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Chapter 4

Identifying the Relevant

Temporal Scales

4.1 Introduction

When monitoring complex physical systems over time, one often finds mul-

tiple phenomena in the data that work on different time scales. If one is

interested in analyzing and modeling these individual phenomena, it is cru-

cial to recognize these different scales and separate the data into its under-

lying components. In this chapter, we present a method for extracting the

time scales of various phenomena present in large time series. The method

combines concepts from the signal processing domain with feature selection

and the Minimum Description Length principle [34] which we introduced in

Chapter 3.

We introduced the need for analyzing time series data at multiple time scales

in Chapter 1 and we discussed in Chapter 2 how this is nicely demonstrated

by the InfraWatch project.

In this project, we employ a range of sensors to measure the dynamic response

of the Hollandse Brug, a large Dutch highway bridge to varying traffic and

weather conditions. When viewing this data (see Fig. 4.1a), one can easily

distinguish various transient events in the signal that occur on different time
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32 CHAPTER 4. IDENTYFING THE RELEVANT SCALES

scales. Most notable are the gradual change in strain over the course of

the day (as a function of the outside temperature, which influences stiffness

parameters of the concrete), a prolonged increase in strain caused by rush

hour traffic congestion, and individual bumps in the signal due to cars and

trucks traveling over the bridge. In order to understand the various changes

in the sensor signal, one would benefit substantially from separating out the

events at various scales. The main goal of the work described here is to do

just that: we consider the temporal data as a series of superimposed effects

at different time scales, establish at which scales events most often occur,

and from this we extract the underlying signal components.

We approach the scale selection problem from a Minimum Description Length

(MDL) perspective (see Section 3.4). The motivation for this is that we need

a framework in which we can deal with a wide variety of representations for

scale components. The MDL framework was shown to be sufficiently general

to provide this flexibility by Hu et al. [42] for the problem of choosing the

best model for a given signal. Our main assumption here is that separating

the original signal into components at different time scales will simplify the

shape of the individual components, making it easier to model them sepa-

rately. Our results show that, indeed, these multiple models outperform (in

terms of MDL score) a single model derived from the original signal. While

introducing multiple models incurs the penalty of having to describe these

multiple models, there are much fewer ‘exceptions’ to be described compared

to the single model, yielding a lower overall description length. For instance,

in the sensor data of Fig. 4.1a, cars are often passing in one direction while

there is rush hour congestion in the opposite direction. Using multiple mod-

els, this is modeled accurately, while a single model will easily ignore these

events.

As we discussed in detail in Section 3.3, the analysis of time scales in time

series data is often approached from a scale-space perspective, which involves

convolution of the original signal with Gaussian kernels of increasing size [103]

to remove information at smaller scales. By subtracting carefully selected

components of the scale-space, we can effectively cut up the scale space into k

ranges. In other words, signal processing offers methods for producing a large
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Figure 4.1: (a) One day of strain measurements from a large highway bridge

in the Netherlands. The multiple external factors affecting the bridge are

visible at different time scales. (b) A detail of plot (a) showing one of the

peaks caused by passing vehicles.

collection of derived features, and the challenge we face in this chapter is how

to select a subset of k features, such that the original signal is decomposed

into a set of meaningful components at different scales.

Our approach applies the MDL philosophy to various aspects of modeling:

choosing the appropriate scales at which to model the components, deter-

mining the optimal number of components (while avoiding overfitting on

overly specific details of the data), and deciding which class of models to

apply to each individual component. For this last decision, we propose two

classes of models representing the components respectively on the basis of

a discretization and a segmentation scheme. For this last scheme, we allow

three levels of complexity to approximate the segments: piecewise constant

approximations, piecewise linear approximations, as well as quadratic ones.

These options result in different trade-offs between model cost and accuracy,

depending on the type of signal we are dealing with.

A useful side product of our approach is that it identifies a concise represen-

tation of the original signal. This representation is useful in itself: queries

run on the decomposed signal may be answered more quickly than when

run on the original data. Furthermore, the parameters of the encoding may

indicate useful properties of the data as well.

