
Mining sensor data from complex systems
Vespier, U.

Citation
Vespier, U. (2015, December 15). Mining sensor data from complex systems. Retrieved from
https://hdl.handle.net/1887/37027

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/37027

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/37027

Cover Page

The handle http://hdl.handle.net/1887/37027 holds various files of this Leiden University
dissertation.

Author: Vespier, Ugo
Title: Mining sensor data from complex systems
Issue Date: 2015-12-15

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/37027
https://openaccess.leidenuniv.nl/handle/1887/1�

Mining Sensor Data from
Complex Systems

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties

te verdedigen op dinsdag 15 December 2015

klokke 12.30 uur

door

Ugo Vespier

geboren te Lamezia Terme

in 1985

Promotiecommissie

Promotor: prof. dr. J. N. Kok

Co-promotor: dr. A. J. Knobbe

Overige leden: prof. dr. E. Keogh (University of California, Riverside)

dr. J. Gama (University of Porto)

prof. dr. C. Rieffe

prof. dr. A. Plaat

iii

Alla mia famiglia.

Contents

1 Introduction 1

1.1 Thesis Outline . 6

2 Sensor Data and Complex Systems 9

2.1 Big Data . 9

2.2 Sensor Networks and the Internet of Things 10

2.3 Multi-Scale nature of Complex Systems 12

2.4 SHM and InfraWatch . 13

2.4.1 The InfraWatch project 14

3 Preliminaries and Background 19

3.1 Preliminaries . 20

3.2 Convolution and Filtering . 20

3.2.1 Convolution and LTI Systems 21

3.2.2 Discrete Convolution 22

3.2.3 Noise Filtering via Gaussian Smoothing 22

3.3 Scale-Space Image . 25

3.3.1 Relation to the Zero-Crossings of Derivatives 26

3.4 Minimum Description Length 27

3.4.1 Time Series Discretization 28

3.4.2 MDL Noise Filtering 29

4 Identifying the Relevant Temporal Scales 31

4.1 Introduction . 31

4.2 Scale-Space Decomposition . 34

v

vi CONTENTS

4.3 MDL Scale Decomposition Selection 36

4.3.1 Component Representation Schemes 37

4.3.2 Residual Encoding . 39

4.3.3 Model Selection . 40

4.4 Experiments . 41

4.5 Related Work . 48

4.6 Conclusions and Future Work 50

5 Mining Variable-Length Motifs at Multiple Scales 53

5.1 Introduction . 53

5.2 Background and Problem Setting 56

5.2.1 Notation and Preliminaries 56

5.2.2 Minimum Description Length 58

5.2.3 Problem Statement . 61

5.3 Motif Selection Algorithm . 62

5.3.1 Finding Candidates Motifs 62

5.3.2 Selecting Characteristic motifs 67

5.3.3 Computational Complexity 68

5.4 Experimental Evaluation . 68

5.4.1 Snowboard Data . 68

5.4.2 Highway Bridge Data 70

5.4.3 Comparison with Related Work 71

5.5 Related Work . 73

5.6 Conclusions and Future Work 74

6 Subsequences Clustering for Events Modeling 77

6.1 Introduction . 77

6.2 InfraWatch and the Strain Sensor Data 78

6.3 Subsequence Clustering for Traffic Events Modeling 80

6.3.1 Subsequence Clustering 81

6.3.2 Subsequence Clustering equals Event Detection? 81

6.3.3 A Context-Aware Distance Measure for SSC 83

6.4 Experimental Evaluation . 86

6.4.1 Results . 87

CONTENTS vii

6.4.2 A Scalable Implementation 89

6.5 Conclusion . 90

7 Interactive Time-Series Visualization 93

7.1 Hierarchical Time Series Subsampling 95

7.1.1 Sub-sampling Hierarchy Construction 95

7.2 Interactive Visualization . 98

7.3 VizTool Software . 99

7.4 Conclusions . 101

8 Conclusions 105

8.1 Future Work . 108

Nederlandse Samenvatting 123

English Summary 125

Curriculum Vitae 127

Chapter 1

Introduction

Over the last decades, the advances in computational power, storage technol-

ogy and sensor networks have made data an abundant resource [79]. Today,

virtually everything, from natural phenomena to complex artificial and physi-

cal systems, can be measured and the resulting information collected, stored

and analyzed in order to gain new insight, optimize existing processes or

both.

The term Big Data has gained popularity, in academia, industry and the

public opinion, to describe the opportunities and the challenges connected to

this huge explosion in data availability [64]. In a report by IDC [33], the au-

thors estimate that the total amount of data in the digital world will amount

to 40.000 exabytes1 by the end of 2020, almost doubling its size every year.

The data sources are diverse, ranging from user-contributed material on so-

cial networks (i.e. posts, tweets and status updates) to consumer behavioral

data collected by online retailers such as product views and purchases.

In particular, advances in measuring technology and sensors networks [3, 16]

greatly contributed to the explosion of data. The adoption and deployment

of measurement systems for all sorts of industrial, commercial and consumer

applications, is paving the way to important opportunities for monitoring and

analyzing all kinds of systems over time at a level of detail never experienced

1This equates to 4 · 1022 bytes.

1

2 CHAPTER 1. INTRODUCTION

before.

In fact, sensing technology and the ability to manage big data represent a

fundamental improvement in our ability to measure complex systems. Mul-

tiple types of sensors, high sampling rates, advances in noise reduction tech-

niques, to cite a few, are all improvements that are contributing to making

progressively better representations of systems in data.

As a result, new challenges in the analysis and visualization of this large

amount of sensor data have emerged and, over the last decade, the ef-

forts of the research community to provide solutions to these problems have

soared [1]. Methods and algorithms, in fact, will have to advance in order

to cope with the increased complexity of the time series datasets available

and to improve the ability to learn from the greater level of detail present in

them.

A side effect of the exponential explosion of data collection is that labeled

information will be an increasingly scarce resource in the future, as it is ex-

tremely costly to produce labeled datasets in relation to the current rate of

data growth. Because of this, the task of extracting structured information

from unlabeled data is of paramount importance when dealing with the chal-

lenges posed by big data. The algorithms and methods presented in this

thesis are designed to work in this scenario where novel insights have to be

extracted in an unsupervised way.

In particular, the focus of this thesis is the analysis of complex sensor data

in the form of time series. Time series are sequences of observations sam-

pled periodically over time. We approach the analysis of such data from

a data mining perspective, with the end goal of extracting previously un-

known knowledge and insight in the data. Data mining [37, 104] (DM) is a

discipline aimed at discovering useful and structured patterns in large collec-

tions of data. Data mining methods lie at the intersection between computer

science, machine learning, database systems and statistics, and are a funda-

mental part of any KDD (Knowledge Discovery in Databases) process [27].

Time series, on the other hand, are a ubiquitous type of data, and mining

time series data represents an important branch of DM.

3

In this thesis, we introduce data mining and visualization methods for large

time series data collected from complex physical systems by means of sen-

sors.

Our work is motivated by InfraWatch [55], a Structural Health Monitoring

project centered around the management and analysis of data collected by

a large sensor network deployed on a highway bridge. The sensor network

comprises strain, temperature and vibration sensors, sampling continuously

at 100 Hz. A highway bridge is a complex system and so is the data collected.

The behaviour of the bridge, and consequently the properties of the data,

is affected by external factors such as the temperature, weather conditions,

traffic activity and deterioration of the concrete. Moreover, InfraWatch data

contains repeated patterns at different resolutions due to the bridge’s re-

sponse to recurring events such as passing vehicles or traffic jams. Because

of these characteristics, InfraWatch is an ideal testbed for evaluating the

methods we introduce.

In this thesis, we will develop and discuss solutions to the following fun-

damental questions when dealing with large and complex time-series data

collected from sensors like the one provided by InfraWatch:

• What are the relevant temporal scales of analysis for a given time series?

• Which are the recurring multi-scale patterns present in a given time

series?

• How can we effectively model and recognize events in time series data?

• How can we support efficient and interactive visualization of massive

time series data?

Complex systems are often affected by several phenomena at multiple tempo-

ral scales and this effect is reflected in the collected data. Consider, for exam-

ple, the time series produced by one of the strain sensors of the InfraWatch

bridge. This data is the result of the superimposed effects of the passing

vehicles, traffic jams and more long-term effects such as the day-night cycle

in temperature, which in turn affect the response of the structure. Through-

out the thesis, we will introduce a method to discover which are the relevant

4 CHAPTER 1. INTRODUCTION

temporal scales of analysis and introduce a decomposition of the original

time series such that every component represents a single phenomenon at its

characteristic scale. The goal of the method is to find the underlying factors

that explain the input data.

These multiple phenomena, moreover, are often characterized by the presence

of patterns that repeat over time and reflect their effect in the data. Consider

again the strain sensor example. The effect of traffic jams will produce similar

recurring patterns in the data, for example every morning during rush hour.

The same would happen with the effect of passing vehicles, although they

will appear at a shorter time scale (in the order of seconds) and potentially

superimposed on the traffic jam patterns. We will introduce a method to

mine recurring patterns, so-called motifs in the literature, from time series

data at multiple temporal scales.

The third research question addresses the problem of clustering time series

subsequences in order to model and recognize fixed-length events in the data.

Time series clustering has proven to be a difficult task, as it is hard to

model the subsequence space properly without introducing artifacts in the

results [49]. We will introduce a novel distance measure to cope with this

problem.

Finally, we will address the problem of massive time series visualization. Al-

though visualization is not directly related to data mining, it is a fundamen-

tal task in every data science project, especially to support the exploratory

phases and build an idea of the data at hand. When exploring and visu-

alizing a dataset, interactivity is important as it permits testing ideas and

assumptions quickly without having to wait excessive periods. We will see

how we made the interactive visualization of terabyte-sized datasets possible

by introducing an ad-hoc storage scheme for time series, which effectiveness

has been proven by a real world software package called VizTool.

Although these research questions find a natural application in the InfraWatch

project for the analysis of bridge sensor data, we stress that they are instru-

mental to the understanding of many complex systems. In fact, the presence

in the data of multiple temporal scales and recurring phenomena, as well as

5

the need for effective visualization, are general challenges shared among all

complex physical and artificial systems measured by sensor networks.

The methods and algorithms introduced in this thesis combine concepts from

data mining, signal processing, and information theory. In particular, in

order to formally characterize the concept of temporal scales, we will make

use of concepts from the field of signal processing, such as the theory of

scale-space [103, 62].

As we are interested in extracting new insights from the data, such as the

relevant temporal scales and the recurring events, we approach the problem

from a compression standpoint. The idea of using concepts from the theory

of compression in order to learn new facts about the structure of a dataset

has been widely considered and explored in the literature [82, 105]. Data

compression techniques geared towards learning have been employed for cat-

egorizing text [29], clustering data [17], devising similarity measures [99, 52],

in genomic analysis [36], data discretization [57], pattern mining [100, 68, 84],

stream mining [89], and as the base of parameter-free data mining meth-

ods [51].

We will see how we can define parametrized compression schemes for time

series in order to find the one that best compresses the data and, at the same

time, results as simple as possible. We employ the Minimum Description

Length framework [34], a formalization of the Occam’s Razor principle [91],

in order to select the best compression model among the many possible and

conceptually discern what is notable, and what can be ignored, in the data.

We will see how this approach deals with many of the challenges present

when analyzing real-world time series data, such as the presence of noisy

measurements, the occurrence of spurious and anomalous events and, ulti-

mately, the risk of over-fitting the data with models that would be hardly

general.

6 CHAPTER 1. INTRODUCTION

1.1 Thesis Outline

Below, we give a brief outline of the dissertation, summarizing the contents of

the following chapters. As most chapters are based on previous publications

by the author, we also give the appropriate references to them when this is

the case.

In Chapter 2: Sensor Data and Applications, we give the main moti-

vations behind this work and introduce the InfraWatch project.

In Chapter 3: Preliminaries and Background, we introduce fundamen-

tal material and concepts that will be used throughout the rest of the thesis,

especially in Chapter 4 and Chapter 5.

In Chapter 4: Identifying the Relevant Temporal Scales, we discuss

a method for discovering the most relevant scales of analysis, and their cor-

responding scale components, in time series data. This work was published

in the following paper [96]:

Vespier U., Knobbe A., Nijssen S., and Vanschoren J., MDL-based

Analysis of Time Series at Multiple Time-Scales, in Proceedings

ECML-PKDD 2012, Bristol, UK.

This work is also part of the following book chapter [95]:

Vanschoren, J., Vespier, U., Miao, S., Meeng, M., Cachucho, R.,

Knobbe, A., Large-scale sensor network analysis — Applications

in structural health monitoring, in Big Data Management, Tech-

nologies, and Applications, IGI Global, 2013

In Chapter 5: Mining Variable-Length Motifs at Multiple Scales, we

introduce a method for mining variable-length, and potentially overlapping,

motifs at multiple temporal scales in sensor-based time series data. This

work was published in the following paper [98]:

Vespier, U., Knobbe, A., Nijssen, S., Mining Characteristic Multi-

Scale Motifs in Sensor-Based Time Series, in Proceedings CIKM

2013, San Francisco, USA.

1.1. THESIS OUTLINE 7

In Chapter 6: Subsequences Clustering for Events Modeling, we dis-

cuss a distance measure and an associated method for the effective clustering

time-series subsequences for events modeling. This work was published in the

following paper [97]:

Vespier, U., Knobbe, A., Vanschoren, J., Miao, S., Koopman, A.,

Obladen, B., Bosma, C., Traffic Events Modeling for Structural

Health Monitoring, in Proceedings IDA 2011, Porto, Portugal.

This work is also part of a book chapter [95]:

Vanschoren, J., Vespier, U., Miao, S., Meeng, M., Cachucho, R.,

Knobbe, A., Large-scale sensor network analysis — Applications

in structural health monitoring, in Big Data Management, Tech-

nologies, and Applications, IGI Global, 2013

In Chapter 7: Interactive Time-Series Visualization, we introduce

a method and a software platform for visualizing terabyte sized time-series

dataset. This work was published in the following paper [6]:

Baggio, A., Vespier, U., Knobbe, A., Automated Selection of

Data-Adaptive Approximations for Large Time-Series Visualiza-

tion, in Proceedings Benelearn 2013, Nijmegen, the Netherlands

In Chapter 8: Conclusions, we draw the overall conclusions regarding this

work and highlight some final considerations about its impact and potential

future work.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Sensor Data and Complex

Systems

In this chapter, we discuss the context of this dissertation and the motivation

behind the presented work. We also present the InfraWatch project, the main

application and testbed for the methods discussed in the next chapters.

2.1 Big Data

As mentioned, the term Big Data has received a lot of attention over the

last years [64], although it is often cause of confusion as its meaning is not

always well-defined in all contexts. Big data is a broad term that refers to

the challenges in managing and analyzing large quantities of data.

A widely accepted definition of Big Data has been given by Gartner’s analysts

Beyer and Laney in a 2012 industry report [11] where the authors define the

term in relation to three main challenges:

Volume The ever-growing amount of data that institutions and companies

have to deal with offers serious challenges in terms of data management

and storage. Real-world examples range from the data collected by

astronomers with radio telescopes, to the massive amount of messages

9

10 CHAPTER 2. SENSOR DATA AND COMPLEX SYSTEMS

exchanged nowadays on social networking platforms such as Facebook

and Twitter. Novel storage and indexing methods, able to cope with

this huge amount of collected information, need to be employed.

Velocity A second important challenge is related to how long it takes to

process incoming data. For example, a credit card institution analyzing

massive streams of incoming transactions would like to detect potential

fraud without delay. Real-time processing methods are needed in order

to cope with the velocity challenge.

Variety Last but not least, Big Data comes in any type, both in structured

and unstructured form. Text, audio, video, sensor data, log files, and

combinations of these, are examples of data types found in Big Data

applications [15]. The development of methods able to cope with this

broad variety of data is another challenge posed by Big Data applica-

tions.

A great extent of the efforts aimed at solving big data problems revolve

around these three challenges, as well as a broad range of applications across

several science fields and industries. Sensor networks and monitoring is an

important one and represents the main focus of this thesis. In particular,

the rise of the Internet of Things [4, 5] is directly connected to the challenges

posed by the management and analysis of Big Data.

2.2 Sensor Networks and the Internet of Things

The last two decades have witnessed a tremendous growth in the availability

of sensor data collected from a multitude of systems in various application

domains [3, 16]. In fact, the wider availability of cheap sensor technology has

enabled large sensor networks that continuously monitor and analyze physical

systems such as infrastructures, cars [25, 45, 59, 32], airplanes [7, 107, 9, 87]

and, last but not least, the human body [14, 83].

The increasing presence of sensing devices coupled with the pervasiveness

of connectivity is paving the way for a scenario in which physical objects,

2.2. SENSOR NETWORKS AND THE INTERNET OF THINGS 11

humans and software communicate to achieve common goals by directly in-

teracting with the physical world. This paradigm is called Internet of Things

(IoT) [35, 5] and several applications of its concepts are already used in

production.

In a recent report [72] by McKinsey & Company, the authors categorize IoT

applications in three main areas:

• Tracking behavior

• Enhanced situational awareness

• Sensor-driven decision analytics

Companies and institutions are interested, first of all, in tracking and moni-

toring products and objects in real-time [54] in order to increase the efficiency

of their operations or fine-tune their business or pricing models. Consider, for

example, the case of a car insurance company that installs sensors in their cus-

tomers’ cars in order to monitor and model the behavior of drivers [90].

Situational awareness [106] is another key application area of the IoT. Large

sensors networks, in fact, can be deployed in infrastructures, such as roads,

buildings or bridges, or installed in certain areas to report on environmental

conditions. Data coming from the sensors can then be used to enhance

the awareness of decision makers about the observed events in real-time,

especially when data is coupled with tailored visualization technologies.

Ultimately, sensor networks can support long-term and complex decision

making. In the retail industry, for example, some companies are experi-

menting with sensors that continuously monitor shoppers [67, 63] as they

move through stores in order to measure how long they stand in front of

any given display and correlate it with what they ultimately buy. Data of

this kind can help, in the long run, by optimizing store layouts and increase

revenues.

Especially when long-term decision support is of interest, sensors networks

produce large volumes of data continuously over time. This opens up several

challenges both from a data management and from a data analysis perspec-

tive. Modern sensor networks have to be supported with state-of-the-art data

12 CHAPTER 2. SENSOR DATA AND COMPLEX SYSTEMS

management solutions in order to cope with the large amount of collected

data and ensure its effective storage, access and visualization.

Such large amounts of data, on the other hand, represent an opportunity to

apply data mining methods to better understand the observed system and

get insight into its behavior [1]. Moreover, as these data sources continuously

provide data over time, the research community is also focusing on methods

and algorithms to analyze information in a streaming fashion in order to

provide real-time insights [31].

2.3 Multi-Scale nature of Complex Systems

Sensor networks are often employed to monitor and analyze complex, dy-

namic systems, which exhibit non-obvious behavior. An important example

are systems affected by several phenomena at different temporal scales.

Consider, for example, the electrical system of an apartment whose aggre-

gate power consumption is measured by a smart meter [108, 58]. The time

series data collected by the smart meter would be affected by all the oper-

ational home appliances, heating units and lighting systems in the house.

As different home appliances are switched on at different times and have

diverse operational durations, their effect on the aggregate consumption can

range from short-term spikes, for example in the case of a boiler, to longer,

more equally distributed patterns, as for example in the case of a washing

machine [73]. For example, the time series in Figure 2.1 shows four days of

power usage from an apartment in the Smart* dataset [8]. In the data, there

is a clear long-term periodic component due to the cycles of the refrigerator.

Shorter-term patterns, however, show up superimposed in the data and cor-

respond to activations and deactivations of the various electrical appliances

in the house.

Another real-world example borrowed from civil engineering regards dikes [20,

70]. In dikes, it is typically of interest for civil engineers to measure the water

pressure at specified location of the infrastructure. The amount of pressure

depends on several factors and, also in this case, it is possible to classify them

2.4. SHM AND INFRAWATCH 13

00:00:00

12:00:00

00:00:00

12:00:00

00:00:00

12:00:00

00:00:00

12:00:00

1334448000

100

200

300

400

500

600

700

800

Figure 2.1: Four full days of power usage (in watts) from one of the houses

in the Smart* dataset [8].

along diverse temporal scales. For example, lunar tides indirectly affects wa-

ter pressure following both a half-daily cycle and a longer-term, two-weekly

cycle.

Analysing systems such as the ones described above requires methods capable

of dealing with the presence of multiple relevant scales of analysis in order

to extract insights at all levels and resolutions. This represents one of the

main challenges addressed in this thesis.

2.4 SHM and InfraWatch

One relatively recent application of sensor networks and sensor data analy-

sis is the monitoring of infrastructural assets such as bridges, tunnels, etc.

[21]. In fact, according to a recent survey from the US Federal Highway

Commission [28], on average 56% of the assessments to civil infrastructures

made by visual inspection are inappropriate, suggesting additional methods

of monitoring to guarantee the safety of the assets.

Structural Health Monitoring (SHM) is an interdisciplinary field at the inter-

section between civil engineering, signal processing, sensor technology, ma-

terial sciences, data management and mining, which is emerging in order

to find alternative or complementary solutions to the visual inspection. In

14 CHAPTER 2. SENSOR DATA AND COMPLEX SYSTEMS

fact, the use of advanced sensing and monitoring systems provides the op-

portunity to collect real-time information from infrastructures, in order to

monitor their performance and to deduce relevant knowledge for decisions on

their maintenance demand [26, 86]. Asset owners can use this information to

assess the life time perspective of (crucial) infrastructural links and to plan

the window within which maintenance can be conducted. When considering

the stock of infrastructural assets in view of service-life assessment, monitor-

ing and sensing systems are very valuable instruments that can be used to

extract actual information about its condition and performance.

