this case we manually specified the scale

parameters, we note that the algorithm in [78] also requires to provide an

educated guess of parameters, i.e. of the approximate lengths of the motifs

to look for.
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5.5 Related Work

The problem of discovering recurring temporal patterns in time series data is

an important one and has received considerable attention by the community

from different perspectives.

Subsequence Clustering. Early work considers the related problem of

clustering the (overlapping) subsequences in the time series extracted through

a sliding window. Subsequence clustering is an obvious and intuitive choice

for finding characteristic subsequences in time series. However, this approach

requires the a priori specification of the lengths of the subsequences to con-

sider and is not generally tailored to support multi-scale data. Moreover, in

a paper by Keogh et al. [49], it was shown that, despite the intuitive match,

subsequence clustering is prone to a number of undesirable behaviors that

makes the end result meaningless and independent of the data at hand. A

number of papers [13, 22, 97] have further investigated the observed phenom-

ena, providing solutions to overcome it. Yet, since the publication of [49],

the subsequence clustering idea has seen a serious decline in popularity. In

[49], the authors proposed a solution based on motif discovery.

Motif discovery and clustering. Motif discovery has received a fair

amount of attention, in particular after subsequence clustering was shown

to be unreliable. In [74], a motif is defined rather strictly as the pair of most

similar subsequences in a time series according to the Euclidean distance,

and the authors propose an efficient and exact method to find such pairs.

Saria et al. [81], on the other hand, propose a more flexible definition of

motif, based on a shape template that can be affected by non-linear trans-

formations such as temporal warping and additive noise. They introduce an

unsupervised algorithm to discover the set of canonical shape templates in

the data. Although the method is able to discover motifs of different lengths,

it does not deal with multi-scale data where multiple motifs at different time

scales could appear superimposed.

To the best of our knowledge, the most similar work to ours is [78]. The

authors propose a method to mine a set of clusters of motifs from a given
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time series. The clusters are formed according to an agglomerative proce-

dure. First, a single cluster is created containing the pair of most similar

subsequences in the data (this is done with repeated runs of the exact motif

discovery algorithm introduced in [74]). After that, the set of clusters is itera-

tively refined by taking one of the following actions: create a new cluster, add

to a cluster, merge two clusters. The algorithm looks for the best operator

to apply such that the MDL score for the clusters set is lowered, or it stops

otherwise. This method does not however consider superimposed motifs like

those found in the multi-scale data we consider in this chapter.

Multi-scale Time Series Data. Although several papers address the prob-

lem of discovering recurring patterns in time series, few of them consider data

where combinations of effects at multiple temporal scales affect the patterns

or motifs. In [76], Papadimitriou et al. propose a method to discover the

key trends in a time series at multiple time scales (window lengths) by intro-

ducing an incremental version of Singular Value Decomposition. Vespier et

al. [96] propose an MDL-based method to recognize the most relevant scales

of analysis in the data and, consequently, to separate the time series into dis-

tinct components. This method does not however characterize the individual

motifs directly, but rather assesses the relevancy on the informative content

present at each temporal scale.

5.6 Conclusions and Future Work

In this chapter, we introduced a method for the discovery of multi-scale recur-

ring patterns (motifs) in time series data. Our work is motivated by an SHM

project which deals with high-frequency measurements collected by a sensor

network deployed on a highway bridge. In particular, we focused on a prop-

erty that sensor data collected from complex systems typically exhibits: the

presence of multiple phenomena at play in the sensor signal, often occurring

at different time scales and potentially superimposed and mixed together.

Because of the high degree of variability present in this kind of data, we have

adopted a definition of motif based on structural complexity other than on
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point-wise similarity (i.e. Euclidean distance) as in much previous work. In

order to discover the most characteristic recurring motifs, we proposed an al-

gorithm based on a combination of scale-space theory, string processing and

the Minimum Description Length principle. We showed the effectiveness of

our method on sensor data from several applications.

Future work includes evaluating our method on additional data exhibiting

multi-scale behavior, as a few datasets of this kind are currently publicly

available. Moreover, we are interested in further developing the symbolic

representation we adopted, currently requiring the cardinality of the alphabet

as a parameter; ideally, our method would become parameter free.
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