
Enhanced Coinduction
Rot, J.C.

Citation
Rot, J. C. (2015, October 15). Enhanced Coinduction. IPA Dissertation Series.
Retrieved from https://hdl.handle.net/1887/35814

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/35814

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/35814

Chapter 4

Bisimulation up-to

The theory of coalgebras provides bisimilarity as a fundamental notion of equiva-
lence between systems. In this chapter, we introduce enhancements of the proof
technique for bisimilarity at this abstract level, by providing a general account of
bisimulation up-to techniques for arbitrary coalgebras. We show the use of these
up-to techniques by instantiating them to (non)deterministic automata, weighted
automata and stream systems.

The main challenge is to provide generic up-to techniques that are sound, mean-
ing that they can safely be used for proving bisimilarity. One difficulty is that
sound functions do not compose, thus obstructing a modular approach to proving
the soundness of up-to techniques in terms of their basic constituents. This is-
sue was addressed by Sangiorgi [San98] and Pous [Pou07, PS12], who introduced
up-to techniques in the setting of coinduction in a lattice. The central feature in
the framework of [Pou07] is the notion of compatible functions, defining a class
of sound enhancements that is closed under composition. By instantiating this
framework to coalgebraic bisimilarity, we obtain compatibility as a modular way of
proving soundness.

The first up-to technique that appeared in the literature is Milner’s bisimulation
up to bisimilarity [Mil83]. We show that this is compatible whenever the behaviour
functor under consideration preserves weak pullbacks. The equivalence closure is
also useful as an up-to technique, and its compatibility depends on weak pullback
preservation as well. In the presence of algebraic structure on the state space, the
notion of bisimulation up to context becomes relevant; we show that this is compat-
ible whenever the coalgebraic and algebraic structure together form a λ-bialgebra.
This implies, for instance, that bisimulation up to context is sound on the supported
model of any GSOS specification, which is more general than the De Simone format
considered in [San98]. Moreover, our compatibility results can be combined; for
instance, the compatibility of the congruence closure follows from that of the equiv-
alence and contextual closure. The soundness of bisimulation up-to techniques for
languages, as considered in Chapter 2, is an immediate consequence.

If the behaviour functor under consideration does not preserve weak pullbacks,

67

68 Chapter 4. Bisimulation up-to

then one may be interested in behavioural equivalence rather than bisimilarity (if
the functor preserves weak pullbacks then these two coincide, see Section 3.1).
This is the case, for example, for certain weighted transition systems [GS01, Kli09,
BBB+12] and for neighbourhood structures used in modal logic [HKP09]. We
conclude this chapter with a treatment of up-to techniques for behavioural equiv-
alence, and show in particular the compatibility of the contextual closure and the
equivalence closure.

Throughout this chapter we only consider coalgebras in the category Set of sets
and functions. Most of the technical results are a special case of more general
results on coinductive up-to techniques, presented in Chapter 5 of this thesis. The
current chapter explains the essentials of up-to techniques for the fundamental
coinductive predicate of coalgebraic bisimilarity, requiring only basic knowledge of
category theory.

Outline. The next section contains the definition of bisimulation up-to. The main
instances of up-to techniques as well as a number of example proofs are in Sec-
tion 4.2. Section 4.3 is a short overview of Pous’s framework. This is instantiated
in Section 4.4 to prove the main soundness results. Section 4.5 treats behavioural
equivalence up-to. In Section 4.6 a short summary of the soundness results is pro-
vided.

4.1 Progression and bisimulation up-to

The definition of bisimulation up-to on labelled transition systems can be stated
conveniently in terms of progression [PS12], which we generalize to a coalgebraic
setting as follows.

Definition 4.1.1. For a coalgebra δ : X → BX and relations R,S ⊆ X × X, we
say R progresses to S if there exists a function γ : R → BS making the following
diagram commute:

X

δ

��

R
π1oo

γ

��

π2 // X

δ

��
BX BS

Bπ1

oo
Bπ2

// BX

We recover the standard definition of a bisimulation on a single coalgebra (Sec-
tion 3.1) by taking R = S, i.e., a relation R that progresses to itself. Progression
allows to define bisimulation up-to, and the crucial associated notion of soundness.

Definition 4.1.2. Let δ : X → BX be a coalgebra and g : P(X ×X)→ P(X ×X)
be a function. A relation R is a bisimulation up to g if R progresses to g(R), i.e., if

4.2. Examples 69

there is a function γ : R→ B(g(R)) making the following diagram commute:

X

δ

��

R
π1oo

γ

��

π2 // X

δ

��
BX B(g(R))

Bπ1

oo
Bπ2

// BX

We say that g is (δ)-sound if the following implication holds, for any R ⊆ X ×X:

if R is a bisimulation up to g then R ⊆ ∼δ ,

that is, g is sound if every bisimulation up to g is contained in bisimilarity.

Informally, to check that R is a bisimulation up to g, the derivatives or next
states need not be related by R again, but by g(R). Depending on g(R), which in
most examples is a bigger relation than R, this is a weaker requirement than the
usual conditions for showing R to be a bisimulation. However, we only obtain a
valid proof principle for bisimilarity if g is sound: then, to prove that two states are
bisimilar, it suffices to relate them by a bisimulation up to g. Therefore, our main
aim is to find useful functions g that are sound.

Not every function is sound; for a simple example, take the function g that maps
every relation R on X to the Cartesian product X ×X. Then, a relation R on the
states of a transition system is a bisimulation up to g if for each (x, y) ∈ R and each
label a: there is x′ such that x a−→ x′ if and only if there is y′ such that x a−→ y′.
Clearly, this g is not sound.

4.2 Examples

We introduce the most important instances of bisimulation up-to for a variety of
systems. In each case, the up-to technique under consideration is sound (under
certain assumptions), which follows from results in subsequent sections of this
chapter. Thus, all of these examples can be seen as actual proofs of bisimilarity.
More details on the types of coalgebras under consideration and their associated
notions of bisimulation can be found in Example 3.1.1 and Example 3.1.2.

Bisimulation up to equivalence

Consider the function eq mapping a relation R to its equivalence closure eq(R). A
bisimulation up to eq is also called a bisimulation up to equivalence.

Example 4.2.1. Given a coalgebra δ : X → X + 1, a relation R on X is a bisimula-
tion up to equivalence if for all (x, y) ∈ R: either δ(x) = ∗ = δ(y), or (δ(x), δ(y)) ∈
eq(R). This is different than a bisimulation, which requires (δ(x), δ(y)) ∈ R rather

70 Chapter 4. Bisimulation up-to

than (δ(x), δ(y)) ∈ eq(R) (Example 3.1.2). Consider the following coalgebras and
relations:

a
''
bhh c

��>>>>>>>

e

@@��������
doo

g

��======== h

���������

i
{(a, b)} {(c, d), (d, e)} {(g, h)}

All three relations are bisimulations up to equivalence, whereas none of them are
actual bisimulations. Consider, for example, the relation {(a, b)}: we have δ(a) = b
and δ(b) = a, but (b, a) 6∈ {(a, b)}. However, the pair (b, a) is in the least equiva-
lence relation containing {(a, b)}.

