
Enhanced Coinduction
Rot, J.C.

Citation
Rot, J. C. (2015, October 15). Enhanced Coinduction. IPA Dissertation Series.
Retrieved from https://hdl.handle.net/1887/35814

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/35814

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/35814

Chapter 7

Presenting distributive laws

In the current chapter, we study distributive laws of monads over functors. These
capture interaction between algebraic structure and observable behaviour in a sys-
tematic way. There are several benefits of this approach, recalled in more detail
in Section 3.5: a distributive law canonically induces an algebra on the final coal-
gebra, provides a compositional semantics, and yields solutions to recursive equa-
tions. Moreover, distributive laws play a central role in the framework of up-to
techniques introduced in the first part of this thesis.

However, concretely describing a distributive law of a monad over a functor
and proving the associated axioms can be rather complicated. Instead, one may try
to use general methods for constructing distributive laws from simpler ingredients.
An important example of this is given by abstract GSOS, where distributive laws
are represented by plain natural transformations. Further, in [HK11] it was shown
how an abstract GSOS specification for a functor B can be lifted to one for the
functor (B−)A which describes B-systems with input in A. Another method, which
works for all monads on Set but only for certain polynomial behaviour functors B,
produces a distributive law inducing a “pointwise lifting” of the algebra structure
to B-behaviours [Jac06b, SBBR13].

But many examples do not fit into the above mentioned settings. A motivating
example for the current chapter is that of context-free grammars, where sequential
composition is not a pointwise operation and whose formal semantics satisfies the
axioms of idempotent semirings, which is not a free monad. More generally, one
may be interested in distributive laws involving a monad that arises as the quotient
of a free monad with respect to some equations.

We give a general approach for constructing a distributive law λE for a monad
T E , which is presented as a quotient of a monad T by some equations E , from a
distributive law λ for the monad T . In the typical application of our result, T is a
free monad, so that λ can in turn be defined in terms of an abstract GSOS specifi-
cation. Then λE is obtained as a certain quotient of λ by the equations E , hence we
say that λE is presented by λ and the equations E . We show that such quotients exist
when the distributive law preserves the equations E , which roughly means that con-

141

142 Chapter 7. Presenting distributive laws

gruences generated by the equations are bisimulations. We also discuss how these
quotients of distributive laws give rise to quotients of bialgebras, thereby giving a
concrete operational interpretation. As an illustration and application, we show
the existence of a distributive law of the monad for idempotent semirings over the
deterministic automata functor. This result yields the equivalence between the rep-
resentation of context-free languages via grammars in Greibach normal form and
the coalgebraic representation via context-free expressions given in [WBR13].

Outline. In the next section, we describe in detail how to construct the quotient
of a monad with respect to some given equations. In Section 7.2, we prove our
main results on quotients of distributive laws. Then, in Section 7.3 we show that
such quotients induce quotients of bialgebras. Finally, in Section 7.4 we discuss
related work, and provide some directions for future work.

7.1 Quotients of monads

Let T = (T, η, µ) be a monad on a category C. For a general notion of equations
on a monad, we define T -equations or equations for T as a 3-tuple E = (E, l, r)
where E is an endofunctor on C and l, r : E ⇒ T are natural transformations. The
intuition is that E models the arity of the equations, i.e., the (number of) variables
occurring in each equation, and l and r give the left and right-hand side. The
advantage of using natural transformations (over, say, a subset of TV × TV for
some set of variables V , or a generalization thereof) is that this approach defines
equations on TX uniformly over any set X.

Example 7.1.1. Consider the Set functor ΣX = X × X + 1, modelling a binary
operation and a constant, which we call + and 0 respectively. The (underlying
functor of the) free monad Σ∗ for Σ sends a set X to the terms over X built from
+ and 0. The equations x+0 = x, x+y = y+x and (x+y)+z = x+(y+z) can be
modelled as follows. The functor E is defined as EX = X+(X×X)+(X×X×X).
The natural transformations l, r : E ⇒ Σ∗ are given by lX(x) = x+0 and rX(x) = x
for all x ∈ X; lX(x, y) = x + y and rX(x, y) = y + x for all (x, y) ∈ X × X;
lX(x, y, z) = x+ (y+ z) and rX(x, y, z) = (x+ y) + z for all (x, y, z) ∈ X ×X ×X.
This defines lX and rX uniformly for any set X, which makes naturality of l and r
easy to prove.

A T -algebra (X,α) is said to satisfy E if α ◦ lX = α ◦ rX :

EX
lX //
rX
// TX

α // X .

We denote the full subcategory of T -algebras that satisfy E by (T , E)-Alg.
Throughout this chapter we need assumptions on C, T , and E . This involves

regular epis: an epi is regular if it is the coequalizer of a pair of morphisms.

7.1. Quotients of monads 143

Assumption 7.1.2. We assume that T = (T, η, µ) is a monad on C, and E : C → C
is a functor such that:

1. T -Alg has coequalizers.

2. U maps regular epis in T -Alg to epis in C.

3. EU and TU map regular epis in T -Alg to epis in C.

The first condition is needed to construct quotients of free algebras modulo
equations. The second condition relates quotients of algebras (regular epis) with
quotients in the base category (epis). The last condition is satisfied if condition
(2) holds and E and T preserve epimorphisms in C. If C = Set the conditions
are satisfied for any monad T and endofunctor E. In that case, the first condition
holds since T -Alg is cocomplete if C = Set (see, e.g., [BW05, Proposition 3.4]),
the second condition holds since U preserves regular epis if C = Set (see the proof
of [BW05, Proposition 4.6]), and the third follows from the second, since any Set
functor preserves epis.

