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Chapter 1

Introduction

Over the last decades, the advances in computational power, storage technol-
ogy and sensor networks have made data an abundant resource [79]. Today,
virtually everything, from natural phenomena to complex artificial and physi-
cal systems, can be measured and the resulting information collected, stored

and analyzed in order to gain new insight, optimize existing processes or
both.

The term Big Data has gained popularity, in academia, industry and the
public opinion, to describe the opportunities and the challenges connected to
this huge explosion in data availability [64]. In a report by IDC [33], the au-
thors estimate that the total amount of data in the digital world will amount
to 40.000 exabytes! by the end of 2020, almost doubling its size every year.
The data sources are diverse, ranging from user-contributed material on so-
cial networks (i.e. posts, tweets and status updates) to consumer behavioral

data collected by online retailers such as product views and purchases.

In particular, advances in measuring technology and sensors networks [3, 16]
greatly contributed to the explosion of data. The adoption and deployment
of measurement systems for all sorts of industrial, commercial and consumer
applications, is paving the way to important opportunities for monitoring and

analyzing all kinds of systems over time at a level of detail never experienced

I This equates to 4 - 1022 bytes.
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before.

In fact, sensing technology and the ability to manage big data represent a
fundamental improvement in our ability to measure complex systems. Mul-
tiple types of sensors, high sampling rates, advances in noise reduction tech-
niques, to cite a few, are all improvements that are contributing to making

progressively better representations of systems in data.

As a result, new challenges in the analysis and visualization of this large
amount of sensor data have emerged and, over the last decade, the ef-
forts of the research community to provide solutions to these problems have
soared [1]. Methods and algorithms, in fact, will have to advance in order
to cope with the increased complexity of the time series datasets available
and to improve the ability to learn from the greater level of detail present in
them.

A side effect of the exponential explosion of data collection is that labeled
information will be an increasingly scarce resource in the future, as it is ex-
tremely costly to produce labeled datasets in relation to the current rate of
data growth. Because of this, the task of extracting structured information
from unlabeled data is of paramount importance when dealing with the chal-
lenges posed by big data. The algorithms and methods presented in this
thesis are designed to work in this scenario where novel insights have to be

extracted in an unsupervised way.

In particular, the focus of this thesis is the analysis of complex sensor data
in the form of time series. Time series are sequences of observations sam-
pled periodically over time. We approach the analysis of such data from
a data mining perspective, with the end goal of extracting previously un-
known knowledge and insight in the data. Data mining [37, 104] (DM) is a
discipline aimed at discovering useful and structured patterns in large collec-
tions of data. Data mining methods lie at the intersection between computer
science, machine learning, database systems and statistics, and are a funda-
mental part of any KDD (Knowledge Discovery in Databases) process [27].
Time series, on the other hand, are a ubiquitous type of data, and mining

time series data represents an important branch of DM.



In this thesis, we introduce data mining and visualization methods for large
time series data collected from complex physical systems by means of sen-

SOr's.

Our work is motivated by InfraWatch [55], a Structural Health Monitoring
project centered around the management and analysis of data collected by
a large sensor network deployed on a highway bridge. The sensor network
comprises strain, temperature and vibration sensors, sampling continuously
at 100 Hz. A highway bridge is a complex system and so is the data collected.
The behaviour of the bridge, and consequently the properties of the data,
is affected by external factors such as the temperature, weather conditions,
traffic activity and deterioration of the concrete. Moreover, InfraWatch data
contains repeated patterns at different resolutions due to the bridge’s re-
sponse to recurring events such as passing vehicles or traffic jams. Because
of these characteristics, InfraWatch is an ideal testbed for evaluating the

methods we introduce.

In this thesis, we will develop and discuss solutions to the following fun-
damental questions when dealing with large and complex time-series data

collected from sensors like the one provided by InfraWatch:
e What are the relevant temporal scales of analysis for a given time series?

e Which are the recurring multi-scale patterns present in a given time

series?
e How can we effectively model and recognize events in time series data?

e How can we support efficient and interactive visualization of massive

time series data?

Complex systems are often affected by several phenomena at multiple tempo-
ral scales and this effect is reflected in the collected data. Consider, for exam-
ple, the time series produced by one of the strain sensors of the InfraWatch
bridge. This data is the result of the superimposed effects of the passing
vehicles, traffic jams and more long-term effects such as the day-night cycle
in temperature, which in turn affect the response of the structure. Through-

out the thesis, we will introduce a method to discover which are the relevant
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temporal scales of analysis and introduce a decomposition of the original
time series such that every component represents a single phenomenon at its
characteristic scale. The goal of the method is to find the underlying factors

that explain the input data.