In typical SHM scenarios, sensor systems are mounted in or to structures and

monitor the environmental as well as the internal condition of the measured

system over long periods of time. The collected sensor data is typically

continuously analyzed in order to detect inconsistencies or anomalies in how

the structure is behaving and notify potential problems in time. Aside from

notifying anomalies, SHM systems are also used to monitor and forecast

degradation mechanisms in order to plan maintenance in a more informed

way.

In the next section, we present a particular SHM project in detail. This

project and its data will serve as a testbed for a great extent of the methods

and algorithms presented in this thesis.

2.4.1 The InfraWatch project

InfraWatch is a project that is part of a Dutch STW’s funded program called

Integral Solutions for Sustainable Construction (IS2C). The program is com-

posed of nine research projects with the common goal of setting new stan-

dards and advancing the state of the art in the field of sustainable construc-

tion and service-life assessment.

As part of the IS2C program, InfraWatch1 focuses on sensing, monitoring

and degradation mechanism from a data analysis perspective. Subject of the

project is an important Dutch highway bridge: the Hollandse Brug. The Hol-

1http://www.infrawatch.com

2.4. SHM AND INFRAWATCH 15

Figure 2.2: Picture of the Hollandse Brug, which connects the ‘island’

Flevoland to the province Noord-Holland.

landse Brug is a bridge between the Flevoland and Noord-Holland provinces

and is located at the place where the Gooimeer joins the IJmeer (see Figure

2.2). The bridge was opened in June 1969 and National Road A6 uses it.

There is also a rail connection parallel to the highway bridge, as well as a

lane for cyclists on the west side of the car bridge.

In April 2007, it was announced that measurements would have shown that

the bridge did not meet the quality and security requirements. Therefore,

the bridge was closed in both directions for heavy traffic on April 27, 2007.

The repairs were launched in August 2007 and a consortium of companies,

Strukton, RWS and Reef has installed a monitoring configuration underneath

the first south span of the Hollandse Brug with the main aim to collect data

for evaluating how the bridge responds to load. The sensor network is part

of the strengthening project which was necessary to upgrade the bridge’s

capacity by overlaying.

16 CHAPTER 2. SENSOR DATA AND COMPLEX SYSTEMS

The monitoring system comprises 145 sensors that measure different as-

pects of the condition of the bridge, at several locations along the bridge

(see Figure 2.3 for an illustration). The following types of sensors are em-

ployed [55, 56]:

• 34 ‘geo-phones’ (vibration sensors) that measure the vertical movement

of the bottom of the road-deck as well as the supporting columns.

• 16 strain gauges embedded in the concrete, measuring horizontal lon-

gitudinal strain, and an additional 34 gauges attached to the outside.

• 28 strain gauges embedded in the concrete, measuring horizontal strain

perpendicular to the first 16 strain gauges, and an additional 13 gauges

attached to the outside.

• 10 thermometers embedded in the concrete, and 10 attached on the

outside.

Furthermore, there is a weather station, and a video-camera provides a con-

tinuous video stream of the actual traffic on the bridge. Additionally, there

are also plans to monitor the adjacent railway bridge.

The current monitoring set-up is clearly providing many challenges for data

management. The 145 sensors are in fact producing data at rates of 100

Hz, which can amount to a gigabyte of data per day. Adding to that is the

continuous stream of video.

Project goals and expectations

InfraWatch is, primarily, a Structural Health Monitoring project and its goals

are directly related to questions about the observed infrastructure from a civil

engineering perspective. The following tasks, in particular, are of importance

to the civil engineers involved in the project:

• obtain a summary of the major phenomena affecting the bridge infra-

structure over time and their impact.

• given historical sensor data from the bridge, obtain a qualitative and

2.4. SHM AND INFRAWATCH 17

A

B

C1

C2

Geophone Strain X Strain Y Temperature

222

221
219

220

217

218

207

216
206

205
203

204
202

201

200

246

245 243

244

241

242

239

240
238

237 235

236
234

233

232

224 223 209
208

188

189

190

187

186

185

172

173

174

155

154

153

135

136

137

118

117

116

109

110

111

102

101

100

183 181 179 177 175

184 182 180 178 176

314
164

165

166

158

159

160

167

168

161

163

162

312

313

310

311

156

157

148

149

150

140

141

142

151

152

143

145

144

308

309

306

307

138

139

130

131

132

124

125

126

133

134

127

129

128

304

305

302

303

119

120

114 112

115 113

107 105 103

108

106 104

197

198

195

196

318

319

193

194

191

192

316

317

Z
X

Y

A B C
as b c d 2 e f g hf'

strook 8 strook 7 strook 6 strook 5 strook 4 strook 3 strook 2

300

301315

Figure 2.3: Diagram explaining the individual sensor placement on the Hol-

landse Brug.

quantitative estimate of the structural health of the Hollandse Brug.

• given the current sensor network deployment, obtain a new configura-

tion of sensors, possibly employing fewer sensors, that is equivalent or

comparable in terms of collected information.

In this thesis, we provide fundamental data mining methods and algorithms

that can be employed to design a solution for the tasks above and related

tasks involving sensors monitoring and analysis of systems.

Technical challenges

In order to make the goal of InfraWatch feasible from a data mining perspec-

tive, we need to identify a set of technical tasks which could serve, paired

with domain knowledge in civil engineering, as basic tools to provide a solu-

tion. Moreover, as the bridge is affected by phenomena of different nature at

18 CHAPTER 2. SENSOR DATA AND COMPLEX SYSTEMS

different temporal scales, the methods and solutions will have to cope with its

multi-scale nature. The tasks we are interested in are described below:

• given a sensor-based time series, identify which are the relevant tem-

poral scales of analysis.

• given a sensor-based time series, identify which are the recurring pat-

terns in the data at multiple temporal scales.

In addition to the tasks above, we are also interested in visualizing effec-

tively the large amount of time series data produced by the InfraWatch

project.

Chapter 3

Preliminaries and

Background

As discussed in the previous chapters, the primary focus of this thesis is

the unsupervised analysis of sensor data collected from complex multi-scale

systems. In this chapter, we review the main background concepts and tools

that lay the foundations and prepare the discussion for the material in the

remaining chapters.

We will start by introducing the concept of convolution and signal filter-

ing [85]. As we deal with noisy measurements from real-world sensor net-

works, we will show how convolution and filtering can be used to reduce

the effect of noise and support several other time series manipulation tasks.

Building on the concept of convolution, we will then present a fundamental

tool employed in the rest of the thesis that supports the analysis of a time

series at multiple temporal scales: the scale-space image [103]. Finally, as

our main focus is on the unsupervised modeling of phenomena in time series

data, we will introduce the Minimum Description Length principle as our

model selection framework of choice [34], motivate its adoption and discuss

a simple application of it to noise removal.

19

20 CHAPTER 3. PRELIMINARIES AND BACKGROUND

3.1 Preliminaries

We start by giving some fundamental definitions used in this chapter and

throughout the thesis. We deal with finite sequences of numerical measure-

ments, collected by observing some property of a system with a sensor, and

represented in the form of time series as defined below.

Definition (Time Series). A time series of length n is a finite sequence

of values x = x[1], . . . , x[n] of finite precision1.

Throughout the thesis, we assume that the measurements are collected at

uniformly spaced time points and according to a fixed sampling rate.

In many contexts, it is of particular interest to refer only to certain contiguous

portions of a time series or subsequences, as defined below:

Definition (Subsequence). A subsequence x[a : b] of a time series x is

defined as follows:

x[a : b] = (x[a],x[a+ 1], . . . ,x[b]), a < b

3.2 Convolution and Filtering

Convolution is arguably one of the most important techniques in signal pro-

cessing, for both the one-dimensional (time series) and two-dimensional case

(images), and the fundamental operation in linear filtering. From a mathe-

matical standpoint, convolution combines two functions to produce a third

one, as defined below.

Definition (Convolution). Given two functions f and g, their convolu-

tion f∗g is defined as the integral of their product after one of the functions

is reversed and shifted:

(f ∗ g)(t) =

∫ ∞
−∞

f(τ) g(t− τ) dτ

1We assume 32-bit floating point values throughout the rest of this dissertation.

3.2. CONVOLUTION AND FILTERING 21

When referring to the process of filtering, the function f is said to be the

signal to be filtered while the function g is called convolution filter kernel.

Kernel functions directly define the properties of the filter. Specific kernel

functions can be defined for amplification and attenuation, shifting or echoing

of a signal. Other classes of kernel functions, as we will see shortly, can be

used for low-pass and high-pass frequency filtering.

3.2.1 Convolution and LTI Systems

Although, in the context of this thesis, convolution is mainly used as a fil-

tering operation, it is worth mentioning its deep connection with the theory

of linear time-invariant (LTI) systems [85]. A system, defined by an input

signal x(t) and output signal y(t), is said to be linear time-invariant if it sat-

isfies the linearity and time-invariance properties. Linearity refers to the fact

that a linear mapping exists between the inputs and the output of the sys-

tem. More formally, given two inputs x1(t) and x2(t), respectively producing

outputs y1(t) and y2(t), the scaled and summed input a1x1(t) + a2x2(t) will

produce a1y1(t) + a2y2(t), where a1 and a2 are scalars. The property holds

for any arbitrary number of terms.

On the other hand, time-invariance means that the output of the system does

not depend on the particular time a given input is applied. In detail, given

an input x(t) and an output y(t), the delayed input x(t− δ) will produce the

delayed output y(t− δ).

Without diving into the specifics of the theory, we note that the operation

of convolution fully describes the output of any arbitrary LTI system with a

known impulse response. In fact, given an input signal x(t) and an impulse

response h(t), the output of the associated LTI system is given by the con-

volution x(t) ∗ h(t). LTI systems and convolution play an important role in

several technical fields such as signal processing, electronics, seismology [2],

spectroscopy and control theory.

22 CHAPTER 3. PRELIMINARIES AND BACKGROUND

3.2.2 Discrete Convolution

Although we defined the convolution operation in the continuous domain, in

practical cases, however, we deal with finite signals in the discrete domain

(time series). The definition of convolution in the discrete case is presented

below.

Definition (Discrete Convolution). Given a time series x of length n

and a convolution filter kernel h of length m, the result of the discrete

convolution x ∗ h is the time series y of length n, defined as:

y[t] =

m/2∑
j=−m/2+1

x[t− j] h[j]

Note that since x is finite, x[t − j] may be undefined. To account for these

boundary effects, x is padded with m/2 zeros before and after its defined

range.

If not specified otherwise, from now on we will only refer to the discrete case

of convolution.

3.2.3 Noise Filtering via Gaussian Smoothing

A common use of the convolution operator is smoothing a signal to remove

noise or finer details. Smoothing can be obtained by employing several types

of kernels like mean, median and Gaussian. In [12], the authors propose a

methodology to mine interesting correlations in multivariate time series data

based on generating features obtained by convoluting the input data with

different kernels in order to enhance or reduce certain characteristic.

Gaussian smoothing, however, is a common noise filtering technique, as it

cuts high frequencies, leaving untouched the low ones. It also has other

useful properties as we will see in the next section.

Gaussian smoothing is based on the Gaussian kernel [75], as defined be-

3.2. CONVOLUTION AND FILTERING 23

low:

Gσ =
1√

2πσ2
e−

x2

2σ2

which, in the scope of this thesis, has a mean of 0, standard deviation σ and

area under the curve equal to 1.

We can now define Gaussian smoothing as a particular convolution operation

employing a Gaussian kernel.

Definition (Gaussian Smoothing). Given a time series x of length n and

a Gaussian kernel Gσ discretized into m values, the result of the Gaussian

smoothing is the time series y of length n, defined as:

x[i] ∗Gσ[i]

Note that to capture almost all non-zero values, we define m = b3σc.

The convolution acts as a smoothing filter which smooths each value x[t]

based on its surrounding values. The amount of removed detail is directly

proportional to the standard deviation σ (and thus m), from now on referred

to as the scale parameter. In the limit, when σ → ∞, the result of the

Gaussian convolution converges to the mean of the signal x over the entire

period involved.

To better picture the effect of Gaussian smoothing, consider the example in

Figure 3.1. The top plot shows a signal collected from a strain sensor and the

middle plot shows the same signal after being convoluted with a Gaussian

kernel having σ = 2. The bottom plot highlights the part of the signal that

has been removed by the filtering operation. Note how this residual signal

does not just contain noise but it is still somewhat influenced by phenomena

actually present in the signal, i.e. the peaks induced by passing vehicles.

Designing the right noise removal filter ultimately boils down to choosing

the right σ parameter for the given data.

In general, however, the choice of σ is strictly related to the task at hand

and, consequently, to what is actually considered ‘noise’ in the given data.

Consider, for example, a time series representing several months of strain

measurements from a bridge deck at a high sampling rate (say 100 Hz or

24 CHAPTER 3. PRELIMINARIES AND BACKGROUND

0 500 1000 1500 2000 2500

−20

−10

0

10

20

30

40

Input Signal

0 500 1000 1500 2000 2500

−20

−10

0

10

20

30

40

Noise-filtered Signal

0 500 1000 1500 2000 2500

−10

−5

0

5

10

Filtered Noise

Figure 3.1: An example application of a Gaussian-based noise removal filter.

more). A typical bridge is affected by several phenomena at multiple tempo-

ral scales, ranging from events with a duration in the order of seconds such as

passing cars and trucks, slightly longer ones such as congestion and weather

conditions, to long-term ones like seasonal effects. The collected time series

will represent all of these phenomena as a mixture. If we are interested in

all the phenomena from the shortest to the longest, our concept of noise will

coincide with anything lying below the temporal scale of the traffic events.

On the other hand, if we are just interested in studying the effect of sea-

sonal changes on the signal, we can ignore all the phenomena having shorter

temporal scales and safely discard them as noise. This simple example il-

lustrates how the concept of noise and the concept of scale of analysis are

actually strictly interrelated and that a precise interpretation of noise can

only be given by first looking at the task at hand.

In an unsupervised setting, it is not always clear what temporal scales we

should look at and thus it is not always possible to determine in advance the

3.3. SCALE-SPACE IMAGE 25

right value for σ. It follows from the definitions above that, by varying the

parameter σ, Gaussian smoothing can be used to remove a fixed amount of

detail from a signal. In other words, Gaussian smoothing can be interpreted

as an operator that retains the information present above a certain temporal

scale, where the scale is directly proportional to σ. This interpretation of

Gaussian smoothing as scale parametrization is the core concept behind scale-

space theory, a mathematical construction that we will use in the rest of the

thesis and that we introduce in the next section.

3.3 Scale-Space Image

The scale-space image [103] is a scale parametrization technique for one-

dimensional signals2 based on convolution. Given a signal x, the family of

σ-smoothed signals Φx over scale parameter σ is defined as follows:

Φx(σ) = x ∗ gσ , σ > 0

where gσ is a Gaussian kernel having standard deviation σ, and Φx(0) =

x.

The signals in Φx define a surface in the time-scale plane (t, σ) known in

the literature as the scale-space image [62, 103]. This visualization gives a

complete description of the scale properties of a signal in terms of Gaussian

smoothing. Moreover, it has other properties useful for segmentation, as we

will see in Section 4.3.1.

For practical purposes, the scale-space image is quantized across the scale

dimension by computing the convolutions only for a finite number of scale

parameters. More formally, for a given signal x, we fix a set of scale param-

eters

S = {2i | 0 ≤ i ≤ σmax ∧ i ∈ N}

and we compute Φx(σ) only for σ ∈ S where σmax is such that Φx(σ) is

approximately equal to the mean signal of x.

2From now on, we will use the term signal and time series interchangeably.

26 CHAPTER 3. PRELIMINARIES AND BACKGROUND

Φx(0)

Φx(2
1)

Φx(2
2)

Φx(2
3)

Φx(2
4)

Φx(2
5)

Φx(2
6)

Φx(2
7)

Φx(2
8)

Φx(2
9)

Φx(2
10)

Figure 3.2: Scale-space image of an artificially generated signal totalling

259 200 points.

As an example, Figure 3.2 shows the scale-space image of an artificially

generated signal. The top plot represents the original signal, constructed by

three components at different temporal scales: a slowly changing and slightly

curved baseline, medium-term events (bumps) and short-term events (peaks).

It is easy to visually verify that, by increasing the scale parameter, a larger

amount of detail is removed. In particular, the peaks are smoothed out at

scales greater than σ = 24, and the bumps are smoothed out at scales greater

than σ = 28, after which only the baseline remains.

3.3.1 Relation to the Zero-Crossings of Derivatives

The scale-space image has a number of interesting properties. An important

one, that we will exploit throughout the thesis, is a property of Gaussian

convolution that relates its zero-crossings, and those of its derivatives, to the

scale parameter σ. In fact, as σ increases, the number of zero-crossings of the

convoluted signal and of all its n-th derivatives can only remain constant or

decrease [103]. Figure 3.3 demonstrates this concept in practice. The figure

shows the relationship between the scale parameter σ and the number of zero-

3.4. MINIMUM DESCRIPTION LENGTH 27

0 1 2 4 8 16 32

Scale

0

200

400

600

800

1000

1200

1400

1600

1800

N
um

be
ro

fz
er

o-
cr

os
si

ng
s

Figure 3.3: Relationship between the scale parameter and the number of

zero-crossings of the first derivative of the signal shown in Figure 3.1.

crossing of the first derivative of the signal discussed in Figure 3.1.

3.4 Minimum Description Length

A recurring idea in this thesis is that learning and finding regularities in data

can be seen as a form of compression. Compression is the act of representing

some given data in the most compact way possible, such that its compressed

representation has a lower number of bits than the original one [80]. The

idea that the better we can compress a given data set, the more we can learn

about it is a powerful one and it is formalized by the Minimum Description

Length principle.

The Minimum Description Length [34] is an information-theoretic model se-

lection framework that selects the best model according to its ability to

compress the given data. In our context, the two-part MDL principle states

that the best model M to describe the signal x is the one that minimizes the

sum L(M) + L(x |M), where

28 CHAPTER 3. PRELIMINARIES AND BACKGROUND

• L(M) is the length, in bits, of the description of the model,

• L(x | M) is the length, in bits, of the description of the signal when

encoded with the help of the model M .

Given some data, MDL looks for a trade-off between the accuracy of a model

and its complexity. Conceptually, MDL is a practical instantiation of the Oc-

cam’s razor principle which states that, among several different hypotheses,

the simplest is often also the best [91]. Moreover, MDL naturally protects

against over-fitting as the principle takes into account the notion of model

complexity and it discards models that are too complicated.

As we are dealing with unsupervised learning from time series data and we

are interested in models that are as general as possible, the properties of

the MDL framework makes it an ideal choice when designing model selection

procedures.

In fact, prior work [42, 78, 88, 19, 10, 52] has already validated the effective-

ness of the MDL approach when dealing with time series data and, through-

out this thesis, we will further investigate its applicability to the analysis of

sensor data.

3.4.1 Time Series Discretization

In order to use the MDL principle, we need to work with a quantized input

signal and scale-space image. Because of this, we assume that the values

v of the input signal x (and of the scale-space components Φx(σ) for each

considered σ) have been quantized to a finite number of symbols by employing

the function defined below:

Q(v) =
⌊ v −min(x)

max(x)−min(x)
l
⌋
− l

2

where l, assumed to be even, is the number of bins to use in the discretization

while min(x) and max(x) are respectively the minimum an maximum value

in x. Throughout the rest of the thesis, we assume l = 256.

3.4. MINIMUM DESCRIPTION LENGTH 29

One question that might arise is if such a quantization removes meaning-

ful information from the time series. In [42], the authors show that the

effect of quantization is rather modest on several time series from various

domains.

3.4.2 MDL Noise Filtering

In 3.2.3, we have shown how Gaussian convolution can be used to remove

high-frequency components from a given signal and, thus, serve as a noise

removal filter. We stressed, however, that the choice of the parameter σ, is a

critical one and strictly depends on the characteristics of the data at hand.

In this section, we use the Minimum Description Length principle to select

the optimal σ given a time series, where by optimal we mean the one that

retains the most characteristic information in the data.

Assume we are given a time series x of length n and, as we are using MDL,

its values have been discretized to a fixed cardinality (in this example, 256

possible values) using the quantization function Q introduced in above.

In order to frame the problem from an MDL perspective, we first have to

define what the possible models for x are. We consider the components of

the scale-space Φx, quantized to different cardinalities, as models. In other

words, given a scale parameter σ and a cardinality c, we define a model for

x as Mσ,c = Q(Φx(σ), c), where Q is a quantization function.

The MDL principle states that the best model to compress x minimizes the

sum L(M) +L(x |M). We define the description length of a model in terms

of its entropy as nH(x), where H is the entropy function. The description

length of x when encoded with the help of a model refers to the complexity of

the residual nH(x−M), that is the information discarded by the model.

Figure 3.4 shows the results of the approach that we just discussed in a

practical scenario. The top plot depicts the input time series: a detail of

a peak in a bridge’s strain sensor signal caused by a passing vehicle. The

plot in the middle shows the time series after being Gaussian-smoothed with

the optimal σ, selected as discussed. Note how both the overall shape of the

30 CHAPTER 3. PRELIMINARIES AND BACKGROUND

0 200 400 600 800 1000

−1

0

1

2

3

4

5

0 200 400 600 800 1000

−1

0

1

2

3

4

5

0 200 400 600 800 1000

−1

0

1

2

3

4

5

Figure 3.4: Example of MDL-based noise filtering.

signal and the subtle vibrations iduced by the passing truck are retained.