The rest of the chapter is organized as follows. Section 4.2 introduces the

concept of scale-space decomposition. Section 4.3 shows how we encode
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the signal decompositions and use MDL to select the best subset of scales.

Section 4.4 presents an empirical evaluation of our method on both real-world

and artificial data. Section 4.5 links our method to related work. Finally,

Section 4.6 states our main conclusions and ideas for future work.

4.2 Scale-Space Decomposition

In this section, we show how to manipulate the scale-space image to filter

out the effects of transient events in a specific range of scales. This will lead

to the definition of a signal decomposition scheme.

Along the scale dimension of the scale-space image, short-time transient

events in the signal will be smoothed away sooner than longer ones. In

other words, we can associate with each event a maximum scale σcut such

that, for σ > σcut, the transient event is no longer present in Φx(σcut). This

fact leads to the following two observations:

• Given a signal scale-space image Φx, the signal Φx(σ) is only affected

by the transient events at scales greater than σ. This is conceptually

equivalent to a low-pass filter in signal processing.

• Given a signal scale-space image Φx and two scales σ1 < σ2, the signal

Φx(σ1)−Φx(σ2) is mostly affected by those transient events present in

the range of scales (σ1, σ2). This is similar to a band-pass filter in signal

processing.

As an example, reconsider the signal x and its scale-space image Φx of Fig-

ure 3.2. Figure 4.2 shows (from top to bottom):

• the signal Φx(0) − Φx(24), which is the result of a high-pass filtering;

this feature represents the short-term events (peaks),

• the signal Φx(24)−Φx(210), which is the result of a band-pass filtering;

this feature represents the medium-term events (bumps),

• the signal Φx(210), which is the result of a low-pass filtering; this feature

represents the long-term trend.
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Φx (0)−Φx (24 )

Φx (24 )−Φx (210 )

Φx (210 )

Figure 4.2: Examples of signal decomposition obtained from the scale-space

image in Figure 3.2.

Generalizing the example in Figure 4.2, we can define a decomposition scheme

of a signal x by considering adjacent ranges of scales of the signal scale-space

image. We formalize this idea below.

Definition (Scale-Space Decomposition). Given a signal x and a set of

k − 1 scale parameters C = {σ1, . . . , σk−1} (called the cut-points set) such

that σ1 < . . . < σk−1, the scale decomposition of x is given by the set of

component signals Dx(C) = {x1, . . . ,xk}, defined as follows:

xi =


Φx(0)− Φx(σ1) if i = 1

Φx(σi−1)− Φx(σi) if 1 < i < k

Φx(σk−1) if i = k

Note that for k components we require k− 1 cut-points. This decomposition

has several elegant properties:

• xk can be seen as the baseline of the signal, as obtained by a low-pass

filter;

• xi for 1 ≤ i < k are signals as obtained by a band-pass filter, and can

be used to identify transient events;

• ∑k
i=1 xi = x, i.e., the original signal can be recovered from the decom-

position.
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4.3 MDL Scale Decomposition Selection

Given an input signal x, the main computational challenge we face is twofold:

• find a good subset of cut-points C such that the resulting k components

of the decomposition Dx(C) optimally capture the effect of transient

events at different scales,

• select a representation for each component, according to its inherent

complexity.

As stated before, the rationale behind the scale decomposition is that it is

easier to model the effect of a single class of transient events at a given scale

than to model the superimposition of many, interacting transient events at

multiple scales. We thus need to trade off the added complexity of having

to represent multiple components for the complexity of the representations

themselves.

We approach this model selection problem by using the Minimum Description

Length (MDL) principle introduced in Section 3.4. The possible candidate

models depend on the scale decomposition Dx(C) considered1 and on the

representations used for its individual components. An ideal set of represen-

tations would adapt to the specific features of every single component, result-

ing in a concise summarization of the decomposition and, thus, of the signal.

In order to apply the MDL principle, we need to define a model MDx(C) for

a given scale decomposition Dx(C) and, consequently, how to compute both

L(MDx(C)) and L(x | MDx(C)). The latter term is the length in bits of the

information lost by the model, i.e., the residual signal x−MDx(C).