These multiple phenomena, moreover, are often characterized by the presence
of patterns that repeat over time and reflect their effect in the data. Consider
again the strain sensor example. The effect of traffic jams will produce similar
recurring patterns in the data, for example every morning during rush hour.
The same would happen with the effect of passing vehicles, although they
will appear at a shorter time scale (in the order of seconds) and potentially
superimposed on the traffic jam patterns. We will introduce a method to
mine recurring patterns, so-called motifs in the literature, from time series

data at multiple temporal scales.

The third research question addresses the problem of clustering time series
subsequences in order to model and recognize fixed-length events in the data.
Time series clustering has proven to be a difficult task, as it is hard to
model the subsequence space properly without introducing artifacts in the
results [49]. We will introduce a novel distance measure to cope with this

problem.

Finally, we will address the problem of massive time series visualization. Al-
though visualization is not directly related to data mining, it is a fundamen-
tal task in every data science project, especially to support the exploratory
phases and build an idea of the data at hand. When exploring and visu-
alizing a dataset, interactivity is important as it permits testing ideas and
assumptions quickly without having to wait excessive periods. We will see
how we made the interactive visualization of terabyte-sized datasets possible
by introducing an ad-hoc storage scheme for time series, which effectiveness

has been proven by a real world software package called VizTool.

Although these research questions find a natural application in the InfraWatch
project for the analysis of bridge sensor data, we stress that they are instru-
mental to the understanding of many complex systems. In fact, the presence

in the data of multiple temporal scales and recurring phenomena, as well as



the need for effective visualization, are general challenges shared among all

complex physical and artificial systems measured by sensor networks.

The methods and algorithms introduced in this thesis combine concepts from
data mining, signal processing, and information theory. In particular, in
order to formally characterize the concept of temporal scales, we will make
use of concepts from the field of signal processing, such as the theory of
scale-space [103, 62].

As we are interested in extracting new insights from the data, such as the
relevant temporal scales and the recurring events, we approach the problem
from a compression standpoint. The idea of using concepts from the theory
of compression in order to learn new facts about the structure of a dataset
has been widely considered and explored in the literature [82, 105]. Data
compression techniques geared towards learning have been employed for cat-
egorizing text [29], clustering data [17], devising similarity measures [99, 52],
in genomic analysis [36], data discretization [57], pattern mining [100, 68, 84],
stream mining [89], and as the base of parameter-free data mining meth-
ods [51].

We will see how we can define parametrized compression schemes for time
series in order to find the one that best compresses the data and, at the same
time, results as simple as possible. We employ the Minimum Description
Length framework [34], a formalization of the Occam’s Razor principle [91],
in order to select the best compression model among the many possible and
conceptually discern what is notable, and what can be ignored, in the data.
We will see how this approach deals with many of the challenges present
when analyzing real-world time series data, such as the presence of noisy
measurements, the occurrence of spurious and anomalous events and, ulti-
mately, the risk of over-fitting the data with models that would be hardly

general.
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1.1 Thesis Outline

Below, we give a brief outline of the dissertation, summarizing the contents of
the following chapters. As most chapters are based on previous publications
by the author, we also give the appropriate references to them when this is

the case.

In Chapter 2: Sensor Data and Applications, we give the main moti-

vations behind this work and introduce the InfraWatch project.

In Chapter 3: Preliminaries and Background, we introduce fundamen-
tal material and concepts that will be used throughout the rest of the thesis,

especially in Chapter 4 and Chapter 5.

In Chapter 4: Identifying the Relevant Temporal Scales, we discuss
a method for discovering the most relevant scales of analysis, and their cor-
responding scale components, in time series data. This work was published

in the following paper [96]:

Vespier U., Knobbe A., Nijssen S., and Vanschoren J., MDL-based
Analysis of Time Series at Multiple Time-Scales, in Proceedings
ECML-PKDD 2012, Bristol, UK.