The bottom plot, finally, shows the optimal model (quantized) according to

MDL. For this particular example, we considered σ ∈ {2, 22, 23, 24, 25, 26} and

the cardinality c ∈ {4, 8, 16, 32, 64, 128, 256}. The optimal model is given by

σ = 23 and c = 8.

A similar approach to noise removal has been taken by Miao et al. [71]

as a preprocessing step in the context of pattern detection in time series

data.

Chapter 4

Identifying the Relevant

Temporal Scales

4.1 Introduction

When monitoring complex physical systems over time, one often finds mul-

tiple phenomena in the data that work on different time scales. If one is

interested in analyzing and modeling these individual phenomena, it is cru-

cial to recognize these different scales and separate the data into its under-

lying components. In this chapter, we present a method for extracting the

time scales of various phenomena present in large time series. The method

combines concepts from the signal processing domain with feature selection

and the Minimum Description Length principle [34] which we introduced in

Chapter 3.

We introduced the need for analyzing time series data at multiple time scales

in Chapter 1 and we discussed in Chapter 2 how this is nicely demonstrated

by the InfraWatch project.

In this project, we employ a range of sensors to measure the dynamic response

of the Hollandse Brug, a large Dutch highway bridge to varying traffic and

weather conditions. When viewing this data (see Fig. 4.1a), one can easily

distinguish various transient events in the signal that occur on different time

31

32 CHAPTER 4. IDENTYFING THE RELEVANT SCALES

scales. Most notable are the gradual change in strain over the course of

the day (as a function of the outside temperature, which influences stiffness

parameters of the concrete), a prolonged increase in strain caused by rush

hour traffic congestion, and individual bumps in the signal due to cars and

trucks traveling over the bridge. In order to understand the various changes

in the sensor signal, one would benefit substantially from separating out the

events at various scales. The main goal of the work described here is to do

just that: we consider the temporal data as a series of superimposed effects

at different time scales, establish at which scales events most often occur,

and from this we extract the underlying signal components.

We approach the scale selection problem from a Minimum Description Length

(MDL) perspective (see Section 3.4). The motivation for this is that we need

a framework in which we can deal with a wide variety of representations for

scale components. The MDL framework was shown to be sufficiently general

to provide this flexibility by Hu et al. [42] for the problem of choosing the

best model for a given signal. Our main assumption here is that separating

the original signal into components at different time scales will simplify the

shape of the individual components, making it easier to model them sepa-

rately. Our results show that, indeed, these multiple models outperform (in

terms of MDL score) a single model derived from the original signal. While

introducing multiple models incurs the penalty of having to describe these

multiple models, there are much fewer ‘exceptions’ to be described compared

to the single model, yielding a lower overall description length. For instance,

in the sensor data of Fig. 4.1a, cars are often passing in one direction while

there is rush hour congestion in the opposite direction. Using multiple mod-

els, this is modeled accurately, while a single model will easily ignore these

events.

As we discussed in detail in Section 3.3, the analysis of time scales in time

series data is often approached from a scale-space perspective, which involves

convolution of the original signal with Gaussian kernels of increasing size [103]

to remove information at smaller scales. By subtracting carefully selected

components of the scale-space, we can effectively cut up the scale space into k

ranges. In other words, signal processing offers methods for producing a large

4.1. INTRODUCTION 33

0:00
1:00

2:00
3:00

4:00
5:00

6:00
7:00

8:00
9:00

10:00
11:00

12:00
13:00

14:00
15:00

16:00
17:00

18:00
19:00

20:00
21:00

22:00
23:00

24:00

Time

S
tr

a
in

 (
µ
m
/m

)

(a) (b)

Figure 4.1: (a) One day of strain measurements from a large highway bridge

in the Netherlands. The multiple external factors affecting the bridge are

visible at different time scales. (b) A detail of plot (a) showing one of the

peaks caused by passing vehicles.

collection of derived features, and the challenge we face in this chapter is how

to select a subset of k features, such that the original signal is decomposed

into a set of meaningful components at different scales.

Our approach applies the MDL philosophy to various aspects of modeling:

choosing the appropriate scales at which to model the components, deter-

mining the optimal number of components (while avoiding overfitting on

overly specific details of the data), and deciding which class of models to

apply to each individual component. For this last decision, we propose two

classes of models representing the components respectively on the basis of

a discretization and a segmentation scheme. For this last scheme, we allow

three levels of complexity to approximate the segments: piecewise constant

approximations, piecewise linear approximations, as well as quadratic ones.

These options result in different trade-offs between model cost and accuracy,

depending on the type of signal we are dealing with.

A useful side product of our approach is that it identifies a concise represen-

tation of the original signal. This representation is useful in itself: queries

run on the decomposed signal may be answered more quickly than when

run on the original data. Furthermore, the parameters of the encoding may

indicate useful properties of the data as well.

The rest of the chapter is organized as follows. Section 4.2 introduces the

concept of scale-space decomposition. Section 4.3 shows how we encode

34 CHAPTER 4. IDENTYFING THE RELEVANT SCALES

the signal decompositions and use MDL to select the best subset of scales.

Section 4.4 presents an empirical evaluation of our method on both real-world

and artificial data. Section 4.5 links our method to related work. Finally,

Section 4.6 states our main conclusions and ideas for future work.

4.2 Scale-Space Decomposition

In this section, we show how to manipulate the scale-space image to filter

out the effects of transient events in a specific range of scales. This will lead

to the definition of a signal decomposition scheme.

Along the scale dimension of the scale-space image, short-time transient

events in the signal will be smoothed away sooner than longer ones. In

other words, we can associate with each event a maximum scale σcut such

that, for σ > σcut, the transient event is no longer present in Φx(σcut). This

fact leads to the following two observations:

• Given a signal scale-space image Φx, the signal Φx(σ) is only affected

by the transient events at scales greater than σ. This is conceptually

equivalent to a low-pass filter in signal processing.

• Given a signal scale-space image Φx and two scales σ1 < σ2, the signal

Φx(σ1)−Φx(σ2) is mostly affected by those transient events present in

the range of scales (σ1, σ2). This is similar to a band-pass filter in signal

processing.

As an example, reconsider the signal x and its scale-space image Φx of Fig-

ure 3.2. Figure 4.2 shows (from top to bottom):

• the signal Φx(0) − Φx(24), which is the result of a high-pass filtering;

this feature represents the short-term events (peaks),

• the signal Φx(24)−Φx(210), which is the result of a band-pass filtering;

this feature represents the medium-term events (bumps),

• the signal Φx(210), which is the result of a low-pass filtering; this feature

represents the long-term trend.

4.2. SCALE-SPACE DECOMPOSITION 35

Φx (0)−Φx (24)

Φx (24)−Φx (210)

Φx (210)

Figure 4.2: Examples of signal decomposition obtained from the scale-space

image in Figure 3.2.

Generalizing the example in Figure 4.2, we can define a decomposition scheme

of a signal x by considering adjacent ranges of scales of the signal scale-space

image. We formalize this idea below.

Definition (Scale-Space Decomposition). Given a signal x and a set of

k − 1 scale parameters C = {σ1, . . . , σk−1} (called the cut-points set) such

that σ1 < . . . < σk−1, the scale decomposition of x is given by the set of

component signals Dx(C) = {x1, . . . ,xk}, defined as follows:

xi =


Φx(0)− Φx(σ1) if i = 1

Φx(σi−1)− Φx(σi) if 1 < i < k

Φx(σk−1) if i = k

Note that for k components we require k− 1 cut-points. This decomposition

has several elegant properties:

• xk can be seen as the baseline of the signal, as obtained by a low-pass

filter;

• xi for 1 ≤ i < k are signals as obtained by a band-pass filter, and can

be used to identify transient events;

• ∑k
i=1 xi = x, i.e., the original signal can be recovered from the decom-

position.

36 CHAPTER 4. IDENTYFING THE RELEVANT SCALES

4.3 MDL Scale Decomposition Selection

Given an input signal x, the main computational challenge we face is twofold:

• find a good subset of cut-points C such that the resulting k components

of the decomposition Dx(C) optimally capture the effect of transient

events at different scales,

• select a representation for each component, according to its inherent

complexity.

As stated before, the rationale behind the scale decomposition is that it is

easier to model the effect of a single class of transient events at a given scale

than to model the superimposition of many, interacting transient events at

multiple scales. We thus need to trade off the added complexity of having

to represent multiple components for the complexity of the representations

themselves.

We approach this model selection problem by using the Minimum Description

Length (MDL) principle introduced in Section 3.4. The possible candidate

models depend on the scale decomposition Dx(C) considered1 and on the

representations used for its individual components. An ideal set of represen-

tations would adapt to the specific features of every single component, result-

ing in a concise summarization of the decomposition and, thus, of the signal.

In order to apply the MDL principle, we need to define a model MDx(C) for

a given scale decomposition Dx(C) and, consequently, how to compute both

L(MDx(C)) and L(x | MDx(C)). The latter term is the length in bits of the

information lost by the model, i.e., the residual signal x−MDx(C).

As the MDL framework is only applicable to discrete data, we assume that the

input signal x and the results of all the subsequent operations are discretized

as discussed in Section 3.4.1. In the next sections, we introduce the proposed

representation schemes for the components and define the bit complexity of

the residual and the model selection procedure.

1Including the decomposition formed by zero cut-points (C = ∅), i.e., the signal itself.

4.3. MDL SCALE DECOMPOSITION SELECTION 37

4.3.1 Component Representation Schemes

Within our general framework, many different approaches could be used for

representing the components of a decomposition. In the next paragraphs we

introduce two such methods.

Discretization-based representation

In some components of our data transient events always occur with similar

amplitudes, mixed with long stretches of baseline values (see Figure 4.2).

Hence, a desirable encoding could be one that captures this repetitiveness

in the data by giving short codes to long stretches of the baseline and the

commonly occurring amplitudes. Unfortunately, our original discretization

is too fine-grained to capture regular occurrences of similar amplitudes. As

a first representation, we hence propose to also consider more coarse-grained

discretizations of the original range of values. We do this by discretizing each

value v in a component to a value bQ(v)/2ic, where several values for i are

considered for each component, typically i ∈ {2, 4, 6}. By doing so, similar

values will be grouped together in the same bin. The resulting sequence of

integers is compacted further by performing run-length encoding, resulting

in a string of (v, l) pairs, where l represents the number of times value v is

repeated consecutively. This string is finally encoded using a Shannon-Fano

or Huffman code (see Section 4.3.2).

As a simplified illustration of how the MDL principle helps here to identify

components, consider data generated by the expression (67)n(01)n (4n inte-

gers from the range {0, . . . , 23 − 1}), where we assume n and the range are

fixed. In this data, each symbol occurs with the same frequency; we can en-

code the time series hence with − log2(1/4) · 4 ·n = 8n bits for the data, plus

8 log n bits for the dictionary of frequencies. Consider now the decomposition

of the signal into two time series, 62n02n and (01)2n. The first component,

of which the run-length encoding is (6, 2n)(0, 2n), can be encoded using only

2 bits for the time series (as there is only one possible run-length value, we

use 0 bits to encode the run-lengths), 8 log n bits for the dictionary of ampli-

38 CHAPTER 4. IDENTYFING THE RELEVANT SCALES

tudes, and 3 log n bits to identify the length of the one run-length (log n bit

for identifying the number of run-lengths, in this case one, log n to identify

the one run-length present, and log n to identify its frequency, from which the

encoding with 0 bits follows). The second component can be encoded using

4n bits for the time series, as well as 8 log n bits for the dictionary. Assuming

we also use 1 bit per component to identify the type of encoding used, this

gives us an encoding in 4 + 19 log n+ 4n bits. Comparing this to 8n+ 8 log n

bits, for n ≥ 11 we will hence correctly identify the two components in this

simplified data.

Segmentation-based representation

The main assumption on which we base this method is that a clear transient

event can be accurately represented by a simple function, such as a poly-

nomial of a bounded degree. Hence, if a signal contains a number of clear

transient events, it should be possible to accurately represent this signal with

a number of segments, each of which represented by a simple function.

Given a component xi of length n, let

z(xi) = {t1, t2, . . . , tm}, 1 < ti ≤ n

be a set of indexes of the segment boundaries.

Let fit(xi[a : b], di) be the approximation of xi[a : b] obtained by fitting

a polynomial of degree di. Then, we represent each component xi with the

approximation x̂i, such that:

x̂i[0 : z1] = fit(xi[0 : z1], di)

x̂i[zi : zi+1] = fit(xi[zi : zi+1], di), 1 ≤ i < m

x̂i[zm : n] = fit(xi[zm : n], di)

Note that approximation x̂i is quantized again by reapplying the function Q

to each of its values.

For a given k-components scale decomposition Dx(C) and a fixed polyno-

mial degree for each of its components, we calculate the complexity in bits

4.3. MDL SCALE DECOMPOSITION SELECTION 39

of the model MDx(C), based on this representation scheme, as follows. Each

approximated component x̂i consists of |z(xi)| + 1 segments. For each seg-

ment, we need to represent its length and the di + 1 coefficients of the fitted

polynomial. The length lsi of the longest segment in x̂i is given by

lsi = max(z1 ∪ {zi+1 − zi | 0 < i ≤ m})

We therefore use log2(lsi) bits to represent the segment lengths, while for the

coefficients of the polynomials we employ floating point numbers of fixed2 bit

complexity c. The MDL model cost is thus defined as:

L(MDx(C)) =
k∑
i=1

(|z(xi)|+ 1) (dlog2(lsi)e+ c (di + 1))

So far we assumed to have a set of boundaries z(xi), but we did not specify

how to compute them. A desirable property for our segmentation would be

that a segmentation at a coarser scale does not contain more segments than

a segmentation at a finer scale. The scale space theory assures that there are

fewer zero-crossing of the derivatives of a signal at coarser scales [103]. In our

segmentation, we use the zero-crossings of the first and second derivatives.

More formally, we define the segmentation boundaries of a component xi to

be

z(xi) =

{
t ∈ R

∣∣∣∣ dxidt (t) = 0

}⋃{
t ∈ R

∣∣∣∣ d2xi
dt

(t) = 0

}
.

Figure 4.3b shows an example of segmentation obtained as above using fitted

polynomials of degree 1.

However, many other segmentation algorithms are known in the literature

[48, 53] and all of them can be interchangeably employed in this context.

4.3.2 Residual Encoding

Given a model MDx(C), its residual r = x −∑k
i=1 x̂i, computed over the

components approximations, represents the information of x not captured

2In our experiments c = 32.

40 CHAPTER 4. IDENTYFING THE RELEVANT SCALES

(a) (b)

Figure 4.3: Example of discretization-based encoding (a) and segmentation-

based encoding with first degree polynomial approximations (the markers

show the zero-crossings) (b).

by the model. Having already defined the model cost for the two proposed

encoding schemes, we only still need to define L(x | MDx(C)), i.e., a bit

complexity L(r) for the residual r.

Here, we exploit the fact that we operate in a quantized space; we encode each

bin in the quantized space with a code that uses approximately − log(P (x))

bits, where P (x) is the frequency of the xth bin in our data. The main

justification for this encoding is that we expect that the errors are normally

distributed around 0. Hence, the bins in the discretization that reflect a

low error will have the highest frequency of occurrences; we will give these

the shortest codes. In practice, such codes can be obtained by means of

Shannon-Fano coding or Huffman coding; as Hu et al. [42] we use Huffman

coding in our experiments.

4.3.3 Model Selection

We can now define the MDL score that we are optimizing as follows:

Definition (MDL Score). Given a model MDx(C), its MDL score is de-

fined as:

L(MDx(C)) + L(r)

In the case of discretization-based encoding, the MDL score is affected by

the cardinality used to encode each component. In the case of segmentation-

4.4. EXPERIMENTS 41

based encoding the MDL score depends on the boundaries of the segments

and the degrees of the polynomials in the representation. In both cases, also

the cut-points of the considered decomposition affect the final score.

The simplest way to find the model that minimizes this score is to enu-

merate, encode and compute the MDL score for every possible scale-space

decomposition and all possible encoding parameters. As we shall now show,

this brute-force approach is practically feasible.

The number of possible scale decompositions depends on the total number

of cut-points sets we can build from the computed scale parameters in Φx.

We fix the maximum number of cut-points in a candidate set to some value

cmax. This also means that we limit our search to those scale decompositions

having cmax + 1 components or less. Moreover, given our wish to consider

only simple approximations of the signals, we can also assume a reasonably

low limit dmax (in practice, dmax = 2) on the degree of the polynomials that

approximate the segments of each given component.

Computing the MDL score for each encoded scale decomposition, obtained

by ranging over all the possible configurations of cut-points C1, . . . , Ck−1,

and all the possible configurations of polynomial degrees d1, . . . , dk, hence

requires calculating MDL scores for

cmax+1∑
k=2

(|S|
k − 1

)
dkmax

scale decompositions. This turns out to be a reasonable number in most

practical cases we consider, and hence we use an exhaustive approach in our

experiments.

4.4 Experiments

In this section, we experimentally evaluate our method, both on artificial

data and on actual sensor data from the highway bridge mentioned in the in-

troduction. To evaluate the strengths and weaknesses of our method, we have

42 CHAPTER 4. IDENTYFING THE RELEVANT SCALES

0 50000 100000 150000 200000

0.00

0.25

0.50

0 50000 100000 150000 200000

0.00

0.25

0.50

0 50000 100000 150000 200000

0.00

0.25

0.50

0 50000 100000 150000 200000

0.00

0.25

0.50

(a)

0 50000 100000 150000 200000

0.0

0.3

0.6

0 50000 100000 150000 200000

0.0

0.3

0.6

0 50000 100000 150000 200000

0.0

0.3

0.6

0 50000 100000 150000 200000

0.0

0.3

0.6

(b)

Figure 4.4: Signals (top) and top-ranked decompositions for the two artificial

datasets.

tested it on a range of artificial datasets3 that mimic some of the multi-scale

phenomena present in the bridge data. Our constructed data deliberately

varies from easy, with clearly separated scales, to challenging with a variety

of event shapes and sizes. All artificial datasets represent sensor data mea-

sured at 1 Hz for a duration of three days (totaling 259,200 data points). The

data was produced by combining three components at three distinct scales,

resembling 1) individual events from vehicles, 2) traffic jams that last several

tens of minutes, and 3) gradual change of the baseline, due to temperature

changes of the bridge over the course of several days.

Artificial data

We start by considering one particular dataset in detail (see Figure 4.4a).

This dataset was constructed by using Gaussian shapes for both the small

and medium-scale events, and a sine wave of period 2.25 days at the largest

3The artificial datasets and the source code can be obtained by contacting the first

author.

4.4. EXPERIMENTS 43

scale. Medium events have a constant height, whereas small-scale events have

a random height. We limited the search space to decompositions having a

maximum of 4 components (3 cut-points). As can be seen in Figure 4.4a,

our method was able to identify the fact that this data contains three impor-

tant scales. Furthermore, the method correctly identified the two necessary

cut-points, such that the three original components were reconstructed. The

selected cut-points4 appear at scales 29 = 512 and 212 = 4096. When con-

sidering the separated components in detail, some influence across the scale-

boundaries is visible, for example where small effects of the ‘traffic jams’

appear among the small-scale events. These effects seem unavoidable, with

the inherent limitations of the scale-space-based band-pass filtering and the

discrete collection of scales we consider (powers of 2).

This optimal result has an MDL-score of 509,000 bits, being the sum of the

model cost (L(M) = 75, 072) and the error length (L(D | M) = 433, 928).

The second-ranked result on this data, with cut-points C = {211, 213}, shows

a similar result, however with slightly more pronounced cross-boundary ar-

tifacts in the smallest scale, as is expected with a doubling of the lower

cut-point. The MDL-score of this result is 64, 896 + 450, 487 = 515, 383.

The k = 1 case, which corresponds to compression of the original signal

without any decomposition, appears at rank three, with an MDL-score of

44, 640 + 471, 271 = 515, 911. This model obviously has a much lower model

cost, due to having to represent only a single component, but this is com-

pensated by the substantially higher error length, putting it below the scale-

separated results. Ranks four and five represent two k = 2 results, where

the former groups the small and medium scales together, and the latter the

medium and large. All results in the top 10 relate to models that use poly-

nomial representations (d ≤ 2).

Not all artificial datasets considered produced perfect results. In Figure 4.4b,

we show an example of a dataset that includes ‘traffic jams’ that resemble

more closely some of the phenomena in the actual sensor data. In many

cases, traffic jams appear fairly rapidly, and then show an increased load on

4Note that our method returns the boundaries between scales, rather than the actual

scales of the original components.

44 CHAPTER 4. IDENTYFING THE RELEVANT SCALES

the bridge over a prolonged period. This is modeled in the data by medium-

scale events that start and stop fairly rapidly, and remain constant in the

meantime. The best result found, with cut-points C = {212, 213}, is shown

in Figure 4.4b. This demonstrates that the proposed method is not able to

properly separate the medium and low-scale events. In fact, even though the

medium component does identify the location of the ‘traffic jams’, most of

the rectangular nature is accounted for by the small scale. To some extent,

this is understandable, as the start and end of the event could be considered

high-frequency events with rapid changes in value. Therefore, parts of these

events appear at a small scale, and the algorithm is mirroring this effect. In

any case, the algorithm is able to identify the correct number of components,

and is able to produce indications as to the location of the traffic jams. The

top four results all show similar mixtures of scales, whereas the rank-five

result groups the lowest two scales together. The k = 1 result appears at

rank 14.