As the MDL framework is only applicable to discrete data, we assume that the

input signal x and the results of all the subsequent operations are discretized

as discussed in Section 3.4.1. In the next sections, we introduce the proposed

representation schemes for the components and define the bit complexity of

the residual and the model selection procedure.

1Including the decomposition formed by zero cut-points (C = ∅), i.e., the signal itself.
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4.3.1 Component Representation Schemes

Within our general framework, many different approaches could be used for

representing the components of a decomposition. In the next paragraphs we

introduce two such methods.

Discretization-based representation

In some components of our data transient events always occur with similar

amplitudes, mixed with long stretches of baseline values (see Figure 4.2).

Hence, a desirable encoding could be one that captures this repetitiveness

in the data by giving short codes to long stretches of the baseline and the

commonly occurring amplitudes. Unfortunately, our original discretization

is too fine-grained to capture regular occurrences of similar amplitudes. As

a first representation, we hence propose to also consider more coarse-grained

discretizations of the original range of values. We do this by discretizing each

value v in a component to a value bQ(v)/2ic, where several values for i are

considered for each component, typically i ∈ {2, 4, 6}. By doing so, similar

values will be grouped together in the same bin. The resulting sequence of

integers is compacted further by performing run-length encoding, resulting

in a string of (v, l) pairs, where l represents the number of times value v is

repeated consecutively. This string is finally encoded using a Shannon-Fano

or Huffman code (see Section 4.3.2).

As a simplified illustration of how the MDL principle helps here to identify

components, consider data generated by the expression (67)n(01)n (4n inte-

gers from the range {0, . . . , 23 − 1}), where we assume n and the range are

fixed. In this data, each symbol occurs with the same frequency; we can en-

code the time series hence with − log2(1/4) · 4 ·n = 8n bits for the data, plus

8 log n bits for the dictionary of frequencies. Consider now the decomposition

of the signal into two time series, 62n02n and (01)2n. The first component,

of which the run-length encoding is (6, 2n)(0, 2n), can be encoded using only

2 bits for the time series (as there is only one possible run-length value, we

use 0 bits to encode the run-lengths), 8 log n bits for the dictionary of ampli-
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tudes, and 3 log n bits to identify the length of the one run-length (log n bit

for identifying the number of run-lengths, in this case one, log n to identify

the one run-length present, and log n to identify its frequency, from which the

encoding with 0 bits follows). The second component can be encoded using

4n bits for the time series, as well as 8 log n bits for the dictionary. Assuming

we also use 1 bit per component to identify the type of encoding used, this

gives us an encoding in 4 + 19 log n+ 4n bits. Comparing this to 8n+ 8 log n

bits, for n ≥ 11 we will hence correctly identify the two components in this

simplified data.

Segmentation-based representation

The main assumption on which we base this method is that a clear transient

event can be accurately represented by a simple function, such as a poly-

nomial of a bounded degree. Hence, if a signal contains a number of clear

transient events, it should be possible to accurately represent this signal with

a number of segments, each of which represented by a simple function.

Given a component xi of length n, let

z(xi) = {t1, t2, . . . , tm}, 1 < ti ≤ n

be a set of indexes of the segment boundaries.

Let fit(xi[a : b], di) be the approximation of xi[a : b] obtained by fitting

a polynomial of degree di. Then, we represent each component xi with the

approximation x̂i, such that:

x̂i[0 : z1] = fit(xi[0 : z1], di)

x̂i[zi : zi+1] = fit(xi[zi : zi+1], di), 1 ≤ i < m

x̂i[zm : n] = fit(xi[zm : n], di)

Note that approximation x̂i is quantized again by reapplying the function Q

to each of its values.