The equivalence closure decomposes as

eq = tra ◦ sym ◦ rfl

where tra is transitive closure, sym is symmetric closure and rfl is reflexive closure.
The relation {(a, b)} from the above example is a bisimulation up to sym, {(g, h)}
is a bisimulation up to rfl and {(c, d), (d, e)} is a bisimulation up to tra ◦ sym.

Example 4.2.2. Consider the deterministic automaton below, with final states
y, z, v, w and transitions given by the solid arrows. The relation given by the four
dashed lines together with the dotted line (y, w) is a bisimulation.

x
a,b //

�
�
�
�
� y

a,b //

�
�
� z a,bdd

�
�
�

v
v

v
v

v
v

v

a,b
**
w

a,b
oo

u

a 44iiiiiiiii b

77

The relation R denoted by the four dashed lines is not a bisimulation, since x b−→ y

and u
b−→ w but (y, w) 6∈ R. However, R is a bisimulation up to equivalence,

since the pair (y, w) is in eq(R). Hopcroft and Karp’s algorithm [HK71] exploits
this technique for checking equivalence of deterministic automata: rather than
exploring n2 pairs of states (where n is the number of states), the algorithm visits
at most n pairs (that is the number of equivalence classes) (cf. [BP13]).

Bisimulation up to bisimilarity

Let ∼ be the bisimilarity relation of a given coalgebra δ : X → BX, and consider
the bisimilarity closure function bis : P(X ×X)→ P(X ×X) defined by

bisδ(R) = ∼ ◦R ◦ ∼ .

The function bisδ composes a relation with bisimilarity on both sides. In the sequel
we sometimes drop the subscript δ and write bis, if the coalgebra under considera-
tion is clear from the context.

4.2. Examples 71

A bisimulation up to bis is called a bisimulation up to bisimilarity. This is the
very first up-to technique that appeared in the literature, in the context of labelled
transition systems [Mil83].

Example 4.2.3. In this example, we prove that the stream [1] = (1, 0, 0, . . .) is the
unit for the shuffle product ⊗, that is, σ ⊗ [1] ∼ σ. Let T be the set of terms given
by the grammar t ::= t ⊗ t | t + t | [r], where [r] ranges over {[r] | r ∈ R}. As
explained in Section 3.1.1, together with the appropriate behavioural differential
equations, this induces a coalgebra 〈(−)0, (−)′〉 : T → R× T .

We make use of the relation R = {(σ⊗ [1], σ) | σ ∈ T}. For any σ ∈ T , we have
(σ⊗ [1])0 = σ0 · [1]0 = σ0. Further (σ⊗ [1])′ = σ′⊗ [1] +σ⊗ [1]′ = σ′⊗ [1] +σ⊗ [0];
this element is not related to σ′, so R is not a bisimulation. However given some
basic laws of stream calculus, in particular σ ⊗ [0] ∼ [0], σ + [0] ∼ σ and the fact
that ∼ is a congruence, we obtain

((σ′ ⊗ [1]) + (σ ⊗ [0])) ∼ ((σ′ ⊗ [1]) + [0]) ∼ (σ′ ⊗ [1]) R σ′

so R is a bisimulation up to bisimilarity (we use that ∼ is reflexive and transitive
on stream systems), proving that σ ⊗ [1] ∼ σ.

On a final coalgebra, bisimilarity implies equality, so bisimulation up to bisimi-
larity is not interesting there.

Bisimulation up to union

Given a fixed relation S, we define unS : P(X ×X)→ P(X ×X) by

unS(R) = R ∪ S .

A bisimulation up to unS , is called a bisimulation up to union with S or bisimulation
up to S-union. If R is a bisimulation up to union with S, then next states are related
either by R or by S. This technique is useful in combination with other ones, such
as the equivalence closure eq. For instance, any bisimulation up to bisimilarity is
also a bisimulation up to eq ◦ un∼.

Bisimulation up to context

If the state space of the coalgebra under consideration has algebraic structure, then
the notion of bisimulation up to context becomes relevant. Let T : Set → Set be a
functor. For a T -algebra (X,α), the contextual closure function ctxα : P(X ×X)→
P(X ×X) is defined using relation lifting (Section 3.2.1):

ctxα(R) = (α× α)(Rel(T)(R)) = {(α ◦ Tπ1(t), α ◦ Tπ2(t)) | t ∈ TR} . (4.1)

We call ctxα(R) the contextual closure of R. Whenever α is clear from the context
we simply write ctx(R). IfR is a bisimulation up to ctx then we callR a bisimulation
up to context. In many of the examples, T is the underlying functor of a monad,
and α is an algebra for the monad. However, the above definition does not require
this: α is simply an algebra for the functor T .

72 Chapter 4. Bisimulation up-to

Example 4.2.4. Let Σ∗ be the free monad for a polynomial functor representing
a signature, with multiplication µ : Σ∗Σ∗ ⇒ Σ∗ (Section 3.4). Given a relation
R ⊆ Σ∗X×Σ∗X, the contextual closure ctxµX (R) ⊆ Σ∗X×Σ∗X can be inductively
characterized by the following rules:

s R t

s ctx(R) t

si ctx(R) ti i = 1 . . . n

σ(s1, . . . , sn) ctx(R) σ(t1, . . . , tn)
for each σ ∈ Σ, |σ| = n

This slightly differs from the definition in [PS12] where the contextual closure is
defined as

ctx′(R) = {(C[s1, . . . sn], C[t1, . . . tn]) | C a context and for all i: (si, ti) ∈ R}

(a context C is a term with n ≥ 0 holes [·]i in it). In our case, ctx′ can be obtained as
ctx ◦ rfl, i.e., by precomposing ctx with the reflexive closure function rfl. To see the
difference, consider, for instance, the signature which has only a binary operator
+, and let R = {(x, y)}. Then the pair {(x + x, x + y)} is in ctx′(R) but not in
ctx(R).

Example 4.2.5. Every weighted automaton (X, 〈o, t〉) induces a coalgebra of the
form 〈o], t]〉 : MX → R × (MX)A, where MX is the set of linear combinations
with coefficients in R. The coinductive extension of 〈o], t]〉 maps a state x to the
weighted language it accepts (Example 3.5.2). Therefore, we can prove weighted
language equivalence between states x, y by proving that they are bisimilar on
〈o], t]〉. In this example, we prove bisimilarity by constructing a bisimulation up to
context, thus making use of the algebraic structure onMX.