In order to better understand to what extent the proposed method is able

to separate components at different scales, we carried out a more controlled

experiment. We generated 11 different datasets constructed from 3 com-

ponents. We fixed the scales of the short-term and long-term components

respectively around σ = 23 and σ = 215, while the scale of the medium-term

component varies from dataset to dataset in the range (24, . . . , 214). The table

below shows the number of components (k) of the top-ranked decomposition

for the 11 datasets according to the scale parameter σ of the medium-term

component.

σ 24 25 26 27 28 29 210 211 212 213 214

k 1 2 2 2 3 3 3 3 1 1 1

As the table suggests, the proposed method fails to identify the right number

of components when the scales are too close to each other. However, when

the scales are separated sufficiently (28 ≤ σ ≤ 211), the right number of

components is identified. Also in this case, all the top-ranked decompositions

relate to models that use polynomial representations.

4.4. EXPERIMENTS 45

0
10
20
30

0
10
20
30

0
10
20
30

0
10
20
30

Figure 4.5: Signal (top) and top-ranked scale decomposition for the In-

fraWatch data.

InfraWatch data

As anticipated by the motivating example in the introduction, we consider

the strain measurements produced by a sensors attached to a large highway

bridge in the Netherlands. For this purpose, we consider a time series con-

sisting of 24 hours of strain measurements sampled at 1 Hz (totaling 86, 400

data points). A plot of the data is shown in Figure 4.5 (topmost plot). We

evaluated all the possible decompositions up to three components (two cut-

points) allowing both the representation schemes we introduced. In the case

of the discretization-based representations, we limit the possible cardinalities

to 4, 16 and 64.

The top-ranked decomposition results in 3 components as shown in the last

three plots in Figure 4.5. The selected cut-points appear at scales 26 = 64 and

211 = 2048. All three components are represented with the discretization-

based scheme, with a cardinality of respectively 4, 16, and 16 symbols. The

decomposition has an MDL-score of 344, 276, where L(M) = 19, 457 and

L(D |M) = 324, 818. The found components accurately correspond to phys-

ical events on the bridge. The first component, covering scales lower than 26,

reflects the short-term influence caused by passing vehicles and represented

as peaks in the signal. Note that the cardinality selected for this component

is the lowest admissible in our setting (4). This is reasonable considering that

46 CHAPTER 4. IDENTYFING THE RELEVANT SCALES

0
5

10
15
20
25
30
35

0

1

2

3

Figure 4.6: A detail of the original strain signal (one hour) and the selected

first component as represented with 4 symbols.

the relatively simple dynamic behavior occurring at these scales, mostly the

presence or not of a peak over a flat baseline, can be cheaply described with

4 or fewer states without incurring a too large error. The middle component,

covering scales between 26 and 211, reflects the medium-term effects caused

by traffic jams. As in the artificial data, the first component is slightly influ-

enced by the second one, especially at the start and ending points of a traffic

jam. Finally, the third component captures all the scales greater than 211,

here representing the effect of temperature during a whole day. To sum up,

the top-ranked decomposition successfully reflects the real physical phenom-

ena affecting the data. The decompositions with rank 8 or less all present

similar configurations of cut-points and cardinalities, resulting in comparable

components where the conclusions above still hold. The first 2-component

decomposition appears at rank 10 with the cut-point placed at scale 26, which

separates the short-term peaks from all the rest of the signal (traffic jams

and baseline mixed together). These facts make the result pretty stable as

most of the good decompositions are ranked first.

Dike monitoring data

We evaluated the method on an additional real-world scenario: the sensor-

based monitoring of dikes [20]. We focus on the data produced by a network

of pore sensors installed on a sea dike in Boston (UK). The considered data

consists of one time series, representing one year of measurements sampled

every 15 minutes (for a total of 27 610 values), ranging from October 2011

to October 2012. As many complex physical systems, also dikes are affected

4.4. EXPERIMENTS 47

0

50

100

150

200

250

300

350

Figure 4.7: One year of pore pressure measurements from the one of the

sensors installed on a sea dike in Boston (UK).

by multiple phenomena at different temporal scales and the effect is visible

in the produced sensor data. Figure 4.7 shows one year of measurements

from one of the pore sensors in the network. The sensor exhibits two clear

periodic trends at different temporal scales. At the shortest temporal scale,

the water level follows half-daily tides (see the detailed plots of Figure 4.7

and Figure 4.8). The water level, however, is also affected, on a two-weekly

basis, by the lunar cycles that have a periodic effect on the overall amplitude

of the signal.

For the considered time-series, we evaluated all the possible decompositions

up to three components (two cut-points) employing the discretization-based

scheme with possible cardinalities limited to 4, 8, and 16.

The top-ranked decomposition for the time series is shown in Figure 4.9. The

selected cut-points appear at scales 25 = 32 and 213 = 8192. All three com-

ponents, represented with the discretization-based scheme, have a selected

cardinality of 8 symbols. The decomposition has an MDL-score of 213, 288,

where L(M) = 19, 075 and L(D | M) = 194, 213. Note that the first two

components, from top to bottom, effectively separate the two periodic trends

in the data, i.e. the half-daily tidal effects (a detail of which can be seen in

Figure 4.10) and the two-weekly cycles due to lunar tides. The third long-

term component reflects slow change happening in the dike due to the effect

of humidity. However, the trend also includes a slight change in the sensor

sensitivity itself, as its response is affected by the external temperature.

48 CHAPTER 4. IDENTYFING THE RELEVANT SCALES

Figure 4.8: Zoomed detail of Figure 4.7. The figure clearly shows the presence

of short term periodic trends, due to the half-daily effect of the tides.

An application: detecting passing vehicles

The component selection and representation generated by the MDL proce-

dure may be useful in itself for tasks such as classification. For example,

consider the short-term component of the previous example, Figure 4.5 (sec-

ond plot). It represents the traffic activity over the bridge and has been

represented with a discretization-based scheme using 4 symbols. Figure 4.6

shows a detail (1 hour) of the discretized component (bottom) and the rela-

tive original signal (top). The first 2 symbols (0 and 1) respectively classify

the absence or presence of a passing vehicle, while the other two, consider-

ably less frequent, are outliers in the data. The represented component, as

selected by MDL, can thus be used to monitor traffic activity over the bridge,

a task that is considerably more challenging using the original signal, due to

the variations introduced by temperature fluctuations and traffic jams.

4.5 Related Work

Papadimitriou et al. [76] propose a method to discover the key trends in a

time series at multiple time scales (window lengths) by defining an incremen-

tal version of Singular Value Decomposition. In signal processing, Indepen-

4.5. RELATED WORK 49

−2

−1

0

1

2

3

4

5

−2

−1

0

1

2

3

4

5

−2

−1

0

1

2

3

4

5

Figure 4.9: Top-ranked scale decomposition for the first sensor of the Dike

data.

dent Component Analysis [18] aims at separating a set of signals from a set

of mixed signals but, in its standard formulation, requires at least as many

sensors as sources. Our method is able to operate on a single input sensor and

a variable number of sources to be discovered. Megalooikonomou et al. [69]

introduce a multi-scale vector quantized representation of time series which

enables fast and robust retrieval. The considered scales are however prede-

fined and our approach could be used as a preprocessing step to determine

those to include in the dictionary. The Minimum Description Length princi-

ple has been applied to the problem of choosing the best representation for a

given time series by Hu et al. [42]. The authors propose a method to choose

the best representation (and its parameters) among APCA, PLA and DFT.

While there are similarities with our method (we also use the MDL principle

to select the best model parameters for a given component), the authors put

the stress on discovering the intrinsic cardinality of the data, other than its

constituent multi-scale components. MDL has also been adopted to detect

changes in the distribution of a data stream by van Leeuwen et al. [94].

50 CHAPTER 4. IDENTYFING THE RELEVANT SCALES

0 200 400 600 800 1000

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 4.10: Detail of the first component.

In [44], the authors propose a method to select non-linear models from data,

possibly generated by chaotic systems, having a good robustness to noise.

Again, this work does not take into account the eventual multi-scale nature

of the data.

4.6 Conclusions and Future Work

We introduced a novel methodology to discover the fundamental scale com-

ponents in a time series in an unsupervised manner. The methodology is

based on building candidate scale decompositions, defined over the scale-

space image [103] of the original time series, with an MDL-based selection

procedure aimed at choosing the optimal one.

A useful side product of the presented technique, due to the adoption of MDL,

is that each discovered component is represented independently according to

its inherent complexity and often results in a cheaper model (in terms of

MDL score) in relation to the original raw time series. These cheaper per-

component representations may better serve tasks like classification, regres-

sion or association analysis for time series produced by inherently multi-scale

physical and artificial systems.

We have shown that our approach successfully identifies the relevant scale

components in both artificial and real-world time series, giving meaningful

insights about the data in the latter case. Future work will experiment with

4.6. CONCLUSIONS AND FUTURE WORK 51

diverse representation schemes and hybrid approaches (such as using combi-

nations of segmentation, discretization and Fourier-based encodings). More-

over, another interesting research question is how to substitute the presently

employed exhaustive search of the optimal decomposition with a computa-

tionally cheaper heuristic approach, which is necessary in the case of large

time series data.

52 CHAPTER 4. IDENTYFING THE RELEVANT SCALES

Chapter 5

Mining Variable-Length Motifs

at Multiple Scales

5.1 Introduction

This chapter is concerned with the discovery of temporal patterns in large

time series, produced from physical sensors. In all but the most trivial appli-

cations, such sensor data will reflect the complexity of the physical system

under investigation, and will show a combination of multiple effects. Some of

these effects will be of interest, and central to the sensoring system, but oth-

ers, such as noise and environmental effects, will merely be a disturbance and

a hindrance to the identification of the phenomena of interest. The complex

physical systems we aim to investigate here often have two important char-

acteristics: a) multiple phenomena are at play in the sensor signal, and they

typically occur at different time scales, b) each phenomenon will involve re-

curring events that will show up in the signal as repeating segments of data,

often deformed and warped. In this chapter, we introduce a method that

elegantly combines these two characteristics in order to discover recurring

events at multiple time scales.

As a motivating example, we consider again the bridge data from the In-

fraWatch project. In fact, such data fits our topic well as it is subject to a

53

54 CHAPTER 5. MULTI-SCALE MOTIFS MINING

Figure 5.1: The plot on the left shows twelve days of strain measurements,

sampled at 10 Hz from the Hollandse Brug bridge. The data exhibits recur-

ring events, often superimposed, at multiple time scales, such as individual

vehicles, traffic jams and daily fluctuations due to temperature changes. On

the right it is shown an example of motif due to a passing vehicle.

number of effects that both show recurring events (traffic, daily temperature

cycles), as well as largely varying time scales. The vertical displacement of

the bridge, measured through strain gauges, is of course dependent on indi-

vidual vehicles passing the bridge, over a period of several seconds (several

tens of measurements). On a medium scale, the strain signal will show traffic

jams, lasting up to an hour, that appear as clearly delineated intervals where

the strain is increased due to the higher number of vehicles on the bridge. Fi-

nally, on a large scale, the strain is highly sensitive to the temperature of the

bridge, such that the signal is dominated by a slow movement of the baseline,

most notably with a day/night rhythm. Figure 5.1 shows 12 days of data

collected at this bridge (some 10 million readings). Note that these different

effects appear in a mixed fashion, and events at different time scales will

often overlap. For example, traffic jams and individual vehicles will simply

appear superimposed on the continually changing baseline of temperature

effects on the strain. Additionally, vehicle peaks (shown as a detail on the

right) will appear in the signal, even during traffic jams, as these often only

affect one direction of traffic.

The recognition of repeating phenomena in time series is an important task

in many applications, as it enables further processing of the data at a more

conceptual level. For example, in SHM, it permits determining traffic load

statistics or various load-induced vibration patterns because it is vital to

know when exactly certain events occur (such as heavy trucks). We assume

5.1. INTRODUCTION 55

that the recurring events will appear in a relatively small set of classes (e.g.

trucks, cars), which we will refer to as motifs. The (scale-aware) motif dis-

covery method presented here will then determine what the relevant motifs

are, and when the different instances of each motif occur. In the specification

of motifs, we intend to allow for a certain degree of flexibility in terms of du-

ration and magnitude of the event. For example, a truck will be recognized

as such, despite minor variations in speed and weight of the truck. Note that

our definition of ‘motif’ is somewhat different from the use in other papers

dealing with a similar problem [74], where a more strict matching based on

Euclidean distance of a segment of fixed duration is employed. Although

this approach works well in many scenarios, more flexibility is needed in the

applications we consider.

In the motif discovery task in complex data, an important challenge we deal

with is the possibility of superimposed events. Instances of motifs in one scale

will overlap those in other scales, and the recognition of similar instances will

be disturbed, if the possibility of multi-scale interference is not taken into

account.

In this work, we propose an approach based on scale-space images [103] and

the minimum description length (MDL) principle to address this problem

[34]. The reason for choosing an MDL-based approach is that it allows us

to find sets of motifs that represent a good trade-off between representation

power and model simplicity. This guarantees that the reported motifs are

actual recurring phenomena, rather than accidental coincidences, and that

the motifs found are not too similar to each other. The novelty of our code,

compared to an earlier approach [78] to the same problem, is that it explicitly

supports the discovery of, potentially overlapping, multi-scale motifs.

The main contribution of this work is an algorithm for effectively finding

multi-scale motifs that score well with respect to the MDL principle. Our

algorithm combines several key ideas to achieve this:

• it uses scale-space images to characterize the contribution of the motifs

at different temporal scales;

• it uses the zero-crossings of derivatives of the time series at different

56 CHAPTER 5. MULTI-SCALE MOTIFS MINING

scales to identify repeating linear segments in the time series;

• it uses a a symbolic representation in combination with suffix trees to

identify promising motifs consisting of these linear segments;

• it uses a greedy algorithm to select characteristic motifs that score well

with respect to an MDL score.

We evaluate our method on a number of sensor-based time series from various

applications. Results show that our approach can effectively discover a small

set of characteristic motifs in the data, often directly related to particular

events in the corresponding application domain.

The structure of this chapter is as follows. Section 5.2 will introduce the no-

tation and present necessary background information, including MDL, and

the problem statement. In Section 5.3, we will motivate and define our

method. Section 5.4 will evaluate and discuss experimental results. Sec-

tion 5.5 presents related work. Finally, in Section 5.6, we draw conclusions

and present ideas for future work.

5.2 Background and Problem Setting

In this section, we introduce the notation, provide necessary background

information and formally define the problem.

5.2.1 Notation and Preliminaries

We deal with finite sequences of numerical measurements (samples), collected

by observing some property of a system with a sensor and represented as time

series as defined in 3.1. Moreover, and without loss of generality, we assume

that the values are collected at a constant rate and none of them are missing

and that the data has been z-normalized.

As motivated in the introduction, our goal is to find characteristic motifs

in the input time series at multiple temporal scales. There are two equiva-

5.2. BACKGROUND AND PROBLEM SETTING 57

lent ways of looking at motifs. The first is that a motif is a structure that

approximately repeats itself in a large number of places in the time series.

The second is that a motif is a set of subsequences in the data, each pair

of which is similar to each other [74]. We will refer to a structure that is

approximately repeated in the data as a motif ; subsequences of the data in

which this motif occurs are referred to as motif instances.

An important feature of the motifs that we are looking for is that their

instances can be warped or deformed to deal with potential slight variations

in the duration and intensity of the events. This motivates our choice to

represent motifs using linear segments as follows.

Definition (Motif). A motif m is a sequence of linear segments

[(a1, b1), (a2, b2), . . . , (ak, bk)]

where ai indicates the length of a segment (the duration) and bi indicates

the difference in value between the begin and end points of the segment.

In principle, higher order polynomials or other more complex functional rep-

resentations may also be used to represent the segments, but we found that

linear segments are simpler, have the advantage of avoiding overfitting, and

are accurate enough in most cases.

We will be looking for instances of these motifs in the data.

Definition (Motif Instances). Given a set of motifs M , let I be a func-

tion that maps a motif m ∈ M and a segment t of this motif to a set of

subsequences of x:

I(m, t) = {x[a1t : b1t], . . . ,x[akt : bkt]}

for some ait, bit ∈ {1, . . . , n} such that ait = bi(t−1) + 1 for t > 1 (i.e., the

end of a segment determines the start of the next segment). Then I(m, t)

determines the set of instances in x of segment t of motif m.

Some choices for I are better than others; ideally instances closely resemble

their associated motifs. The MDL score introduced in the next section will

be used to evaluate the quality of a set of motifs M and of a function I.

58 CHAPTER 5. MULTI-SCALE MOTIFS MINING

Note that subsequences for the same motif and motif segment can have dif-

ferent lengths. This is necessary to deal with time warping.

From a high-level perspective, the problem that we are interested in is to

identify a set of motifs that characterizes the data well. Taking into account

the multi-scale nature of the data, it is desirable that instances of different

motifs can overlap. In this way, one motif can reflect a regularity at a coarse

scale, and another can reflect a regularity at a finer scale superimposed on

top of the coarse structure. The next section defines more precisely how we

evaluate a set of motifs and its instances to reflect these requirements.

5.2.2 Minimum Description Length

Our main idea is to approach the problem of selecting motifs as a model selec-

tion problem. This allows us to employ the Minimum Description Length [34]

principle, introduced in Section 3.4, to rank motifs.

In our setting, a model consists of a set of motifs M . Following the two-part

MDL principle, the best set of motifs to describe the time series x is the one

that minimizes the sum L(M) + L(x |M), where

• L(M) is the length, in bits, of the description of the motifs, correspond-

ing to a model;

• L(x |M) is the length, in bits, of the description of the time series when

encoded with the help of the motifs M , that is the residual information

not represented by M .

In order to apply the MDL principle in practice, the input data has to be

discretized. We do this as discussed in Section 3.4.1. Moreover, we need to

define an encoding scheme for a given set of motifs M and, consequently,

how to compute both L(M) and L(x | M). These aspects are addressed in

the following sections.

5.2. BACKGROUND AND PROBLEM SETTING 59

Encoding of the model

We will first discuss the encoding of the model, i.e. a set of motifs M . Each

motif essentially consists of a sequence of linear segments, each described by

two integers. The length of a segment cannot be longer than the total length

of the time series; hence, we use log2 n bits to encode it. The difference in

value between the begin and end point is limited by the quantization used;

in our setting 8 bits are sufficient. Finally, with log2 n bits we can encode

the number of segments in a motif. Summing up we have

L(M) =
m∑
i=1

(log2 n+ ki(log2 n+ 8))

where m is the number of motifs and ki is the number of segments in motif i.

We assume that these motifs are ordered in the encoding. We use this order

to distinguish the scales at which the motifs are present.

Encoding the data

We will now describe how we compute L(x | M), that is the description

length of the time series when encoded with the help of a set of motifs M .

In the definition of the code, we will also use the instances I associated to

each motif in M . Our assumption is that a good selection of motifs M and

associated instances I will help to encode the data more concisely.

We will first define the entropy of a time series as it is a key concept we will

need in the following paragraphs.

Definition (Time Series Entropy). The entropy of a time series x, dis-

cretized according to a set of values D, is defined as below

H(x) = −
∑
v∈D

P (x[i] = v) log2 P (x[i] = v)

where P log2 P = 0 in the case of P = 0 and P (x[i] = v) indicates the

fraction of points in the time series which has value v.

Given the definition of entropy, we can define the description length of a time

series as follows, assuming we have not identified any motifs.

60 CHAPTER 5. MULTI-SCALE MOTIFS MINING

Definition (Time Series Description Length). Given a time series x of

length n, its description length (in bits) is given by

L(x) = nH(x) .

Our main idea is now that a good choice of motifs M and associated instances

I(m, t) should lead to a code for the time series with a description length

shorter than L(x). To this aim, we introduce a code for x given a choice of

M and I(m, t). It will be the task of the search algorithm to determine the

best configuration.

Concretely, for each chosen motif m and corresponding motif instances I(m, t),

we first encode the time stamps and the (vertical) values at which the in-

stances of the first segment of m start. For one motif with ` instances, this

requires log2 n+ `(log2 n+ 8) bits, where log2 n bit are needed to encode the

number of instances, and log2 n and 8 are the bits needed to code the starting

time stamp and vertical value, respectively.

There are instances for each segment in a motif. While encoding these, we

need to allow for a certain amount of time warping, and hence the segment in

each instance may deviate both in length and in amplitude from the segment

in the motif. Both vertical and horizontal differences from the segment in the

motif can be represented by sequences of integers: the deviations of segment

lengths can be represented in one sequence

[aijk | 1 ≤ i ≤ m, 1 ≤ j ≤ `i, 1 ≤ k ≤ ki]

where m is the number of motifs, `i the number of instances of motif i and ki

the number of segments in the motif; similarly, the differences in value can

be listed. In order to favor only small numbers of values, we compute the

description length of these sequences employing an entropy-based encoding

as in Definition 5.

This code for motifs and instances leads to an approximation of the data, as

follows. For each position in the time series, we determine the last motif in

the ordered set of motifs which has an instance at this position. Whether a

position is covered by an instance is determined by taking into account the

5.2. BACKGROUND AND PROBLEM SETTING 61

starting positions of the first segment of the motif, the lengths of the other

segments in the motifs, and the deviations from these lengths as encoded in

the code of deviations. The reason for using the order of motifs is that we

explicitly allow motifs to overlap. This allows us to deal with the multi-scale

aspects of the data.

The approximated value of a position in the time series covered by a motif is

determined by linear interpolation between the two end points of the motif

segment in which the position is included. These end points are determined

similarly from the encodings of locations, motifs and deviations.

Our remaining code for the data now consists of two parts. First, for each

position in the data covered by a motif, the error is encoded with respect to

the approximation. An entropy encoding is used for these errors. Second,

for the remaining time stamps, which are not covered by a motif, an entropy

encoding is used as well to code the original value for that position.