For a given k-components scale decomposition Dx(C) and a fixed polyno-

mial degree for each of its components, we calculate the complexity in bits
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of the model MDx(C), based on this representation scheme, as follows. Each

approximated component x̂i consists of |z(xi)| + 1 segments. For each seg-

ment, we need to represent its length and the di + 1 coefficients of the fitted

polynomial. The length lsi of the longest segment in x̂i is given by

lsi = max(z1 ∪ {zi+1 − zi | 0 < i ≤ m})

We therefore use log2(lsi) bits to represent the segment lengths, while for the

coefficients of the polynomials we employ floating point numbers of fixed2 bit

complexity c. The MDL model cost is thus defined as:

L(MDx(C)) =
k∑
i=1

(|z(xi)|+ 1) (dlog2(lsi)e+ c (di + 1))

So far we assumed to have a set of boundaries z(xi), but we did not specify

how to compute them. A desirable property for our segmentation would be

that a segmentation at a coarser scale does not contain more segments than

a segmentation at a finer scale. The scale space theory assures that there are

fewer zero-crossing of the derivatives of a signal at coarser scales [103]. In our

segmentation, we use the zero-crossings of the first and second derivatives.

More formally, we define the segmentation boundaries of a component xi to

be

z(xi) =

{
t ∈ R

∣∣∣∣ dxidt (t) = 0

}⋃{
t ∈ R

∣∣∣∣ d2xi
dt

(t) = 0

}
.

Figure 4.3b shows an example of segmentation obtained as above using fitted

polynomials of degree 1.

However, many other segmentation algorithms are known in the literature

[48, 53] and all of them can be interchangeably employed in this context.

4.3.2 Residual Encoding

Given a model MDx(C), its residual r = x −∑k
i=1 x̂i, computed over the

components approximations, represents the information of x not captured

2In our experiments c = 32.
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(a) (b)

Figure 4.3: Example of discretization-based encoding (a) and segmentation-

based encoding with first degree polynomial approximations (the markers

show the zero-crossings) (b).

by the model. Having already defined the model cost for the two proposed

encoding schemes, we only still need to define L(x | MDx(C)), i.e., a bit

complexity L(r) for the residual r.

Here, we exploit the fact that we operate in a quantized space; we encode each

bin in the quantized space with a code that uses approximately − log(P (x))

bits, where P (x) is the frequency of the xth bin in our data. The main

justification for this encoding is that we expect that the errors are normally

distributed around 0. Hence, the bins in the discretization that reflect a

low error will have the highest frequency of occurrences; we will give these

the shortest codes. In practice, such codes can be obtained by means of

Shannon-Fano coding or Huffman coding; as Hu et al. [42] we use Huffman

coding in our experiments.

4.3.3 Model Selection

We can now define the MDL score that we are optimizing as follows:

Definition (MDL Score). Given a model MDx(C), its MDL score is de-

fined as:

L(MDx(C)) + L(r)

In the case of discretization-based encoding, the MDL score is affected by

the cardinality used to encode each component. In the case of segmentation-
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based encoding the MDL score depends on the boundaries of the segments

and the degrees of the polynomials in the representation. In both cases, also

the cut-points of the considered decomposition affect the final score.

The simplest way to find the model that minimizes this score is to enu-

merate, encode and compute the MDL score for every possible scale-space

decomposition and all possible encoding parameters. As we shall now show,

this brute-force approach is practically feasible.

The number of possible scale decompositions depends on the total number

of cut-points sets we can build from the computed scale parameters in Φx.

We fix the maximum number of cut-points in a candidate set to some value

cmax. This also means that we limit our search to those scale decompositions

having cmax + 1 components or less. Moreover, given our wish to consider

only simple approximations of the signals, we can also assume a reasonably

low limit dmax (in practice, dmax = 2) on the degree of the polynomials that

approximate the segments of each given component.

Computing the MDL score for each encoded scale decomposition, obtained

by ranging over all the possible configurations of cut-points C1, . . . , Ck−1,

and all the possible configurations of polynomial degrees d1, . . . , dk, hence

requires calculating MDL scores for

cmax+1∑
k=2

( |S|
k − 1

)
dkmax

scale decompositions. This turns out to be a reasonable number in most

practical cases we consider, and hence we use an exhaustive approach in our

experiments.