Given a relation R ⊆MX ×MX, its contextual closure ctx(R) ⊆MX ×MX
(where the algebra is given by the multiplication of the monad M, see Exam-
ple 3.4.1) can be inductively characterized by the following rules:

v R w

v ctx(R) w

−
0 ctx(R) 0

v1 ctx(R) w1 v2 ctx(R) w2

v1 + v2 ctx(R) w1 + w2

v ctx(R) w r ∈ R
r · v ctx(R) r · w

Now given a weighted automaton 〈o, t〉 : X → R × (MX)A, a bisimulation up
to context is a relation R ⊆ MX × MX such that for all (v, w) ∈ R we have
o]1(v) = o]2(w) and for all a ∈ A: (t]1(v)(a), t]2(w)(a)) ∈ ctx(R).

As an example, consider the following weighted automaton:

x3 ↓ 0 a,b,1yy

x0 ↓ 0
a,1 //

b,1 66

x1 ↓ 1 a, 12yy
a,b, 12
��

b, 12

OO

x2 ↓ 1 a,b,1yy

y3 ↓ 0 a,b,1ww

y0 ↓ 0
a, 12 //

b,1 66

a, 12
((

y1 ↓ 1 a, 12ww
a, 12
��

b,1

OO

y2 ↓ 1 a,b,1ww

To prove that x0 and y0 are language equivalent, we need to prove that they are
bisimilar on the induced R× IdA-coalgebra. But a bisimulation containing (x0, y0)

4.2. Examples 73

has to be infinite, since it needs to contain the pairs shown below by the dashed
lines:

x0 ↓ 0
a //

�
�
� x1 ↓ 1

a //

�
�
�

1
2x1 + 1

2x2 ↓ 1
a //

�
�
�

1
4x1 + 3

4x2 ↓ 1
a //

�
�
�

. . .

�
�
�
�

y0 ↓ 0
a
// 1
2y1 + 1

2y2 ↓ 1
a
// 1
4y1 + 3

4y2 ↓ 1
a
// 1
8y1 + 7

8y2 ↓ 1
a
// . . .

However, the finite relation R = {(x0, y0), (x2, y2), (x3, y3), (x1,
1
2y1 + 1

2y2)} is a
bisimulation up to context: consider (x1,

1
2y1 + 1

2y2) (the other pairs are trivial)
and observe that we have the following related pairs:

x1
a //

R �
�
�

1
2x1 + 1

2x2

ctx(R)�
�
�

1
2y1 + 1

2y2 a
// 1
4y1 + 3

4y2

x1
b //

R �
�
�

1
2x3 + 1

2x2

ctx(R)�
�
�

1
2y1 + 1

2y2
b
// 1
2y3 + 1

2y2

Thus, the finite relation R is a bisimulation up to context. Since this technique
is sound (as we will see in Section 4.4), this suffices to prove that x0 and y0 are
bisimilar, and hence accept the same weighted language.

In the above example we used a finite bisimulation up to context to show
weighted language equivalence. Finite bisimulations up to context for weighted
automata are used in [Win15] to obtain a decidability result for weighted language
equivalence for a certain class of semirings.

Bisimulation up to congruence

Given a T -algebra α : TX → X, the congruence closure function cgrα : P(X×X)→
P(X ×X) is defined by

cgrα =
⋃
i≥0

(tra ∪ sym ∪ ctxα ∪ rfl)i

(cf. [BP13]) where ∪ is pointwise union. If R is a bisimulation up to cgrα, then we
call R a bisimulation up to congruence. The congruence closure and associated no-
tion of bisimulation up to congruence given in Definition 2.3.1 are a special case of
the above. (In fact, many of the examples in Chapter 2 do not use the equivalence
closure, and therefore are also examples of bisimulations up to context.)

Example 4.2.6. We consider weighted automata for the tropical semiring T =
(R ∪ {∞},min,∞,+, 0). In this semiring, the addition operation is given by the
function min having ∞ as neutral element. The multiplication is given by the
function + having 0 as neutral element.

74 Chapter 4. Bisimulation up-to

The weighted automaton (X, 〈o, t〉) given as follows:

x ↓ 0

a,2
,,

a,3

88y ↓ 0
a,2

ll z ↓ 0
a,2oo u ↓ 0 a,2

qq

induces the coalgebra (MX, 〈o], t]〉〉) which is partially depicted below (the tran-
sitions are given by the solid arrows, the dashed lines represent a relation).

x ↓ 0
a //

�
�
� min(2 + y, 3 + z) ↓ 2

a //

�
�
�

min(4 + x, 5 + y) ↓ 4
a //

�
�
�

. . .

�
�
�
�

u ↓ 0
a

// (2 + u) ↓ 2
a

// (4 + u) ↓ 4
a

// . . .

The states x and u are weighted language equivalent. To prove it we would need
an infinite bisimulation, since it should relate all the pairs of states linked by the
dashed lines in the above figure.

Given a relation R ⊆ MX ×MX, its congruence closure cgr (where the al-
gebra is given by the multiplication of the monad M, see Example 3.4.1) can be
characterized inductively by the following rules:

v R w

v cgr(R) w v cgr(R) v

v cgr(R) w

w cgr(R) v

u cgr(R) v cgr(R) w

u cgr(R) w

v1 cgr(R) w1 v2 cgr(R) w2

min(v1, v2) cgr(R) min(w1, w2)

v cgr(R) w r ∈ R ∪ {∞}
r + v cgr(R) r + w

Now consider the relation R = {(x, u), (min(2 + y, 3 + z), 2 + u)}. To prove that
R is a bisimulation up to congruence we only have to show that (min(4 + x, 5 +
y), 4 + u) ∈ cgr(R):

min(4 + x, 5 + y)
cgr(R) min(4 + u, 5 + y) ((x, u) ∈ R)
cgr(R) min(2 + min(2 + y, 3 + z), 5 + y) ((min(2 + y, 3 + z), 2 + u) ∈ R)
= 2 + min(2 + y, 3 + z)
cgr(R) 4 + u ((min(2 + y, 3 + z), 2 + u) ∈ R)

Note that R is not a bisimulation up to context, since (min(4 + x, 5 + y), 4 + u) /∈
ctx(R). Here transitivity is really necessary.

Bisimulation up to union, context and equivalence

A bisimulation up to eq ◦ ctx ◦ unS is called a bisimulation up to S-union, con-
text and equivalence. This extension of bisimulation up to context allows to relate
derivatives of R using ctx(R ∪ S) in “multiple steps”, similar to the case of up-to-
congruence.

4.3. Compatible functions 75

Example 4.2.7. Recall the operations of shuffle product and inverse from Sec-
tion 3.1.1, and let Twf be the set of well-formed terms over shuffle product and
inverse introduced there. We prove that the inverse operation is really the inverse
of shuffle product, that is, σ ⊗ σ−1 ∼ [1] for all σ ∈ Twf (Rω) such that σ0 6= 0.
We use that ⊗ is associative and commutative (so σ ⊗ τ ∼ τ ⊗ σ, etc.) and that
σ + (−σ) ∼ [0] (see, e.g., [Rut03]). Let

R = {(σ ⊗ σ−1, [1]) | σ ∈ Twf (Rω), σ0 6= 0} .

We can now establish that R is a bisimulation up to ∼-union, context and equiva-
lence. First we consider the initial values:

(σ ⊗ σ−1)0 = σ0 · (σ−1)0 = σ0 · (σ0)−1 = 1 = [1]0 .

Next, we relate the derivatives by eq(ctx(R ∪ ∼)):

(σ ⊗ σ−1)′ = σ′ ⊗ σ−1 + σ ⊗ (σ−1)′

= σ′ ⊗ σ−1 + σ ⊗ (−σ′ ⊗ (σ−1 ⊗ σ−1))

tra(ctx(∼)) (σ′ ⊗ σ−1) + (−(σ′ ⊗ σ−1)⊗ (σ ⊗ σ−1))

ctx(R ∪ ∼) (σ′ ⊗ σ−1) + (−(σ′ ⊗ σ−1)⊗ 1)

tra(ctx(∼)) [0] = [1]′

Since tra(ctx(∼)) ⊆ eq(ctx(R ∪ ∼)) and ctx(R ∪ ∼) ⊆ eq(ctx(R ∪ ∼)) we may
conclude that R is a bisimulation up to ∼-union, context, and equivalence. Notice
that R is not a bisimulation; establishing that it is a bisimulation up-to is much
easier than finding a bisimulation which contains R.

In the step above where we use ctx(R ∪ ∼), we could have used ctx(rfl(R)) in-
stead. Further, since in this example ∼ = tra(ctx(∼)), the above is also an example
of bisimulation up to context, reflexivity and bisimilarity, that is, a bisimulation up
to bis ◦ ctx ◦ rfl. (Any bisimulation up to context, reflexivity and bisimilarity is also
a bisimulation up to ∼-union, context and equivalence.)

4.3 Compatible functions

The above examples illustrate various up-to techniques available for bisimilarity.
Many of these techniques are combinations of simpler ones; for instance, the equiv-
alence closure is a composition of the transitive, symmetric and reflexive closure,
and the congruence closure is a pointwise union of compositions of the transitive,
symmetric, contextual and reflexive closure. Unfortunately, the soundness of a
composed function does not follow from its basic constituents: the class of sound
functions is not closed under composition. It is rather undesirable and sometimes
difficult to reprove soundness of every suitable combination from scratch.

This calls for a theory of enhancements which allows one to freely compose
them. Such a theory was developed in the setting of classical coinduction (Sec-
tion 3.2), at the level of complete lattices [Pou07, PS12]. In the current section,

76 Chapter 4. Bisimulation up-to

we recall the basic definitions and results of this theory. In the next section, we in-
stantiate it to prove soundness of coalgebraic bisimulation up-to in a modular way.
In Section 5.1, the framework is generalized to an abstract categorical setting.

Let f be a monotone function on a complete lattice L. Recall from Section 3.2
that the coinductive proof principle then asserts that, to prove that x ≤ gfp(f),
it suffices to prove that x ≤ f(x). Enhancements of the coinductive proof method
allow one to weaken the requirement that x is an f -invariant: rather than checking
x ≤ f(x), we would like to check x ≤ f(y) for some y which is possibly above x.
The key idea consists in using a function g to obtain this larger y out of x: y = g(x).
For instance, in the lattice of relations on a fixed set, we often consider functions
that add more pairs to the relation.

Definition 4.3.1. Let f, g : L→ L be monotone functions.

• An f -invariant up to g is an f ◦ g-invariant, i.e., a post-fixed point of f ◦ g.

• g is f -sound if all f -invariants up to g are below gfp(f), that is, if x ≤ f(g(x))
then x ≤ gfp(f).

• g is f -compatible if g ◦ f ≤ f ◦ g.

The notion of f -compatible function, which is the heart of the matter, is intro-
duced to get around the fact that f -sound functions cannot easily be composed.
Compatible functions satisfy two crucial properties: f -compatible functions are f -
sound (Theorem 4.3.2) and the composition of two f -compatible functions is again
an f -compatible function (Proposition 4.3.3).

Theorem 4.3.2. All f -compatible functions are f -sound.

Proof. Let f, g : L → L be monotone and suppose g is f -compatible, i.e., g ◦ f ≤
f ◦ g. Let x ≤ f(g(x)) be an f -invariant up to g; we need to prove that x ≤ gfp(f).

We first show that gi(x) ≤ f(gi+1(x)) for every i ∈ N, by induction on i. The
base case x ≤ f(g(x)) holds by the assumption that x is an f -invariant up to g.
Now suppose gi(x) ≤ f(gi+1(x)). Since g is monotone, this means gi+1(x) ≤
g(f(gi+1(x))), and since g is f -compatible we get

gi+1(x) ≤ g(f(gi+1(x))) ≤ f(g(gi+1(x))) = f(gi+2(x))

as desired.
Monotonicity of f gives gi(x) ≤ f(

∨
i∈N g

i(x)), so
∨
i∈N g

i(x) ≤ f(
∨
i∈N g

i(x)),
which means

∨
i∈N g

i(x) ≤ gfp(f), so x ≤
∨
i∈N g

i(x) ≤ gfp(f).

The main reason for the introduction of compatible functions is that they can be
constructed by combining other compatible functions, as stated by the next result.

Proposition 4.3.3. The following functions on L are f -compatible:

1. id—the identity function;

2. cstx—the constant-to-x function, for any f -invariant x;

4.4. Compatibility results 77

3. g ◦ h for any f -compatible functions g and h;

4.
∨
F for any set F of f -compatible functions.

In a lattice of relations, the last item states that compatible functions can also be
combined using pointwise union. There is another way of combining two functions
g and h on relations, using relational composition:

(g • h)(R) = g(R) ◦ h(R) (4.2)

This composition operator does not always preserve f -compatibility, but the fol-
lowing lemma gives a sufficient condition.

Proposition 4.3.4. If f : P(X ×X)→ P(X ×X) satisfies the following condition:

for all relations R,S ⊆ X ×X : f(R) ◦ f(S) ⊆ f(R ◦ S) (4.3)

then g • h is f -compatible for all f -compatible functions g and h.

This section is concluded with two lemmas that will be useful in the sequel.
The first one gives an alternative characterization of f -compatible functions. The
second lemma states that the coinductive predicate defined by f is closed under
any f -compatible function.

Lemma 4.3.5. A monotone function g is f -compatible iff for all x, y: x ≤ f(y) implies
g(x) ≤ f(g(y)).

Lemma 4.3.6. If g is f -compatible then g(gfp(f)) ≤ gfp(f).

4.4 Compatibility results

We instantiate the framework of the previous section to prove soundness of bisimu-
lation up-to techniques in a modular way, using the notion of compatible functions.
To this end, recall from Section 3.2.1 that, given a coalgebra δ : X → BX, one can
define the monotone function bδ(R) = (δ × δ)−1(Rel(B)(R)) on the complete lat-
tice of relations on X ordered by inclusion, so that bδ-invariants are precisely the
bisimulations on δ. Progression and bisimulation up-to can also be stated in terms
of this function, as an easy extension of Lemma 3.2.3.

Lemma 4.4.1. For any coalgebra δ : X → BX and for any relations R,S ⊆ X ×X:
R ⊆ bδ(S) if and only if R progresses to S. As a consequence, given any monotone
function g : P(X ×X)→ P(X ×X) on the lattice of relations,

R is a bisimulation up to g if and only if it is a bδ-invariant up to g .

Bisimilarity on δ coincides with the coinductive predicate defined by bδ (i.e., gfp(bδ)).

78 Chapter 4. Bisimulation up-to

Spelling out Definition 4.3.1, a monotone function g is bδ-compatible if

g ◦ bδ ⊆ bδ ◦ g .

As a consequence of Lemma 4.4.1 and the fact that compatible functions are sound
(Theorem 4.3.2), if g is bδ-compatible then it is sound in the sense of Defini-
tion 4.1.2, i.e., bisimulation up to g is a sound proof technique for bisimilarity.
Since compatible functions can be combined in various ways (Proposition 4.3.3), in
particular by function composition, the advantage of proving compatibility rather
than soundness is that it allows us to compositionally reason about the soundness
of bisimulation up-to.

The instances of bisimulation up-to introduced in Section 4.2 can be roughly di-
vided into three groups: (1) simple enhancements like up-to-union, (2) those that
involve relational composition, such as up-to-transitivity and up-to-bisimilarity,
and finally (3) up-to-context. Derived techniques such as up-to-congruence are
just combinations of these basic enhancements, so their compatibility follows from
proving the compatibility of their constituents.

In the remainder of this section, we show that functions (1) are compatible
for any coalgebra, functions (2) are compatible under a mild condition on the be-
haviour functor, and functions (3) are compatible in the presence of a λ-bialgebra.

Theorem 4.4.2. For any B-coalgebra (X, δ), the following are bδ-compatible:

1. unS—union with S, where S is a bisimulation on δ;

2. rfl—the reflexive closure;

3. sym—the symmetric closure.

Proof. By definition, unS is bδ-compatible if unS ◦ bδ ⊆ bδ ◦ unS . Instead of proving
this directly, we first decompose unS as

unS(R) = R ∪ S = id(R) ∪ cstS(R) .

By Proposition 4.3.3, id is bδ-compatible, and the union of compatible functions is
again compatible; so we only need to prove that the constant-to-S function cstS is
bδ-compatible. Since S is a bisimulation, it is a bδ-invariant, and thus by Proposi-
tion 4.3.3, the constant function cstS is indeed bδ-compatible.

For the compatibility of the reflexive closure, we use that the diagonal relation
on any coalgebra is a bisimulation [Rut00]. Since rfl = un∆X

, where ∆X is the
diagonal relation on X, rfl is bδ-compatible by the first item.

Let inv(R) = Rop . The symmetric closure sym is given by sym(R) = R ∪ Rop =
id(R) ∪ inv(R). Thus, by Proposition 4.3.3, we obtain bδ-compatibility of sym if we
prove that inv is bδ-compatible, i.e., that inv ◦ bδ ⊆ bδ ◦ inv. But this follows easily
from the fact that Rel(B)(Rop) = (Rel(B)(R))op (Lemma 3.2.4).

4.4. Compatibility results 79

4.4.1 Relational composition

Bisimilarity on coalgebras is not a transitive relation, in general. However, the mild
condition that the behaviour functor preserves weak pullbacks guarantees that it
is [Rut00]. Similarly, up-to techniques that are based on composition, such as
bisimulation up to transitivity, are not sound in general. In this section, we show
that weak pullback preservation is equivalent to the property (4.3) of Section 4.3.
This property implies that the composition operator • from Section 4.3 (Equa-
tion (4.2)) preserves compatibility. From this fact, compatibility of the transitive
closure and the bisimilarity closure can be derived.

First, we adapt an example from [AM89] to show that bisimulation up to bisim-
ilarity is not sound in general.

Example 4.4.3. Define the functor B : Set→ Set as

BX = {(x1, x2, x3) ∈ X3 | |{x1, x2, x3}| ≤ 2}
B(f)(x1, x2, x3) = (f(x1), f(x2), f(x3))

Consider the B-coalgebra with states X = {0, 1, 2, 0̃, 1̃} and transition structure

0 7→ (0, 1, 0) 0̃ 7→ (0, 0, 0) 2 7→ (2, 2, 2)
1 7→ (0, 0, 1) 1̃ 7→ (1, 1, 1)

Then 0 6∼ 1. To see this, note that in order for the pair (0, 1) to be contained in
a bisimulation R, there must be a transition structure on this relation which maps
(0, 1) to ((0, 0), (1, 0), (0, 1)). But this triple can not be in BR, because it consists
of three different elements. However, it is easy to show that 0 ∼ 2 and 1 ∼ 2: the
relation {(0, 2), (1, 2)} is a bisimulation.

The relation S = {(0̃, 1̃), (2, 2)} is not a bisimulation, since for that there should
be a function from S to BS mapping the elements as follows:

(0̃, 1̃) 7→ ((0, 1), (0, 1), (0, 1)) (2, 2) 7→ ((2, 2), (2, 2), (2, 2))

and ((0, 1), (0, 1), (0, 1)) is not contained in BS. However, since 0 ∼ 2 S 2 ∼ 1, the
triple ((0, 1), (0, 1), (0, 1)) is contained in B(∼ ◦ S ◦ ∼); so S is a bisimulation up
to bisimilarity. Thus, if up-to-bisimilarity is sound, then S ⊆ ∼ and consequently
0̃ ∼ 1̃. It follows that 0 ∼ 1, which is a contradiction.

The key to obtaining bδ-compatibility of functions that involve relational com-
position, is to assume that the behaviour functor B preserves weak pullbacks. Re-
call that a functor B : Set → Set preserves weak pullbacks if and only if Rel(B)
preserves composition of relations (Theorem 3.2.5). A further equivalent condi-
tion is that bisimulations are closed under composition.

Theorem 4.4.4. A functor B : Set → Set preserves weak pullbacks if and only if the
composition of two B-bisimulations is again a B-bisimulation.

80 Chapter 4. Bisimulation up-to

Rutten [Rut00] established the implication from left to right, and the reverse
implication is due to Gumm and Schröder [GS00]. Using Theorem 3.2.5 and The-
orem 4.4.4 we show that preservation of weak pullbacks coincides with the prop-
erty (4.3) of Section 4.3.

Proposition 4.4.5. B preserves weak pullbacks iff for any B-coalgebra (X, δ), bδ
satisfies (4.3), i.e., for all relations R,S : bδ(R) ◦ bδ(S) ⊆ bδ(R ◦ S).

Proof. Suppose B preserves weak pullbacks. Let (X, δ) be an B-coalgebra, R,S ⊆
X ×X relations, and (x, z) ∈ bδ(R) ◦ bδ(S), so there is some y such that (x, y) ∈
bδ(R) and (y, z) ∈ bδ(S). Then we have (δ(x), δ(y)) ∈ Rel(B)(R) and (δ(y), δ(z)) ∈
Rel(B)(S), so (δ(x), δ(z)) ∈ Rel(B)(R) ◦ Rel(B)(S). But by assumption and Theo-
rem 3.2.5 Rel(B) preserves composition, so Rel(B)(R)◦Rel(B)(S) = Rel(B)(R◦S).
Consequently (x, z) ∈ bδ(R ◦ S) as desired.

Conversely, suppose that (4.3) holds; then by Proposition 4.3.4, bδ-compatible
functions are closed under •. Let R,S be bisimulations, so the constant-to-R func-
tion cstR and the constant-to-S function cstS are both bδ-compatible by Proposi-
tion 4.3.3. By assumption cstR • cstS is bδ-compatible, so by Lemma 4.3.5 we have
R ◦ S ⊆ bδ(R ◦ S), and thus R ◦ S is a bisimulation. From Theorem 4.4.4 we
conclude that B preserves weak pullbacks. (In fact, we only considered bisimu-
lations on a single coalgebra, whereas the condition 2 of the theorem mentions
arbitrary bisimulations; however, it is easy to prove that, in Set, if bisimulations on
a single coalgebra compose then bisimulations on different coalgebras compose as
well [RBB+15]).

As a consequence of Proposition 4.3.4 and the above result, b-compatible func-
tions are closed under • if the behaviour functor preserves weak pullbacks.

Theorem 4.4.6. Let (X, δ) be a coalgebra for a functor B that preserves weak pull-
backs. The following functions are bδ-compatible:

1. tra—the transitive closure;

2. eq—the equivalence closure;

3. bisδ—the bisimilarity closure.

Proof. If B preserves weak pullbacks, then bδ-compatible functions are closed un-
der •, by Proposition 4.4.5 and Proposition 4.3.4.

For tra, inductively define the functions (−)•n as (−)•1 = id and (−)•n+1 =
id• (−)•n. We thus have (R)•1 = R and (R)•n+1 = R ◦R•n. We prove by induction
on n that (−)•n is bδ-compatible for any n ∈ N. The base case is bδ-compatibility
of id, which follows from Proposition 4.3.3. Further, if (−)•n is compatible then
(−)•n+1 = id • (−)•n is also compatible. Thus

tra =
⋃
n≥1

(−)•n

is a union of bδ-compatible functions, so by Proposition 4.3.3 it is bδ-compatible.

4.4. Compatibility results 81

The equivalence closure is eq = tra ◦ sym ◦ rfl, which is a composition of bδ-
compatible functions and therefore bδ-compatible.

For the bisimilarity closure bisδ we have

bisδ(R) = ∼ ◦R ◦ ∼ = cst∼ • id • cst∼ .

Since∼ is a bisimulation, cst∼ is bδ-compatible. The bδ-compatibility of bisδ follows
since bδ-compatible functions are closed under •, using the assumption.

4.4.2 Contextual closure

The contextual closure ctxα is defined with respect to a T -algebra α : TX → X
on the states of a coalgebra δ : X → BX, see (4.1) in Section 4.2. A first thought
may be that for compatibility of the contextual closure, it suffices if bisimilarity is
a congruence with respect to this algebra, i.e., that bisimilarity is closed under the
algebra structure. However, this is not even enough for the soundness of bisim-
ulation up to context [PS12]. As we show below, in order to prove that ctx is
compatible, it is sufficient to assume that (X,α, δ) is a λ-bialgebra for a distributive
law λ : TB ⇒ BT of the functor T over the functor B (thus, λ is simply a natural
transformation).

Theorem 4.4.7. Let (X,α, δ) be a λ-bialgebra for a distributive law λ : TB ⇒ BT
of T over B. The contextual closure function ctxα is bδ-compatible.

Proof. Suppose R ⊆ bδ(S) for some R and S. We prove that ctxα(R) ⊆ bδ(ctxα(S);
by Lemma 4.3.5 this implies that ctxα is bδ-compatible. Consider the following
diagram:

X

δ

��

TX
αoo

Tδ

��

TR
TπR1oo

Tγ

��

TπR2 // TX

Tδ

��

α // X

δ

��

TBX

λX

��

TBS
TBπS1oo

λS

��

TBπS2 // TBX

λX

��
BX BTX

Bα
oo BT

BTπS1

oo
BTπS2

// BTX
Bα
// BX

The existence of γ and commutativity of the upper squares follow since R ⊆ bδ(S),
by Lemma 4.4.1. The lower squares commute by naturality. The (outer) rectangles
commute since (X,α, δ) is a λ-bialgebra.

We show that the above argument implies that ctxα(R) progresses to ctxα(S).
Let fR : TR→ ctxα(R) be the corestriction of 〈α◦TπR1 , α◦TπR2 〉 : TR→ X×X to its
range, so that fR(TR) = ctxα(R). Let fS : TS → ctxα(S) be defined analogously,
and take f−1

R to be any right inverse of fR (so we use the axiom of choice). Then

82 Chapter 4. Bisimulation up-to

the following diagram commutes:

ctxα(R)π
ctxα(R)
1

{{
f−1
R

��

π
ctxα(R)
2

##
X

δ

��

TX
αoo TR

TπR1oo

fR

OO

λS◦Tγ
��

TπR2 // TX
α // X

δ

��
BX BTX

Bαoo BTS
BTπS1oo

B(fS)

��

BTπS2 // BTX
Bα // BX

B(ctxα(S))Bπ
ctxα(S)
1

cc

Bπ
ctxα(S)
2

;;

This means that ctxα(R) progresses to ctxα(S), and thus ctxα(R) ⊆ bα(ctxα(S)) by
Lemma 4.4.1.

Remark 4.4.8. The greatest bisimulation on a λ-bialgebra is closed under the al-
gebraic operations. This was first shown by Turi and Plotkin [TP97] under the
assumption that B preserves weak pullbacks; Bartels [Bar04] showed that this as-
sumption is not necessary. We obtain the same result (for Set functors) as a direct
consequence of the above Theorem and Lemma 4.3.6.

Under the assumption of a behaviour functor that preserves weak pullbacks
and a λ-bialgebra, the congruence closure cgrα is compatible as well, since it is a
union of (compositions of) rfl, tra, sym and ctxα, and each of these is compatible
by Theorems 4.4.2, 4.4.6 and 4.4.7.

Coalgebras for copointed functors. There are many interesting examples of λ-
bialgebras of the form (X,α, 〈δ, id〉), for some λ : T (B × Id) ⇒ BT × T ; in par-
ticular, this is relevant when λ arises from an abstract GSOS specification (Sec-
tion 3.5). However, while Theorem 4.4.7 gives us b〈δ,id〉-compatibility of the con-
textual closure ctxα, it does not provide bδ-compatibility. We recall a counterexam-
ple from [PS12].

Example 4.4.9 ([PS12]). Consider the following specification of the prefix and the
replication operation on labelled transition systems:

a.x
a−→ x

x
a−→ x′

!x
a−→!x|x′

together with the standard definition of the parallel operator x|y (Example 3.5.4),
and the constant 0, which has no transitions. This specification is in the GSOS
format. While this is arguably not the best way to specify replication in the context
of CCS [PS12], it suffices for our purposes. This specification induces a coalgebra
on closed terms. Now abbreviate b.0 and c.0 by b and c respectively, and consider
the relations R = {(!a.b, !a.c)} and S = {(!a.b|b, !a.c|c)}. Then R progresses to S,

4.4. Compatibility results 83

but ctx(R) does not progress to ctx(S). For example, (a.!a.b, a.!a.c) ∈ ctx(R) but
!a.b is not related to !a.c by ctx(S). Thus, by Lemma 4.3.5 the contextual closure
ctx is not bδ-compatible.

The solution of [PS12] is to consider invariants for a different function b′δ, de-
fined as b′δ(R) = bδ(R) ∩ R . But b′δ = b〈δ,id〉 (an exercise in relation lifting), so in
our framework this function arises naturally from the fact that one needs to con-
sider a coalgebra for the cofree copointed functor in order to obtain compatibility.

In terms of progressions, we have R ⊆ b′δ(S) if and only if R progresses to S
and R ⊆ S. Thus if R progresses to g(R) for a function satisfying R ⊆ g(R), then
R ⊆ b′δ(g(R)). But notice that for most functions g considered in Theorem 4.4.2
and Theorem 4.4.6 we haveR ⊆ g(R); an exception is the constant-to function. For
the contextual closure function it suffices to assume that the functor T is pointed,
i.e., there is a natural transformation η : Id⇒ T , and α is an algebra for this pointed
functor, meaning that α ◦ η = id. This holds in particular when α is an algebra for
a monad (T, η, µ).

4.4.3 Bisimulation up-to modulo bisimilarity

We investigate the situation that there are two coalgebras on a common carrier,
that behave the same up to bisimilarity. It turns out that in this case, if the functor
preserves weak pullbacks, compatibility of a function g on one coalgebra can be
transferred to compatibility of bis ◦ g ◦ bis on the other. This rather technical result
is only applied in Chapter 6, and does not play a further role in the current chapter.
It was presented in [RB15].

Definition 4.4.10. Let δ, ϑ be B-coalgebras on a common carrier. We say δ and
ϑ are equal up to bisimilarity if the bisimilarity relation ∼δ,ϑ between δ and ϑ is
reflexive.

If B preserves weak pullbacks, then an equivalent definition is that the identity
relation ∆ is a bisimulation up to bisimilarity.

Lemma 4.4.11. Let δ, ϑ : X → BX be coalgebras that are equal up to bisimilarity
and assume that B preserves weak pullbacks. Then ∼δ = ∼δ,ϑ = ∼ϑ.

Proof. By assumption ∼δ,ϑ is reflexive, and by Theorem 4.4.4 the composition of
two bisimulations is again a bisimulation. The desired equalities are now easy to
prove; for example, ∼δ ⊆ ∼δ ◦ ∼δ,ϑ by reflexivity of ∼δ,ϑ, and ∼δ ◦ ∼δ,ϑ ⊆ ∼δ,ϑ
since ∼δ ◦ ∼δ,ϑ is a bisimulation between δ and ϑ and therefore contained in ∼δ,ϑ,
the greatest such bisimulation. Conversely, ∼δ,ϑ ⊆ ∼δ,ϑ ◦ ∼ϑ,δ ⊆ ∼δ by a similar
argument.

Lemma 4.4.12. Let B, δ and ϑ be as in Lemma 4.4.11.

1. If R ⊆ bδ(S) then bis(R) ⊆ bϑ(bis(S)).

2. If g is bδ-compatible then bis ◦ g ◦ bis is bϑ-compatible.

84 Chapter 4. Bisimulation up-to

where bis is defined w.r.t. the bisimilarity relation ∼ (of both δ and ϑ).

Proof. SupposeR ⊆ bδ(S), and let (x, y) ∈ R; then δ(x) Rel(B)(S) δ(y). Since δ and
ϑ are equal up to bisimilarity, we have ϑ(x) Rel(B)(∼) δ(x) and δ(y) Rel(B)(∼)ϑ(y).
Hence

ϑ(x) Rel(B)(∼) δ(x) Rel(B)(S) δ(y) Rel(B)(∼)ϑ(y)

and since B preserves weak pullbacks, this implies ϑ(x) Rel(B)(∼ ◦ S ◦ ∼)ϑ(y)
(Theorem 3.2.5). Thus R ⊆ bϑ(∼◦S ◦∼); by compatibility of bis and Lemma 4.3.5
this implies ∼◦R ◦∼ ⊆ bϑ(∼◦∼◦S ◦∼◦∼), and by transitivity of ∼ (B preserves
weak pullbacks) then bis(R) ⊆ bϑ(bis(S)).

For (2), suppose R ⊆ bϑ(S). By (1) (replacing δ by ϑ and vice versa) then
bis(R) ⊆ bδ(bis(S)). We apply bδ-compatibility of g to obtain g ◦ bis(R) ⊆ bδ(g ◦
bis(S)). Finally, again apply (1) and get bis ◦ g ◦ bis(R) ⊆ bϑ(bis ◦ g ◦ bis(S)).

4.5 Behavioural equivalence up-to

Whenever the functor B does not preserve weak pullbacks (as it is the case, for
instance, with certain types of weighted transition systems [GS01, Kli09, BBB+12])
one can consider behavioural equivalence, rather than bisimilarity. In the current
section, we instantiate the framework of Section 4.3 to develop up-to techniques
for behavioural equivalence.

Recall from Section 3.1 that behavioural equivalence ≈ on a coalgebra δ : X →
BX is defined as follows: x ≈ y iff there is a homomorphism h from (X, δ) into
some coalgebra such that h(x) = h(y). As we see below (Lemma 4.5.1), be-
havioural equivalence ≈ can equivalently be characterized as the greatest fixed
point of the monotone function beδ : P(X × X) → P(X × X) on the lattice of
relations on X, defined as follows [AM89]:

beδ(R) = {(x, y) | BqR ◦ δ(x) = BqR ◦ δ(y)}

where qR : X → X/eq(R) is the quotient map of eq(R) (we sometimes drop the
subscript δ from beδ if it is clear from the context).

Lemma 4.5.1. Let ≈ be behavioural equivalence on a coalgebra δ : X → BX. Then
x ≈ y if and only if there is a relation R such that R ⊆ beδ(R) and (x, y) ∈ R.