Note that in this code we have a constant number of dictionaries (for dura-

tion, difference in value, errors, and remaining original time points). Hence,

we do not need to calculate the size of these dictionaries explicitly.

The final description length L(x |M) is given by the sum of the lengths (in

bits) of the code components described above.

5.2.3 Problem Statement

We have now introduced the necessary definitions and background material

to state our problem.

Given a time series x, we want to find a set of motifs M and

associated instances, such that the sum L(M) + L(x | M) is

minimized.

Clearly, this problem is hard to solve exactly. Hence, in the next section we

define a step-wise heuristic algorithm that works well in practice.

62 CHAPTER 5. MULTI-SCALE MOTIFS MINING

5.3 Motif Selection Algorithm

The proposed heuristic motif discovery algorithm consists of several steps,

which will be shown to perform well in the next section. The first steps will

identify a set of promising candidate motifs; the last steps select a charac-

teristic subset of the motifs based on the MDL scoring function discussed

earlier. Figure 5.2 shows a high level overview of our method and the steps

involved.

5.3.1 Finding Candidates Motifs

In this section, we describe our candidate motif generation procedure. Several

key ideas underly this procedure.

• It uses the scale-space image to characterize the contribution of the

motifs at different temporal scales;

• It effectively identifies promising segments at multiple scales by dis-

cretizing the time series using the derivatives of the signal in scale-space

in combination with k-means clustering;

• In the discretized representation, it merges recurring sequences of ad-

jacent segments by employing a suffix tree based approach.

The subsequent sections discuss this in more detail.

Scale-Space Image

We rely on the concept of scale-space image introduced in Section 3.3. As

noted, in practice the scale-space image is quantized along the scale dimen-

sion by computing the Gaussian convolution only for a limited number of

scale parameters. The number of scale parameters considered, and thus the

resolution of the quantization, depends on the final application and on the

distribution of the motifs across the scale dimension. If, for instance, the

motifs appear at considerably different scales, a coarser quantization would

5.3. MOTIF SELECTION ALGORITHM 63

Input
Time Series

Scale-Space Image
Computation

Finding and Ranking
Recurring Subsequences

Select Characteristic Motifs

Symbolic Transformation

x

�x(�1) �x(�i) �x(�k)

S1 Si Sk

MCandidate
Motifs

CSelected Motifs

Figure 5.2: Overview of the proposed motif discovery and selection algorithm.

suffice to isolate them across the scale dimension. On the other hand, if

different motifs appear at similar scales, a finer quantization is needed to

effectively separate their corresponding contributions to the signal.

In order to support both scenarios, we define two sets of scale parameters

Scoarse = {2i | 0 ≤ i ≤ σmax ∧ i ∈ N} and Sfine = {
√

2i | 0 ≤ i ≤ 2σmax ∧ i ∈

64 CHAPTER 5. MULTI-SCALE MOTIFS MINING

N} which well adapt to the practical cases we consider.

We deal with multi-scale aspect of the data by identifying motifs in each of

the scales in the scale image.

Finding candidate segments

Before identifying candidate motifs, we first identify candidate linear seg-

ments. A useful tool to quickly identify promising boundaries for linear

segments in the time series are the zero-crossings of derivatives.

Given a time series x and one of the components of its scale-space image

Φx(σ), let

z(j) = {t1, . . . , tm}, such that
djΦx(σ)

dt
(ti) = 0,

Z = z(1) ∪ · · · ∪ z(dmax)

be the sorted locations in Φx(σ) of the zero-crossing of its derivatives until

order dmax. Note that dmax will typically be low, e.g. just 1 or 2.

These zero-crossings are informative as they indicate points in the time se-

ries at which the direction of the signal changes; these positions are good

candidates for a change of the linear coefficients as well. Thus, each segment

bounded by two consecutive zero-crossings could be an instance of a segment

in a motif. We use k−means clustering to identify a small set of prototype

segments, as follows. Each segment between zero-crossings can be thought

of as a data point in a feature space, where the features are the duration

and difference in value between the zero-crossings of the derivatives. More

precisely, we consider the data points FΦx(σ) = {fi = (hi, vi)} where

hi = ti+1 − ti , 1 ≤ i < n

is the time between each pair of consecutive zero-crossings and

vi = Φx(σ)[ti+1]− Φx(σ)[ti] , 1 ≤ i < n

is their vertical distance. Figure 5.3 illustrates this concept.

5.3. MOTIF SELECTION ALGORITHM 65

ha

va

vb

hb

A B C D E F C D G H I L

Figure 5.3: Example of the feature space based on the zero-crossings of

the derivatives (only order one in this figure) and the clustered candidate

segments identified by letters.

These data points are clustered using the k−means clustering algorithm,

where k is a parameter that determines the number of candidate segments.

Preliminary experiments show that setting the parameter k in practice is not

a critical problem.

The centers of the identified clusters are the candidate reference segments,

which will be combined into motifs in the next step. Note that the clustering

algorithm ensures that candidate segments will be not too dissimilar from

each other. This procedure is repeated for each scale in the scale-space

independently.

Finding candidate motifs

The key idea in identifying motifs is to represent time series symbolically (see

Figure 5.3). Each symbol in this representation corresponds to the candidate

segment identified by the k−means algorithm for that segment.

After transforming each scale-space image component into the symbolic rep-

resentation defined above, we identify motifs by looking for repeating subse-

66 CHAPTER 5. MULTI-SCALE MOTIFS MINING

quences in the obtained string as similarly done by previous approaches [50,

60], although using different kinds of representations such as SAX [61].

Algorithm 1 Find candidate motifs

Require: a time series x, a set of scales parameters S = {σ1, . . . , σk}, the

maximum order for the derivatives roots dmax, the cardinality A of the

symbolic representation, the number of motifs considered per scale r

Ensure: a set of candidate motifs M = {Ms,r} indexed by scale parameter

s and rank r.

M = {}
Φx(σ1), . . . ,Φx(σk) = ScaleSpaceImage(x, S)

for i = 1 . . . k do

Zi = ComputeZeroCrossings(Φx(σi), dmax)

Si = SymbolicQuantization(Φx(σi), Zi, A)

Σi = FindRecurringSubstrings(Si)

Mσi,r1 , . . . ,Mσi,rm = RankMotifsByCoverage(Σi, r)

M =M∪ {Mσi,r1 , . . . ,Mσi,rm}
end for

Our candidate motifs generation procedure is summarized in pseudo-code in

Algorithm 1.

ScaleSpaceImage(x, S) returns the scale-space image of x defined over the

scale parameters S.

ComputeZeroCrossings(Φx(σi), dmax) calculates the zero-crossings of the deriva-

tives for each scale.

SymbolicQuantization(Φx(σi), Z, A) transforms each time series Φx(σi) into

a symbolic string given the zero-crossings Z and cardinality A.

FindRecurringSubstrings(Si) returns the set of all maximal substrings of

length at least 2 that appear at least twice in the data (maximal in the sense

that no longer substring occurs twice). In general, we could parameterize

this; however, in our experiments we found these parameters to work in all

cases. Furthermore, an important advantage of this setup is that we can

calculate this set of substrings in linear time by using suffix trees.

5.3. MOTIF SELECTION ALGORITHM 67

RankMotifsByCoverage(Σi, r) selects the best scoring r motifs from this set

of substrings. The evaluation is as follows: the occurrences of each string

in the time series are determined; these occurrences are mapped back to the

original time series; the total length of the original time series covered by

these occurrences is determined. The main motivation is that we can expect

the best coding motifs to be those that cover large parts of the time series.

The final selection from the resulting set of candidate motifs is done in the

next step.

5.3.2 Selecting Characteristic motifs

The naive way to select the best set of motifs would be to enumerate all poten-

tial subsets and choose the one that minimizes the sum L(M) + L(x | M).

However, the space of motif sets grows exponentially with the number of

candidate motifs and this makes an exhaustive evaluation computationally

infeasible for large time series. Because of this, we propose a heuristic se-

lection strategy that overcomes these computational limitations. Our motif

selection heuristic is shown in pseudo-code in Algorithm 2.

Algorithm 2 Select characteristic motifs

Require: a time series x, a set of candidate motifsM = {Ms,r} indexed by

scale parameter s and rank r.

Ensure: a set of selected motifs C ⊆M.

C = {}
for i = k . . . 1 do

j = arg min
j∈{1,...,m}

L(C ∪ {Mσi,j}) + L(x | C ∪ {Mσi,j})

C = C ∪ {Mσi,j}
end for

Essentially this algorithm traverses the candidate motifs starting at the coars-

est scale and, for each scale, it adds the motif that improves the MDL score

the most.

68 CHAPTER 5. MULTI-SCALE MOTIFS MINING

5.3.3 Computational Complexity

The construction of the scale-space image requires to compute |S| convo-

lutions. This can be done efficiently using the Fast Fourier Transform in

O(|S|n log2 n) time. The computation of the zero-crossing of the derivatizes

can be done with a linear scan and thus has O(n) complexity. The com-

plexity of the symbolic transformation, carried out by k-means in O(Ik |Z|)
time depends on the number of zero-crossings features to cluster which, given

a property of the scale-space image [103], can only decrease as the scale is

increased; here I is the number of iterations of the k−means algorithm.

Preliminary experiments even show that the decrease in |Zi| is exponential.

Locating recurring substrings in the symbolic representation can be done in

linear time employing a suffix tree; the number of such strings (|M|) is O(n)

in the worst case and much smaller in practice. We calculate the instances

of the corresponding motifs in O(n) time for each motif identified. Sorting

the resulting motifs takes O(|M| log |M|) time. During the final traversal of

this set, we need to calculate the MDL score for each intermediate model.

This calculation takes O(|C|n) time; note that the size of the dictionaries

can be considered constant. Overall, this gives our method a complexity of

O(n log2 n+ |M|(log |M|+ |C|n) time.

5.4 Experimental Evaluation

In this section, we evaluate our method experimentally, on two real-life sensor

datasets, one describing physical exercise, and one collected from the sensor

network of the highway bridge mentioned in the introduction. Moreover,

we compare our method with another published approach on a common

dataset.

5.4.1 Snowboard Data

The first experiment relates to physiologic data collected during a day of

snowboarding in the Austrian Alps. The data was collected by a Zephyr Bio-

5.4. EXPERIMENTAL EVALUATION 69

0 2000 4000 6000 8000
2

0

2

4

6

0 500

2

0

2

0 2000 4000 6000 8000
2

0

2

4

6

0 20 40 60

2

0

2

Figure 5.4: Selected motifs in the Snowboard data. Left side: motif occur-

rences in the series. Right side: motifs at the respective scale-space compo-

nent after z-normalization.

5300 5400 5500 5600 5700 5800 5900 6000 6100 6200
2

0

2

0 20 40 60

2

0

2

Figure 5.5: Detail of the short-term motifs depticted in Figure 5.4 (bottom).

Harness1 3 breast strap, which monitors several key physiological parameters

and logs them at a sampling rate of 1 Hz. Alpine sports are an interesting

domain for our method, as it naturally contains the cyclic phenomenon of

ascending by ski lift and descending ‘on foot’. This produces a recurring pat-

tern of intense exercise while descending and clear signs of recuperation while

being transported up. Especially when the same lift and slope are repeatedly

taken, this will lead to motifs in the measured time series. Additionally, on a

smaller scale, the natural tendency of the human body is to introduce shorter

cycles of activity and rest, especially when dealing with intense activity and

high altitude.

The data considered here describes heart rate measurements taken during 2.5

hours of mixed activity, starting at 11:00 AM, with some 40 minutes actually

spent on the slopes. We employed Sfine as scale parameters, set dmax = 1 and

the cardinality of the symbolic representation to 10. Figure 5.4 shows two

1http://www.zephyranywhere.com/products/bioharness-3

70 CHAPTER 5. MULTI-SCALE MOTIFS MINING

key selected motifs, which correspond to the phenomena described above.

The top motif represents some 16 minutes, corresponding to recuperation

(decreasing heart rate while on the lift), exercise and recuperation again. A

full cycle of ascent and descent takes about 10 minutes, which corresponds

with the manual annotations. This pattern occurs three times in this dataset,

at the scale component Φx(
√

214), as indicated by the red segments in the

diagram. Note that two instances actually overlap, as the motif describes

more than a single cycle. These two instances actually relate to two descents

of a single slope. The second motif, at the scale component Φx(
√

27), has 10

instances of increasing and then decreasing heart rate, presumably related to

short exercise intervals of around 50 sec. A detail of this motif is shown in

the bottom diagram, showing just 20 minutes at 12:25.

The overall number of scale components considered for this data is 22 for a

total of 13 selected motifs. However, motifs selected at scales greater than

216 did not show motifs relevant to this particular application domain.

5.4.2 Highway Bridge Data

We subsequently evaluate our approach on the time series data previously

shown in Figure 5.1. The series has been collected in the context of a Struc-

tural Health Monitoring project,and consists of 12 days of strain measure-

ments (for a total of 10, 280, 939 data points) from one span of the monitored

highway bridge. As the bridge is affected by several phenomena operating

at multiple time scales, the strain measurements contain various classes of

recurring motifs reflecting this fact and represents an ideal dataset to test

our method. We employed Scoarse as scale parameters and set dmax = 1 and

the cardinality of the symbolic representation to 10. Figure 5.6 shows two of

the most interesting selected motifs, respectively at scale components Φx(2
3)

and Φx(2
15). The first motif identifies the most recurring events in the data,

i.e. passing vehicles. In the graph, a red pixel is drawn for each instance, for

a total of 58, 646 occurrences, which cover almost 22% of the data. On the

right, we plot all the motif instances (after normalization) superimposed, as

represented in the scale component Φx(2
3). The selected motif represents a

5.4. EXPERIMENTAL EVALUATION 71

Figure 5.6: Selected motifs in the highway bridge data. Left side: motif

occurrences in the series. Right side: motifs at the respective scale-space

component after z-normalization.

high variability of instances, in both duration and amplitude, that can be

directly related to the speed and weight of the vehicles. This information can

thus be used by bridge managers to evaluate the load patterns of the infras-

tructure and potentially aid the decision making when planning maintenance

activities. The second motif represents a much longer pattern occurring on a

daily basis due to changes in temperature that, in turn, affect the response of

the bridge to external forces. A total of 5 motif instances of this kind occur,

covering around 24% of the data. Note how occurrences of the first motif are

superimposed over the instances of this one.

The overall number of scale components considered is 19, although the motifs

selected at scales greater than 217 are not of any interest in relation to the

application domain.

5.4.3 Comparison with Related Work

To the best of our knowledge, there are no published methods dealing with

the discovery of characteristic sets of multi-scale and overlapping motifs in

time series data. As we cannot compare our method with others in a multi-

scale setting, we chose to also evaluate our algorithm on a time series pre-

sented in [78], in which no multi-scale events are present. A comparison on

such data is of interest as our method should be able to identify the non-

72 CHAPTER 5. MULTI-SCALE MOTIFS MINING

0 200 400 600 800 1000 1200

2

0

2

0 10 20 30

2

0

2

0 200 400 600 800 1000 1200

2

0

2

0 50
4

2

0

2

Figure 5.7: Selected motifs in the bird calls data from [78]. Left side: motif

occurrences in the series. Right side: motifs at the respective scale-space

component after z-normalization.

overlapping motifs present in this data as well.

The considered time series was produced by extracting the first MFCC coef-

ficients from an audio file featuring two repeated kinds of bird calls, resulting

in two motifs present in the data. The time series has a total of 1367 mea-

surements. As the motifs in the data are rather similar in length, we do

not need to consider the whole scale-space image. Instead, we set the scale

parameters to S = {1,
√

2, 2,
√

8}. The result shown here was obtained by

setting the cardinality of the symbolic representation to 6. However, in order

to assess the sensitivity of the method in relation to the size of the alphabet,

we tried cardinalities ranging from 5 to 15 obtaining qualitatively similar

results. Figure 5.7 reports the motifs selected by our method. These motifs

are similar to those obtained by the clustering method proposed in [78] for

non-overlapping motifs. Although in this case we manually specified the scale

parameters, we note that the algorithm in [78] also requires to provide an

educated guess of parameters, i.e. of the approximate lengths of the motifs

to look for.

5.5. RELATED WORK 73

5.5 Related Work

The problem of discovering recurring temporal patterns in time series data is

an important one and has received considerable attention by the community

from different perspectives.

Subsequence Clustering. Early work considers the related problem of

clustering the (overlapping) subsequences in the time series extracted through

a sliding window. Subsequence clustering is an obvious and intuitive choice

for finding characteristic subsequences in time series. However, this approach

requires the a priori specification of the lengths of the subsequences to con-

sider and is not generally tailored to support multi-scale data. Moreover, in

a paper by Keogh et al. [49], it was shown that, despite the intuitive match,

subsequence clustering is prone to a number of undesirable behaviors that

makes the end result meaningless and independent of the data at hand. A

number of papers [13, 22, 97] have further investigated the observed phenom-

ena, providing solutions to overcome it. Yet, since the publication of [49],

the subsequence clustering idea has seen a serious decline in popularity. In

[49], the authors proposed a solution based on motif discovery.

Motif discovery and clustering. Motif discovery has received a fair

amount of attention, in particular after subsequence clustering was shown

to be unreliable. In [74], a motif is defined rather strictly as the pair of most

similar subsequences in a time series according to the Euclidean distance,

and the authors propose an efficient and exact method to find such pairs.

Saria et al. [81], on the other hand, propose a more flexible definition of

motif, based on a shape template that can be affected by non-linear trans-

formations such as temporal warping and additive noise. They introduce an

unsupervised algorithm to discover the set of canonical shape templates in

the data. Although the method is able to discover motifs of different lengths,

it does not deal with multi-scale data where multiple motifs at different time

scales could appear superimposed.

To the best of our knowledge, the most similar work to ours is [78]. The

authors propose a method to mine a set of clusters of motifs from a given

74 CHAPTER 5. MULTI-SCALE MOTIFS MINING

time series. The clusters are formed according to an agglomerative proce-

dure. First, a single cluster is created containing the pair of most similar

subsequences in the data (this is done with repeated runs of the exact motif

discovery algorithm introduced in [74]). After that, the set of clusters is itera-

tively refined by taking one of the following actions: create a new cluster, add

to a cluster, merge two clusters. The algorithm looks for the best operator

to apply such that the MDL score for the clusters set is lowered, or it stops

otherwise. This method does not however consider superimposed motifs like

those found in the multi-scale data we consider in this chapter.

Multi-scale Time Series Data. Although several papers address the prob-

lem of discovering recurring patterns in time series, few of them consider data

where combinations of effects at multiple temporal scales affect the patterns

or motifs. In [76], Papadimitriou et al. propose a method to discover the

key trends in a time series at multiple time scales (window lengths) by intro-

ducing an incremental version of Singular Value Decomposition. Vespier et

al. [96] propose an MDL-based method to recognize the most relevant scales

of analysis in the data and, consequently, to separate the time series into dis-

tinct components. This method does not however characterize the individual

motifs directly, but rather assesses the relevancy on the informative content

present at each temporal scale.

5.6 Conclusions and Future Work

In this chapter, we introduced a method for the discovery of multi-scale recur-

ring patterns (motifs) in time series data. Our work is motivated by an SHM

project which deals with high-frequency measurements collected by a sensor

network deployed on a highway bridge. In particular, we focused on a prop-

erty that sensor data collected from complex systems typically exhibits: the

presence of multiple phenomena at play in the sensor signal, often occurring

at different time scales and potentially superimposed and mixed together.

Because of the high degree of variability present in this kind of data, we have

adopted a definition of motif based on structural complexity other than on

5.6. CONCLUSIONS AND FUTURE WORK 75

point-wise similarity (i.e. Euclidean distance) as in much previous work. In

order to discover the most characteristic recurring motifs, we proposed an al-

gorithm based on a combination of scale-space theory, string processing and

the Minimum Description Length principle. We showed the effectiveness of

our method on sensor data from several applications.

Future work includes evaluating our method on additional data exhibiting

multi-scale behavior, as a few datasets of this kind are currently publicly

available. Moreover, we are interested in further developing the symbolic

representation we adopted, currently requiring the cardinality of the alphabet

as a parameter; ideally, our method would become parameter free.

76 CHAPTER 5. MULTI-SCALE MOTIFS MINING

Chapter 6

Subsequences Clustering for

Events Modeling

6.1 Introduction

In this chapter, we investigate how to build a model of traffic activity events,

such as passing vehicles or traffic jams, from measurements data collected in

the context of Infrawatch, the Structural Health Monitoring project discussed

in Section 2.4.

It has been shown that the structural stress caused by heavy loads is one

of the main causes of bridge deterioration. Because of this, we focus here

on modeling traffic activity events in the strain measurements, such as pass-

ing vehicles or traffic jams. The produced model can then be employed for

real-time event classification or detection of anomalous responses from the

bridge.

A single moving vehicle is represented in the strain measurements as a bump-

shaped peak (see Figure 6.1 (right)) with an intensity proportional to the

vehicle’s weight and a duration in the order of seconds. On the other hand,

events like traffic jams represent significantly larger time spans and cause

an overall increase in the average strain level, due to the presence of many

slow-moving vehicles on the bridge. Because we are dealing with events of

77

78 CHAPTER 6. SUBSEQUENCES CLUSTERING

varying nature, straightforward algorithms based on peak detection will not

suffice.

In order to model all the different kinds of traffic events represented in the

strain data, we investigate the effectiveness of time series subsequence clus-

tering [41, 49, 30, 43], which essentially employs a sliding window technique

to split the data stream in individual subsequences (observations), which

can then be clustered. However, the naive implementation of subsequence

clustering (SSC) using a sliding window and k-Means is controversial, as it

is prone to producing undesirable and unpredictable results, as was previ-

ously demonstrated and analyzed in several publications, e.g. [49, 30, 43].

Indeed, within our strain data application, we notice some of the mentioned

phenomena, although not all. We provide an analysis of how the different

phenomena can be explained, and why some of them are not present in the

data we consider. Finally, we introduce a novel Snapping distance measure

which, employed in SSC based on k-Means, removes the artifacts and pro-

duces a correct clustering of the traffic events. We believe that the proposed

distance measure can lead to a rehabilitation of SSC methods for finding

characteristic subsequences in time series.

6.2 InfraWatch and the Strain Sensor Data

In this section, we describe what the strain data looks like and how the

different types of traffic activities are represented in the strain measurements,

in order to motivate the technical solutions employed in Section 6.3.

As mentioned, we focus on modeling traffic events, such as vehicles passing

over the bridge or traffic jams, represented in the strain measurements of

the InfraWatch data. The data is being sampled at 100 Hz which amounts

to approximately 8.6 · 106 measurements per sensor per day. As the sensor

network is highly redundant, and the different strain sensors are fairly cor-

related or similar in behavior, we selected one sensor that is reliable and low

in measurement-noise (less than 1.0 µm/m). The strain gauge considered is

placed at the bottom of one of the girders in the middle of a 50 meter span

6.2. INFRAWATCH AND THE STRAIN SENSOR DATA 79

9:
00

9:
30

10
:0

0

Time

5

10

15

20

25

30

35

µ
m
/m

5 s 10 s 15 s 20 s
Time

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

µ
m
/m

Figure 6.1: Detailed plots of strain, showing a traffic jam during rush hour

(left) and individual vehicles (right).

0:
00

1:
00

2:
00

3:
00

4:
00

5:
00

6:
00

7:
00

8:
00

9:
00

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

23
:0

0

24
:0

0

Time

0

5

10

15

20

25

30

35

40

µ
m
/m

Figure 6.2: One full week day of strain measurements. All y-axis units in

this chapter are in µm/m (µ-strain).

near one end of the bridge. The strain data is thus related to this portion

of the infrastructure. Every load situated on this span will have a positive

effect, with loads in the middle of the span contributing more to the strain

than loads near the supports of the span. Figure 6.2 shows an overall plot of

the measurements for a single (week)day.

At the time scale of Figure 6.2, it is not possible to identify short-term

changes in the strain level (except for notable peaks), such as individual ve-

hicles passing over the span. However, long-term changes are clearly visible.

For instance, there is a slightly curved trend of the strain baseline which

slowly develops during a full day, which is due to changes in temperature,

80 CHAPTER 6. SUBSEQUENCES CLUSTERING

slightly affecting both the concrete and gauge properties. The sudden rise

of the average strain level between 9am and 10am is caused by a traffic jam

over the bridge (as verified by manual inspection of the video signal). A

traffic jam involves many slowly moving vehicles, which causes high vehicle

densities. This in turn produces a heavy combined load on the span, and the

strain measurements record this fact accordingly. Figure 6.1 (left) shows a

detailed plot of the traffic jam event.

Short-term changes, on the other hand, can be identified when considering

a narrower time window, in the order of seconds. A passing vehicle is repre-

sented in the data by a bump-shaped peak, reflecting the load displacement

as the car moves along the bridge’s span. Figure 6.1 (right) shows a time

window of 22 seconds where the big peak represents a truck while the smaller

ones are caused by lighter vehicles such as cars.

The examples above show how different traffic events, though all interesting

from a monitoring point of view, occur with different durations and features

in the strain data. Our aim is to characterize the different types of traffic

the bridge is subjected to by analyzing short fragments of the strain signal,

in the order of several seconds. The remainder of this chapter is dedicated

to the clustering of such subsequences obtained by a sliding window.

6.3 Subsequence Clustering for Traffic Events

Modeling

In this section, we introduce the rationale behind the subsequence clustering

technique. We review the known pitfalls of SSC considering the features

of the strain data and we show how its naive application produces results

affected by artifacts. We finally propose a novel distance measure for SSC

designed to remove the artifacts.

6.3. SUBSEQUENCES CLUSTERING FOR EVENTS MODELING 81

-8

-6

-4

-2

0

2

4

6

8

-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

Figure 6.3: Two plots of the same data, showing the original data as a

function of time (left), and a projection on two selected dimensions in w-

space and the four prototypes generated by k-Means (red circles). Clearly,

the sliding window technique creates a trajectory in w-space, where each loop

corresponds to a bump in the original signal.

6.3.1 Subsequence Clustering

Subsequence clustering is a time series clustering techniques based on the

concept of subsequences set :

Definition (Subsequences Set). The subsequences set D(X,w) = {Si,w |
1 ≤ i ≤ m− w + 1} is the set of all the subsequences extracted by sliding a

window of length w over the time series X.

The subsequences set D(X,w) contains all possible subsequences of length w

of a time series X. The aim of subsequence clustering is discovering groups of

similar subsequences in D(X,w). The intuition is that, if there are repeated

similar subsequences in X, they will be grouped in a cluster and eventually

become associated to an actual event of the application domain.

6.3.2 Subsequence Clustering equals Event Detection?

Subsequence clustering is an obvious and intuitive choice for finding charac-

teristic subsequences in time series. However, in a recent paper by Keogh

et al. [49], it was shown that despite the intuitive match, SSC is prone to

a number of undesirable behaviors that make it, in the view of the authors,

82 CHAPTER 6. SUBSEQUENCES CLUSTERING

unsuitable for the task at hand. Since then, a number of papers (e.g. [43]

and [30]) have further investigated the observed phenomena, and provided

theoretical explanations for some of these, leading to a serious decline in

popularity of the technique. In short, the problematic behavior was related

to the lack of resemblance between the resulting cluster prototypes and any

subsequence of the original data. Prototype shapes that were observed were

collections of smooth functions, most notably sinusoids, even when the orig-

inal data was extremely noisy and angular. More specifically, when the time

series were constructed from several classes of shorter time series, the result-

ing prototypes did not represent individual classes, but rather were virtually

identical copies of the same shape, but out of phase. Finally, it was observed

that the outcome of the algorithm was not repeatable, with different random

initializations leading to completely different results.

The unintuitive behavior of SSC can be understood by considering the nature

of the subsequence set D(X,w) that is the outcome of the initial sliding

window step. Each member of D(X,w) forms a point in a Euclidean w-

dimensional space, which we will refer to as w-space, illustrated in Figure

6.3. As each subsequence is fairly similar to its successor, the associated

points in w-space will be quite close, and the members of D(X,w) form a

trajectory in w-space. Figure 6.3 shows an example of a (smoothed) fragment

of strain data, and its associated trajectory in w-space (only two dimensions

shown). Individual prototypes correspond to points in w-space, and the task

of SSC is to find k representative points in w-space to succinctly describe

the set of subsequences, in other words, the trajectory. Figure 6.3 (right)

also shows an example of a run of k-Means on this data. As the example

demonstrates, the prototypes do not necessarily lie along the trajectory, as

they often represent an (averaged) curved segment of it.

So how does SSC by k-Means fare on the strain data from the Hollandse

Brug? Experiments reported in Section 6.4 will show that not all the prob-

lematic phenomena are present in clustering results on the strain data. In

general, cluster prototypes do resemble individual subsequences, although

some smoothing of the signal as a result of averaging does occur, which is

only logical. The relatively good behaviour can be attributed to some cru-

6.3. SUBSEQUENCES CLUSTERING FOR EVENTS MODELING 83

0 50 100 150 200 250 300 350 400
9.0

9.5

10.0

10.5

11.0

11.5

Figure 6.4: Multiple representation of events. The left plot shows the proto-

types computed by the classic k-Means. The right plot shows, in black, the

portion of the data assigned to the two bump-shaped prototypes.

cial differences between the nature of the data at hand, and that used in

the experiments of for example [49, 43]. Whereas those datasets typically

were constructed by concatenating rather short time series of similar width

and amplitude, the strain data consists of one single long series, with peaks

occurring at random positions. Furthermore, the strain data shows consid-

erable differences in amplitude, for example when heavy vehicles or traffic

jams are concerned. There remains however one phenomenon that makes the

regular SSC technique unsuitable for traffic event modeling: the clustering

tends to show multiple representations of what is intuitively one single event

(see Figure 6.4 for an example). Indeed, each of the two bump-shaped pro-

totypes resembles a considerable fraction of the subsequences, while at the

same time having a large mutual Euclidean distance. In other words, our

notion of traffic event does not coincide with the Euclidean distance, which

assigns a large distance to essentially quite similar subsequences. In the next

section, we introduce an alternative distance measure, which is designed to

solve this problem of misalignment.

6.3.3 A Context-Aware Distance Measure for SSC

As showed in the previous section, applying SSC to the strain data employ-

ing the classic k-Means leads to undesirable multiple representations of the

84 CHAPTER 6. SUBSEQUENCES CLUSTERING

same logical event. The problem is that comparing two subsequences with

the Euclidean distance does not consider the similarity of their local con-

texts in the time series. Below we introduce a novel distance measure which

finds the best match between the two compared subsequences in their local

neighborhood.

Given a time series X and two subsequences Sp,w ∈ X and Sfixed of length

w, we consider not only the Euclidean distance between Sfixed and Sp,w, but

also between Sfixed and the neighboring subsequences, to the left and to the

right, of Sp,w. The minimum Euclidean distance encountered is taken as the

final distance value between Sp,w and Sfixed.

Formally, given a shift factor f and a number of shift steps s, we define the

neighbor subsequences indexes of Sp,w as:

NS =

{
p+

fw

s
· i

∣∣∣∣ −s ≤ i ≤ s

}

The extent of data analyzed to the left and to the right of Sp,w is determined

by the shift factor while the number of subsequences considered in the interval

is limited by the shift steps parameter. The Snapping distance is defined

as:

Snapping(Sp,w, Sfixed) = min{Euclidean(Si,w, Sfixed) | i ∈ NS} (6.1)

We want to employ the Snapping distance in a SSC scheme based on k-

Means. k-Means is a well known clustering/quantization method that, given

a set of vectors D = {x1, . . . , xn}, aims to find a partition P = {C1, . . . , Ck}
and a set of centroids C = {c1, . . . , ck} such that the sum of the squared

distances between each xi and its associated centroid cj is minimized.

The classic k-Means heuristic implementation looks for a local minimum by

iteratively refining an initial random partition. The algorithm involves four

steps:

6.3. SUBSEQUENCES CLUSTERING FOR EVENTS MODELING 85

Sp,w

Ck

Figure 6.5: A subsequence Sp,w is compared against the centroid Ck. The

minimum Euclidean distance between Ck and the neighbor subsequences of

Sp,w, including itself, is taken as a distance. Here, the best match is outlined

in gray at the right of Sp,w.

1. (initialization) Randomly choose k initial cluster prototypes c1, . . . , ck

in D.

2. (assignment) Assign every vector xi ∈ D to its nearest prototype cj ac-

cording to a distance measure. The classic k-Means uses the Euclidean

distance.

3. (recalculation) Recalculate the new prototypes c1, . . . , ck by computing

the means of all the assigned vectors.

4. Stop if the prototypes did not change more than a predefined threshold

or when a maximum number of iterations has been reached, otherwise

go back to step 2.

In our SSC scheme, the set of vectorsD to be clustered is the subsequences set

D(X,w), where X is a time series and w the sliding window’s length. In the

assignment step, we employ the Snapping distance defined in Equation 6.1.

Moreover, we force the initialization step to choose the random subsequences

such that they do not overlap in the original time series. Figure 6.5 illustrates

the intuition behind the Snapping distance measure in the context of k-

Means clustering. In the next section, we evaluate this SSC scheme on the

InfraWatch strain data.

86 CHAPTER 6. SUBSEQUENCES CLUSTERING

0 50 100 150 200 250 300 350 400
9.0

9.5

10.0

10.5

11.0

11.5

12.0

Figure 6.6: Improved results using the Snapping distance (see Figure 6.4).

6.4 Experimental Evaluation

In this section, we introduce the experimental setting and we discuss the

results of applying the SSC scheme defined in Section 6.3.3 to the strain

data.

We considered the following strain time series: 100Seconds has been col-

lected during the night in a period of low traffic activity across the Hollandse

Brug, and consists of 1 minute and 40 seconds of strain data sampled at

100 Hz. The series contains clear traffic events and does not present rele-

vant drift in the strain level due to the short time span. A more substantial

series, FullWeekDay, consists of 24 hours of strain measurements sampled

at 100 Hz, corresponding to approximately 9 millions values. The data has

been collected on Monday 1st of December 2008, a day in which the Hol-

landse Brug was fully operational. All the traffic events expected in a typical

weekday, ranging from periods of low activity to congestion due to traffic

jams, are present in the data. The temperature throughout the chosen day

varied between 4.9 and 7.7 degrees. Figure 6.2 shows an overall plot of the

data.

In order to run the defined k-Means SSC scheme, we need to fix a number of

parameters. The window length w has been chosen to take into account the

structural configuration of the bridge and the sensor network. Considering

the span in question is 50 meters long, and a maximum speed of 100 km/h,

6.4. EXPERIMENTAL EVALUATION 87

a typical vehicle takes in the order of 2.5 seconds to cross the span. In order

to capture such events, and include some data before and after the actual

event, the window length was set to 400, which corresponds to 4 seconds. The

number of clusters k directly affects how the resulting prototypes capture the

variability in the data. For the 100Seconds data, we found k = 3 a reasonable

choice because, considering its short duration, the time series does not present

drift in the strain baseline and the variability in the data can be approximated

by assuming three kind of events: no traffic activity (baseline) and light and

heavy passing vehicles. On the other hand, the FullWeekDay data presents

much more variability, mostly due to the drift in the measurements which

vertically translates all the events to different levels depending on the external

temperature. Moreover, traffic jams cause underlying variability in the data.

In the FullWeekDay, we found k = 10 to be large enough to account for

most of the interesting, from an SHM point of view, variations in the time

series, though we will also show the result with k = 4 for comparison. The

f parameter affects the size of the neighborhood of subsequences considered

by the Snapping distance. As the neighborhood gets smaller, the Snapping

distance converges to the Euclidean. A big neighborhood, on the other hand,

could include subsequences pertaining to other events. We experimented

with f = 0.25, f = 0.5 and f = 0.75, yelding comparable outcomes. The

presented results were all computed using f = 0.5. The shift steps parameter

imposes a limitation on the number of Euclidean distances to compute for

each comparison of a subsequence with a centroid; we fix it to s = 10.

6.4.1 Results

Given the chosen parameters, we run both the classic k-Means SSC and the

Snapping distance variant on the 100Seconds and FullWeekDay data.

Figure 6.6 depicts the results obtained by applying the k-Means SSC based

on the Snapping distance on the 100Seconds data. Comparing this with

the results using the Euclidean distance on the same data in Figure 6.4, in

this case, the big bump-shaped peak, caused by a heavy passing vehicle,

is represented by a single prototype, while the remaining prototypes model

88 CHAPTER 6. SUBSEQUENCES CLUSTERING

0 50 100 150 200 250 300 350 400
8

10

12

14

16

18
Classic k-Means SSC

0 50 100 150 200 250 300 350 400
8

10

12

14

16

18
Snapping k-Means SSC

0 50 100 150 200 250 300 350 400
8

10

12

14

16

18

20

22
Classic k-Means SSC

0 50 100 150 200 250 300 350 400
8

10

12

14

16

18

20

22
Snapping k-Means SSC

Figure 6.7: Prototypes produced by applying k-Means respectively with Eu-

clidean and Snapping distance on the FullWeekDay data, for both k = 4

(left) and k = 10 (right).

lighter passing vehicles and the strain baseline (whose assignments are not

shown in the picture).

Figure 6.7 shows the resulting prototypes obtained from the FullWeekDay

data for k = 4 (left) and k = 10 (right). The prototypes computed for k = 4

by both the classic and revised k-Means SSC are really similar. Setting

k = 4 does not account for all the variability in the FullWeekDay data and

the resulting prototypes try to represent the different strain levels more than

the actual events. In this case, the effect of considering the neighborhood of

each subsequence, as done by the Snapping distance, is dominated by the

presence of large differences in the strain values.

The prototypes for k = 10 better describe the variability in the data and rep-

resent both the different strain levels as well as the individual events (peaks).

In this case, the classic k-Means SSC introduces double representations of

the same logical events. This is avoided in our revised solution, thus bet-

ter representing the variability in the data: every prototype now models a

different strain level or event, as shown in Figure 6.7 (right).

Although Figure 6.7 gives an idea of the differences between the prototypes

produced by the classic k-Means SSC and the Snapping version, it does not

6.4. EXPERIMENTAL EVALUATION 89

Figure 6.8: Two examples of events represented by individual prototypes.

The central point of an associated subsequence is drawn in black.

show how the data is subdivided across them. Figure 6.8 shows two examples,

at different time scales, of events associated to a single prototype. The plot

on the left shows a heavy passing vehicle (in black), while the plot on the

right shows all the subsequences considered part of a traffic jam event.

6.4.2 A Scalable Implementation

Given the amount of data generated by the sensor network, it is important to

have a very scalable implementation of our clustering method. Therefore, we

have developed a parallelized version based on the MapReduce framework us-

ing Hadoop [101]. Indeed, the main bottleneck in clustering lies in calculating

the (snapping) distances between every subsequence and the cluster centers,

which need to be read from disk. With MapReduce, we can distribute the

data reads over a cluster of machines.

An overview of the resulting system is shown in Figure 6.9. In the first

stage, we ‘massage’ the data to prepare it for the clustering phase. Since

the computing nodes work independently, they need to be passed complete

subsequences, including the lead-in and lead-out, in single records. First,

we read the measurements of a single sensor for every timestamp, and its

value is mapped to the initial timestamp ts of every subsequence in which it

occurs. Then, all measurements for a specific ts are reduced to a complete

subsequence.

In the clustering phase, we first select k random centroids. Then, each sub-

sequence is mapped to the nearest centroid, using the snapping distance,

90 CHAPTER 6. SUBSEQUENCES CLUSTERING

<ts1, >

<ts2, >

<ts3, >

<ts4, >

<ts5, >
<ts6, >

<ts, {s1, s2, ...}>

split 1

split 2

split n

Map

Map

<tsi , {0,s1}> Reduce
(per tsi)

Reduce

...

Map Reduce

Data massageRaw data Subsequences
(with lead-in/out)

Map

Map

Reduce
(per clusi)

Reduce
Map

split 1

split 2

split n
...

<clusi,partialsums>

Clustering Cluster
centroids

update current cluster centroids
iterate

tslead-in lead-out

<tsi-1,{1,s1}>

...

...

current
cluster

centroids

k (random)

<clus1, >

<clus2, >

<tsi+1,{-1,s1}>

Figure 6.9: MapReduce implementation of our clustering method. Every

map or reduce task can be run on any available computing core.

together with the combined points mapped by the same mapper. The re-

ducer receives all points mapped to a certain cluster and calculates the new

cluster centroid. This is repeated n times or until the clusters converge.

The k-Means implementation is an adapted version of k-Means found in the

Mahout library.1

We evaluated this implementation on a relatively small cluster of 5 quad-core

computing nodes. Compared to a sequential implementation that loaded all

the FullWeekDay data in memory, it yielded a 6-fold speedup in spite of the

extra I/O overhead. Moreover, it scales linearly, even slightly sub-linearly, to

time series of several months. For example, one month of data was clustered

(using 10 iterations) in less than 14 hours, and can be sped up further by

simply adding more nodes.

6.5 Conclusion

In this chapter, we have focused on the problem of identifying traffic activity

events in strain measurements, produced by a sensor network deployed on a

highway bridge. Characterizing the bridge’s response to various traffic events

represents an important step in the design of a complete SHM solution, as it

will permit implementations of real-time classification or anomaly discovery

1Mahout — Scalable Machine Learning Library. http://mahout.apache.org

6.5. CONCLUSION 91

techniques.

The proposed solution is based on subsequence clustering, a technique shown

to be prone to undesired behaviors and whose outcome is strongly dependent

on the kind of data it is applied to. In view of this, we studied SSC in relation

to the features of the strain data, showing that only some of the documented

pitfalls (i.e., multiple representations) occur in our case. To solve this, we

introduced a context-aware distance measure between subsequences, which

also takes the local neighborhood of a subsequence into account. Employing

this Snapping distance measure, we showed that SSC by k-Means returns a

correct modeling of the traffic events.

92 CHAPTER 6. SUBSEQUENCES CLUSTERING

Chapter 7

Interactive Time-Series

Visualization

When approaching a new data science problem, it is most of the time prefer-

able to spend some time to get an idea of the properties and the features of

the data at hand. This exploratory phase is not only useful to get a better

understanding of the application domain, but it can provide fundamental

insight about the data and inform all the subsequent modeling, feature con-

struction and algorithm design choices. Moreover, freely looking at the data

before diving into the actual modeling could spot fundamental issues on how

it was collected and processed in the first stage, issues which could potentially

render any derived analysis flawed if not pointless.

This preliminary exploration phase of a given dataset is widely known in

the community under the name of exploratory data analysis (EDA) [92, 93].

Typical EDA activities include generating statistical summaries, computing

aggregations, fitting distributions and, last but not least, visualizing the data

in several ways in order to spot patterns and gain insight, mostly driven by

the intuition of the practitioner.

Effective visualization, in fact, is one of the most powerful and immedi-

ate ways of analyzing a dataset, relying on the ability of the human brain

to abstract, summarize, spot trends and anomalies through visual inspec-

93

94 CHAPTER 7. INTERACTIVE TIME-SERIES VISUALIZATION

tion [46].

Most data analysis software suites allow practitioners to perform visualization

easily on moderately sized datasets. However, when the data at hand is too

big to be handled by off-the-shelf software solutions, it becomes difficult to

perform effective visualization and more advanced solutions, able to cope

with big data, are required.

This chapter discusses visualization in the context of EDA of massive time

series data. In particular we focus on the following problem:

Given a massive time series dataset, how can we support inter-

active visualization, enabling fast browsing and zooming from

coarser to finer levels of detail?

Note how the emphasis is put on the interactivity of the process as required

by effective EDA. Although it is reasonably easy to visualize small datasets

with current software suites, this simple task becomes quite challenging when

dealing with large amount of data, especially when it is required to do this

interactively. Throughout the chapter, we will see how this problem can be

addressed by working on sampled versions of the original data, organized as

a hierarchy.

The solution has been implemented and tested on a real-world scenario, the

InfraWatch project, and resulted in a software package called VizTool, which

will be introduced throughout the chapter.

The rest of the chapter is organized as follows. Section 7.1 introduces the con-

cept of sub-sampling hierarchy which lays the foundation for the subsequent

sections. Section 7.2 discusses how we exploit the sub-sampling hierarchy in

order to support interactive visualization of massive time series data. Sec-

tion 7.3 introduces VizTool, a web application implementing the concepts

discussed in the chapter. Finally, Section 7.4 draws the conclusions.

7.1. HIERARCHICAL TIME SERIES SUBSAMPLING 95

7.1 Hierarchical Time Series Subsampling

When dealing with large univariate time series, there are mainly two prop-

erties that affect dimensionality: the extent of the measured period and its

sampling frequency. By reducing the considered period, the sampling fre-

quency, or both, one can directly reduce the amount of data to be processed

at once, in some cases without losing relevant information for the task at

hand.

Take, for example, the case of InfraWatch where data from sensors is sampled

at 100 Hz. If we are interested in spotting seasonal trends in strain measure-

ments, it suffices to consider a moderately sub-sampled version of the data,

possibly containing one measurement every hour or, even, every day.

In general this means that, depending on the task at hand, it is often enough

to consider a sub-sampled version of the data in order to speed up calculations

and support interactivity if required.

In this section, we propose a storage scheme for large time series based on pro-

gressively sub-sampled versions of the original data to support this idea.

7.1.1 Sub-sampling Hierarchy Construction

The problem of effectively reducing the dimensionality of a time series, in-

terpreted as its number of data points, boils down to producing a reduced

representation such that it resembles the original data as much as possible.

From now on, and without loss of generality, we will assume we are dealing

with constant rate time series1.

The most trivial way to reduce the dimensionality of such a time series is

to consider every nth point, thus reducing its size by a factor n. This ap-

proach, however, has a drawback as it is too sensitive to outliers. In fact,

rare events, such as spikes in the data or errors in the measurements, could

1It is always possible to add or remove points of a time series, by interpolation, to make

its sampling rate constant.

96 CHAPTER 7. INTERACTIVE TIME-SERIES VISUALIZATION

be selected in the sampling, rendering the resulting approximation, and its

shape, skewed.

A more robust way of producing a low dimensionality approximation is by

taking the average of the points to be aggregated. More formally, given a

time series x of length n, we want to compute an approximation of length

M

A(x,M) = x̂ = x̂[1], . . . , x̂[M]

where:

x̂[i] =
M

n

(n/M)i∑
j=n/M(i−1)+1

x[j] .

This method of reducing the dimensionality of a time series is also at the

base of a well known segmentation technique called Piecewise Aggregate

Approximation [47]. In the segmentation task, however, the final outcome is

not a time series with a reduced number of points (a lower sampling rate) but

a cheaper representation of the same data, obtained by reducing segmented

data points to horizontal lines centered around their mean.

The average function, however, is not the only possible choice for aggregating

time series data. Ideally, the choice of an aggregation function should be

based on its ability to preserve the perceptual features of the data, although

this ability may depend on the properties of the data itself and how it evolves

over time. A review of several possible aggregation functions and analysis of

how well they cope with the task of visualization can be found in [6].

We also note that even basic aggregation functions can be of practical im-

portance when dealing with time series data, especially for visualization pur-

poses. Consider, for example, the case of temperature sensors where one is

often interested in knowing what are the changes in temperature at any given

time frame. In such cases, computing multiple types of aggregations, such as

minimum, maximum and average, can support band visualizations.

Having a way to reduce the length of a time series, we can now define a hier-

archical storage scheme which materializes different levels of approximation

given an input time series.

7.1. HIERARCHICAL TIME SERIES SUBSAMPLING 97

Definition (Hierarchical Storage Scheme). Given a time series x of length

n, a hierarchical storage scheme is defined by materializing a sequence of

log2n+1 consecutively coarser approximations A(x, n/2i), for 0 ≤ i ≤ log2n.

Note that we apply the floor operation on log2n to handle time lengths that

are not strictly a power of two.

In other words, we store consecutively coarser versions of the original time

series, where every version has half the size of the immediately finer one.

This approach creates a pyramid of approximations which, when fully stored

on disk, permits to quickly retrieve portions of a time series at a resolution

that is as close as possible to the desired one. Figure 7.1 depicts this concept

visually.

We note that, for any given time series x of length n, the total number of

data points of all levels of approximation in the storage scheme is 2n. As the

storage capacity quickly increases over time and its price quickly drops, a

twofold increase of the required storage represents a good compromise, espe-

cially considering the huge gain in retrieval speed provided by this approach

for visualization purposes.

The concept of considering data stored at different resolutions and com-

plexities in order to speed up retrieval and rendering is also at the base of

many computer graphics methods. In texture mapping [39], for example, a

technique called mipmapping [102] involves pre-calculating sequences of pro-

gressively lower resolution versions of the same texture image, each of which

is half the size of the previous one. The approach permits to reduce render

time and reduce artefacts, such as aliasing, by choosing the right level of

resolution depending on the pixel density of the object. Objects closer to the

camera will be rendered with high resolution textures while, on the contrary,

for distant objects, using less-defined texture images will suffice.

The same concept, again in computer graphics, is behind LOD (level of de-

tail) based 3D rendering [66], where the polygonal complexity of an object is

lowered, by employing polygonal reduction algorithms [65], as it moves away

from camera. Although more advanced continuous LOD methods exist, ba-

sic (discrete) LOD approaches are based on storing pre-computed polygonal

98 CHAPTER 7. INTERACTIVE TIME-SERIES VISUALIZATION

x = A(x, n/20)

A(x, n/2)

A(x, n/4)

A(x, n/8)

A(x, n/16)

A(x, n/32)

A(x, n/64)

January 1
2014

December 31
2014

Start May 1 2014
End July 1 2014

Viewport

VizTool Storage Scheme VizTool Server VizTool Web Application

(1) Data Request
Start - End Period
Viewport Size

(2) Data
Retrieval

(3) Data
Visualization

Figure 7.1: The three main components of VizTool. On the left, it is shown

the pyramidal storage scheme for time series introduced in 7.1.1. A schematic

example of a VizTool user session is shown on the right side. The web

application makes a data retrieval request to the VizTool server providing

the desired period and the size of the viewport. Given these parameters,

the server accesses the best resolution level from the storage and sends the

approximated data back to the web application for visualization.

representations of objects at different resolutions.

7.2 Interactive Visualization

We will now show how the time series storage scheme introduced in Sec-

tion 7.1 can be leveraged to support interactive visualization of large time

series.

First, let us consider a typical time series visualization scenario. The follow-

ing parameters affects the produced visualization at a given time:

• the requested time period (tstart, tend),

• the sampling rate of the original data,

7.3. VIZTOOL SOFTWARE 99

• the width in pixels of the visualization viewport w.

Any given configuration of time period and sampling rate results in a number

of data points, from the original time series, to be visualized. As this number

of points can potentially exceed the pixel width of the viewport, some sort of

aggregation has to take place. Performing such an aggregation task on the

fly, starting from the original time series, can be an expensive process and

could severely harm the interactivity of the visualization.

In order to speed up the process above, we can employ the storage scheme

introduced in Section 7.1.1 to directly retrieve the data from the most suitable

aggregation level, without performing on the fly expensive operations.

Ideally, given a configuration of time period and sampling rate, we would

like to retrieve a number of points that takes into account the size of the

viewport in order to reduce the amount of data to be aggregated at render

time.

Given a time series x[tstart, tend] to be visualized, let R = (tend − tstart)/w be

the ratio between the requested number of points in the original time series

and the viewport width. The value of R indicates how many data points

per pixel are to be shown using the original time series. We can reduce

this factor by retrieving the data from the right approximation level in the

storage scheme. More formally, the best option is to retrieve the data at level

A(x, n/2k) where k = blog2Rc.

This approach links the size of selected data to the resolution of the screen

by retrieving the largest aggregation level that has enough data points for

the current viewport. One clear advantage is that data retrieval time is

reduced as the complexity of the visualization is now dependent on the actual

resolution of the screen used.

7.3 VizTool Software

The storage scheme and the interactive visualization method introduced in

the previous sections are the core concepts behind VizTool, a visualization

100 CHAPTER 7. INTERACTIVE TIME-SERIES VISUALIZATION

software for large time series data. VizTool has been developed in the context

of the InfraWatch project to aid interactive visualization of the bridge’s data

and facilitate the discussions with the domain experts.

The software has been designed with the following goals in mind:

• fast and interactive visualization of large time series data collected from

sensors,

• ability to adapt the details in the visualization to the actual viewport

size,

• possibility of comparing data from multiple sensors by stacking multiple

time series line charts,

• support for band visualization based on minimum, maximum and av-

erage aggregation functions,

• ability to export any portion of the data at any given sampling rate,

• ability to bookmark and add notes to portions of the data to support

data annotation activities,

• possibility to compute correlations between any chosen set of sensors.

The second goal, in particular, was fundamental to run VizTool effectively

on large monitors or multi-screen setup when discussing data and presenting

projects results.

Moreover, because of the sensitiveness and size of InfraWatch’s data, Viz-

Tool’s architecture is based on a client-server model which permits to host

all the data on the server side, while allowing client hosts to browse and

export portions of it.

VizTool’s server-side application has been developed in Python [77] using the

web framework Django [23] and HDF5 [38] as data storage library to support

effective and efficient caching of data from disk into memory. On the client-

side, the web application is written in pure Javascript and HTML/CSS em-

ploying the Highcharts [40] graphing library for plotting the time series.

VizTool has been used to visualize InfraWatch’s data at scale, allowing one

7.4. CONCLUSIONS 101

Figure 7.2: The VizTool web application interface.

to browse and inspect a terabyte sized dataset of sensor time series sampled

at 100 Hz for a period of three months.

An example of a VizTool session is shown in Figure 7.2. Figure 7.3 shows

VizTool running on a multi-screen setup.

7.4 Conclusions

In this chapter, we introduced the task of large time series visualization in the

context of Exploratory Data Analysis (EDA) and we discussed the challenges

linked to effective interactive visualization of big data.

As we observed that the amount of visible data points is always limited by

102 CHAPTER 7. INTERACTIVE TIME-SERIES VISUALIZATION

the size of the visualization viewport, we proposed a storage scheme to hold

sub-sampled versions of the original data in order to speed up data retrieval

at different levels of resolution.

We introduced a data retrieval mechanism for visualization based on such

storage scheme and presented VizTool, a software solution that leverages

these concepts to support fast and interactive visualization of large time

series data collected from sensors.

VizTool proved to be an effective tool for the practical exploration of the

InfraWatch data, not only supporting the EDA process but also serving as a

practical demonstration for public exposition of the project’s results.

VizTool was also instrumental in discovering important properties and events

in the data such as dead sensors, re-calibration activities, correlation between

temperature and strain response, differences of traffic activity between work

days and weekend days. Moreover, VizTool made even more evident the

multi-scale nature of InfraWatch data and how different scales (monthly,

daily, hourly) reveal new complex phenomena and events inherent to certain

time resolutions.

Future work includes the extension of the VizTool software to support on the

fly operations that leverage the storage scheme we presented. For example, it

would be possible to compute approximate correlations between time series

in an anytime fashion by starting the computation at the coarsest level,

progressively refining the results while moving to finer levels.

The same concept could be applied to motif discovery. Anytime approximate

motif discovery could be implemented by exploiting the sub-sampling hierar-

chy. A naive solution would involve running the exact MK algorithm [74] at

each level of the hierarchy, from coarser to finer resolutions, and presenting

intermediate results to the user.

7.4. CONCLUSIONS 103

Figure 7.3: VizTool running on a multi-screen setup at the Leiden Institute

for Advanced Computer Science. The setup mounted a total of 16 screens (4

by 4) for a total resolution of 5120x4096.

104 CHAPTER 7. INTERACTIVE TIME-SERIES VISUALIZATION

Chapter 8

Conclusions

In this thesis, we discussed data mining methods and algorithms for the un-

supervised analysis of time series sensor data from complex physical systems.

As complex systems are often affected by several phenomena at once, we de-

veloped techniques able to cope with these complexities, such as the presence

of noisy measurements, multiple temporal scales and recurring patterns at

play at the same time. We also presented a technique and a software tool

to make the interactive visualization of massive time series datasets feasi-

ble.

We summarize our contributions below.

• In Chapter 4, we introduced a data mining method to discover the

relevant temporal scales in a time series. We employ the scale-space

theory and the Minimum Description Length principle to select the

most relevant time series decomposition among the many possible by

sub-diving the scale-space image. We introduced two different encoding

schemes aimed at exploiting (making possible to compress) different

properties of the data. We have shown how the presented methodology

gives meaningful results in both artificial and real-world scenarios.

• A byproduct of the method is that it produces an optimal decomposi-

tion such that each component is represented according to its inherent

complexity and does not present interferences from phenomena at other

105

106 CHAPTER 8. CONCLUSIONS

temporal scales. We have shown an example of how these individual

per-component representations may better serve tasks like classifica-

tion, regression or association analysis than the input, mixed, time

series.

• In Chapter 5, we introduced a method for the discovery of multi-scale

motifs in time series data. Another typical property of complex systems

is the presence of recurring phenomena at different temporal scales.

Moreover, these recurring phenomena appear warped in time, more or

less intense or both throughout the data. We employ the scale-space

theory and Minimum Description Length as the base of our methodol-

ogy. Differently from much of the existing literature, we employ a defi-

nition of motifs based on structural similarity, other than one based on

point-wise comparisons, in order to account for warping and deforma-

tions. We propose a way to transform the structural representation of

a motif into a symbolic string which allows for fast matching by means

of suffix arrays. The effectiveness of the method is proved on sensor

data from several applications, including InfraWatch data.

• In Chapter 6, we focused on the problem of identifying traffic activ-

ity events in strain measurements. The proposed solution is based on

subsequence clustering, a technique known to be prone to undesired

behaviors and whose outcome is strongly dependent on the kind of

data it is applied to. In view of this, we studied SSC in relation to the

features of the strain data, showing that only some of the documented

pitfalls (i.e., multiple representations) occur in our case. To solve this,

we introduced a context-aware distance measure between subsequences,

which also takes the local neighborhood of a subsequence into account.

Employing this Snapping distance measure, we showed that SSC by

k-Means returns a correct modeling of the traffic events.

• In Chapter 7, we introduced the task of large time series visualization

in the context of Exploratory Data Analysis (EDA). We proposed a

storage scheme to hold sub-sampled versions of the original data in or-

der to speed up data retrieval at different levels of resolution. Based

on this storage technique, we presented a data retrieval mechanism

107

for visualization and VizTool, a software solution to support fast and

interactive visualization of large time series data collected from sen-

sors. VizTool was instrumental in discovering important properties

and events in real-world sensor data such as InfraWatch, where it was

helpful to discover dead sensors, re-calibration activities, correlation

between temperature and strain response, differences of traffic activity

between work days and weekend days.

One of the main themes of the thesis is how complex systems often exhibit

diverse behaviors at different temporal scales. A general conclusion is that

data mining methods should be able to cope with the multiple resolutions

(scales) at the same time in order to fully understand the data at hand and

extract useful information from it. This becomes more and more important

as we advance in our ability to collect increasingly detailed data about the

phenomena around us.

Throughout the thesis, we developed data mining methods aimed at coping

with this challenge. An important conclusion is that the Minimum Descrip-

tion Length principle, paired with the scale-space construction, represents

an effective way of discerning what is fundamental and what is not in the

data while considering different scales of analysis. This same principle was

instrumental in developing effective techniques to both detect the relevant

scales and mine the patterns that occur.

The importance of looking at different scales is also connected to visual-

ization. Complex systems show different phenomena at different resolution

and interactive visualization can effectively help practitioners to focus on a

specific resolution without being overwhelmed by the finer details.

One nice property of the methods we developed is that they do not require

parameters. This is a result of our choice of employing the MDL principle

and a model selection approach. However, we note that, in order for this

approach to be effective in practice, it is important to define flexible encoding

schemes that are able to capture the variability of the data at hand, possibly

incorporating domain knowledge.

108 CHAPTER 8. CONCLUSIONS

8.1 Future Work

Future work includes extending the presented methods to work in a stream-

ing context. This would allow, for example, to discover new phenomena

in a quasi-real time fashion or detect the presence of novel recurring pat-

terns.

Another promising opportunity for future work is to explore how MDL and

the scale-space theory could be used to design anomaly detection techniques

at multiple scales. Anomaly detection is, in fact, an important task when

dealing with the monitoring of complex systems, and MDL, other than as a

model selection principle, could be employed to spot changes in the underly-

ing data generation processes.

Finally, a relevant task linked to the goals of InfraWatch is the analysis of

multivariate time series data in order to mine key performance indicators

(KPIs) that behave in an approximately monotonic way. In fact, when look-

ing for indicators such as the degradation of concrete structures, as in the

case in InfraWatch, one approach is to look for subsets of sensors that, when

combined through linear and non-linear operators, result in a monotonic time

series. Such derived KPIs are clearly indicators of some underlying process

that irreversibly moves in a certain direction, and degradation of the bridge

is a good candidate for that. Using an approach called Equation Discovery

[24], one might discover such monotonic functions.

110 CHAPTER 8. CONCLUSIONS

Bibliography

[1] C. C. Aggarwal. Managing and mining sensor data. Springer Science

& Business Media, 2013.

[2] K. Aki and P. G. Richards. Quantitative Seismology. University Science

Books, 2 edition, 2002.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A sur-

vey on sensor networks. Communications magazine, IEEE, 40(8):102–

114, 2002.

[4] K. Ashton. That internet of things thing. RFiD Journal, 22(7):97–114,

2009.

[5] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.

Computer Networks, 54(15):2787 – 2805, 2010.

[6] A. Baggio, U. Vespier, and A. Knobbe. Selection of Data Adaptive

Approximations for Large Time Series Visualization. In Proceedings of

Benelearn 2013, 2013.

[7] H. Bai, M. Atiquzzaman, and D. Lilja. Wireless sensor network for

aircraft health monitoring. In Broadband Networks, 2004. BroadNets

2004. Proceedings. First International Conference on, pages 748–750.

IEEE, 2004.

[8] S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, and J. Albrecht.

Smart*: An open data set and tools for enabling research in sustainable

homes. SustKDD, August, 2012.

111

112 BIBLIOGRAPHY

[9] T. Becker, M. Kluge, J. Schalk, K. Tiplady, C. Paget, U. Hilleringmann,

and T. Otterpohl. Autonomous sensor nodes for aircraft structural

health monitoring. Sensors Journal, IEEE, 9(11):1589–1595, 2009.

[10] R. Bertens and A. Siebes. Characterising seismic data. In Proceedings

of the 2014 SIAM International Conference on Data Mining, Philadel-

phia, Pennsylvania, USA, April 24-26, 2014, pages 884–892, 2014.

[11] M. A. Beyer and D. Laney. The importance of ’big data’: A definition.

Technical report, Gartner, 2012.

[12] R. Cachucho, M. Meeng, U. Vespier, S. Nijssen, and A. Knobbe. Mining

multivariate time series with mixed sampling rates. In Proceedings

of the 2014 ACM International Joint Conference on Pervasive and

Ubiquitous Computing, pages 413–423. ACM, 2014.

[13] J. R. Chen. Making clustering in delay-vector space meaningful. Knowl.

Inf. Syst., 11(3):369–385, April 2007.

[14] M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, and V. C. Leung. Body

area networks: A survey. Mobile networks and applications, 16(2):171–

193, 2011.

[15] M. Chen, S. Mao, Y. Zhang, and V. C. Leung. Big data applications.

In Big Data, pages 59–79. Springer, 2014.

[16] C.-Y. Chong and S. P. Kumar. Sensor networks: evolution, opportuni-

ties, and challenges. Proceedings of the IEEE, 91(8):1247–1256, 2003.

[17] R. Cilibrasi and P. Vitanyi. Clustering by compression. Information

Theory, IEEE Transactions on, 51(4):1523–1545, 2005.

[18] P. Comon. Independent component analysis, a new concept? Signal

Processing, 36(3):287–314, April 1994.

[19] R. A. Davis, T. C. M. Lee, and G. A. Rodriguez-Yam. Structural

break estimation for nonstationary time series models. Journal of the

American Statistical Association, 101(473):223–239, 2006.

BIBLIOGRAPHY 113

[20] H. de Vries, G. Azzopardi, A. Koelewijn, and A. Knobbe. Parametric

Nonlinear Regression Models for Dike Monitoring Systems. In Proceed-

ings of IDA ’14, 2014.

[21] M. Dejori, H. H. Malik, F. Moerchen, N. C. Tas, and C. Neubauer. De-

velopment of data infrastructure for the long term bridge performance

program. In Proceedings of Structures, volume 9, 2009.

[22] A. M. Denton, C. A. Besemann, and D. H. Dorr. Pattern-based

time-series subsequence clustering using radial distribution functions.

Knowl. Inf. Syst., 18(1):1–27, January 2009.

[23] Django. Django Web Framework. https://www.djangoproject.com.

Accessed: 2015-06-12.

[24] S. Dzeroski and L. Todorovski. Discovering dynamics: From induc-

tive logic programming to machine discovery. Journal of Intelligent

Information Systems, 4:89–108, 1995.

[25] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakr-

ishnan. The pothole patrol: using a mobile sensor network for road

surface monitoring. In Proceedings of the 6th international conference

on Mobile systems, applications, and services, pages 29–39. ACM, 2008.

[26] C. Farrar, S. Doebling, and D. Nix. Vibration-based structural damage

identification. Philosophical Transactions of the Royal Society: Math-

ematical, Physical & Engineering Sciences, 359:131–149, 2001.

[27] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to

knowledge discovery in databases. AI magazine, 17(3):37, 1996.

[28] FHWA. Reliability of visual inspection for highway bridges. Technical

Report FHWA-RD-01-020, Federal Highway Administration Report,

2001.

[29] E. Frank, C. Chui, and I. H. Witten. Text categorization using compres-

sion models. In Proceedings of the Conference on Data Compression,

pages 555–, Washington, DC, USA, 2000. IEEE Computer Society.

114 BIBLIOGRAPHY

[30] R. Fujimaki, S. Hirose, and T. Nakata. Theoretical analysis of subse-

quence time-series clustering from a frequency-analysis viewpoint. In

Proceedings of SDM 2008, pages 506–517, 2008.

[31] J. Gama. Knowledge discovery from data streams. CRC Press, 2010.

[32] R. Ganti, I. Mohomed, R. Raghavendra, and A. Ranganathan. Analysis

of data from a taxi cab participatory sensor network. In Mobile and

ubiquitous systems: Computing, networking, and services, pages 197–

208. Springer, 2012.

[33] J. Gantz and D. Reinsel. The digital universe in 2020: Big data, bigger

digital shadows, and biggest growth in the far east. IDC iView: IDC

Analyze the Future, 2007:1–16, 2012.

[34] P. D. Grünwald. The Minimum Description Length Principle. The

MIT Press, 2007.

[35] S. Gusmeroli, S. Haller, M. Harrison, K. Kalaboukas, M. Tomasella, O.

Vermesan, H. Vogt, and K. Wouters. Vision and challenges for realising

the internet of things. status: published, 2010.

[36] J. Hagenauer, Z. Dawy, B. Goebel, P. Hanus, and J. Mueller. Genomic

analysis using methods from information theory. In Information Theory

Workshop, 2004. IEEE, pages 55–59. IEEE, 2004.

[37] J. Han, M. Kamber, and J. Pei. Data mining: concepts and techniques:

concepts and techniques. Elsevier, 2011.

[38] HDF Group. HDF5 Library. https://www.hdfgroup.org/HDF5. Ac-

cessed: 2015-06-12.

[39] P. S. Heckbert. Survey of texture mapping. Computer Graphics and

Applications, IEEE, 6(11):56–67, 1986.

[40] Highcharts. Highcharts Charting Library. http://www.highcharts.

com. Accessed: 2015-06-12.

BIBLIOGRAPHY 115

[41] F. Höppner. Time series abstraction methods - a survey. In Infor-

matik bewegt: Informatik 2002 - 32. Jahrestagung der Gesellschaft für

Informatik e.v. (GI), pages 777–786. GI, 2002.

[42] B. Hu, T. Rakthanmanon, Y. Hao, S. Evans, S. Lonardi, and E. Keogh.

Discovering the intrinsic cardinality and dimensionality of time series

using mdl. In Proceedings of ICDM 2011, pages 1086–1091, 2011.

[43] T. Idé. Why does subsequence time-series clustering produce sine

waves? In Proceedings of ECML PKDD 2006, pages 211–222, 2006.

[44] K. Judd and A. Mees. On selecting models for nonlinear time series.

Physica D, 82(4):426–444, May 1995.

[45] H. Kargupta, R. Bhargava, K. Liu, M. Powers, P. Blair, S. Bushra,

J. Dull, K. Sarkar, M. Klein, M. Vasa, et al. Vedas: A mobile and

distributed data stream mining system for real-time vehicle monitoring.

In SDM, pages 300–311, 2004.

[46] D. A. Keim. Information visualization and visual data mining. IEEE

Transactions on Visualization and Computer Graphics, 8(1):1–8, 2002.

[47] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimension-

ality reduction for fast similarity search in large time series databases.

Knowledge and information Systems, 3(3):263–286, 2001.

[48] E. Keogh, S. Chu, D. Hart, and M. Pazzani. Segmenting time series:

A survey and novel approach. In In an Edited Volume, Data mining

in Time Series Databases. Published by World Scientific, pages 1–22.

Publishing Company, 1993.

[49] E. Keogh and J. Lin. Clustering of time-series subsequences is meaning-

less: implications for previous and future research. Knowl. Inf. Syst.,

8(2):154–177, August 2005.

[50] E. Keogh, S. Lonardi, and B. Y.-c. Chiu. Finding surprising patterns

in a time series database in linear time and space. Proceedings of KDD

’02, page 550, 2002.

116 BIBLIOGRAPHY

[51] E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards parameter-

free data mining. In Proceedings of the tenth ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, pages

206–215. ACM, 2004.

[52] E. Keogh, S. Lonardi, C. A. Ratanamahatana, L. Wei, S.-H. Lee, and

J. Handley. Compression-based data mining of sequential data. Data

Mining and Knowledge Discovery, 14(1):99–129, 2007.

[53] E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An online algorithm

for segmenting time series. In Proceedings of ICDM 2001, pages 289–

296, 2001.

[54] B. Khoo. Rfid- from tracking to the internet of things: A review of

developments. In Proceedings of the 2010 IEEE/ACM Int’L Confer-

ence on Green Computing and Communications & Int’L Conference on

Cyber, Physical and Social Computing, GREENCOM-CPSCOM ’10,

pages 533–538, Washington, DC, USA, 2010. IEEE Computer Society.

[55] A. Knobbe et al. InfraWatch: Data management of large systems

for monitoring infrastructural performance. In Proceedings IDA 2010,

pages 91–102, 2010.

[56] J. Kok, A. Knobbe, H. Blockeel, B. Obladen, and E. Koenders. Large

Data Stream Processing for Bridge Management Systems. In Proceed-

ings SMAR 2011, 2011.

[57] P. Kontkanen and P. Myllymäki. Mdl histogram density estimation. In

International Conference on Artificial Intelligence and Statistics, pages

219–226, 2007.

[58] C. Laughman, K. Lee, R. Cox, S. Shaw, S. Leeb, L. Norford, and P.

Armstrong. Power signature analysis. Power and Energy Magazine,

IEEE, 1(2):56–63, 2003.

[59] U. Lee, B. Zhou, M. Gerla, E. Magistretti, P. Bellavista, and A. Cor-

radi. Mobeyes: smart mobs for urban monitoring with a vehicular

sensor network. Wireless Communications, IEEE, 13(5):52–57, 2006.

BIBLIOGRAPHY 117

[60] J. Lin, E. Keogh, and S. Lonardi. Visualizing and Discovering Non-

Trivial Patterns In Large Time Series Databases. Information visual-

ization, 2005.

[61] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing sax: a novel

symbolic representation of time series. Data Min. Knowl. Discov.,

15(2):107–144, October 2007.

[62] T. Lindeberg. Scale-space for discrete signals. IEEE Trans. Pattern

Analysis & Machine Intelligence, 12(3):234–254, March 1990.

[63] X. Liu, N. Krahnstoever, T. Yu, and P. Tu. What are customers looking

at? In Advanced Video and Signal Based Surveillance, 2007. AVSS

2007. IEEE Conference on, pages 405–410. IEEE, 2007.

[64] S. Lohr. The age of big data. New York Times, 11, 2012.

[65] D. P. Luebke. A developer’s survey of polygonal simplification algo-

rithms. Computer Graphics and Applications, IEEE, 21(3):24–35, 2001.

[66] D. P. Luebke. Level of detail for 3D graphics. Morgan Kaufmann, 2003.

[67] S.-M. Mäkelä, S. Järvinen, T. Keränen, M. Lindholm, and E. Vild-

jiounaite. Shopper behaviour analysis based on 3d situation awareness

information. In Video Analytics for Audience Measurement, pages 134–

145. Springer, 2014.

[68] M. Mampaey, N. Tatti, and J. Vreeken. Tell me what i need to know:

succinctly summarizing data with itemsets. In Proceedings of the 17th

ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 573–581. ACM, 2011.

[69] V. Megalooikonomou, Q. Wang, G. Li, and C. Faloutsos. A multiresolu-

tion symbolic representation of time series. In Proceedings of ICDE05,

pages 668–679, 2005.

[70] N. Melnikova, G. Shirshov, and V. V. Krzhizhanovskaya. Virtual dike:

multiscale simulation of dike stability. Procedia Computer Science,

4:791–800, 2011.

118 BIBLIOGRAPHY

[71] S. Miao, U. Vespier, R. Cachucho, M. Meeng, and A. Knobbe. Pre-

defined pattern detection in large time series. Information Sciences,

2015.

[72] C. Michael, L. Markus, and R. Roger. The internet of things. Technical

report, McKinsey Quarterly, 2010.

[73] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin.

Private memoirs of a smart meter. In Proceedings of the 2nd ACM

workshop on embedded sensing systems for energy-efficiency in build-

ing, pages 61–66. ACM, 2010.

[74] A. Mueen et al., E. Keogh, Q. Zhu, S. Cash, and B. Westover. Exact

discovery of time series motifs. In Proceedings of SDM ’09, pages 473–

484, 2009.

[75] M. Nixon. Feature extraction & image processing. Academic Press,

2008.

[76] S. Papadimitriou and P. Yu. Optimal multi-scale patterns in time series

streams. In Proceedings SIGMOD 2006, pages 647–658. ACM, 2006.

[77] Python. Python Language. http://www.python.org. Accessed: 2015-

06-12.

[78] T. Rakthanmanon, E. Keogh, S. Lonardi, and S. Evans. Time Series

Epenthesis: Clustering Time Series Streams Requires Ignoring Some

Data. In Proceedings of ICDM ’11, 2011.

[79] P. Ranganathan. From microprocessors to nanostores: Rethinking

data-centric systems. Computer, 44(1):39–48, 2011.

[80] D. Salomon. A concise introduction to data compression. Springer

Science & Business Media, 2007.

[81] S. Saria, A. Duchi, and D. Koller. Discovering deformable motifs in

continuous time series data. In Proceedings of IJCAI ’11, 2011.

BIBLIOGRAPHY 119

[82] D. Sculley and C. E. Brodley. Compression and machine learning:

A new perspective on feature space vectors. In Data Compression

Conference, 2006. DCC 2006. Proceedings, pages 332–341. IEEE, 2006.

[83] T. Shany, S. J. Redmond, M. R. Narayanan, and N. H. Lovell. Sensors-

based wearable systems for monitoring of human movement and falls.

Sensors Journal, IEEE, 12(3):658–670, 2012.

[84] A. Siebes. MDL in pattern mining a brief introduction to krimp. In

Formal Concept Analysis, pages 37–43. Springer, 2014.

[85] S. W. Smith. The Scientist & Engineer’s Guide to Digital Signal Pro-

cessing. California Technical Pub, 1997.

[86] H. Sohn, C. R. Farrar, F. M. Hemez, D. D. Shunk, D. W. Stinemates,

B. R. Nadler, and J. J. Czarnecki. A review of structural health mon-

itoring literature: 1996–2001. Los Alamos National Laboratory Los

Alamos, NM, 2004.

[87] W. Staszewski, C. Boller, and G. R. Tomlinson. Health monitoring of

aerospace structures: smart sensor technologies and signal processing.

John Wiley & Sons, 2004.

[88] Y. Tanaka, K. Iwamoto, and K. Uehara. Discovery of time-series mo-

tif from multi-dimensional data based on mdl principle. Journal of

Machine Learning, 58(2-3):269–300, February 2005.

[89] N. Tatti and J. Vreeken. The long and the short of it: summarising

event sequences with serial episodes. In Proceedings of the 18th ACM

SIGKDD international conference on Knowledge discovery and data

mining, pages 462–470. ACM, 2012.

[90] T. Taylor, A. Pradhan, G. Divekar, M. Romoser, J. Muttart, R. Gomez,

A. Pollatsek, and D. Fisher. The view from the road: The contribu-

tion of on-road glance-monitoring technologies to understanding driver

behavior. Accident Analysis & Prevention, 58:175–186, 2013.

[91] W. M. Thorburn. Occam’s razor. Mind, 24(2):287–288, 1915.

120 BIBLIOGRAPHY

[92] J. W. Tukey. The future of data analysis. Annals of Mathematical

Statistics, 33(1):1–67, March 1962.

[93] J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

[94] M. van Leeuwen and A. Siebes. Streamkrimp: Detecting change in

data streams. In Proceedings of ECML-PKDD 2008, pages 672–687,

2008.

[95] J. Vanschoren, U. Vespier, S. Miao, M. Meeng, R. Cachucho, and A.

Knobbe. Big Data Management, Technologies, and Applications, chap-

ter Large-Scale Sensor Network Analysis: Applications in Structural

Health Monitoring. IGI Global, 2014.

[96] U. Vespier, A. Knobbe, S. Nijssen, and J. Vanschoren. MDL-Based

Analysis of Time Series at Multiple Time-Scales. In Proceedings of

ECML PKDD ’12, 2012.

[97] U. Vespier, A. Knobbe, and J. Vanschoren. Traffic events modeling for

structural health monitoring. In Proceedings of IDA ’11, 2011.

[98] U. Vespier, S. Nijssen, and A. Knobbe. Mining characteristic multi-

scale motifs in sensor-based time series. In Proceedings of the 22nd

ACM international conference on Conference on Information & Knowl-

edge Management, CIKM ’13, pages 2393–2398. ACM, 2013.

[99] P. M. Vitányi. Compression-based similarity. In Data Compression,

Communications and Processing (CCP), 2011 First International Con-

ference on, pages 111–118. IEEE, 2011.

[100] J. Vreeken, M. Van Leeuwen, and A. Siebes. Krimp: mining itemsets

that compress. Data Mining and Knowledge Discovery, 23(1):169–214,

2011.

[101] T. White. Hadoop, The Definite Guide. O’Reilly, 2009.

[102] L. Williams. Pyramidal parametrics. In ACM Siggraph Computer

Graphics, volume 17, pages 1–11. ACM, 1983.

BIBLIOGRAPHY 121

[103] A. P. Witkin. Scale-space filtering. In Proceedings IJCAI 1983, pages

1019–1022, San Francisco, CA, USA, 1983.

[104] I. H. Witten and E. Frank. Data Mining: Practical machine learning

tools and techniques. Morgan Kaufmann, 2005.

[105] I. H. Witten, A. Moffat, and T. C. Bell. Managing gigabytes: compress-

ing and indexing documents and images. Morgan Kaufmann, 1999.

[106] L. Yang, S.-H. Yang, and L. Plotnick. How the internet of things tech-

nology enhances emergency response operations. Technological Fore-

casting and Social Change, 80(9):1854–1867, 2013.

[107] R. K. Yedavalli and R. K. Belapurkar. Application of wireless sensor

networks to aircraft control and health management systems. Journal

of Control Theory and Applications, 9(1):28–33, 2011.

[108] A. Zoha, A. Gluhak, M. A. Imran, and S. Rajasegarar. Non-intrusive

load monitoring approaches for disaggregated energy sensing: A survey.

Sensors, 12(12):16838–16866, 2012.

Nederlandse Samenvatting

Tegenwoordig kan vrijwel alles, van natuurverschijnselen tot fysieke syste-

men, bemeten worden, terwijl de verkregen informatie verzameld, opgeslagen

en geanalyseerd wordt om nieuwe inzichten te verschaffen. De inzet van meet-

systemen voor allerlei soorten industriële, commerciële en consumententoe-

passingen heeft feitelijk verscheidene kansen geschapen voor het analyseren

van complexe systemen op een tot op heden ongekend detailniveau.

In dit proefschrift wordt aangetoond dat complexe systemen vaak verschil-

lend gedrag vertonen op verschillende tijdsschalen, en wordt bepleit dat da-

tamining methoden ook op meerdere resoluties (tijdsschalen) zouden moeten

werken, om de betreffende data volledig te doorgronden en er zinvolle infor-

matie uit te extraheren.

Onder deze aannames heb ik methods ontwikkeld en geëvalueerd voor data-

mining en visualisatie van omvangrijke tijdreeksdata over complexe systemen

die verzameld wordt door middel van sensoren. Specifiek heb ik oplossingen

aangedragen voor drie fundamentele vraagstukken: het detecteren van patro-

nen op meerdere tijdschalen, het herkennen van herhalende gebeurtenissen,

en het interactief visualiseren van uitzonderlijke grote tijdreeksdata.

De door mij gëıntroduceerde methoden en algoritmen combineren concepten

van datamining, signaalverwerking en de informatietheorie. Ik demonstreer

hoe verschillende technieken gecombineerd kunnen worden om de uitdagingen

aan te pakken die naar voren komen bij het analyseren van tijdreeksdata

uit de praktijk. Voorbeelden daarvan zijn de aanwezigheid van ruis in de

metingen, het vóórkomen van twijfelachtige en afwijkende gebeurtenissen, en

als laatste het risico van overfitten van de data met modellen die nauwelijks

123

124 NEDERLANDSE SAMENVATTING

nog generaliseren.

Hoewel de behandelde onderzoeksvragen in dit proefschrift een brede toe-

pasbaarheid hebben, worden de voorgesteld oplossingen geëvalueerd op een

specifieke toepassing vanuit InfraWatch, een Structural Health Monitoring

project dat zich richt op het verwerken en analyseren van data geproduceerd

door een sensornetwerk op een Nederlandse snelwegbrug.

De door mij ontwikkelde methodes maken het mogelijk om de relevante tijds-

schalen te detecteren die gelden in de InfraWatch gegevens (alsook in andere

databronnen). Daarnaast worden de verschillende herhalende patronen (zo-

genaamde motifs) ontdekt, en wordt de interactieve visualisatie van terabytes

aan tijdreeksdata mogelijk gemaakt.

English Summary

Today, virtually everything, from natural phenomena to complex artificial

and physical systems, can be measured and the resulting information col-

lected, stored and analyzed in order to gain new insight. The adoption and

deployment of measurement systems for all sorts of industrial, commercial

and consumer applications has, in fact, paved the way to important oppor-

tunities for analyzing complex systems at a level of detail never experienced

before.

In this thesis, I have shown how complex systems often exhibit diverse be-

havior at different temporal scales, and that data mining methods should be

able to cope with the multiple resolutions (scales) at the same time in order

to fully understand the data at hand and extract useful information from

it.

Under these assumptions, I have designed and evaluated data mining and

visualization methods for large time series data collected from complex phys-

ical systems by means of sensors. In particular, I have developed solutions

to three fundamental problems: the detection of multi-scale patterns, the

recognition of recurrent events, and the interactive visualization of massive

time series data.

The methods and algorithms I have introduced combine concepts from data

mining, signal processing, and information theory. I have shown how to

combine different techniques in order to deal with many of the challenges

present when analyzing real-world time series data, such as the presence of

noisy measurements, the occurrence of spurious and anomalous events and,

ultimately, the risk of over-fitting the data with models that would be hardly

125

126 ENGLISH SUMMARY

general.

Although the research questions addressed in this thesis have a general appli-

cability, I evaluated the proposed solutions on a real-world scenario provided

by InfraWatch, a Structural Health Monitoring project centered around the

management and analysis of data collected by a large sensor network de-

ployed on a Dutch highway bridge.

The application of the methods I developed permitted the identification of

the relevant scales of analysis in the InfraWatch data (and other datasets

also), the detection of the different recurring motifs and the visualization of

terabytes of time series data interactively.

Curriculum Vitae

Ugo Vespier was born in Lamezia Terme, Italy on February 27, 1985.

In 2003 he received his high school degree from Liceo Scientifico G. Galilei

of Lamezia Terme and started his bachelor study in Computer Science at

University of Pisa, in Italy. In February 2007 he received his bachelor degree

and started a Master in Theoretical Computer Science at University of Pisa,

which included periods of study abroad at the Vrije Universiteit of Amster-

dam and at the Parc Cientif́ıc de Barcelona. Ugo graduated cum laude in

July 2010 with a thesis on computer vision and data mining entitled “Bring-

ing Order to Social Photo Collections”, which won the Franco Denoth Best

Thesis Award for its contributions to the social Internet.

In October 2010, Ugo obtained a PhD position at the Leiden Institute of

Advanced Computer Science (LIACS), Leiden University, the Netherlands,

under the supervision of prof. dr. J. N. Kok and dr. A. J. Knobbe. His

research focused on the development of data mining algorithms and methods

for large-scale sensor data. In particular, he looked at the problems arising

when analyzing multi-scale time series, a common yet challenging type of

data produced when measuring complex systems. Ugo also worked on big

data visualization methods, and he was teaching assistant for the courses of

Logic and Artificial Intelligence at LIACS. Ugo has published several papers

in peer reviewed conferences and workshops.

As of December 2014, Ugo lives in Florence, Italy and is Co-Founder of

a VC-funded group of startup companies operating at the intersection of

eCommerce, Advertising and Online Video.

127