This work is also part of the following book chapter [95]:

Vanschoren, J., Vespier, U., Miao, S., Meeng, M., Cachucho, R.,
Knobbe, A., Large-scale sensor network analysis — Applications

in structural health monitoring, in Big Data Management, Tech-
nologies, and Applications, IGI Global, 2013

In Chapter 5: Mining Variable-Length Motifs at Multiple Scales, we
introduce a method for mining variable-length, and potentially overlapping,
motifs at multiple temporal scales in sensor-based time series data. This

work was published in the following paper [98]:

Vespier, U., Knobbe, A., Nijssen, S., Mining Characteristic Multi-
Scale Motifs in Sensor-Based Time Series, in Proceedings CIKM
2013, San Francisco, USA.
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In Chapter 6: Subsequences Clustering for Events Modeling, we dis-
cuss a distance measure and an associated method for the effective clustering
time-series subsequences for events modeling. This work was published in the

following paper [97]:

Vespier, U., Knobbe, A., Vanschoren, J., Miao, S., Koopman, A.,
Obladen, B., Bosma, C., Traffic Events Modeling for Structural
Health Monitoring, in Proceedings IDA 2011, Porto, Portugal.

This work is also part of a book chapter [95]:

Vanschoren, J., Vespier, U., Miao, S., Meeng, M., Cachucho, R.,
Knobbe, A., Large-scale sensor network analysis — Applications
in structural health monitoring, in Big Data Management, Tech-
nologies, and Applications, IGI Global, 2013

In Chapter 7: Interactive Time-Series Visualization, we introduce
a method and a software platform for visualizing terabyte sized time-series

dataset. This work was published in the following paper [6]:

Baggio, A., Vespier, U., Knobbe, A., Automated Selection of
Data-Adaptive Approximations for Large Time-Series Visualiza-

tion, in Proceedings Benelearn 2013, Nijmegen, the Netherlands

In Chapter 8: Conclusions, we draw the overall conclusions regarding this
work and highlight some final considerations about its impact and potential

future work.
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Chapter 2

Sensor Data and Complex

Systems

In this chapter, we discuss the context of this dissertation and the motivation
behind the presented work. We also present the InfraWatch project, the main

application and testbed for the methods discussed in the next chapters.

2.1 Big Data

As mentioned, the term Big Data has received a lot of attention over the
last years [64], although it is often cause of confusion as its meaning is not
always well-defined in all contexts. Big data is a broad term that refers to

the challenges in managing and analyzing large quantities of data.

A widely accepted definition of Big Data has been given by Gartner’s analysts
Beyer and Laney in a 2012 industry report [11] where the authors define the

term in relation to three main challenges:

Volume The ever-growing amount of data that institutions and companies
have to deal with offers serious challenges in terms of data management
and storage. Real-world examples range from the data collected by

astronomers with radio telescopes, to the massive amount of messages
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exchanged nowadays on social networking platforms such as Facebook
and Twitter. Novel storage and indexing methods, able to cope with

this huge amount of collected information, need to be employed.

Velocity A second important challenge is related to how long it takes to
process incoming data. For example, a credit card institution analyzing
massive streams of incoming transactions would like to detect potential
fraud without delay. Real-time processing methods are needed in order

to cope with the velocity challenge.

Variety Last but not least, Big Data comes in any type, both in structured
and unstructured form. Text, audio, video, sensor data, log files, and
combinations of these, are examples of data types found in Big Data
applications [15]. The development of methods able to cope with this
broad variety of data is another challenge posed by Big Data applica-

tions.

A great extent of the efforts aimed at solving big data problems revolve
around these three challenges, as well as a broad range of applications across
several science fields and industries. Sensor networks and monitoring is an
important one and represents the main focus of this thesis. In particular,
the rise of the Internet of Things [4, 5] is directly connected to the challenges

posed by the management and analysis of Big Data.

2.2 Sensor Networks and the Internet of Things

The last two decades have witnessed a tremendous growth in the availability
of sensor data collected from a multitude of systems in various application
domains [3, 16]. In fact, the wider availability of cheap sensor technology has
enabled large sensor networks that continuously monitor and analyze physical
systems such as infrastructures, cars [25, 45, 59, 32], airplanes [7, 107, 9, 87|
and, last but not least, the human body [14, 83].

The increasing presence of sensing devices coupled with the pervasiveness

of connectivity is paving the way for a scenario in which physical objects,
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humans and software communicate to achieve common goals by directly in-
teracting with the physical world. This paradigm is called Internet of Things
(IoT) [35, 5] and several applications of its concepts are already used in
production.

In a recent report [72] by McKinsey & Company, the authors categorize IoT

applications in three main areas:
e Tracking behavior
e Enhanced situational awareness
e Sensor-driven decision analytics

Companies and institutions are interested, first of all, in tracking and moni-
toring products and objects in real-time [54] in order to increase the efficiency
of their operations or fine-tune their business or pricing models. Consider, for
example, the case of a car insurance company that installs sensors in their cus-

tomers’ cars in order to monitor and model the behavior of drivers [90].

Situational awareness [106] is another key application area of the IoT. Large
sensors networks, in fact, can be deployed in infrastructures, such as roads,
buildings or bridges, or installed in certain areas to report on environmental
conditions. Data coming from the sensors can then be used to enhance
the awareness of decision makers about the observed events in real-time,

especially when data is coupled with tailored visualization technologies.

Ultimately, sensor networks can support long-term and complex decision
making. In the retail industry, for example, some companies are experi-
menting with sensors that continuously monitor shoppers [67, 63] as they
move through stores in order to measure how long they stand in front of
any given display and correlate it with what they ultimately buy. Data of
this kind can help, in the long run, by optimizing store layouts and increase

revenues.

Especially when long-term decision support is of interest, sensors networks
produce large volumes of data continuously over time. This opens up several
challenges both from a data management and from a data analysis perspec-

tive. Modern sensor networks have to be supported with state-of-the-art data
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management solutions in order to cope with the large amount of collected

data and ensure its effective storage, access and visualization.

Such large amounts of data, on the other hand, represent an opportunity to
apply data mining methods to better understand the observed system and
get insight into its behavior [1]. Moreover, as these data sources continuously
provide data over time, the research community is also focusing on methods
and algorithms to analyze information in a streaming fashion in order to

provide real-time insights [31].

2.3 Multi-Scale nature of Complex Systems

Sensor networks are often employed to monitor and analyze complex, dy-
namic systems, which exhibit non-obvious behavior. An important example

are systems affected by several phenomena at different temporal scales.

Consider, for example, the electrical system of an apartment whose aggre-
gate power consumption is measured by a smart meter [108, 58]. The time
series data collected by the smart meter would be affected by all the oper-
ational home appliances, heating units and lighting systems in the house.
As different home appliances are switched on at different times and have
diverse operational durations, their effect on the aggregate consumption can
range from short-term spikes, for example in the case of a boiler, to longer,
more equally distributed patterns, as for example in the case of a washing
machine [73]. For example, the time series in Figure 2.1 shows four days of
power usage from an apartment in the Smart® dataset [8]. In the data, there
is a clear long-term periodic component due to the cycles of the refrigerator.
Shorter-term patterns, however, show up superimposed in the data and cor-
respond to activations and deactivations of the various electrical appliances

in the house.

Another real-world example borrowed from civil engineering regards dikes [20,
70]. In dikes, it is typically of interest for civil engineers to measure the water
pressure at specified location of the infrastructure. The amount of pressure

depends on several factors and, also in this case, it is possible to classify them
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Figure 2.1: Four full days of power usage (in watts) from one of the houses
in the Smart* dataset [8].

along diverse temporal scales. For example, lunar tides indirectly affects wa-
ter pressure following both a half-daily cycle and a longer-term, two-weekly

cycle.

Analysing systems such as the ones described above requires methods capable
of dealing with the presence of multiple relevant scales of analysis in order
to extract insights at all levels and resolutions. This represents one of the

main challenges addressed in this thesis.

2.4 SHM and InfraWatch

One relatively recent application of sensor networks and sensor data analy-
sis is the monitoring of infrastructural assets such as bridges, tunnels, etc.
[21]. In fact, according to a recent survey from the US Federal Highway
Commission [28], on average 56% of the assessments to civil infrastructures
made by visual inspection are inappropriate, suggesting additional methods

of monitoring to guarantee the safety of the assets.

Structural Health Monitoring (SHM) is an interdisciplinary field at the inter-
section between civil engineering, signal processing, sensor technology, ma-
terial sciences, data management and mining, which is emerging in order

to find alternative or complementary solutions to the visual inspection. In
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fact, the use of advanced sensing and monitoring systems provides the op-
portunity to collect real-time information from infrastructures, in order to
monitor their performance and to deduce relevant knowledge for decisions on
their maintenance demand [26, 86]. Asset owners can use this information to
assess the life time perspective of (crucial) infrastructural links and to plan
the window within which maintenance can be conducted. When considering
the stock of infrastructural assets in view of service-life assessment, monitor-
ing and sensing systems are very valuable instruments that can be used to

extract actual information about its condition and performance.