Any T -algebra (X,α) can be turned into an algebra that satisfies the equations,
by taking the coequalizer sα of α ◦ l]X and α ◦ r]X in T -Alg, as depicted in the
following diagram:

(TEX,µEX)
l]X //

r]X

// (TX, µX)
α // (X,α)

sα // (X/E , αE) . (7.1)

Since coequalizers are unique only up to isomorphism, we choose sα = id for every
algebra in (T , E)-Alg.

In the case C = Set, the definition of sα (7.1) implies that ker(sα) is the congru-
ence generated by the set Eα = {(α(lX(e)), α(rX(e)) | e ∈ EX}, i.e., it is the least
equivalence relation on X that includes Eα and is a subalgebra of (X,α)× (X,α).
In this sense, the kernel pair of a morphism always yields a congruence, and con-
versely, every congruence relation on an algebra (X,α) is the kernel of the corre-
sponding quotient homomorphism.

In general, the coequalizer (7.1) in T -Alg differs from the one obtained by ap-
plying the forgetful functor U and then computing the coequalizer of α ◦ l]X and
α◦r]X in Set. The coequalizers in T -Alg and Set coincide if the equations are reflex-
ive in the sense that the two parallel maps α ◦ lX and α ◦ rX from EX to X have a
common section, and the forgetful functor U preserves reflexive coequalizers (sec-
tions and reflexive coequalizers are recalled in Section 4.5, above Theorem 4.5.4).
If T is finitary, then U preserves reflexive coequalizers. Moreover, if U preserves re-
flexive coequalizers then T preserves them too, but not every Set-functor preserves
reflexive coequalizers [AKV00, Example 4.3].

The main step to obtain the quotient monad is to show that (T , E)-Alg is a re-
flective subcategory of T -Alg, meaning that the inclusion functor has a left adjoint.
This left adjoint uses the coequalizer in (7.1) to map an algebra to its quotient.

144 Chapter 7. Presenting distributive laws

Lemma 7.1.3. The inclusion V : (T , E)-Alg→ T -Alg has a left adjoint H : T -Alg→
(T , E)-Alg with unit ηα = sα : (X,α) → (X/E , αE) for all α : X → TX in T -Alg,
and counit εα = id the identity for all α ∈ (T , E)-Alg.

Proof. We first show that for any (X,α) in T -Alg, (X/E , αE) is indeed an object in
(T , E)-Alg, i.e., it satisfies the equations. Consider the following diagram:

TEX l]X

��
r]X

��
EX

Esα

��

ηEX

OO

lX //
rX

// TX

Tsα

��

α // X

sα

��
E(X/E)

lX/E //
rX/E

// T (X/E)
αE
// X/E

The right-hand square commutes by the definition of sα as a coequalizer in T -Alg,
see (7.1). The left-hand squares (for l and r respectively) commute by naturality
of l and r. The upper two paths from TEX to X/E commute by definition of sα.
From the above diagram we obtain αE ◦ lX/E ◦ E(sα) = αE ◦ rX/E ◦ E(sα). Since
sα is a regular epi, by Assumption 7.1.2 it follows that E(sα) is an epi, and thus
αE ◦ lX/E = αE ◦ rX/E .

It remains to show that if f : X → Y is an algebra homomorphism from (X,α)
to an algebra (Y, β) in (T , E)-Alg, then there is a unique algebra homomorphism
g : X/E → Y such that g ◦ sα = f . Since (Y, β) satisfies the equations we know
β ◦ lY = β ◦ rY , and thus the following diagram commutes:

TEX l]X

��
r]X

��
EX

ηEX

OO

lX //
rX
//

Ef

��

TX

Tf

��

α // X

f

��

sα // X/E

g

}}{
{

{
{

EY
lY //
rY
// TY

β
// Y

In particular, we have f ◦ α ◦ lX = f ◦ α ◦ rX . Thus f ◦ α ◦ l]X = f ◦ α ◦ r]X , hence
the desired homomorphism g arises from the universal property of the coequalizer
sα : (X,α)→ (X/E , αE).

By defining H : T -Alg → (T , E)-Alg as H(X,α) = (X/E , αE), H is left adjoint
to V , and the unit of the adjunction is η = s. For the counit, we have V (εα)◦sV α =
idV α, and since sV α = idV α then V (εα) = idV α = V (idα), which implies that
εα = idα (V is an inclusion).

By composition of adjoints, the functor UV : (T , E)-Alg → T -Alg → C has a
left adjoint given by X 7→ (TX/E , (µX)E). In what follows, we will write T EX for
TX/E .

7.1. Quotients of monads 145

Definition 7.1.4 (Quotient monad). Given a monad T = (T, η, µ) on C and T -
equations E , we define the quotient monad T E = (T E , ηE , µE) as the monad on C
arising from the composition of the adjunction (H,V, η = s, ε = id) of Lemma 7.1.3
and the Eilenberg-Moore adjunction (G,U, η, ε) of T :

(T , E)-Alg

V

!!
> T -Alg

U

��

H

bb
> C

G

\\ T Eee

We define the natural transformation q : T ⇒ T E as the family of underlying
C-arrows of s for free algebras:

qX = UsGX = Us(TX,µX) : TX → T EX (7.2)

The next result summarizes what we need to know about q and the quotient
monad.

Theorem 7.1.5. Let T E = (T E , ηE , µE) be the quotient monad associated to a monad
T = (T, η, µ) on C with T -equations E . Define the natural transformation q as
in (7.2), so q : T ⇒ T E is defined on an object X as the coequalizer of µX ◦ l]TX and
µX ◦ r]TX :

(TETX, µETX)
l]TX //

r]TX

// (TTX, µTX)
µX // (TX, µX)

qX // (T EX, (µX)E) .

Then

1. the components of q (as well as Tq and Eq) are epimorphisms in the underlying
category C,

2. the unit of the quotient monad is given by ηE = q ◦ η and

3. q is a monad morphism from T to T E .

Proof. The first item follows from Assumption 7.1.2. For the second item, we have
ηE = UsG ◦ η = q ◦ η. The third item is proved below in Corollary 7.1.7.