4.4 Experiments

In this section, we experimentally evaluate our method, both on artificial

data and on actual sensor data from the highway bridge mentioned in the in-

troduction. To evaluate the strengths and weaknesses of our method, we have
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Figure 4.4: Signals (top) and top-ranked decompositions for the two artificial

datasets.

tested it on a range of artificial datasets3 that mimic some of the multi-scale

phenomena present in the bridge data. Our constructed data deliberately

varies from easy, with clearly separated scales, to challenging with a variety

of event shapes and sizes. All artificial datasets represent sensor data mea-

sured at 1 Hz for a duration of three days (totaling 259,200 data points). The

data was produced by combining three components at three distinct scales,

resembling 1) individual events from vehicles, 2) traffic jams that last several

tens of minutes, and 3) gradual change of the baseline, due to temperature

changes of the bridge over the course of several days.

Artificial data

We start by considering one particular dataset in detail (see Figure 4.4a).

This dataset was constructed by using Gaussian shapes for both the small

and medium-scale events, and a sine wave of period 2.25 days at the largest

3The artificial datasets and the source code can be obtained by contacting the first

author.
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scale. Medium events have a constant height, whereas small-scale events have

a random height. We limited the search space to decompositions having a

maximum of 4 components (3 cut-points). As can be seen in Figure 4.4a,

our method was able to identify the fact that this data contains three impor-

tant scales. Furthermore, the method correctly identified the two necessary

cut-points, such that the three original components were reconstructed. The

selected cut-points4 appear at scales 29 = 512 and 212 = 4096. When con-

sidering the separated components in detail, some influence across the scale-

boundaries is visible, for example where small effects of the ‘traffic jams’

appear among the small-scale events. These effects seem unavoidable, with

the inherent limitations of the scale-space-based band-pass filtering and the

discrete collection of scales we consider (powers of 2).

This optimal result has an MDL-score of 509,000 bits, being the sum of the

model cost (L(M) = 75, 072) and the error length (L(D | M) = 433, 928).

The second-ranked result on this data, with cut-points C = {211, 213}, shows

a similar result, however with slightly more pronounced cross-boundary ar-

tifacts in the smallest scale, as is expected with a doubling of the lower

cut-point. The MDL-score of this result is 64, 896 + 450, 487 = 515, 383.

The k = 1 case, which corresponds to compression of the original signal

without any decomposition, appears at rank three, with an MDL-score of

44, 640 + 471, 271 = 515, 911. This model obviously has a much lower model

cost, due to having to represent only a single component, but this is com-

pensated by the substantially higher error length, putting it below the scale-

separated results. Ranks four and five represent two k = 2 results, where

the former groups the small and medium scales together, and the latter the

medium and large. All results in the top 10 relate to models that use poly-

nomial representations (d ≤ 2).

Not all artificial datasets considered produced perfect results. In Figure 4.4b,

we show an example of a dataset that includes ‘traffic jams’ that resemble

more closely some of the phenomena in the actual sensor data. In many

cases, traffic jams appear fairly rapidly, and then show an increased load on

4Note that our method returns the boundaries between scales, rather than the actual

scales of the original components.



44 CHAPTER 4. IDENTYFING THE RELEVANT SCALES

the bridge over a prolonged period. This is modeled in the data by medium-

scale events that start and stop fairly rapidly, and remain constant in the

meantime. The best result found, with cut-points C = {212, 213}, is shown

in Figure 4.4b. This demonstrates that the proposed method is not able to

properly separate the medium and low-scale events. In fact, even though the

medium component does identify the location of the ‘traffic jams’, most of

the rectangular nature is accounted for by the small scale. To some extent,

this is understandable, as the start and end of the event could be considered

high-frequency events with rapid changes in value. Therefore, parts of these

events appear at a small scale, and the algorithm is mirroring this effect. In

any case, the algorithm is able to identify the correct number of components,

and is able to produce indications as to the location of the traffic jams. The

top four results all show similar mixtures of scales, whereas the rank-five

result groups the lowest two scales together. The k = 1 result appears at

rank 14.

In order to better understand to what extent the proposed method is able

to separate components at different scales, we carried out a more controlled

experiment. We generated 11 different datasets constructed from 3 com-

ponents. We fixed the scales of the short-term and long-term components

respectively around σ = 23 and σ = 215, while the scale of the medium-term

component varies from dataset to dataset in the range (24, . . . , 214). The table

below shows the number of components (k) of the top-ranked decomposition

for the 11 datasets according to the scale parameter σ of the medium-term

component.

