
Enhanced Coinduction
Rot, J.C.

Citation
Rot, J. C. (2015, October 15). Enhanced Coinduction. IPA Dissertation Series.
Retrieved from https://hdl.handle.net/1887/35814

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/35814

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/35814

Chapter 6

Bialgebraic semantics with
equations

In this chapter, we focus on structural operational semantics, in the setting of ab-
stract GSOS specifications as introduced by Turi and Plotkin. As explained in Sec-
tion 3.5 and the introduction, their approach provides a general perspective on
well-behaved, compositional calculi and languages, parametric in the type of be-
haviour and the type of syntax. Moreover, in the previous chapters we have seen
that bisimulation up to context is a sound (even compatible) proof technique on
models of abstract GSOS specifications.

Given a GSOS specification, the behaviour of terms is computed inductively,
which is possible since each operator is defined directly in terms of the behaviour
of its arguments. An example of a rule that does not fit the GSOS format is the
following:

!x|x a−→ t

!x
a−→ t

(6.1)

This rule properly defines the replication operator in CCS1: intuitively, !x represents
x|x|x| . . ., i.e., the infinite parallel composition of x with itself. In fact, the above
rule can be seen as assigning the behaviour of the term !x|x to the simpler term !x,
therefore we call it an assignment rule.

We show how to interpret assignment rules together with abstract GSOS specifi-
cations. Our approach is based on the assumption that the functor which represents
the type of coalgebra is ordered as a complete lattice; for example, for the functor
(P−)A of labelled transition systems this order is simply pointwise set inclusion.
The operational model on closed terms is then defined as the least model such that
every transition can either can be derived from a rule in the specification or from

1The simpler rule x
a−→x′

!x
a−→!x|x′

is problematic in the presence of the sum operator, since it does not

allow to derive τ -transitions from a process such as !(a.P + a.Q) [PS12, SW01].

119

120 Chapter 6. Bialgebraic semantics with equations

an assignment rule. To ensure the existence of such least models, we disallow neg-
ative premises by using monotone abstract GSOS specifications, a generalization of
the positive GSOS format for transition systems (see Section 5.4.1).

The main result of this chapter is that the interpretation of a monotone abstract
GSOS specification together with a set of assignment rules is itself the operational
model of another (typically larger) abstract GSOS specification. Like the inter-
pretation of a GSOS specification with assignment rules, we construct this latter
specification by fixed point induction. As a direct consequence of this alternative
representation of the interpretation, we obtain that bisimilarity is a congruence and
that bisimulation up to context is sound and even compatible—properties that do
not follow from bisimilarity being a congruence [PS12]. As an example, we obtain
the compatibility of bisimulation up to context for CCS with replication, which was
shown earlier with an ad-hoc argument (see, e.g., [PS12]).

In the second part of this chapter, we combine structural congruences with the
bialgebraic framework, using assignment rules. Structural congruences have been
widely used in concurrency theory ever since their introduction in the operational
semantics of the π-calculus in [Mil92]. The basic idea is that SOS specifications are
extended with equations ≡ on terms, which are then linked by a special deduction
rule:

t ≡ u u
a−→ u′ u′ ≡ v
t
a−→ v

This rule essentially states that if two processes are equated by the congruence
generated by the set of equations, then they can perform the same transitions.
Prototypical examples are the specification of the parallel operator by combining a
single rule with commutativity, and the specification of the replication operator by
an equation, both shown below:

x
a−→ x′

x|y a−→ x′|y
x|y = y|x !x = !x|x (6.2)

Even though structural congruences are standard in concurrency theory, a system-
atic study of their properties was missing until the work of Mousavi and Reniers,
who show how to interpret SOS rules with structural congruences in various equiv-
alent ways [MR05]. Mousavi and Reniers exhibit very simple examples of equa-
tions and SOS rules for which bisimilarity is not a congruence, even when the SOS
rules are in the tyft (or the GSOS) format. As a solution to this problem they in-
troduce a restricted format for equations, called cfsc, for which bisimilarity is a
congruence when combined with tyft specifications.

In the current chapter, we show how to interpret structural congruences at the
general level of coalgebras, in terms of an operational model on closed terms. We
prove that when the equations are in the cfsc format then they can be encoded by
assignment rules, in such a way that their respective interpretations coincide up
to bisimilarity. Consequently, not only is bisimilarity a congruence for monotone
abstract GSOS combined with cfsc equations, but we also obtain the compatibil-
ity of bisimulation up to context and bisimilarity. From a technical point of view,

6.1. Assignment rules 121

structural congruences have not been developed outside the work of Mousavi and
Reniers, and have not at all been explored in the theory of bialgebraic seman-
tics [Bar04, Kli07]. Here, we develop the basic theory of monotone abstract GSOS
specifications for ordered functors, and use it to obtain a bialgebraic perspective
on structural congruences (assuming an ordered behaviour functor).

Outline In Section 6.1, we introduce assignment rules and their interpretation.
In Section 6.2, we show that this interpretation can be obtained as the operational
model of another abstract GSOS specification. Section 6.3 contains the integra-
tion of structural congruence with the bialgebraic framework. In Section 6.4, we
conclude and discuss related work.

6.1 Assignment rules

We consider the interpretation of abstract GSOS specifications (without negative
premises) together with assignment rules of the form

σ(x1, . . . , xn) := t (6.3)

where t is a term over the variables x1, . . . , xn. Assignment rules will be interpreted
as a kind of rewriting rules: the behaviour of t induces behaviour of σ(x1, . . . , xn).
An example is the replication operator given in equation (6.1) of the introduc-
tion; this can be given by the assignment rule !x := !x|x. Notice that assignment
rules do not fit directly into the bialgebraic framework, since they are inherently
non-structural: they do not satisfy the property of GSOS specifications that the be-
haviour of terms in the operational model is computed directly from the behaviour
of their subterms.

In the case of labelled transition systems, given a GSOS specification and a set
of rules of the above form, the desired interpretation is informally as follows (this
is formalized below): every transition from a term σ(t1, . . . , tn) should either be
derived from the transitions of t1, . . . , tn and a rule in the specification, or from an
assignment rule which has σ on the left-hand side. However, such an interpreta-
tion is not necessarily unique, since there may be infinite inferences caused by the
assignment rules. For example, the rule σ(x) := σ(x) does not have a unique solu-
tion. In order to rule out infinite inferences, one is interested in the least transition
system on closed terms which is a model in the above sense. Such a least model
does not necessarily exist in general because of negative premises. Therefore, we
will restrict to GSOS specifications without negative premises.

To interpret specifications which involve assignment rules at the general level
of a functor B : Set → Set one needs a notion of order on B. In the case of
labelled transition systems, this order is clear and often left implicit: in that case
BX = (PX)A, and the order is simply the (pointwise) subset order. To allow
the desired generalization, we assume that our behaviour functor B is ordered (cf.
Section 5.4.1). We will need the existence of fixed points of monotone functions.

122 Chapter 6. Bialgebraic semantics with equations

To this end, let CJSL be the category of complete (join semi-)lattices and join-
preserving functions. We define a CJSL-ordered functor to be a functor B : Set →
Set with a factorization v through CJSL:

CJSL

U

��
Set

v

;;xxxxxxxx

B
// Set

where U is the forgetful functor. If B is a CJSL-ordered functor, then for any set X,
BX is a complete lattice. We denote the join of a set S ⊆ BX in this lattice by

∨
S,

and we write ⊥ for
∨
∅ and x ≤ y if x ∨ y = y, for x, y ∈ BX. Moreover, for any

function f : X → Y , Bf is join-preserving. Consequently, Bf is also monotone,
i.e., for any x, y ∈ BX: x ≤ y implies (Bf)(x) ≤ (Bf)(y).