Next, we show that q is indeed a monad morphism from T to T E . One way of
doing so is to show that q is a coequalizer in the category of monads and monad
morphisms. Kelly studied colimits in categories of monads, and proved their exis-
tence in the context of a certain adjunction [Kel80, Proposition 26.4]; with a bit
of effort one can instantiate this to the adjunction constructed above. For a self-
contained presentation in this section, we do not invoke Kelly’s results but instead
prove directly the part that shows the existence of a monad morphism. This is
instantiated below to the adjunction of the quotient monad.

146 Chapter 7. Presenting distributive laws

Lemma 7.1.6. Let A be any subcategory of T -Alg, and suppose the forgetful functor
U : A → C has a left adjoint F , with unit and counit denoted by η′ and ε′ respectively.
Then

1. F induces a natural transformation κ : TUF ⇒ UF so that κ ◦ Tη′ : T ⇒ UF
is a monad morphism.

2. Precomposing the functor UF -Alg → T -Alg induced by this monad morphism
with the comparison functor A → UF -Alg yields the inclusion A → T -Alg.

The relevant categories and functors are summarized in the diagram below, where
the functors in the right-hand triangle are given by 2 above (hence, this triangle
commutes).

C
F

**⊥ A� _

��

//

U

jj UF -Alg

wwooooooooooo

T -Alg

eeLLLLLLLLLLL

Proof. The functor F sends any C-object X to a T -algebra structure on UFX; we
define κX to be that algebra structure. Naturality of κ is immediate since Ff is
a T -algebra homomorphism for any C-arrow f . To see that κ ◦ Tη′ is a monad
morphism, we have to prove that the outside of the following diagram commutes:

TT
TTη′+3

µ

��

TTUF
Tκ +3

µUF

��

TUF
Tη′UF+3

κ

��

TUFUF

κUF

��
T

Tη′ +3 TUF
κ +3 UF UFUF

µ′ks

Id

η

KS

η′
+3 UF

ηUF

KS ttttttttt

ttttttttt

Here µ′ = Uε′F is the multiplication of the monad that arises from the adjunction
F a U . The top left square commutes by naturality and the middle square since
any component of κ is a T -algebra. For the right-hand square we have

κ = κ ◦ TUε′F ◦ Tη′UF = Uε′F ◦ κUF ◦ Tη′UF = µ′ ◦ κUF ◦ Tη′UF

where the first equality follows from the triangle identity idUF = Uε′F ◦ η′UF
(and functoriality), and the second from the fact that, for any X, ε′FX is a T -
algebra homomorphism from κUFX to κX . The bottom left square commutes by
naturality, and the triangle since κ is an T -algebra.

For item 2 of the statement of the theorem, we first note that the composite
functor under consideration maps any T -algebra (A,α) in A to Uε′(A,α) ◦ κA ◦Tη

′
A.

7.1. Quotients of monads 147

But the following diagram commutes:

TA
Tη′A //

IIIIIIIII

IIIIIIIII TUFA
κA //

TUε′(A,α)

��

UFA

Uε′(A,α)

��
TA α

// A

by a triangle identity and the fact that ε′(A,α) is an algebra morphism. Hence
Uε′(A,α) ◦ κA ◦ Tη

′
A = α, which means that the composite functor under consid-

eration indeed coincides with the inclusion.

Corollary 7.1.7. Item 3 of Theorem 7.1.5 holds: q : T ⇒ T E is a monad morphism.

Proof. By Lemma 7.1.6, we only need to show that q coincides with κ ◦TηE , where
ηE is the unit of the quotient monad. To this end, consider the following diagram:

T
TηE +3

Tη

�%
CCCCCCCC

CCCCCCCC TT E
κ +3 T E

TT µ
+3

Tq

KS

T

q

KS

Commutativity of the triangle holds by Theorem 7.1.5. For the square, notice that
the components of κ are simply the quotient algebras as constructed in the proof
of Lemma 7.1.3, and q is an algebra morphism by construction.

Remark 7.1.8. The monad morphism q : T ⇒ T E induces a functor

T E -Alg→ T -Alg.

By Lemma 7.1.6 (2), the comparison functor (T , E)-Alg→ T E -Alg followed by the
functor T E -Alg→ T -Alg coincides with the inclusion (T , E)-Alg→ T -Alg.

The above construction yields a monad T E given a set of operations and equa-
tions. Intuitively, any monad which is isomorphic to T E is presented by these same
operations and equations; this is captured by the following definition.

Definition 7.1.9. Let Σ be an endofunctor on C, Σ∗ the free monad for Σ, and
T E the quotient monad of Σ∗ with respect to some Σ∗-equations E . A monad K =
(K, θ, ν) is presented by Σ and E if there is a monad isomorphism i : (Σ∗)E ⇒ K.

Example 7.1.10. The idempotent semiring monad is defined by the Set endofunctor
that maps a set X to the set Pω(X∗) of finite languages over X and a function
f : X → Y to Pω(f∗)(L) =

⋃
{f(x1) · · · f(xn) | x1 · · ·xn ∈ L}. The unit ηX : X →

Pω(X∗) and the multiplication µX : Pω(Pω(X∗)∗)→ Pω(X∗) are given by

ηX(x) = {x},
µX(L) =

⋃
L1···Ln∈L{w1 · · ·wn | wi ∈ Li}.

148 Chapter 7. Presenting distributive laws

Consider the functor Σ and equations E for the free monad Σ∗, where

ΣX = X ×X +X ×X + 1 + 1

models two binary operators (to represent addition + and multiplication ·) and two
constants (to represent 0 and 1). The equations E for Σ∗ are given by the idempo-
tent semiring axioms. We obtain a quotient monad (Σ∗)E , and by Theorem 7.1.5 a
monad morphism:

q : Σ∗ ⇒ (Σ∗)E .