σ 24 25 26 27 28 29 210 211 212 213 214

k 1 2 2 2 3 3 3 3 1 1 1

As the table suggests, the proposed method fails to identify the right number

of components when the scales are too close to each other. However, when

the scales are separated sufficiently (28 ≤ σ ≤ 211), the right number of

components is identified. Also in this case, all the top-ranked decompositions

relate to models that use polynomial representations.
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Figure 4.5: Signal (top) and top-ranked scale decomposition for the In-

fraWatch data.

InfraWatch data

As anticipated by the motivating example in the introduction, we consider

the strain measurements produced by a sensors attached to a large highway

bridge in the Netherlands. For this purpose, we consider a time series con-

sisting of 24 hours of strain measurements sampled at 1 Hz (totaling 86, 400

data points). A plot of the data is shown in Figure 4.5 (topmost plot). We

evaluated all the possible decompositions up to three components (two cut-

points) allowing both the representation schemes we introduced. In the case

of the discretization-based representations, we limit the possible cardinalities

to 4, 16 and 64.

The top-ranked decomposition results in 3 components as shown in the last

three plots in Figure 4.5. The selected cut-points appear at scales 26 = 64 and

211 = 2048. All three components are represented with the discretization-

based scheme, with a cardinality of respectively 4, 16, and 16 symbols. The

decomposition has an MDL-score of 344, 276, where L(M) = 19, 457 and

L(D |M) = 324, 818. The found components accurately correspond to phys-

ical events on the bridge. The first component, covering scales lower than 26,

reflects the short-term influence caused by passing vehicles and represented

as peaks in the signal. Note that the cardinality selected for this component

is the lowest admissible in our setting (4). This is reasonable considering that
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Figure 4.6: A detail of the original strain signal (one hour) and the selected

first component as represented with 4 symbols.

the relatively simple dynamic behavior occurring at these scales, mostly the

presence or not of a peak over a flat baseline, can be cheaply described with

4 or fewer states without incurring a too large error. The middle component,

covering scales between 26 and 211, reflects the medium-term effects caused

by traffic jams. As in the artificial data, the first component is slightly influ-

enced by the second one, especially at the start and ending points of a traffic

jam. Finally, the third component captures all the scales greater than 211,

here representing the effect of temperature during a whole day. To sum up,

the top-ranked decomposition successfully reflects the real physical phenom-

ena affecting the data. The decompositions with rank 8 or less all present

similar configurations of cut-points and cardinalities, resulting in comparable

components where the conclusions above still hold. The first 2-component

decomposition appears at rank 10 with the cut-point placed at scale 26, which

separates the short-term peaks from all the rest of the signal (traffic jams

and baseline mixed together). These facts make the result pretty stable as

most of the good decompositions are ranked first.

Dike monitoring data

We evaluated the method on an additional real-world scenario: the sensor-

based monitoring of dikes [20]. We focus on the data produced by a network

of pore sensors installed on a sea dike in Boston (UK). The considered data

consists of one time series, representing one year of measurements sampled

every 15 minutes (for a total of 27 610 values), ranging from October 2011

to October 2012. As many complex physical systems, also dikes are affected
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Figure 4.7: One year of pore pressure measurements from the one of the

sensors installed on a sea dike in Boston (UK).

by multiple phenomena at different temporal scales and the effect is visible

in the produced sensor data. Figure 4.7 shows one year of measurements

from one of the pore sensors in the network. The sensor exhibits two clear

periodic trends at different temporal scales. At the shortest temporal scale,

the water level follows half-daily tides (see the detailed plots of Figure 4.7

and Figure 4.8). The water level, however, is also affected, on a two-weekly

basis, by the lunar cycles that have a periodic effect on the overall amplitude

of the signal.

For the considered time-series, we evaluated all the possible decompositions

up to three components (two cut-points) employing the discretization-based

scheme with possible cardinalities limited to 4, 8, and 16.

The top-ranked decomposition for the time series is shown in Figure 4.9. The

selected cut-points appear at scales 25 = 32 and 213 = 8192. All three com-

ponents, represented with the discretization-based scheme, have a selected

cardinality of 8 symbols. The decomposition has an MDL-score of 213, 288,

where L(M) = 19, 075 and L(D | M) = 194, 213. Note that the first two

components, from top to bottom, effectively separate the two periodic trends

in the data, i.e. the half-daily tidal effects (a detail of which can be seen in

Figure 4.10) and the two-weekly cycles due to lunar tides. The third long-

term component reflects slow change happening in the dike due to the effect

of humidity. However, the trend also includes a slight change in the sensor

sensitivity itself, as its response is affected by the external temperature.
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Figure 4.8: Zoomed detail of Figure 4.7. The figure clearly shows the presence

of short term periodic trends, due to the half-daily effect of the tides.

An application: detecting passing vehicles

The component selection and representation generated by the MDL proce-

dure may be useful in itself for tasks such as classification. For example,

consider the short-term component of the previous example, Figure 4.5 (sec-

ond plot). It represents the traffic activity over the bridge and has been

represented with a discretization-based scheme using 4 symbols. Figure 4.6

shows a detail (1 hour) of the discretized component (bottom) and the rela-

tive original signal (top). The first 2 symbols (0 and 1) respectively classify

the absence or presence of a passing vehicle, while the other two, consider-

ably less frequent, are outliers in the data. The represented component, as

selected by MDL, can thus be used to monitor traffic activity over the bridge,

a task that is considerably more challenging using the original signal, due to

the variations introduced by temperature fluctuations and traffic jams.

4.5 Related Work

Papadimitriou et al. [76] propose a method to discover the key trends in a

time series at multiple time scales (window lengths) by defining an incremen-

tal version of Singular Value Decomposition. In signal processing, Indepen-
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Figure 4.9: Top-ranked scale decomposition for the first sensor of the Dike

data.

dent Component Analysis [18] aims at separating a set of signals from a set

of mixed signals but, in its standard formulation, requires at least as many

sensors as sources. Our method is able to operate on a single input sensor and

a variable number of sources to be discovered. Megalooikonomou et al. [69]

introduce a multi-scale vector quantized representation of time series which

enables fast and robust retrieval. The considered scales are however prede-

fined and our approach could be used as a preprocessing step to determine

those to include in the dictionary. The Minimum Description Length princi-

ple has been applied to the problem of choosing the best representation for a

given time series by Hu et al. [42]. The authors propose a method to choose

the best representation (and its parameters) among APCA, PLA and DFT.

While there are similarities with our method (we also use the MDL principle

to select the best model parameters for a given component), the authors put

the stress on discovering the intrinsic cardinality of the data, other than its

constituent multi-scale components. MDL has also been adopted to detect

changes in the distribution of a data stream by van Leeuwen et al. [94].
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Figure 4.10: Detail of the first component.

In [44], the authors propose a method to select non-linear models from data,

possibly generated by chaotic systems, having a good robustness to noise.

Again, this work does not take into account the eventual multi-scale nature

of the data.

4.6 Conclusions and Future Work

We introduced a novel methodology to discover the fundamental scale com-

ponents in a time series in an unsupervised manner. The methodology is

based on building candidate scale decompositions, defined over the scale-

space image [103] of the original time series, with an MDL-based selection

procedure aimed at choosing the optimal one.

A useful side product of the presented technique, due to the adoption of MDL,

is that each discovered component is represented independently according to

its inherent complexity and often results in a cheaper model (in terms of

MDL score) in relation to the original raw time series. These cheaper per-

component representations may better serve tasks like classification, regres-

sion or association analysis for time series produced by inherently multi-scale

physical and artificial systems.

We have shown that our approach successfully identifies the relevant scale

components in both artificial and real-world time series, giving meaningful

insights about the data in the latter case. Future work will experiment with
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diverse representation schemes and hybrid approaches (such as using combi-

nations of segmentation, discretization and Fourier-based encodings). More-

over, another interesting research question is how to substitute the presently

employed exhaustive search of the optimal decomposition with a computa-

tionally cheaper heuristic approach, which is necessary in the case of large

time series data.
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