Example 6.1.1. The functor (P−)A of labelled transition systems is CJSL-ordered,
with the order on (PX)A given by pointwise subset inclusion.

Example 6.1.2. In Chapter 3 we defined weighted transition systems for a semiring
as coalgebras for the functor (M−)A, where MX consists of (finite) linear com-
binations with coefficients in the semiring. Here, we consider weighted transition
systems for a complete monoid M , i.e., a monoid with an infinitary sum operation
consistent with the finite sum [DK09]. These are coalgebras for the functor (M−)A

where M− : Set→ Set is defined as follows:

• For each set X, MX is the set of functions from X to M .

• For each function h : X → Y , Mh : MX →MY is the function mapping each
ϕ ∈MX into ϕh ∈MY defined, for all y ∈ Y , by ϕh(y) =

∑
x′∈h−1(y) ϕ(x′).

By taking the Boolean monoid, we retrieve infinitely branching labelled transition
systems. As another example, consider the set R+ ∪ {∞} of positive reals, ordered
as usual and extended with a top element ∞. Together with the supremum oper-
ation, R+ ∪ {∞} forms a complete ordered monoid, with 0 as unit. The order on
R+ ∪ {∞} extends to an order on the functor for weighted transition systems over
this monoid, where joins are calculated pointwise.

Example 6.1.3. For a non-example: we can try to extend a functor B : Set → Set
to a CJSL-ordered functor B′ by defining B′X = BX + 2, putting the discrete
order on BX and taking the elements of 2 = {>,⊥} to be the top and the bottom
element respectively. Contrary to what is stated in [RB14, Example 2], such a
functor B′ is not CJSL-ordered, in general. Indeed B′X is a complete lattice, but
the functor B′ is not well-defined on morphisms: given a function f , B′f need
not be join-preserving. For instance, if we take B = Id, a set X with two distinct
elements x, y ∈ X and a function f : X → X such that f(x) = f(y), we have
(B′f)(x)∨(B′f)(y) = (B′f)(x) = f(x) 6= >whereas (B′f)(x∨y) = (B′f)(>) = >.

6.1. Assignment rules 123

Given arbitrary sets X and Y , the complete lattice on BY lifts pointwise to
a complete lattice on functions of type X → BY , i.e., for a collection {fi}i∈I of
functions of the form fi : X → BY we define (

∨
{fi}i∈I)(x) =

∨
i∈I(fi(x)) . This

induces in particular a complete lattice on the set of all coalgebras on closed terms
over a signature. Given a polynomial functor Σ: Set → Set corresponding to a
signature (Section 3.4), we denote this set by

M = {f | f : Σ∗∅ → BΣ∗∅} . (6.4)

The order on B lifts to an order on B × Id by defining (b1, x1) ≤ (b2, x2) iff b1 ≤ b2
and x1 = x2 for (b1, x1), (b2, x2) ∈ BX ×X. Moreover, given Σ as above, the order
lifts componentwise to ΣBX (and also to Σ(BX ×X)) for any set X, by defining,
for any operators σ, τ of arity n and m respectively: σ(k1, . . . , kn) ≤ τ(l1, . . . , lm)
iff σ = τ (so also n = m) and ki ≤ li for all i ≤ n.

Definition 6.1.4. Using the above lifting of the order on B to Σ(B × Id), a spec-
ification ρ : Σ(B × Id) ⇒ BΣ∗ is said to be monotone if all its components are
monotone.

Definition 6.1.4 is a special case of monotone abstract GSOS specifications de-
fined in terms of relation lifting, as introduced in Section 5.4.1. For the functor
BX = (PX)A of labelled transition systems, monotone specifications correspond
to specifications in (an infinitary version of) the positive GSOS format [FS10].

Assignment rules (6.3) can be formalized in terms of natural transformations,
which are independent of the behaviour functor B.

Definition 6.1.5. An assignment rule is a natural transformation d : Σ⇒ Σ∗.

If there is no intended assignment for an operator σ ∈ Σ, this is modelled by
defining dX(σ(x1, . . . , xn)) = σ(x1, . . . , xn) for every X. For example, the assign-
ment rule for the replication operator is the natural transformation that sends !x to
!x|x for any x, and is the identity on all other operators in Σ.

Assumption 6.1.6. In the remainder of this chapter, we assume:

1. A CJSL-ordered functor B.

2. A functor Σ defined from a signature (see Section 3.4), with free monad
(Σ∗, η, µ).

3. A monotone GSOS specification ρ : Σ(B × Id)⇒ BΣ∗.

4. A set ∆ of assignment rules, ranged over by d : Σ⇒ Σ∗.

Throughout this chapter we denote by M(ρ) the operational model of ρ. As ex-
plained in Section 3.5.2, the operational model M(ρ) : Σ∗∅ → BΣ∗∅ is the unique

124 Chapter 6. Bialgebraic semantics with equations

coalgebra that makes the following diagram commute:

ΣΣ∗∅

κ∅

��

Σ〈M(ρ),id〉 // Σ(BΣ∗∅ × Σ∗∅)

ρΣ∗∅

��
BΣ∗Σ∗∅

Bµ∅

��
Σ∗∅

M(ρ)
// BΣ∗∅

(6.5)

where κ : ΣΣ∗ ⇒ Σ∗ is the natural transformation such that, for a component X,
the copairing [κX , ηX] is the initial Σ+X-algebra (Equation (3.11) in Section 3.4).
Observe that the operational model is the unique f ∈ M (see Equation 6.4) satis-
fying the equation

f ◦ κ∅ = Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈f, id〉 .

The definition below extends this equation to incorporate assignment rules.

Definition 6.1.7. Let ψ : M→M be the (unique) function such that

ψ(f) ◦ κ∅ = Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
d∈∆

f ◦ µ∅ ◦ dΣ∗∅ .

A (ρ,∆)-model is a coalgebra f ∈M such that ψ(f) = f .

The function ψ is indeed uniquely defined, since κ∅ : ΣΣ∗∅ → Σ∗∅ is an initial
algebra and therefore an isomorphism. As argued in the beginning of this section,
in general there may be more than one model for a fixed ρ and ∆, and we regard
the least (ρ,∆)-model to be the intended interpretation. In order to show that a
least model exists, we need the following.

Lemma 6.1.8. The function ψ : M→M is monotone.

Proof. Let f, g ∈ M with f ≤ g. By monotonicity of ρ, we have ρΣ∗∅ ◦ Σ〈f, id〉 ≤
ρΣ∗∅ ◦Σ〈g, id〉, and since Bµ∅ is monotone then Bµ∅ ◦ρΣ∗∅ ◦Σ〈f, id〉 ≤ Bµ∅ ◦ρΣ∗∅ ◦
Σ〈g, id〉. It follows that ψ(f) ◦κ∅ ≤ ψ(g) ◦κ∅ and thus also ψ(f) ≤ ψ(g) because κ∅
is an isomorphism.

Since ψ is monotone and M is a complete lattice, by the Knaster-Tarski theorem
ψ has a least fixed point.

Definition 6.1.9. The interpretation of ρ and ∆ is the least (ρ,∆)-model, i.e.,
lfp(ψ).

Example 6.1.10. For a GSOS specification together with assignment rules, the
interpretation is the least transition system on closed terms so that σ(t1, . . . , tn)

a−→
t′ if and only if:

6.2. Integrating assignment rules in abstract GSOS 125

1. it can be obtained by instantiating a rule in the specification, or

2. there is an assignment of t to σ, and t a−→ t′.

This is a recursive definition; being the least such transition system has the desired
consequence that every derivation of a transition t a−→ t′ is finite.

6.2 Integrating assignment rules in abstract GSOS

In the previous section, we have seen how to interpret a monotone abstract GSOS
specification ρ together with a set of assignment rules ∆ as a coalgebra on closed
terms. In this section, we show that we can alternatively construct this coalge-
bra as the operational model of another specification (without assignment rules),
which is constructed as the least fixed point of a function on the complete lattice
of specifications. The consequence of this alternative representation is that the
well-behavedness properties of the operational model of a specification, such as
bisimilarity being a congruence and the compatibility of bisimulation up to con-
text, carry over to the interpretation of ρ and ∆.

Let G be the set of all monotone abstract GSOS specifications of Σ over B
(Definition 6.1.4). We turn G into a complete lattice by defining the order com-
ponentwise, i.e., for any L ⊆ G and any set X: (

∨
L)X =

∨
ρ∈L ρX . The join is

well-defined:

Lemma 6.2.1. For any L ⊆ G: the family of functions
∨
L as defined above is a

monotone specification.

Proof. Let f : X → Y be a function. For any k ∈ Σ(BX ×X):

BΣ∗f ◦ (
∨
L)X(k) = BΣ∗f ◦ (

∨
ρ∈L(ρX(k))) definition of

∨
L

=
∨
ρ∈L(BΣ∗f ◦ ρX(k)) BΣ∗f is join-preserving

=
∨
ρ∈L(ρY ◦ Σ(Bf × f)(k)) naturality of ρ

= (
∨
L)Y (Σ(Bf × f)(k)) definition of

∨
L

which proves naturality. Monotonicity is straightforward as well.

The lattice structure of G provides a way of combining specifications. Consider,
for an assignment rule d ∈ ∆ and specification τ , the following natural transfor-
mation:

Σ(B × Id)
dB×Id // Σ∗(B × Id)

τ† // BΣ∗ × Σ∗
π1 // BΣ∗ (6.6)

Recall from Section 3.5.2 that τ † is the extension of τ to a distributive law; in-
tuitively, it is the inductive extension of τ to terms. Informally, the above natu-
ral transformation acts as follows. For an operator σ of arity n, given behaviour
k1, . . . , kn ∈ BX × X of its arguments, it first applies the assignment rule d to
obtain a term t(k1, . . . , kn). Subsequently τ † is used to compute the behaviour

126 Chapter 6. Bialgebraic semantics with equations

of t given the behaviour k1, . . . , kn. In short, the above transformation computes
the behaviour of an operator by using rules from τ and a single application of the
assignment rule d.

Example 6.2.2. Suppose the signature Σ contains a binary operator and a unary
operator (to be interpreted as parallel composition | and replication ! respectively).
Further, let ρ be a GSOS specification defined as usual for | (Example 3.5.4), and
without any rules for the replication operator !x. Let d be the assignment rule
associated to the replication, i.e., the identity on all operators except !x, which is
mapped to !x|x.

Then the natural transformation in (6.6) corresponds to a specification in which
there is a rule that concludes with !x → t for some t if and only if there is a
derivation of !x|x → t in the GSOS specification ρ, from the same premises. Since
there are no rules for !x in ρ, the only possible derivation is

x
a−→ x′

!x|x a−→!x|x′

and therefore, the only rule for !x is

x
a−→ x′

!x
a−→!x|x′

The natural transformation in (6.6) is unchanged on all other operators.

As explained in the introduction of this chapter, this is not quite the correct
specification of replication yet, but it is a first step. To obtain the correct specifi-
cation, we need to apply such a construction recursively, which we will do below.
First we define a function ϕ on G which uses the above construction to build, from
an argument specification τ (of Σ over B), the specification containing all rules
from the fixed specification ρ and all rules which can be formed as in (6.6).

Definition 6.2.3. Given our fixed ρ and ∆ (Assumption 6.1.6), the map ϕ : G→ G
is defined as

ϕ(τ) = ρ ∨
∨
d∈∆

(π1 ◦ τ † ◦ dB×Id) .

For well-definedness, we need to check that ϕ preserves monotonicity. To this
end, it is convenient to speak about monotonicity of a distributive law τ †, which
requires an order on Σ∗. Any partial order (X,≤) inductively extends to an order
on Σ∗X by defining

σ(t1, . . . , tn) ≤ τ(u1, . . . , um)

iff σ = τ (so also n = m) and ti ≤ ui for all i ≤ n. We thus get a notion of
monotonicity of distributive laws (this can be defined more generally using relation
lifting, see Section 5.4.1; here, we provide a concrete, self-contained exposition).

Lemma 6.2.4. If τ is a monotone specification, then ϕ(τ) is monotone as well.

6.2. Integrating assignment rules in abstract GSOS 127

Proof. We prove that if τ is monotone then the induced distributive law τ † : Σ∗(B×
Id)⇒ BΣ∗×Σ∗ is also monotone, by induction on pairs of terms t, u ∈ Σ∗(BX×X)
with t ≤ u (note that this order is defined inductively). The desired result that ϕ(τ)
is monotone then follows, since assignment rules d are clearly monotone.

For the base case, if (b, x), (c, y) ∈ BX × X with (b, x) ≤ (c, y) (so b ≤ c and
x = y) then

τ †X ◦ ηBX×X(b, x) = (BηX × ηX)(b, x) ≤ (BηX × ηX)(c, y) = τ †X ◦ ηBX×X(c, y)

where the inequality holds by monotonicity of BηX and since x = y, and the
equalities by definition of τ † (Equation (3.15) in Section 3.5.2).

Suppose σ is an operator of arity n, and t1, . . . , tn, u1, . . . , un ∈ Σ∗(BX × X)

with τ †X(ti) ≤ τ †X(ui) for all i. Then

τ †X ◦ κBX×X(σ(t1, . . . , tn))

= (BµX × κX) ◦ 〈τΣ∗X ,Σπ2〉 ◦ Στ †X(σ(t1, . . . , tn)) definition τ †

= (BµX × κX) ◦ 〈τΣ∗X ,Σπ2〉(σ(τ †X(t1), . . . , τ †X(tn))) definition Σ

≤ (BµX × κX) ◦ 〈τΣ∗X ,Σπ2〉(σ(τ †X(u1), . . . , τ †X(un))) see below
= τ †X ◦ κBX×X(σ(u1, . . . , un))

The inequality holds by monotonicity of BµX and τ , and the induction hypothesis;
note that the induction hypothesis implies π2 ◦ τ †X(ti) = π2 ◦ τ †X(ui) for all i.

Moreover, ϕ is monotone on G:

Lemma 6.2.5. The function ϕ : G→ G is monotone.

The main step in the proof of Lemma 6.2.5 is to show that the extension (−)†

of abstract GSOS specifications to distributive laws is monotone.

Lemma 6.2.6. Let τ1, τ2 be specifications. If τ1 ≤ τ2 then π1 ◦ (τ †1) ≤ π1 ◦ (τ †2).

Proof. We have

(τ †1)X ◦ ηBX×X = BηX × ηX = (τ †2)X ◦ ηBX×X
by definition of (−)† (Equation (3.15) in Section 3.5.2). Moreover

(BµX × κX) ◦ 〈(τ1)Σ∗X ,Σπ2〉 ≤ (BµX × κX) ◦ 〈(τ2)Σ∗X ,Σπ2〉

by monotonicity of Bµ and assumption. Now using the definition of (τ †1)X , it
easily follows by induction on terms in Σ∗(BX ×X) that (τ †1)X ≤ (τ †2)X , and thus
π1 ◦ (τ †1)X ≤ π1 ◦ (τ †2)X .

Because ϕ is monotone, it has a least fixed point, which we denote by lfp(ϕ).
Further, since ϕ preserves monotonicity we obtain monotonicity of lfp(ϕ) by trans-
finite induction (the base case and limit steps are rather easy). The proof technique
of transfinite induction, which we also use several times below, is justified by the
fact that the least fixed point of a monotone function in a complete lattice can
be constructed as the supremum of an ascending chain obtained by iterating the
function over the ordinals (see, e.g., [San12a]).

128 Chapter 6. Bialgebraic semantics with equations

Corollary 6.2.7. The abstract GSOS specification lfp(ϕ) is monotone.

Informally, lfp(ϕ) is the specification consisting of rules from ρ and ∆. We
proceed to prove that the operational model of the least fixed point of ϕ is precisely
the interpretation of ρ and ∆ (the least fixed point of ψ as given in Definition 6.1.7),
i.e., that M(lfp(ϕ)) = lfp(ψ). First, we show that M(lfp(ϕ)) is a fixed point of ψ.

Lemma 6.2.8. The operational modelM(lfp(ϕ)) of the specification lfp(ϕ) is a (ρ,∆)-
model, i.e., ψ(M(lfp(ϕ))) = M(lfp(ϕ)).

Proof. Let f = M(lfp(ϕ)). We must show that ψ(f) = f .

f ◦ κ∅
= Bµ∅ ◦ (lfp(ϕ))Σ∗∅ ◦ Σ〈f, id〉
= Bµ∅ ◦ (ρ ∨

∨
d∈∆ π1 ◦ (lfp(ϕ))† ◦ dB×Id)Σ∗∅ ◦ Σ〈f, id〉

= Bµ∅ ◦ (ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
d∈∆ π1 ◦ (lfp(ϕ))†Σ∗∅ ◦ dBΣ∗∅×Σ∗∅ ◦ Σ〈f, id〉)

= Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
d∈∆Bµ∅ ◦ π1 ◦ (lfp(ϕ))†Σ∗∅ ◦ dBΣ∗∅×Σ∗∅ ◦ Σ〈f, id〉

where the first equality holds by definition of M , the second since lfp(ϕ) is a fixed
point of ϕ, the third holds by the definition of the join on natural transformations
and the last one holds by the fact the Bµ∅ preserves joins. For the right-hand part,
we have∨

d∈∆Bµ∅ ◦ π1 ◦ (lfp(ϕ))†Σ∗∅ ◦ dBΣ∗∅×Σ∗∅ ◦ Σ〈f, id〉
=

∨
d∈∆ π1 ◦Bµ∅ × µ∅ ◦ (lfp(ϕ))†Σ∗∅ ◦ Σ∗〈f, id〉 ◦ dΣ∗∅ naturality of d, π1

=
∨
d∈∆ π1 ◦ 〈f, id〉 ◦ µ∅ ◦ dΣ∗∅ (Σ∅∗, µ∅, 〈f, id〉) is a

=
∨
d∈∆ f ◦ µ∅ ◦ dΣ∗∅ (lfp(ϕ))†-bialg.

Thus f ◦κ∅ = Bµ∅◦ρΣ∗∅◦Σ〈f, id〉∨
∨
d∈∆ f ◦µ∅◦dΣ∗∅ = ψ(f)◦κ∅ and consequently

ψ(f) = f , since κ∅ is an isomorphism.

We proceed to show that M(lfp(ϕ)) ≤ lfp(ψ). Since ψ(M(lfp(ϕ))) = M(lfp(ϕ))
by the above Lemma 6.2.8, we then have M(lfp(ϕ)) = lfp(ψ) (Theorem 6.2.14).
The main step is that any fixed point of ψ is “closed under ρ”, i.e., that in such a
model, all the behaviour that we can derive by the specification is already there.
This result is the contents of Corollary 6.2.13 below; it follows by transfinite in-
duction from Lemma 6.2.11 and 6.2.12. But first, we need a few technical tools
(Lemma 6.2.9 and 6.2.10). Recall from Section 3.4 that a Σ-algebra α : ΣX → X
induces an algebra α̂ : Σ∗X → X for the free monad. This construction preserves
algebra morphisms. We prove a lax version of this fact.

Lemma 6.2.9. Let α : ΣX → X and β : ΣY → Y be algebras, such that Y carries a
partial order ≤ and β is monotone. Then for any function f : X → Y :

ΣX
Σf //

α

��
≥

ΣY

β

��
X

f
// Y

implies

Σ∗X
Σ∗f //

α̂

��
≥

Σ∗Y

β̂

��
X

f
// Y

6.2. Integrating assignment rules in abstract GSOS 129

Proof. Suppose β ◦Σf ≤ f ◦α. The proof is by induction on t ∈ Σ∗X. For the base
case t = ηX(s) ∈ Σ∗X, we have an equality, without using the assumption:

β̂ ◦ Σ∗f ◦ ηX(s) = β̂ ◦ ηY ◦ f(s) = f(s) = f ◦ α̂ ◦ ηX(s) .

Now suppose σ ∈ Σ is of arity n, and for some t1, . . . , tn ∈ Σ∗X, we have β̂ ◦
(Σ∗f)(ti) ≤ f ◦ α̂(ti) for all i with 1 ≤ i ≤ n. Then

β̂ ◦ Σ∗f ◦ κX(σ(t1, . . . , tn))

= β̂ ◦ κY ◦ ΣΣ∗f(σ(t1, . . . , tn)) naturality κ
= β̂ ◦ κY (σ(Σ∗f(t1), . . . ,Σ∗f(tn))) definition Σ

= β ◦ Σβ̂(σ(Σ∗f(t1), . . . ,Σ∗f(tn))) definition β̂
= β(σ(β̂ ◦ Σ∗f(t1), . . . , β̂ ◦ Σ∗f(tn))) definition Σ
≤ β(σ(f ◦ α̂(t1), . . . , f ◦ α̂(tn))) ind. hypothesis, monotonicity β
= β ◦ Σf ◦ Σα̂(σ(t1, . . . , tn)) definition Σ
≤ f ◦ α ◦ Σα̂(σ(t1, . . . , tn)) assumption
= f ◦ α̂ ◦ κX(σ(t1, . . . , tn)) definition α̂

which concludes the induction step.

We instantiate the above lemma to the definition of τ †.

Lemma 6.2.10. Let τ be a monotone abstract GSOS specification of Σ over B. Then
for any f : Σ∗∅ → BΣ∗∅:

ΣΣ∗∅
Σ〈f,id〉//

κ∅

��

≥

Σ(BΣ∗∅ × Σ∗∅)

τΣ∗∅

��
BΣ∗Σ∗∅

Bµ∅

��
Σ∗∅

f
// BΣ∗∅

implies

Σ∗Σ∗∅
Σ∗〈f,id〉//

µ∅

��

≥

Σ∗(BΣ∗∅ × Σ∗∅)

τ†
Σ∗∅
��

BΣ∗Σ∗∅ × Σ∗Σ∗∅

Bµ∅×µ∅
��

Σ∗∅ 〈f,id〉
// BΣ∗∅ × Σ∗∅

Proof. From the assumption it follows that

(Bµ∅ × κ∅) ◦ 〈τΣ∗∅,Σπ2〉 ◦ Σ〈f, id〉 ≤ 〈f, id〉 ◦ κ∅ .

Let β = (Bµ∅ × κ∅) ◦ 〈τΣ∗∅,Σπ2〉, then by Lemma 6.2.9 we get

Σ∗Σ∗∅
µ∅

��

Σ∗〈f,id〉 //

≥

Σ∗(BΣ∗∅ × Σ∗∅)

β̂

��
Σ∗∅ 〈f,id〉

// BΣ∗∅ × Σ∗∅

130 Chapter 6. Bialgebraic semantics with equations

where β̂ is the Σ∗-algebra induced by the Σ-algebra β = (Bµ∅ × κ∅) ◦ 〈τΣ∗∅,Σπ2〉.
Thus, it only remains to prove that β̂ = (Bµ∅ × µ∅) ◦ τ †Σ∗∅.

To this end, consider the following diagram:

ΣΣ∗(BΣ∗∅ × Σ∗∅)
Στ†

Σ∗∅//

κBΣ∗∅×Σ∗∅

��

Σ(BΣ∗Σ∗∅ × Σ∗Σ∗∅)

〈τΣ∗Σ∗∅,Σπ2〉
��

Σ(Bµ∅×µ∅) // Σ(BΣ∗∅ × Σ∗∅)

〈τΣ∗∅,Σπ2〉
��

BΣ∗Σ∗Σ∗∅ × ΣΣ∗Σ∗∅

BµΣ∗∅×κΣ∗∅

��

BΣ∗µ∅×Σµ∅ // BΣ∗Σ∗∅ × ΣΣ∗∅

Bµ∅×κ∅
��

Σ∗(BΣ∗∅ × Σ∗∅)
τ†
Σ∗∅ // BΣ∗Σ∗∅ × Σ∗Σ∗∅

Bµ∅×µ∅ // BΣ∗∅ × Σ∗∅

BΣ∗∅ × Σ∗∅

ηBΣ∗∅×Σ∗∅

OO

BηΣ∗∅×ηΣ∗∅

44jjjjjjjjjjjjjjjj

The upper right rectangle commutes by naturality, the lower right rectangle com-
mutes by the multiplication law of the monad and since µ∅ = κ̂∅. The left square
and triangle commute by definition of τ † (Equation (3.15) in Section 3.5.2). Thus
(Bµ∅× µ∅) ◦ τ †Σ∗∅ is an algebra homomorphism extending id, and since β̂ is by def-
inition an algebra homomorphism extending id and homomorphic extensions are
unique, we have β̂ = Bµ∅ × µ∅ ◦ τ †Σ∗∅.

Lemma 6.2.11. Let τ be a specification, and f ∈M a fixed point of ψ. If Bµ∅ ◦τΣ∗∅ ◦
Σ〈f, id〉 ≤ f ◦ κ∅ then Bµ∅ ◦ ϕ(τ)Σ∗∅ ◦ Σ〈f, id〉 ≤ f ◦ κ∅.

Proof.

Bµ∅ ◦ ϕ(τ)Σ∗∅ ◦ Σ〈f, id〉

= Bµ∅ ◦ (ρ ∨
∨
d∈∆

π1 ◦ τ † ◦ dB×Id)Σ∗∅ ◦ Σ〈f, id〉

= Bµ∅ ◦ (ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
d∈∆

π1 ◦ τ †Σ∗∅ ◦ dBΣ∗∅×Σ∗∅ ◦ Σ〈f, id〉)

= Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
d∈∆

Bµ∅ ◦ π1 ◦ τ †Σ∗∅ ◦ dBΣ∗∅×Σ∗∅ ◦ Σ〈f, id〉

= Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
d∈∆

π1 ◦ (Bµ∅ × µ∅) ◦ τ †Σ∗∅ ◦ Σ∗〈f, id〉 ◦ dΣ∗∅

≤ Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
d∈∆

π1 ◦ 〈f, id〉 ◦ µ∅ ◦ dΣ∗∅

= Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
d∈∆

f ◦ µ∅ ◦ dΣ∗∅

= ψ(f) ◦ κ∅ = f ◦ κ∅

6.2. Integrating assignment rules in abstract GSOS 131

The first equality holds by definition of ϕ, the second by definition of the join of
specifications, the third since Bµ∅ is join-preserving, and the fourth equality by
naturality of d and π1. The inequality holds by assumption and Lemma 6.2.10. The
last equality holds by definition of ψ.

Lemma 6.2.12. Let f ∈M such that ψ(f) = f , and suppose we have a family {τi}i∈I
of specifications, for some index set I. If Bµ∅ ◦ (τi)Σ∗∅ ◦Σ〈f, id〉 ≤ f ◦κ∅ for all i ∈ I,
then Bµ∅ ◦ (

∨
i∈I τi)Σ∗∅ ◦ Σ〈f, id〉 ≤ f ◦ κ∅ .

Proof. Since Bµ∅ preserves joins we have

Bµ∅ ◦ (
∨
i∈I

τi)Σ∗∅ ◦ Σ〈f, id〉 =
∨
i∈I

Bµ∅ ◦ (τi)Σ∗∅ ◦ Σ〈f, id〉

and the result now follows by the assumption that Bµ∅ ◦ (τi)Σ∗∅ ◦Σ〈f, id〉 ≤ f ◦ κ∅
for each i.

Corollary 6.2.13. For any f ∈M: if ψ(f) = f then

ΣΣ∗X
Σ〈f,id〉//

κ∅

��

≥

Σ(BΣ∗∅ × Σ∗∅)

lfp(ϕ)Σ∗∅

��
BΣ∗Σ∗∅

Bµ∅

��
Σ∗X

f
// BΣ∗∅

Proof. By transfinite induction. For the base case we have Bµ∅ ◦ ⊥ ◦ Σ〈f, id〉 =
⊥ ≤ f ◦ κ∅. The successor step is given by Lemma 6.2.11 and the limit step by
Lemma 6.2.12.

This allows to prove the main result of this chapter.

Theorem 6.2.14. The interpretation of ρ and ∆ coincides with the operational model
of the abstract GSOS specification lfp(ϕ), i.e., M(lfp(ϕ)) = lfp(ψ).

Proof. By Lemma 6.2.8, M(lfp(ϕ)) is a fixed point of ψ. To show it is the least one,
let f be any fixed point of ψ; we proceed to prove M(lfp(ϕ)) ≤ f by structural
induction on closed terms. Suppose σ ∈ Σ is an operator of arity n, and suppose
we have t1, . . . , tn ∈ Σ∗∅ such that M(lfp(ϕ))(ti) ≤ f(ti) for all i with 1 ≤ i ≤ n
(note that this trivially holds in the base case, when n = 0). Then

M(lfp(ϕ))(σ(t1, . . . , tn)) = Bµ∅ ◦ (lfp(ϕ))Σ∗∅ ◦ Σ〈M(lfp(ϕ)), id〉(σ(t1, . . . , tn))

≤ Bµ∅ ◦ (lfp(ϕ))Σ∗∅ ◦ Σ〈f, id〉(σ(t1, . . . , tn))

≤ f(σ(t1, . . . , tn))

where the first inequality holds by assumption and monotonicity of Bµ∅ and lfp(ϕ)
(Corollary 6.2.7) and the second by Corollary 6.2.13.

132 Chapter 6. Bialgebraic semantics with equations

As a consequence, the interpretation of ρ and ∆ is well-behaved.

Corollary 6.2.15. Bisimilarity is a congruence on the interpretation lfp(ψ) of ρ and
∆, and bisimulation up to context is compatible (i.e., the contextual closure is blfp(ψ)-
compatible).

Example 6.2.16. The parallel composition can be given by a positive GSOS spec-
ification, and Equation (6.1) of the introduction contains a rule for the replication
operator. Thus, by the above Corollary, bisimilarity is a congruence on the opera-
tional model of CCS with replication, and bisimulation up to context is compatible;
this is known (see, e.g., [San12a]), but here we obtain it directly from the format
and the above results.

Example 6.2.17. We revisit the general process algebra with transition costs (GPA)
(see Example 4.5.5, [BK01]). We consider basic GPA processes with procedures,
defined by the grammar t ::= 0 | t + t | (a, r).t | p where a ranges over the set of
actions A, r ranges over the positive real numbers R+ and p ranges over a fixed set
of procedure names PNames. We assume that each procedure name pi ∈ PNames
has a body ti ∈ P .

The operational semantics of the operators of basic GPA processes on the com-
plete monoid R+ ∪ {∞} (with supremum) is similar to the semantics in Exam-
ple 4.5.5. The semantics corresponds to a GSOS specification; see [Kli11] for
details. This specification is monotone. The (recursive) procedures can now be
interpreted by assignment rules: for each pi ∈ PNames we add an assignment rule
pi := ti. Intuitively this means that the procedure call pi is given by the behaviour
of its body ti, as expected. By Theorem 6.2.14, bisimilarity is a congruence on the
interpretation.

6.3 Structural congruences

The assignment rules considered in the theory of the previous sections copy be-
haviour from a term to an operator, but this assignment goes one way only. In this
section, we consider the combination of abstract GSOS specifications with actual
equations, interpreted by the structural congruence rule. By encoding equations in
a restricted format as assignment rules, we obtain that the interpretation of any
specification with equations in this format is well-behaved.

Equations are elements of Σ∗V × Σ∗V , where V is an arbitrary but fixed set of
variables. A set of equations E ⊆ Σ∗V × Σ∗V induces a congruence ≡E:

Definition 6.3.1. Let E ⊆ Σ∗V ×Σ∗V be a set of equations. The congruence closure
≡E of E is the least relation on Σ∗∅ satisfying the following rules:

t E u s : V → Σ∗∅
s](t) ≡E s](u) t ≡E t

u ≡E t

t ≡E u

t ≡E u u ≡E v

t ≡E v

t1 ≡E u1 . . . tn ≡E un
σ(t1, . . . , tn) ≡E σ(u1, . . . , un)

for each σ ∈ Σ, n = |σ|

6.3. Structural congruences 133

where s] : Σ∗V → Σ∗∅ is the inductive extension of s to terms (Section 3.4).

In the context of structural operational semantics, equations are often inter-
preted by the structural congruence rule:

t ≡E u u
a−→ u′ u′ ≡E v

t
a−→ v

(6.7)

Informally, this rule states that we can use the specification to derive transitions
modulo the congruence generated by the equations. In fact, removing the part
u′ ≡E v from the premise (and writing u′ instead of v in the conclusion) does not
affect the behaviour, modulo bisimilarity [MR05]. See [MR05] for details on the
interpretation of structural congruences in the context of transition systems.

We denote by (Σ∗∅)/ ≡E the set of equivalence classes, and by q : Σ∗∅ →
(Σ∗∅)/≡E the quotient map of ≡E (we remark that one can equip (Σ∗∅)/≡E
with an algebra structure µ′ such that q is a Σ∗-algebra homomorphism). Thus
q(t) = q(u) iff t ≡E u. Assuming the axiom of choice, we have t ≡E u iff there is a
right inverse r : (Σ∗∅)/≡E→ Σ∗∅ such that r(q(t)) = u. The latter fact is exploited
in the interpretation of a specification together with a set of equations.

Definition 6.3.2. Let θ : M→M be the (unique) function such that

θ(f) ◦ κ∅ = Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
r∈R

f ◦ r ◦ q ◦ κ∅ .

where R is the set of right inverses of q. A (ρ,E)-model is a coalgebra f ∈ M such
that θ(f) = f .

Lemma 6.3.3. The function θ : M→M is monotone.

Proof. Similar to the proof of Lemma 6.1.8.

Definition 6.3.4. The interpretation of ρ and E is the least (ρ,E)-model, i.e., lfp(θ).

Example 6.3.5. Consider the specification of the parallel composition x|y as given
in (6.2) in the introduction of this chapter, i.e., by a single rule and commutativity.
In the interpretation, if t a−→ t′ then t|u a−→ t′|u, simply by the SOS rule. But also
u|t a−→ t′|u, since t|u ≡E u|t. Concerning the definition of the replication operator
by the equation !x = !x|x, for a term t the interpretation contains the least set of
transitions from !t which satisfy the equation, as desired.

In general, bisimilarity is not a congruence when equations are added. For
convenience we recall a counterexample on transition systems [MR05].

Example 6.3.6. Consider rules p a−→ p and q a−→ p and the single equation p = σ(q),
where p, q are constants, σ is a unary operator and a is an arbitrary label. In the
interpretation, p is bisimilar to q, but σ(p) is not bisimilar to σ(q).

134 Chapter 6. Bialgebraic semantics with equations

The above counterexample is based on assigning behaviour to the term σ(q),
rather than defining each operator independently of its arguments. To rule out such
assignments, a restricted format of equations was introduced in [MR05], called
cfsc. The main result of [MR05] is that for any specification in the tyft format
combined with cfsc equations, bisimilarity is a congruence.

Definition 6.3.7. A set of equations E ⊆ Σ∗V × Σ∗V is in cfsc with respect to ρ if
every equation is of one of the following forms:

1. A σx-equation: σ1(x1, . . . , xn) = σ2(y1, . . . , yn), where σ1, σ2 ∈ Σ are of arity
n (possibly σ1 = σ2), x1, . . . , xn are distinct variables and y1, . . . , yn is a
permutation of x1, . . . , xn.

2. A defining equation: σ(x1, . . . , xn) = t where σ ∈ Σ and t is an arbitrary
term (which may involve σ again); x1, . . . , xn are distinct variables, and all
variables that occur in t are in x1, . . . , xn. Moreover σ does not appear in
any other equation in E, and ρX(σ(u1, . . . , un)) = ⊥ for any set X and any
u1, . . . , un ∈ BX ×X.

A σx-equation allows to assign simple algebraic properties to operators which
already have behaviour; the prototypical example here is commutativity, like in the
specification of the parallel composition in (6.2). With a defining equation, as the
name suggests, one can define the behaviour of an operator. An example is !x =
!x|x; another example is p = q|z|a.p where p, q and z are constants. Further, the
procedure declarations of Example 6.2.17 can be modelled by defining equations.
Associativity of | is neither a σx-equation nor a defining one. We refer to [MR05]
for arguments that the cfsc format cannot be trivially extended. The cfsc format
depends on an abstract GSOS specification: operators at the left hand side of a
defining equation should not get any behaviour in the specification. This restriction
ensures that one can not assign behaviour to complex terms, disallowing a situation
such as in Example 6.3.6.

We proceed to show that the interpretation of an abstract GSOS specification ρ
and a set of equationsE in cfsc equals the operational model of a certain other spec-
ification, up to bisimilarity (Definition 4.4.10). This is done by encoding equations
in this format as assignment rules, and using the theory of the previous section to
obtain the desired result.

First, note that for any σx-equation σ1(x1, . . . , xn) = σ2(y1, . . . , yn), the vari-
ables on one side are a permutation of the variables on the other, hence a σx-
equation can equivalently be represented as a triple (σ1, σ2, p) where p : Idn → Idn

is the natural transformation corresponding to the permutation of variables in the
equation.

Definition 6.3.8. A set of equations E in cfsc defines a set of assignment rules ∆E

as follows:

1. For every σx-equation (σ1, σ2, p) we define d and d′ on a component X as

dX(σ(u1, . . . , un)) =

{
σ2(pX(u1, . . . , un)) if σ = σ1

σ(u1, . . . , un) otherwise

6.3. Structural congruences 135

for all u1, . . . , un ∈ X, and d′ is similarly defined using the inverse permuta-
tion p−1, with and σ1 and σ2 swapped.

2. For every defining equation σ1(x1, . . . , xn) = t we define a corresponding
assignment rule

dX(σ(u1, . . . , un)) =

{
t[x1 := u1, . . . , xn := un] if σ = σ1

σ(u1, . . . , un) otherwise

for any set X and all u1, . . . , un ∈ X.

Remark 6.3.9. In [MR05], σx-equations are a bit more liberal in that they do not
require the arities of σ1 and σ2 to coincide, and do allow variables which only
occur on one side of the equation. But in the interpretation these variables are
quantified universally over closed terms; thus, we can encode this using infinitely
many assignment rules. For example, an equation σ1(x) = σ2(x, y) can be encoded
by the set of assignment rules, one for each term t ∈ Σ∗∅mapping σ1(x) to σ2(x, t).
We work with the simpler format above for technical convenience.

We prove that the encoding of equations as assignment rules is correct with
respect to the interpretation of the equations (Theorem 6.3.13). First, we show
that if σ(x1, . . . , xn) = t is a defining equation of a set of equations in the cfsc
format, then the behaviour of σ(x1, . . . , xn) will be below that of t.

Lemma 6.3.10. Let E be a set of equations in cfsc format w.r.t. ρ, and let ψ be as in
Definition 6.1.7 for (ρ,∆E). Then for any defining equation σ(x1, . . . , xn) = t and
any t1, . . . , tn ∈ Σ∗∅: lfp(ψ) ◦ κ∅(σ(t1, . . . , tn)) ≤ lfp(ψ) ◦ µ∅(t[x1 := t1, . . . , xn :=
tn]).

Proof. Given a defining equation, let d ∈ ∆E be the natural transformation that
encodes it (see Definition 6.3.8(2)). We prove by transfinite induction that for
any function g ∈ M that arises in the iterative construction of lfp(ψ) and for any
t1, . . . , tn ∈ Σ∗∅ we have

g ◦ κ∅(σ(t1, . . . , tn)) ≤ lfp(ψ) ◦ µ∅ ◦ dΣ∗∅(σ(t1, . . . , tn)) . (6.8)

The base case is when g = ⊥, which is trivial. Now suppose that (6.8) holds for
some g ≤ lfp(ψ). Then

ψ(g)◦κ∅(σ(t1, . . . , tn)) = (Bµ∅ ◦ρΣ∗∅ ◦Σ〈g, id〉∨
∨

d′∈∆E

g ◦µ∅ ◦d′Σ∗∅)(σ(t1, . . . , tn)) .

But since the equations are in cfsc format, we have

Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈g, id〉(σ(t1, . . . , tn)) = ⊥ . (6.9)

Moreover, again by the cfsc format, σ(t1, . . . , tn) does not occur in any equation
other than the defining one in E, and thus for all d′ ∈ ∆E with d′ 6= d we have

g ◦ µ∅ ◦ d′Σ∗∅(σ(t1, . . . , tn)) = g ◦ κ∅(σ(t1, . . . , tn))

136 Chapter 6. Bialgebraic semantics with equations

which is below lfp(ψ) ◦ µ∅ ◦ dΣ∗∅(σ(t1, . . . , tn)) by the induction hypothesis (6.8).
Together with the assumption that g ≤ lfp(ψ) this implies∨

d′∈∆E

g ◦ µ∅ ◦ d′Σ∗∅(σ(t1, . . . , tn)) ≤ lfp(ψ) ◦ µ∅ ◦ dΣ∗∅(σ(t1, . . . , tn)) .

By the above and (6.9), we may conclude

ψ(g) ◦ κ∅(σ(t1, . . . , tn)) ≤ lfp(ψ) ◦ µ∅ ◦ dΣ∗∅(σ(t1, . . . , tn))

as desired. This concludes the successor step; the limit step is again trivial (i.e., if
we assume that (6.8) holds for a family of functions, then it also holds for the join
of these functions).

The following lemma is the main step for the correctness of the encoding of
equations as assignment rules.

Lemma 6.3.11. Let E and ψ be as above. If t ≡E u then Bq ◦ (lfp(ψ))(t) = Bq ◦
(lfp(ψ))(u), where q is the quotient map of ≡E .

Proof. The proof is by induction on≡E , that is, we show that the set of pairs t ≡E u
that satisfy Bq ◦ (lfp(ψ))(t) = Bq ◦ (lfp(ψ))(u) is closed under each of the defining
rules of ≡E . For reflexivity, transitivity and symmetry this is easy. The important
cases are the two types of cfsc equations from E, and congruence.

For a σx-equation σ1(t1, . . . , tn) ≡E σ2(u1, . . . , un), by definition of ∆E there is
an assignment rule d such that µ∅ ◦ dΣ∗∅(σ1(t1, . . . , tn)) = σ2(u1, . . . , un), and by
definition of lfp(ψ) we have lfp(ψ)◦µ∅◦dΣ∗∅ ≤ lfp(ψ); so (lfp(ψ))(σ2(u1, . . . , un)) ≤
(lfp(ψ))(σ1(t1, . . . , tn)). For the converse, there is another assignment rule d′, and
thus (lfp(ψ))(σ1(t1, . . . , tn)) ≤ (lfp(ψ))(σ2(u1, . . . , un)).

For a defining equation σ(t1, . . . , tn) ≡E t we have a natural transformation
in d such that µ∅ ◦ dΣ∗∅(σ(t1, . . . , tn)) = t. Thus (lfp(ψ))(t) = (lfp(ψ)) ◦ µ∅ ◦
dΣ∗∅(σ(t1, . . . , tn)) ≤ (lfp(ψ))(σ(t1, . . . , tn)). The other way around follows by
Lemma 6.3.10. So (lfp(ψ))(t) = (lfp(ψ))(σ(t1, . . . , tn)).

Finally, for the congruence rule, suppose there are terms t1, . . . , tn, u1, . . . , un
such that ti ≡ ui and Bq ◦ (lfp(ψ))(ti) = Bq ◦ (lfp(ψ))(ui) for all i ≤ n, and σ is an
operator of arity n. Notice that this implies

〈Bq ◦ lfp(ψ), q〉(ti) = 〈Bq ◦ lfp(ψ), q〉(ui) for all i ≤ n (6.10)

since q(ti) = q(ui) for each i. Now

Bq ◦ (lfp(ψ))(σ(t1, . . . , tn))
= Bq ◦Bµ∅ ◦ (lfp(ϕ))Σ∗∅ ◦ Σ〈lfp(ψ), id〉(σ(t1, . . . , tn)) Theorem 6.2.14
= Bµ′ ◦BΣ∗q ◦ (lfp(ϕ))Σ∗∅ ◦ Σ〈lfp(ψ), id〉(σ(t1, . . . , tn)) q alg. morphism
= Bµ′ ◦ (lfp(ϕ))Σ∗∅ ◦ Σ(Bq × q) ◦ Σ〈lfp(ψ), id〉(σ(t1, . . . , tn)) naturality
= Bµ′ ◦ (lfp(ϕ))Σ∗∅ ◦ Σ〈Bq ◦ lfp(ψ), q〉(σ(t1, . . . , tn)) functoriality
= Bµ′ ◦ (lfp(ϕ))Σ∗∅ ◦ Σ〈Bq ◦ lfp(ψ), q〉(σ(u1, . . . , un)) ind. hypothesis
= Bq ◦Bµ∅ ◦ (lfp(ϕ))Σ∗∅ ◦ Σ〈lfp(ψ), id〉(σ(u1, . . . , un))
= Bq ◦ (lfp(ψ))(σ(u1, . . . , un))

6.3. Structural congruences 137

Notice that we used the fact that the quotient map q is an algebra morphism into
some Σ∗-algebra µ′. It is worthwhile to note that we need to reason up to ≡E to
get (6.10). Indeed, 〈lfp(ψ), id〉(ti) = 〈lfp(ψ), id〉(ui) does not hold in general, since
ti is only congruent to ui, not necessary equal.

This allows to prove that lfp(ψ) and lfp(θ) coincide “up to ≡E”.

Lemma 6.3.12. Let ψ and q be as above. Then Bq ◦ (lfp(θ)) = Bq ◦ (lfp(ψ)).

Proof. We first prove that ψ(lfp(θ)) ≤ lfp(θ). The interesting part is to show that
lfp(θ) ◦ µ∅ ◦ dΣ∗∅ ≤ lfp(θ) ◦ κ∅ for any d ∈ ∆E , given that

∨
r∈R lfp(θ) ◦ r ◦ q ◦ κ∅ ≤

lfp(θ) ◦ κ∅ (which holds since lfp(θ) is a fixed point of θ). But this is simple, given
that each d acts on an argument either as the identity or by an equation in E.
Thus ψ(lfp(θ)) ≤ lfp(θ), and since lfp(ψ) is the least pre-fixed point of ψ we have
lfp(ψ) ≤ lfp(θ). Hence Bq ◦ lfp(ψ) ≤ Bq ◦ lfp(θ).

We proceed to show Bq ◦ lfp(θ) ≤ Bq ◦ lfp(ψ) by transfinite induction; the main
step is to prove that Bq◦h ≤ Bq◦ lfp(ψ) implies Bq◦θ(h) ≤ Bq◦ lfp(ψ). So suppose
Bq ◦ h ≤ Bq ◦ lfp(ψ). Then

Bq ◦ θ(h) ◦ κ∅ = Bq ◦ (Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈h, id〉 ∨
∨
r∈R

h ◦ r ◦ q ◦ κ∅)

= Bq ◦Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈h, id〉 ∨
∨
r∈R

Bq ◦ h ◦ r ◦ q ◦ κ∅

Now

Bq ◦Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈h, id〉 = Bµ′ ◦BΣ∗q ◦ ρΣ∗∅ ◦ Σ〈h, id〉
= Bµ′ ◦ ρΣ∗∅ ◦ Σ(Bq × q) ◦ Σ〈h, id〉
≤ Bµ′ ◦ ρΣ∗∅ ◦ Σ(Bq × q) ◦ Σ〈lfp(ψ), id〉
= Bq ◦Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈lfp(ψ), id〉
≤ Bq ◦ lfp(ψ) ◦ κ∅

where µ′ is the algebra structure induced by q. The first inequality holds by as-
sumption (Bq ◦h ≤ Bq ◦ lfp(ψ)) and the second one by the fact that lfp(ψ) is a fixed
point of ψ and by monotonicity of Bq. Moreover∨

r∈R
Bq ◦ h ◦ r ◦ q ◦ κ∅ ≤

∨
r∈R

Bq ◦ lfp(ψ) ◦ r ◦ q ◦ κ∅ = Bq ◦ lfp(ψ) ◦ κ∅

by assumption and Lemma 6.3.11. Thus Bq ◦ θ(h) ≤ Bq ◦ lfp(ψ) as desired.

This implies that lfp(θ) and lfp(ψ) are behaviourally equivalent up to ≡E . Recall
that behavioural equivalence coincides with bisimilarity whenever the functor B
preserves weak pullbacks (Lemma 3.1.6). Under this assumption one can prove
that lfp(θ) is equal to lfp(ψ) up to bisimilarity, and by Theorem 6.2.14 we then
obtain our main result of this section.

138 Chapter 6. Bialgebraic semantics with equations

Theorem 6.3.13. Suppose E is a set of equations which is in cfsc format w.r.t. ρ,
and suppose the behaviour functor B preserves weak pullbacks. Then the interpre-
tation lfp(θ) of ρ and E equals the operational model of a certain abstract GSOS
specification, up to bisimilarity (Definition 4.4.10). Bisimilarity is a congruence, and
bis ◦ ctx ◦ bis is blfp(θ)-compatible.

Proof. Using the universal property of the coequalizer q : Σ∗∅ → (Σ∗∅)/≡E , by
Lemma 6.3.11 we obtain a unique coalgebra structure on (Σ∗∅)/≡E turning q into
a homomorphism:

≡E
π1 //
π2

// Σ∗∅

lfp(ψ)

��

q // (Σ∗∅)/≡E

���
�
�

BΣ∗∅
Bq // B(Σ∗∅)/≡E

Further, by Lemma 6.3.12, q is also a homomorphism from lfp(θ) into the same
coalgebra. Now the pullback (in Set) of q along itself is simply ≡E , and since B
preserves weak pullbacks, ≡E is a bisimulation between lfp(ψ) and lfp(θ) [Rut00,
Theorem 4.3]. Thus, in particular, lfp(ψ) and lfp(θ) are equal up to bisimilarity,
since ≡E is reflexive.

By Theorem 6.2.14, bisimilarity is a congruence on lfp(ψ). Since lfp(ψ) and
lfp(θ) are equal up to bisimilarity, it follows from Lemma 4.4.11 that bisimilarity is
a congruence on lfp(θ). Finally, again by Theorem 6.2.14, ctx is blfp(ψ)-compatible.
Thus, by Lemma 4.4.12, bis ◦ ctx ◦ bis is blfp(θ)-compatible.

6.4 Discussion and related work

We extended Turi and Plotkin’s bialgebraic approach to operational semantics with
non-structural assignment rules and structural congruence, providing a general
coalgebraic framework for monotone abstract GSOS with equations. Technically,
our results are based on the combination of bialgebraic semantics with order. Our
main result is that the interpretation of a specification involving assignment rules
is well-behaved, in the sense that bisimilarity is a congruence and bisimulation-up-
to techniques are sound. This result carries over to specifications with structural
congruence in the cfsc format proposed in [MR05].

The main work in the literature that treats the meta-theory of rule formats with
structural congruences [MR05] focuses on labelled transition systems, whereas our
results apply to coalgebras in general (for behaviour functors with a complete lat-
tice structure). Concerning transition systems, the basic rule format in [MR05]
is tyft/tyxt2, which is more expressive than positive GSOS since it allows looka-
head in the premises. However, while [MR05] proves congruence of bisimilarity
this does not imply the compatibility (or even soundness) of bisimulation up to

2In [MR05], it is sketched how to extend the results to the ntyft/ntyxt, which involves however a
complicated integration of the cfsc format with the notion of stable model.

6.4. Discussion and related work 139

context [PS12], which we obtain in the present work (and which is, in fact, prob-
lematic in the presence of lookahead).

Plotkin proposed to model recursion by interpreting abstract GSOS in the cate-
gory of complete partial orders [Plo01]. Klin [Kli04] showed that by moving to cat-
egories enriched in complete partial orders, one can interpret recursive constructs
which have a similar form as our assignment rules. Technically our approach is
different as it is based on an order on the behaviour functor, rather than interpret-
ing everything in an ordered setting and using an infinite unfolding of terms, as is
done in [Kli04]. Further, in [Kli04] each operator is either specified by an equa-
tion or by operational rules, disallowing a specification such as that of the parallel
composition in equation (6.2).

In [LPW04], various constructions on distributive laws are presented. Exam-
ple 32 of that paper discusses the definition of the parallel composition as in (6.2)
above, but a general theory for structural congruence is missing. Distributive laws
are applied in [Jac06b] to find solutions of guarded recursive equations. Further,
in [MMS13] recursive equations are interpreted in the context of iterative algebras,
where operations of interest are given by an abstract GSOS specification. That
work seems to focus mainly on solutions to guarded equations, but the precise
connection to the present work remains to be understood. In [BM02, CHM02], it
is shown how to lift calculi with structural axioms to coalgebraic models, but under
the assumption that the equations already hold.

There are several directions for future work. First, our techniques can possi-
bly be extended to allow lookahead in premises by using cofree comonads (see,
e.g., [Kli11]). While in general the combined use of cofree comonads and free
monads in specifications is known to be problematic [KN14], we expect that part
of these problems may be addressed by considering only positive (monotone) spec-
ifications. In fact, this could form the basis for a bialgebraic account of the tyft
format. Second, in the current work we only consider free monads. One may in-
corporate equations which already hold, for instance by using the theory of the
next chapter.

At a more fundamental level, we believe that the combination of bialgebraic
semantics with ordered structures is an exciting direction of research which is yet
to be explored. In the current chapter, we developed this theory only in a relatively
concrete manner, by focusing on Set functors and only specifications where the
syntax is given by a signature. A more abstract categorical perspective, for instance
in terms of order enriched categories, could potentially clean up and generalize
some of the technical development of this chapter. Such a generalization could be
of interest, for instance, to study structural congruences for calculi with names.