Proof. The quotient map qR from the definition of beδ(R) is a coequalizer, and
therefore a coalgebra morphism [Rut00, Theorem 4.2], which gives the implication
from right to left. For the converse, we let h be a coalgebra morphism from δ and
we prove that the kernel ker(h) = {(x, y) | h(x) = h(y)} of h is a beδ-invariant, i.e.,
we show that the following inclusion holds:

ker(h) ⊆ beδ(ker(h)) = {(x, y) | Bq ◦ δ(x) = Bq ◦ δ(y)}

where q : X → X/ker(h) is the quotient map of (the equivalence relation) ker(h).
By [Rut00, Theorem 7.1], h equals the composition of coalgebra homomorphisms

4.5. Behavioural equivalence up-to 85

h = m ◦ q where q is as above and m is a monomorphism. This means that q(x) =
q(y) for any (x, y) ∈ ker(h), and since q is a coalgebra morphism from δ, we get
Bq ◦ δ(x) = Bq ◦ δ(y). Thus ker(h) ⊆ beδ(ker(h)).

The relation R of Example 4.2.2 is a beδ-invariant. Note that, intuitively, beδ-
invariants are implicitly “up to equivalence”, since the next states can be related by
the equivalence closure eq(R).

We proceed to consider be-compatibility of the equivalence closure and contex-
tual closure. In the previous section, we used the property (4.3) from Section 4.3
to prove b-compatibility of transitive and equivalence closure. However, this prop-
erty does not hold for be, that is, in general it does not hold that be(R) ◦ be(S) ⊆
be(R ◦ S). This is shown by the following example.

Example 4.5.2. Consider the identity functor BX = X and the B-coalgebra with
states {x, y} and transitions x 7→ x and y 7→ y. Let R = {(x, y)}. Then be(R) =
{(x, x), (y, y), (x, y), (y, x)} and be(∅) = {(x, x), (y, y)}. Now

be(R) ◦ be(∅) = {(x, x), (y, y), (x, y), (y, x)} ,whereas

be(R ◦ ∅) = be(∅) = {(x, x), (y, y)} .

Indeed, be(R) ◦ be(∅) is not included in be(R ◦ ∅).

This motivates to prove be-compatibility of eq directly.

Theorem 4.5.3. Let (X, δ) be any coalgebra. The following are beδ-compatible:

1. rfl—the reflexive closure;

2. eq—the equivalence closure;

3. unS—union with S (for a behavioural equivalence S).

Proof. Items 1 and 3 are analogous to Theorem 4.4.2. We proceed with the com-
patibility of the equivalence closure. First, notice that eq ◦ be = be since be(R) is
an equivalence relation for any relation R. Second, since eq(R) = eq(eq(R)) for
any R, the quotient maps in the definition of be(R) and be(eq(R)) are equal, so
be(R) = be(eq(R)). Thus eq ◦ be = be = be ◦ eq.

Notice that the be-compatibility of the equivalence closure does not require any
assumptions on the functor.

For the compatibility of contextual closure a λ-bialgebra is required, similar to
the case of bisimulations in Theorem 4.4.7. However, in the case of behavioural
equivalence, we require an algebra for a monad, although λ is still only required
to be a distributive law between functors, that is, a plain natural transforma-
tion. Further, in the proof we need an additional assumption. A pair of functions
f, g : X → Y is reflexive if it has a common section: a map s : Y → X such that
f ◦ s = id = g ◦ s. A reflexive coequalizer is a coequalizer of a reflexive pair. Reflex-
ive coequalizers are important in the theory of monads, see, e.g., [BW05]. Below

86 Chapter 4. Bisimulation up-to

we need the underlying functor T of the monad to preserve reflexive coequalizers,
which is a non-trivial condition in Set; see [AKV00, Example 4.3] for an example
of a functor that does not satisfy this property. We do not know if these additional
assumptions can be dropped.

Theorem 4.5.4. Let (T, η, µ) be a monad so that T preserves reflexive coequalizers,
and let (X,α, δ) be a λ-bialgebra for a distributive law λ : TB ⇒ BT (between func-
tors), where α is an algebra for the monad (T, η, µ). Then ctxα ◦ rfl is beδ-compatible.

Proof. Suppose R ⊆ beδ(S) for some relations R,S ⊆ X × X. By Theorem 4.5.3
rfl is beδ-compatible, so rfl(R) ⊆ beδ ◦ rfl(S). Further rfl(S) ⊆ ctxα ◦ rfl(S), using
the fact that α is an algebra for the monad (see the last part of Section 4.4.2).
Therefore

rfl(R) ⊆ beδ ◦ ctxα ◦ rfl(S) . (4.4)

Let q : X → X ′ be the quotient map of eq ◦ ctxα ◦ rfl(S) and its projections, or,
equivalently, the coequalizer of the two composite arrows α ◦ Tπ1, α ◦ Tπ2 in the
bottom of the diagram below:

TT (rfl(S))
TTπ1,TTπ2 //

µrfl(S)

��

TTX
Tα //

µX

��

TX
Tq //

α

��

TX ′

α′

���
�
�

T (rfl(S))
Tπ1,Tπ2

// TX α
// X q

// X ′

(4.5)

Define d : X → rfl(S) by d(x) = (x, x). Then the map Td ◦ ηX : X → T (rfl(S)) is a
section of the pair α◦Tπ1, α◦Tπ2, since α◦Tπ1◦Td◦ηX = α◦ηX = α◦Tπ2◦Td◦ηX
and α ◦ ηX = id. Thus, α ◦ Tπ1, α ◦ Tπ2 is a reflexive pair, and q a reflexive
coequalizer. The square on the left commutes (for Tπ1 and Tπ2 separately) by
naturality, and the middle since α is an algebra for the monad. Since T preserves
reflexive coequalizers, Tq is a coequalizer, and the map α′ making the right-hand
square commute arises by its universal property.

Now consider the following diagram:

T (rfl(R))
Tπ1 //
Tπ2

// TX

α

��

Tδ // TBX

λX

��

TBq // TBX ′

λX′

��
BTX

Bα

��

BTq // BTX ′

Bα′

��
X

δ
// BX

Bq
// BX ′

The top horizontal paths commute by (4.4) and functoriality. The rectangle com-
mutes by the assumption that (X,α, δ) is a λ-bialgebra. The upper square com-
mutes by naturality of λ, and the lower square by (4.5) and functoriality. Thus we

4.5. Behavioural equivalence up-to 87

have Bq ◦ δ ◦ α ◦ Tπ1 = Bq ◦ δ ◦ α ◦ Tπ2, and consequently

ctxα(rfl(R))
π1 //
π2

// X
δ // BX

Bq // BX ′

commutes, which means ctxα ◦ rfl(R) ⊆ beδ ◦ctxα ◦ rfl(S). By Lemma 4.3.5, ctxα ