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Chapter 3

Preliminaries and

Background

As discussed in the previous chapters, the primary focus of this thesis is

the unsupervised analysis of sensor data collected from complex multi-scale

systems. In this chapter, we review the main background concepts and tools

that lay the foundations and prepare the discussion for the material in the

remaining chapters.

We will start by introducing the concept of convolution and signal filter-

ing [85]. As we deal with noisy measurements from real-world sensor net-

works, we will show how convolution and filtering can be used to reduce

the effect of noise and support several other time series manipulation tasks.

Building on the concept of convolution, we will then present a fundamental

tool employed in the rest of the thesis that supports the analysis of a time

series at multiple temporal scales: the scale-space image [103]. Finally, as

our main focus is on the unsupervised modeling of phenomena in time series

data, we will introduce the Minimum Description Length principle as our

model selection framework of choice [34], motivate its adoption and discuss

a simple application of it to noise removal.
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20 CHAPTER 3. PRELIMINARIES AND BACKGROUND

3.1 Preliminaries

We start by giving some fundamental definitions used in this chapter and

throughout the thesis. We deal with finite sequences of numerical measure-

ments, collected by observing some property of a system with a sensor, and

represented in the form of time series as defined below.

Definition (Time Series). A time series of length n is a finite sequence

of values x = x[1], . . . , x[n] of finite precision1.

Throughout the thesis, we assume that the measurements are collected at

uniformly spaced time points and according to a fixed sampling rate.

In many contexts, it is of particular interest to refer only to certain contiguous

portions of a time series or subsequences, as defined below:

Definition (Subsequence). A subsequence x[a : b] of a time series x is

defined as follows:

x[a : b] = (x[a],x[a+ 1], . . . ,x[b]), a < b

3.2 Convolution and Filtering

Convolution is arguably one of the most important techniques in signal pro-

cessing, for both the one-dimensional (time series) and two-dimensional case

(images), and the fundamental operation in linear filtering. From a mathe-

matical standpoint, convolution combines two functions to produce a third

one, as defined below.

Definition (Convolution). Given two functions f and g, their convolu-

tion f∗g is defined as the integral of their product after one of the functions

is reversed and shifted:

(f ∗ g)(t) =

∫ ∞
−∞

f(τ) g(t− τ) dτ

1We assume 32-bit floating point values throughout the rest of this dissertation.
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When referring to the process of filtering, the function f is said to be the

signal to be filtered while the function g is called convolution filter kernel.

Kernel functions directly define the properties of the filter. Specific kernel

functions can be defined for amplification and attenuation, shifting or echoing

of a signal. Other classes of kernel functions, as we will see shortly, can be

used for low-pass and high-pass frequency filtering.

3.2.1 Convolution and LTI Systems

Although, in the context of this thesis, convolution is mainly used as a fil-

tering operation, it is worth mentioning its deep connection with the theory

of linear time-invariant (LTI) systems [85]. A system, defined by an input

signal x(t) and output signal y(t), is said to be linear time-invariant if it sat-

isfies the linearity and time-invariance properties. Linearity refers to the fact

that a linear mapping exists between the inputs and the output of the sys-

tem. More formally, given two inputs x1(t) and x2(t), respectively producing

outputs y1(t) and y2(t), the scaled and summed input a1x1(t) + a2x2(t) will

produce a1y1(t) + a2y2(t), where a1 and a2 are scalars. The property holds

for any arbitrary number of terms.

On the other hand, time-invariance means that the output of the system does

not depend on the particular time a given input is applied. In detail, given

an input x(t) and an output y(t), the delayed input x(t− δ) will produce the

delayed output y(t− δ).

Without diving into the specifics of the theory, we note that the operation

of convolution fully describes the output of any arbitrary LTI system with a

known impulse response. In fact, given an input signal x(t) and an impulse

response h(t), the output of the associated LTI system is given by the con-

volution x(t) ∗ h(t). LTI systems and convolution play an important role in

several technical fields such as signal processing, electronics, seismology [2],

spectroscopy and control theory.
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3.2.2 Discrete Convolution

Although we defined the convolution operation in the continuous domain, in

practical cases, however, we deal with finite signals in the discrete domain

(time series). The definition of convolution in the discrete case is presented

below.

Definition (Discrete Convolution). Given a time series x of length n

and a convolution filter kernel h of length m, the result of the discrete

convolution x ∗ h is the time series y of length n, defined as:

y[t] =

m/2∑
j=−m/2+1

x[t− j] h[j]

Note that since x is finite, x[t − j] may be undefined. To account for these

boundary effects, x is padded with m/2 zeros before and after its defined

range.

If not specified otherwise, from now on we will only refer to the discrete case

of convolution.

3.2.3 Noise Filtering via Gaussian Smoothing

A common use of the convolution operator is smoothing a signal to remove

noise or finer details. Smoothing can be obtained by employing several types

of kernels like mean, median and Gaussian. In [12], the authors propose a

methodology to mine interesting correlations in multivariate time series data

based on generating features obtained by convoluting the input data with

different kernels in order to enhance or reduce certain characteristic.

Gaussian smoothing, however, is a common noise filtering technique, as it

cuts high frequencies, leaving untouched the low ones. It also has other

useful properties as we will see in the next section.

Gaussian smoothing is based on the Gaussian kernel [75], as defined be-
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low:

Gσ =
1√

2πσ2
e−

x2

2σ2

which, in the scope of this thesis, has a mean of 0, standard deviation σ and

area under the curve equal to 1.

We can now define Gaussian smoothing as a particular convolution operation

employing a Gaussian kernel.

Definition (Gaussian Smoothing). Given a time series x of length n and

a Gaussian kernel Gσ discretized into m values, the result of the Gaussian

smoothing is the time series y of length n, defined as:

x[i] ∗Gσ[i]

Note that to capture almost all non-zero values, we define m = b3σc.

The convolution acts as a smoothing filter which smooths each value x[t]

based on its surrounding values. The amount of removed detail is directly

proportional to the standard deviation σ (and thus m), from now on referred

to as the scale parameter. In the limit, when σ → ∞, the result of the

Gaussian convolution converges to the mean of the signal x over the entire

period involved.

To better picture the effect of Gaussian smoothing, consider the example in

Figure 3.1. The top plot shows a signal collected from a strain sensor and the

middle plot shows the same signal after being convoluted with a Gaussian

kernel having σ = 2. The bottom plot highlights the part of the signal that

has been removed by the filtering operation. Note how this residual signal

does not just contain noise but it is still somewhat influenced by phenomena

actually present in the signal, i.e. the peaks induced by passing vehicles.

Designing the right noise removal filter ultimately boils down to choosing

the right σ parameter for the given data.

In general, however, the choice of σ is strictly related to the task at hand

and, consequently, to what is actually considered ‘noise’ in the given data.

Consider, for example, a time series representing several months of strain

measurements from a bridge deck at a high sampling rate (say 100 Hz or
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Figure 3.1: An example application of a Gaussian-based noise removal filter.

more). A typical bridge is affected by several phenomena at multiple tempo-

ral scales, ranging from events with a duration in the order of seconds such as

passing cars and trucks, slightly longer ones such as congestion and weather

conditions, to long-term ones like seasonal effects. The collected time series

will represent all of these phenomena as a mixture. If we are interested in

all the phenomena from the shortest to the longest, our concept of noise will

coincide with anything lying below the temporal scale of the traffic events.

On the other hand, if we are just interested in studying the effect of sea-

sonal changes on the signal, we can ignore all the phenomena having shorter

temporal scales and safely discard them as noise. This simple example il-

lustrates how the concept of noise and the concept of scale of analysis are

actually strictly interrelated and that a precise interpretation of noise can

only be given by first looking at the task at hand.

In an unsupervised setting, it is not always clear what temporal scales we

should look at and thus it is not always possible to determine in advance the
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right value for σ. It follows from the definitions above that, by varying the

parameter σ, Gaussian smoothing can be used to remove a fixed amount of

detail from a signal. In other words, Gaussian smoothing can be interpreted

as an operator that retains the information present above a certain temporal

scale, where the scale is directly proportional to σ. This interpretation of

Gaussian smoothing as scale parametrization is the core concept behind scale-

space theory, a mathematical construction that we will use in the rest of the

thesis and that we introduce in the next section.

3.3 Scale-Space Image

The scale-space image [103] is a scale parametrization technique for one-

dimensional signals2 based on convolution. Given a signal x, the family of

σ-smoothed signals Φx over scale parameter σ is defined as follows:

Φx(σ) = x ∗ gσ , σ > 0

where gσ is a Gaussian kernel having standard deviation σ, and Φx(0) =

x.

The signals in Φx define a surface in the time-scale plane (t, σ) known in

the literature as the scale-space image [62, 103]. This visualization gives a

complete description of the scale properties of a signal in terms of Gaussian

smoothing. Moreover, it has other properties useful for segmentation, as we

will see in Section 4.3.1.

For practical purposes, the scale-space image is quantized across the scale

dimension by computing the convolutions only for a finite number of scale

parameters. More formally, for a given signal x, we fix a set of scale param-

eters

S = {2i | 0 ≤ i ≤ σmax ∧ i ∈ N}

and we compute Φx(σ) only for σ ∈ S where σmax is such that Φx(σ) is

approximately equal to the mean signal of x.

2From now on, we will use the term signal and time series interchangeably.
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Figure 3.2: Scale-space image of an artificially generated signal totalling

259 200 points.

As an example, Figure 3.2 shows the scale-space image of an artificially

generated signal. The top plot represents the original signal, constructed by

three components at different temporal scales: a slowly changing and slightly

curved baseline, medium-term events (bumps) and short-term events (peaks).

It is easy to visually verify that, by increasing the scale parameter, a larger

amount of detail is removed. In particular, the peaks are smoothed out at

scales greater than σ = 24, and the bumps are smoothed out at scales greater

than σ = 28, after which only the baseline remains.

3.3.1 Relation to the Zero-Crossings of Derivatives

The scale-space image has a number of interesting properties. An important

one, that we will exploit throughout the thesis, is a property of Gaussian

convolution that relates its zero-crossings, and those of its derivatives, to the

scale parameter σ. In fact, as σ increases, the number of zero-crossings of the

convoluted signal and of all its n-th derivatives can only remain constant or

decrease [103]. Figure 3.3 demonstrates this concept in practice. The figure

shows the relationship between the scale parameter σ and the number of zero-



3.4. MINIMUM DESCRIPTION LENGTH 27

0 1 2 4 8 16 32

Scale

0

200

400

600

800

1000

1200

1400

1600

1800

N
um

be
ro

fz
er

o-
cr

os
si

ng
s

Figure 3.3: Relationship between the scale parameter and the number of

zero-crossings of the first derivative of the signal shown in Figure 3.1.

crossing of the first derivative of the signal discussed in Figure 3.1.

3.4 Minimum Description Length

A recurring idea in this thesis is that learning and finding regularities in data

can be seen as a form of compression. Compression is the act of representing

some given data in the most compact way possible, such that its compressed

representation has a lower number of bits than the original one [80]. The

idea that the better we can compress a given data set, the more we can learn

about it is a powerful one and it is formalized by the Minimum Description

Length principle.

The Minimum Description Length [34] is an information-theoretic model se-

lection framework that selects the best model according to its ability to

compress the given data. In our context, the two-part MDL principle states

that the best model M to describe the signal x is the one that minimizes the

sum L(M) + L(x |M), where
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• L(M) is the length, in bits, of the description of the model,

• L(x | M) is the length, in bits, of the description of the signal when

encoded with the help of the model M .

Given some data, MDL looks for a trade-off between the accuracy of a model

and its complexity. Conceptually, MDL is a practical instantiation of the Oc-

cam’s razor principle which states that, among several different hypotheses,

the simplest is often also the best [91]. Moreover, MDL naturally protects

against over-fitting as the principle takes into account the notion of model

complexity and it discards models that are too complicated.

As we are dealing with unsupervised learning from time series data and we

are interested in models that are as general as possible, the properties of

the MDL framework makes it an ideal choice when designing model selection

procedures.

In fact, prior work [42, 78, 88, 19, 10, 52] has already validated the effective-

ness of the MDL approach when dealing with time series data and, through-

out this thesis, we will further investigate its applicability to the analysis of

sensor data.

3.4.1 Time Series Discretization

In order to use the MDL principle, we need to work with a quantized input

signal and scale-space image. Because of this, we assume that the values

v of the input signal x (and of the scale-space components Φx(σ) for each

considered σ) have been quantized to a finite number of symbols by employing

the function defined below:

Q(v) =
⌊ v −min(x)

max(x)−min(x)
l
⌋
− l

2

where l, assumed to be even, is the number of bins to use in the discretization

while min(x) and max(x) are respectively the minimum an maximum value

in x. Throughout the rest of the thesis, we assume l = 256.
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One question that might arise is if such a quantization removes meaning-

ful information from the time series. In [42], the authors show that the

effect of quantization is rather modest on several time series from various

domains.

3.4.2 MDL Noise Filtering

In 3.2.3, we have shown how Gaussian convolution can be used to remove

high-frequency components from a given signal and, thus, serve as a noise

removal filter. We stressed, however, that the choice of the parameter σ, is a

critical one and strictly depends on the characteristics of the data at hand.

In this section, we use the Minimum Description Length principle to select

the optimal σ given a time series, where by optimal we mean the one that

retains the most characteristic information in the data.

Assume we are given a time series x of length n and, as we are using MDL,

its values have been discretized to a fixed cardinality (in this example, 256

possible values) using the quantization function Q introduced in above.

In order to frame the problem from an MDL perspective, we first have to

define what the possible models for x are. We consider the components of

the scale-space Φx, quantized to different cardinalities, as models. In other

words, given a scale parameter σ and a cardinality c, we define a model for

x as Mσ,c = Q(Φx(σ), c), where Q is a quantization function.

The MDL principle states that the best model to compress x minimizes the

sum L(M) +L(x |M). We define the description length of a model in terms

of its entropy as nH(x), where H is the entropy function. The description

length of x when encoded with the help of a model refers to the complexity of

the residual nH(x−M), that is the information discarded by the model.

Figure 3.4 shows the results of the approach that we just discussed in a

practical scenario. The top plot depicts the input time series: a detail of

a peak in a bridge’s strain sensor signal caused by a passing vehicle. The

plot in the middle shows the time series after being Gaussian-smoothed with

the optimal σ, selected as discussed. Note how both the overall shape of the
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Figure 3.4: Example of MDL-based noise filtering.

signal and the subtle vibrations iduced by the passing truck are retained.

The bottom plot, finally, shows the optimal model (quantized) according to

MDL. For this particular example, we considered σ ∈ {2, 22, 23, 24, 25, 26} and

the cardinality c ∈ {4, 8, 16, 32, 64, 128, 256}. The optimal model is given by

σ = 23 and c = 8.

A similar approach to noise removal has been taken by Miao et al. [71]

as a preprocessing step in the context of pattern detection in time series

data.