Since we have chosen E to be the idempotent semiring axioms, we have a monad
isomorphism (Σ∗)E ∼= Pω(Id∗) (using these equations, every term is equivalent
to a sum of products of variables). Thus, the monad Pω(Id∗) is presented by the
(semiring) signature Σ and the axioms for idempotent semirings.

7.2 Quotients of distributive laws

In the previous section, we saw how equations give rise to quotients of algebras,
and we gave a construction of the resulting quotient monad. Next, we investigate
conditions under which distributive laws and equations give rise to quotients of
distributive laws.

7.2.1 Distributive laws over plain behaviour functors

Let λ : TB ⇒ BT be a distributive law of a monad T = (T, η, µ) over a (plain)
behaviour functor B (Section 3.5). Given equations E = (E, l, r) for T we provide
a condition on λ and E that ensures that we get a distributive law λE : T EB ⇒ BT E

of the quotient monad over B. We use the notion of morphisms of distributive laws
from [PW02, Wat02].

Definition 7.2.1. Let T = (T, η, µ) and K = (K, θ, ν) be monads, and let λ : TB ⇒
BT and κ : KB ⇒ BK be distributive laws of T and K over B. A natural trans-
formation τ : T ⇒ K is a morphism of distributive laws from λ to κ if τ is a monad
morphism and the following square commutes:

TB

λ

��

τB +3 KB

κ

��
BT

Bτ
+3 BK

(7.3)

There are generalizations of the above definition that allow natural transforma-
tions between behaviour functors [Wat02]. For our purposes, we do not need to
change the behaviour type.

7.2. Quotients of distributive laws 149

Definition 7.2.2. We say that λ : TB ⇒ BT preserves (equations in) E if for every
object X in C:

EBX
lBX //
rBX
// TBX

λX // BTX
BqX // BT EX (7.4)

commutes.

In Set, preservation of equations can be conveniently formulated in terms of
relation lifting (Section 3.2.1).

Lemma 7.2.3. Suppose B : Set → Set preserves weak pullbacks. Denote by ≡X the
congruence ker(qX) on TX generated by the equations. Then λ preserves E if and only
if for every set X and every b ∈ EBX:

(λX(lBX(b)), λX(rBX(b))) ∈ Rel(B)(≡X) . (7.5)

Proof. By Lemma 3.2.4:

• Rel(B) preserves diagonal relations, i.e., Rel(B)(∆X) = ∆BX , and

• Rel(B) preserves inverse images, since B preserves weak pullbacks.

Hence Rel(B) preserves kernel relations (cf. [Jac12, Lemma 3.2.5(i)]):

Rel(B)(≡X) = Rel(B)(ker(qX)) definition ≡X
= Rel(B)((qX × qX)−1(∆X))
= (BqX ×BqX)−1(Rel(B)(∆X)) Rel(B) pres. inverse images
= (BqX ×BqX)−1(∆BX) Rel(B) pres. diagonals
= ker(BqX)

Thus, the condition from the statement of the lemma is satisfied if and only if for
every X and every b ∈ EBX we have

(λX(lBX(b)), λX(rBX(b))) ∈ ker(BqX)

which coincides with preservation of equations.

We now come to the main result of this chapter. It shows how to obtain a
distributive law for the quotient monad under the assumption of preservation of
equations. Preservation of equations can be proved by explicit calculations, as
shown in several examples below.

Theorem 7.2.4. If λ : TB ⇒ BT preserves equations E then there is a (unique)
distributive law λE : T EB ⇒ BT E such that q : T ⇒ T E is a morphism of distributive
laws from λ to λE .

150 Chapter 7. Presenting distributive laws

Proof. Suppose λ preserves equations E . We first prove that the top rows of the
following diagram commute:

TETBX
l]TBX //

r]TBX

// TTBX
µBX // TBX

λX // BTX
BqX // BT EX

ETBX

ηETBX

OO

lTBX

MM

rTBX

MM
(7.6)

In order to do so, we prove that

1. BqX ◦ λX is an algebra morphism from (TBX,µBX), and

2. the bottom two paths, i.e., from ETBX to BT E , commute.

Commutativity of the top rows then follows from the fact that homomorphic ex-
tensions are unique.

For the first item, consider the following diagram:

TTBX

µBX

��

TλX // TBTX

λTX

��

TBqX // TBT EX

λTEX
��

BTTX

BµX

��

BTqX // BTT EX

B(µX)E
��

TBX
λX

// BTX
BqX

// BT EX

The rectangle (on the left) is the multiplication law for λ, which holds since λ is a
distributive law of T over B (Section 3.5.1). The upper right square commutes by
naturality, the lower by the fact that qX is an algebra morphism.

For the second item, we need to prove that the top two rows in the following
diagram commute:

ETBX
lTBX //
rTBX

//

EλX

��

(nat. l, r)

TTBX
µBX //

TλX

��

(mult. λ)

TBX
λX // BTX

BqX //

(q monad morphism)

BT EX

EBTX
lBTX //
rBTX

// TBTX
λTX

// BTTX

BµX

99tttttttttttttt

BqTX

// BT ETX
BTEqX

// BT ET EX

BµEX

OO

The two squares on the left (for l, r respectively) commute by naturality of l and r.
The two other shapes commute by the multiplication law of λ and the fact that q is
a monad morphism (Corollary 7.1.7). The crucial point is that the two paths from
EBTX to BT ETX commute by the assumption that λ preserves E (instantiated to
the object TX). It follows that the top rows commute, as desired.