In typical SHM scenarios, sensor systems are mounted in or to structures and
monitor the environmental as well as the internal condition of the measured
system over long periods of time. The collected sensor data is typically
continuously analyzed in order to detect inconsistencies or anomalies in how
the structure is behaving and notify potential problems in time. Aside from
notifying anomalies, SHM systems are also used to monitor and forecast
degradation mechanisms in order to plan maintenance in a more informed

way.

In the next section, we present a particular SHM project in detail. This
project and its data will serve as a testbed for a great extent of the methods

and algorithms presented in this thesis.

2.4.1 The InfraWatch project

InfraWatch is a project that is part of a Dutch STW’s funded program called
Integral Solutions for Sustainable Construction (IS2C). The program is com-
posed of nine research projects with the common goal of setting new stan-
dards and advancing the state of the art in the field of sustainable construc-

tion and service-life assessment.

As part of the IS2C program, InfraWatch! focuses on sensing, monitoring
and degradation mechanism from a data analysis perspective. Subject of the

project is an important Dutch highway bridge: the Hollandse Brug. The Hol-

thttp://www.infrawatch.com
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Figure 2.2: Picture of the Hollandse Brug, which connects the ‘island’
Flevoland to the province Noord-Holland.

landse Brug is a bridge between the Flevoland and Noord-Holland provinces
and is located at the place where the Gooimeer joins the IJmeer (see Figure
2.2). The bridge was opened in June 1969 and National Road A6 uses it.
There is also a rail connection parallel to the highway bridge, as well as a

lane for cyclists on the west side of the car bridge.

In April 2007, it was announced that measurements would have shown that
the bridge did not meet the quality and security requirements. Therefore,
the bridge was closed in both directions for heavy traffic on April 27, 2007.
The repairs were launched in August 2007 and a consortium of companies,
Strukton, RWS and Reef has installed a monitoring configuration underneath
the first south span of the Hollandse Brug with the main aim to collect data
for evaluating how the bridge responds to load. The sensor network is part
of the strengthening project which was necessary to upgrade the bridge’s

capacity by overlaying.
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The monitoring system comprises 145 sensors that measure different as-
pects of the condition of the bridge, at several locations along the bridge
(see Figure 2.3 for an illustration). The following types of sensors are em-
ployed [55, 56]:

e 34 ‘geo-phones’ (vibration sensors) that measure the vertical movement

of the bottom of the road-deck as well as the supporting columns.

e 16 strain gauges embedded in the concrete, measuring horizontal lon-

gitudinal strain, and an additional 34 gauges attached to the outside.

e 28 strain gauges embedded in the concrete, measuring horizontal strain
perpendicular to the first 16 strain gauges, and an additional 13 gauges
attached to the outside.

e 10 thermometers embedded in the concrete, and 10 attached on the

outside.

Furthermore, there is a weather station, and a video-camera provides a con-
tinuous video stream of the actual traffic on the bridge. Additionally, there

are also plans to monitor the adjacent railway bridge.

The current monitoring set-up is clearly providing many challenges for data
management. The 145 sensors are in fact producing data at rates of 100
Hz, which can amount to a gigabyte of data per day. Adding to that is the

continuous stream of video.

Project goals and expectations

InfraWatch is, primarily, a Structural Health Monitoring project and its goals
are directly related to questions about the observed infrastructure from a civil
engineering perspective. The following tasks, in particular, are of importance

to the civil engineers involved in the project:

e obtain a summary of the major phenomena affecting the bridge infra-

structure over time and their impact.

e given historical sensor data from the bridge, obtain a qualitative and
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Figure 2.3: Diagram explaining the individual sensor placement on the Hol-

landse Brug.

quantitative estimate of the structural health of the Hollandse Brug.

e given the current sensor network deployment, obtain a new configura-
tion of sensors, possibly employing fewer sensors, that is equivalent or

comparable in terms of collected information.

In this thesis, we provide fundamental data mining methods and algorithms
that can be employed to design a solution for the tasks above and related

tasks involving sensors monitoring and analysis of systems.

Technical challenges

In order to make the goal of InfraWatch feasible from a data mining perspec-
tive, we need to identify a set of technical tasks whic