7.2. Quotients of distributive laws 151

Thus, we have shown that (7.6) commutes. By the universal property of the
coequalizer qBX we obtain λEX :

TETBX
l]TBX //

r]TBX

// TTBX
µBX // TBX

qBX //

λX

��

T EBX

λEX
���
�
�

BTX
BqX // BT EX

(7.7)

Naturality of λE follows from (7.7), naturality of λ and q, and the fact that q is
componentwise epic in the underlying category C (Theorem 7.1.5). Due to the
commutativity of the square in (7.7), q is a morphism of distributive laws from λ
to λE once we show that λE is, in fact, a distributive law of monad over functor
(Section 3.5.1).

The unit law for λE holds due to the unit law for λ, (7.7) and the fact that
ηE = q ◦ η (Theorem 7.1.5):

BX

ηEBX

��ηBX // TBX
qBX //

λX

��

T EBX

λEX
��

(7.7)

BX
BηX

//

BηEX

GGBTX
BqX

// BT EX

(7.8)

Multiplication law for λE :

TBX
λX //

qBX

��

(mult. λ)

BTX

BqX

��

TTBX

µBX

OO

qTBX

��

TλX //

(nat. q)

TBTX
λTX //

qBTX

��

(7.7)

BTTX

BµX

OO

BqTX

��
T ETBX

TEqBX

��

TEλX //

(7.7)

T EBTX
λETX //

TEBqX

��

(nat. λE)

BT ETX

BTEqX

��
T ET EBX

TEλEX //

µEBX

��

T EBT EX
λE
TEX // BT ET EX

BµEX

��
T EBX

λEX // BT EX

(7.9)

152 Chapter 7. Presenting distributive laws

The small upper-left square commutes by naturality of q. The small lower-left
square commutes by applying T E to (7.7). The outer crescents commute since q is
a monad morphism, and the outermost part does due to (7.7). Finally, we use that
by naturality of q, T EqBX ◦ qTBX = qTEBX ◦ TqBX , which by Theorem 7.1.5 is an
epi, and hence can be right-cancelled to yield commutativity of the lower rectangle
as desired.

Remark 7.2.5. Every distributive law uniquely corresponds to a functor lifting on
T -algebras. The distributive law λE in Theorem 7.2.4 exists if and only if the
lifting restricts to T E -algebras. A similar statement for the case when B is a monad
is made in [MM07, Corollary 3.4.2].

As a corollary we obtain the analogue of Theorem 7.2.4 for monads presented
by operations and equations.

Corollary 7.2.6. Suppose K = (K, θ, ν) is a monad that is presented by operations
Σ and equations E with a monad isomorphism i : T E ⇒ K, and suppose we have a
distributive law λ : Σ∗B ⇒ BΣ∗ of Σ∗ over B that preserves E . Then there exists
a unique distributive law κ : KB ⇒ BK of K over B such that i ◦ q : λ ⇒ κ is a
morphism of distributive laws.

Proof. By Theorem 7.2.4 we obtain a distributive law λE of T E over B. The dis-
tributive law κ : KB ⇒ BK is defined as κ = Bi ◦ λE ◦ i−1. The proof proceeds by
checking that κ indeed satisfies the defining axioms of a distributive law, which is
an easy but tedious exercise.

Theorem 7.2.4 states that if λ preserves the equations E , then we can present
λE as “λ modulo equations”. We illustrate this with an example.

Example 7.2.7 (Stream calculus). Behavioural differential equations are used to
define streams and stream operations (Section 3.1.1). We define the following
system of behavioural differential equations:

(σ × τ)0 = σ0 · τ0 (σ × τ)′ = (σ′ × [τ0]) + ((σ′ × (X× τ ′)) + ([σ0]× τ ′))
X0 = 0 X′ = [1]

where the sum + and the constants [r] = (r, 0, 0, . . .) for all r ∈ R, are as defined in
Section 3.1.1. The operation × is the convolution product, defined differently here
than in Section 3.1.1; we explain this choice at the end of the example.

Since we are defining two binary operations (+ and ×), one constant stream X

and R many streams [r], the signature under consideration is ΣX = X ×X +X ×
X + 1 +R. The differential equations can be modelled as a natural transformation
ρ : Σ(R × Id) ⇒ R × Σ∗, where Σ∗ is the free monad for Σ. On a component X, ρ
is given by:

ρ
[r]
X = (r, [0])

ρXX = (0, [1])

ρ+
X((a, x), (b, y)) = (a+ b, x+ y)

ρ×X((a, x), (b, y)) = (a · b, (x× [b]) + ((x× (X× y)) + ([a]× y)))

7.2. Quotients of distributive laws 153

This differs from Example 3.5.5, where we considered GSOS specifications, which
are of a slightly different form, involving the copointed functor (R× Id)× Id on the
left-hand side. Similar to what is described for GSOS specifications in Section 3.5.2,
the above natural transformation ρ induces a distributive law ρ† : Σ∗(R × Id) ⇒
(R× Id)Σ∗.

Let E be given by the following axioms where v, u, w are variables and a, b ∈ R
(see Example 7.1.1 for an explanation of how this corresponds to a functor with
two natural transformations):

(v + u) + w = v + (u+ w) [0] + v = v v + u = u+ v
(v × u)× w = v × (u× w) [1]× v = v v × u = u× v
v × (u+ w) = (v × u) + (v × w) [0]× v = [0]
[a+ b] = [a] + [b] [a · b] = [a]× [b]

E consists of the commutative semiring axioms together with axioms stating the
inclusion of the underlying semiring of the reals. We would like to apply Theo-
rem 7.2.4 to obtain a distributive law for the quotient monad arising from Σ∗ and
E . To this end, we show that ρ† preserves E . Let (a, x), (b, y), (c, z) ∈ R×X for some
set X. First note that (r1, t1) Rel(R× Id)(≡X) (r2, t2) iff r1 = r2 and t1 ≡X t2. It is
straightforward to check preservation of the axioms that only concern addition, as
well as of [1]× v = v, [0]× v = [0] and v×u = u× v. We show that [a · b] = [a]× [b]
is preserved:

ρ†X([a]× [b]) = (a · b, [0]× [b] + [0]× X× [0] + [a]× [0])
Rel(R× Id)(≡X) (a · b, [0])

= ρ†X([a · b])

We check that ρ† preserves the distribution axiom:

ρ†X((a, x)× ((b, y) + (c, z)))
= (a · (b+ c), (x× [b+ c]) + (x×X × (y + z)) + [a]× (y + z))

Rel(R× Id)(≡X) (a · (b+ c), (x× [b+ c]) + (x×X × y) + (x×X × z)+
([a]× y) + ([a]× z))

Rel(R× Id)(≡X) ((a · c) + (b · c), (x× [b]) + (x×X × y) + ([a]× y)+
(x× [c]) + (x×X × z) + ([a]× z))

= ρ†X(((a, x)× (b, y)) + ((a, x)× (c, z)))

Note that we used [a + b] = [a] + [b]. Similarly, preservation of ×-associativity can
be verified, and it uses the axiom [a · b] = [a] × [b]. We have thus shown that ρ†

preserves E , and by Theorem 7.2.4 we obtain a distributive law of the quotient
monad over R× Id.

The derivative of the convolution product is usually given differently than we
defined it above. However, with the usual definition (Section 3.1.1), we did not
manage to show that the commutativity of × is preserved although all other ax-
ioms remain preserved. However, the convolution product (interpreted in the final
coalgebra) is commutative. This suggests that, even if a given set of equations

154 Chapter 7. Presenting distributive laws

holds in (the algebra induced by the distributive law on) the final coalgebra, these
equations are not necessarily preserved (cf. Example 7.2.9 below).

In the above example, we did not have a specific monad in mind; we simply
considered a free monad and a set of equations. In Example 7.2.11 below, we give
an example for the idempotent semiring monad.

Remark 7.2.8. The concrete proof method for preservation of equations bears a
close resemblance to bisimulation up to congruence as presented in Chapters 2,4
and 5, since one must show that for every pair in the (image of the) equations, its
derivatives are related by the least congruence ≡X instead of just the equivalence
relation induced by the equations.

Example 7.2.9. In this example we show that it is not always possible to show
that a given λ preserves a given equation that holds in the final coalgebra. Again,
we consider stream systems, i.e., coalgebras for the functor BX = R × X. We
define the constant stream of zeros by three different constants n1, n2 and n3 by
the following behavioural differential equations:

n1(0) = 0 n′1 = n1

n2(0) = 0 n′2 = n3

n3(0) = 0 n′3 = n3

The corresponding signature functor is ΣX = 1+1+1, and the above specification
gives rise to a distributive law λ : Σ∗B ⇒ BΣ∗. Now consider the equation n1 = n2;
this clearly holds when interpreted in the final coalgebra. However, this equation
is not preserved by λ. To see this, notice that λ(n1) = (0, n1) and λ(n2) = (0, n3),
but n1 6≡X n3, so λ(n1) and λ(n2) are not related by Rel(B)(≡X).

7.2.2 Distributive laws over copointed functors

We now show that the main result of this chapter also holds for distributive laws
over copointed functors. This extends our method to deal with operations specified
in the abstract GSOS format (Section 3.5.2).

Proposition 7.2.10. Theorem 7.2.4 and Corollary 7.2.6 hold as well for any dis-
tributive law of a monad over a copointed functor.

Proof. Let (B, ε) be a copointed functor and λ : TB ⇒ BT a distributive law of T
over (B, ε). Suppose λ preserves equations E . Then by Theorem 7.2.4 there is a
distributive law λE of T E over B such that q : T ⇒ T E is a morphism of distributive
laws. In order to show that λE is a distributive law of T E over (B, ε), we only need
to prove that λE satisfies the additional axiom, i.e., that the right-hand crescent in

7.2. Quotients of distributive laws 155

the following diagram commutes:

TBX
qBX //

λX

��
TεX

T EBX

λEX
��

TEεX

��

BTX
BqX //

εTX

��

BT EX

εTEX

��
TX qX

// T EX

The outermost part commutes by naturality of q, the upper square commutes since
q is a morphism of distributive laws, the lower square commutes commute by nat-
urality of ε, and the left crescent commutes by the fact that λ is a distributive law
of T over (B, ε). Consequently we have εTEX ◦ λEX ◦ qBX = T EεX ◦ qBX , and since
qBX is an epi (Theorem 7.1.5) we obtain εTEX ◦ λEX = T EεX as desired.

Example 7.2.11 (Context-free languages). A context free grammar (in Greibach
normal form) consists of a finite set A of terminal symbols, a (finite) set X of non-
terminal symbols, and a map 〈o, t〉 : X → 2 × Pω(X∗)A, i.e., it is a coalgebra for
the behaviour functor B = 2× IdA composed with the idempotent semiring monad
Pω(Id∗) from Example 7.1.10. Intuitively, o(x) = 1 means that the variable x can
generate the empty word, whereas w ∈ t(x)(a) if and only if x can generate aw
(see [WBR13, Win14]).

It is a rather difficult task to describe concretely a distributive law of the monad
Pω(Id∗) over B×Id defining the sum + and sequential composition · of context-free
grammars (and it is impossible to use B rather than B× Id, see [Win14]). Instead,
we use Example 7.1.10, which presents the monad Pω(Id∗) by the operations and
axioms of idempotent semirings. We proceed by defining a distributive law of the
free monad Σ∗ generated by the signature functor ΣX = 1+1+(X×X)+(X×X)
(to be interpreted as the constants 0, 1 and the binary operators +, ·) over the
copointed functor (B×Id, π2), and show that it preserves the semiring axioms. This
distributive law arises from the abstract GSOS specification ρ : Σ(B × Id) ⇒ BΣ∗

whose components are given by:

ρ0
X = (0, a 7→ 0)

ρ1
X = (1, a 7→ 0)

ρ+
X((x, o, f), (y, p, g)) = (max{o, p}, a 7→ f(a) + g(a))

ρ·X((x, o, f), (y, p, g)) =

(
min{o, p}, a 7→

{
f(a) · y if p = 0

f(a) · y + g(a) if p = 1

)

We proceed to show that the induced distributive law ρ† preserves the defining
equations of idempotent semirings. We only treat the case of distributivity, i.e.,
u · (v + w) = u · v + u · w. To this end, let X be arbitrary and suppose that

156 Chapter 7. Presenting distributive laws

(o, d, x), (p, e, y), (q, f, z) ∈ BX × X. Notice that either o = 0 or o = 1; we treat
both cases separately:

ρ†((0, d, x) · ((p, e, y) + (q, f, z)))
= (0, a 7→ d(a) · (y + z), x · (y + z))

Rel(B)(≡X) (0, a 7→ d(a) · y + d(a) · z, x · y + x · z)
= ρ†((0, d, x) · (p, e, y) + (0, d, x) · (q, f, z))

ρ†((1, d, x) · ((p, e, y) + (q, f, z)))
= (p+ q, a 7→ d(a) · (y + z) + (e(a) + f(a)), x · (y + z))

Rel(B)(≡X) (p+ q, a 7→ (d(a) · y + d(a) · z) + (e(a) + f(a)), x · y + x · z)
Rel(B)(≡X) (p+ q, a 7→ (d(a) · y + e(a)) + (d(a) · z + f(a)), x · y + x · z)

= ρ†((1, d, x) · (p, e, y) + (1, d, x) · (q, f, z)) .

In a similar way, one can show that ρ† preserves the other idempotent semiring
equations. Thus, from Proposition 7.2.10 and Corollary 7.2.6 we obtain a distribu-
tive law κ of Pω(Id∗) over B×Id such that i◦q : ρ† ⇒ κ is a morphism of distributive
laws, i.e., κ is presented by ρ† (which is in turn determined by ρ) and the equations
of idempotent semirings.

7.2.3 Distributive laws over comonads

A further type of distributive law, which generalizes all of the above, is that of a
distributive law of a monad over a comonad. These arise from GSOS laws as well
as from coGSOS laws, which allow to model operational rules which involve look-
ahead in the premises. We refer to [Kli11] for technical details and an example of
a coGSOS format on streams. In this subsection, we prove for future reference that
when constructing the quotient distributive law as above for a distributive law over
a comonad, the axioms are preserved, i.e., the quotient is again a distributive law
over the comonad.

Proposition 7.2.12. Theorem 7.2.4 and Corollary 7.2.6 hold as well for any dis-
tributive law of a monad over a comonad.

Proof. Let (D, ε, δ) be a comonad and λ : TD ⇒ DT a distributive law of the monad
(T, η, µ) over the comonad (D, ε, δ). Suppose λ preserves equations E . By Proposi-
tion 7.2.10 there is a distributive law λE of T E over the copointed functor (D, ε).
To show that λE is a distributive law over the comonad (D, ε, δ), we need to check

7.3. Quotients of bialgebras 157

that the corresponding axiom holds.

TD

Tδ

��

qD

##

λ // DT

δT

��

Dq

{{

TDD
λD //

qDD

��

DTD
Dλ //

DqD

��

DDT

DDq

��
T EDD

λED // DT ED
DλE // DDT E

T ED

TEδ

OO

λE // DT E

δTE

OO

The outermost part and the right-hand square both commute by the fact that q is a
morphism of distributive laws. The outer crescents commute by naturality of q and
δ. The upper rectangle commutes by the assumption that λ is a distributive law over
the comonad. Checking that the lower rectangle commutes, which is what we need
to prove, is now an easy diagram chase, using that qD is epic (Theorem 7.1.5).

7.3 Quotients of bialgebras

We show how initial and final λ-bialgebras for a distributive law relate to initial
and final bialgebras for a quotiented distributive law as constructed in the previous
section. We study this in the general setting of morphisms of distributive laws, and
to this end we assume:

• monads T = (T, η, µ) and K = (K, θ, ν);

• distributive laws λ : TB ⇒ BT and κ : KB ⇒ BK (both of monad over
functor);

• a morphism of distributive laws τ : T ⇒ K from λ to κ.

Morphisms of distributive laws are defined to be monad morphisms, and hence
respect the algebraic structure. The next proposition shows that, as one might
expect, they also respect the coalgebraic structure, and hence morphisms of dis-
tributive laws induce morphisms between bialgebras.

Proposition 7.3.1. Let T̂ : TB-coalg → B-coalg and K̂ : KT -coalg → K-coalg be
liftings induced by λ and κ as in Equation (3.14) of Section 3.5. For all δ : X → BTX,
τX is a B-coalgebra morphism from T̂ (X, δ) to K̂(X,BτX ◦ δ).

158 Chapter 7. Presenting distributive laws

Proof. The following diagram commutes:

TX

Tδ

��

τX //

(nat. τ)

KX

Kδ

��
TBTX

λTX

��

τBTX //

(morph. of distr. laws)

KBTX

κTX

��

KBτX //

(nat. κ)

KBKX

κKX

��
BTTX

BµX

��

BτTX //

(τ monad morphism)

BKTX
BKτX // BKKX

BνX

��
BTX

BτX

// BKX

Commutativity of the outside is the desired result.

If τ arises from a set of preserved equations E as in Section 7.2 (with κ = λE),
then Proposition 7.3.1 states that, for any coalgebra δ : X → BTX, the coalge-
bra K̂(X,BτX ◦ δ) is a quotient of the coalgebra T̂ (X, δ), and in particular, the
congruence ≡X is included in behavioural equivalence on T̂ (X, δ).

Example 7.3.2. Recall from Example 7.2.11 that the abstract GSOS specification
for context-free grammars induces a morphism i ◦ q : Σ∗ ⇒ Pω(X∗) of distributive
laws, where Σ∗ is the free monad for the signature ΣX = X ×X +X ×X + 1 + 1
representing a binary choice +, a binary composition ·, and constants 0 and 1.
These distributive laws induce liftings Σ̂∗ and P̂ω(Id∗).

By Proposition 7.3.1 we have the following commutative diagram for any coal-
gebra of the form δ : X → 2× (Σ∗X)A:

X
ηX //

δ

##GGGGGGGGG Σ∗X
(i◦q)X //

Σ̂∗(δ)

��

Pω(X∗) //

P̂ω(Id∗)(BiX◦BqX◦δ)
��

P(A∗)

ζ

��
2× (Σ∗X)A

id×((i◦q)X)A
// 2× Pω(X∗)A // 2× P(A∗)A

(7.10)

where ζ is the final coalgebra for BX = 2×XA.
This gives the expected correspondence between two of the three different coal-

gebraic approaches to context-free languages introduced in [WBR13] (the third
approach is about fixed-point expressions and is outside the scope of this chapter).
These two approaches are:

1. A context-free grammar is defined as a coalgebra X → 2 × (Pω(X∗))A and
inductively extended to a coalgebra Pω(X∗) → 2× (Pω(X∗))A, and the lan-
guage semantics arises by finality. This extension coincides with our lifting
P̂ω(Id∗).

7.4. Discussion and related work 159

2. A context-free grammar is defined more syntactically (viewed as a system
of behavioural differential equations in [WBR13]) as a coalgebra X → 2 ×
(Σ∗X)A, which is inductively extended to a coalgebra Σ∗X → 2× (Σ∗X)A to
obtain its language semantics. This extension coincides with our lifting Σ̂∗.

The situation in diagram (7.10) yields the correspondence between these two app-
proaches.

Similarly, if B has a final coalgebra (Z, ζ), then the algebra on ζ induced by λ
(Lemma 3.5.1) factors through the algebra on ζ induced by κ.

Proposition 7.3.3. Let α : TZ → Z and α′ : KZ → Z be the algebras induced by λ
and κ respectively on the final B-coalgebra (Z, ζ). Then α = α′ ◦ τZ .

Proof. Consider the following diagram:

TZ
τZ //

Tζ

��

KZ
α′ //

Kζ

��

Z

ζ

��

TZ

Tζ

��

αoo

TBZ
τBZ //

λZ

��

KBZ

κZ

��

TBZ

λZ

��
BTZ

BτZ

// BKZ
Bκ
// BZ BTZ

Bα
oo

The upper left square commutes by naturality of τ , whereas the lower left square
commutes since τ is a morphism of distributive laws. The two rectangles commute
by definition of α and α′. Thus α′ ◦ τZ and α are both coalgebra homomorphisms
from (TZ, λZ ◦ Tζ) to (Z, ζ) and consequently α′ ◦ τZ = α by finality.

Example 7.3.4. Continuing Example 7.3.2, it follows from Proposition 7.3.3 that
the algebra α : Σ∗(P(A∗)) → P(A∗) induced by the distributive law for the free
monad for Σ can be decomposed as i ◦ q ◦ α′, where α′ is the algebra on P(A∗)
induced by the distributive law for Pω(Id∗). It can be shown by induction that α is
the algebra on languages given by union and concatenation product.

Now α′ : Pω(P(A∗)∗)→ P(A∗) can be given by selecting a representative term
and applying α, and it follows that

α′(L) =
⋃

L1···Ln∈L
{w1 · · ·wn | wi ∈ Li} .

We thus retrieved this algebra α′ induced by the distributive law for Pω(Id∗) from
the algebra α : Σ∗(P(A∗))→ P(A∗) on terms.

7.4 Discussion and related work

We presented a preservation condition that is sufficient for the existence of a dis-
tributive law λE for a monad with equations, given a distributive law λ for the

160 Chapter 7. Presenting distributive laws

underlying monad. This condition consists of checking that the equations are pre-
served by λ. We demonstrated the method by constructing distributive laws for
stream calculus over commutative semirings, and for context-free grammars which
use the monad of idempotent semirings. The reader is invited to compare the com-
plexity of checking that λ preserves the equations with describing and verifying the
distributive law requirements directly.

Morphisms of distributive laws are used in [Wat02] as a general approach for
studying translations between operational semantics. In the current chapter, we
investigated in detail the case of quotients of distributive laws. Distributive laws
for monad quotients and equations are also studied in [LPW04, MM07]. The set-
ting and motivation of [MM07] is different as they study distributive laws of one
monad over another with the aim to compose these monads. We study distributive
laws of a monad over a plain functor, a copointed functor or a comonad. The ap-
proach in [LPW04] (in particular Theorem 31) differs from ours in that the desired
distributive law is contingent on two given distributive laws and the existence of
the coequalizer (in the category of monads) which encodes equations. We have
given a more direct analysis which includes a concrete proof principle.

We have focused on adding equations which already hold in the final bialgebra,
whereas in Chapter 6 we introduced an approach for adding equations to a dis-
tributive law via structural congruence. The results of these chapters can possibly
be combined to give a more general account of equations and structural congru-
ences for different monads.

In the case of GSOS on labelled transition systems, proving equations to hold
at the level of a specification was considered in [ACI12], based on the notion of
rule-matching bisimulation, a refinement of De Simone’s FH-bisimulation. Rule-
matching bisimulations are based on the syntactic notion of ruloids, while our
technique is based on preservation of equations at the level of distributive laws.
It is currently not clear what the precise relation between these two approaches is;
one difference is that preserving equations naturally incorporates reasoning up to
congruence. Further, we do not know how, and to what extent, the decidability
result of [ACI12], which is based on identifying a finite set of ruloids, is reflected
at the more abstract level of the current chapter.

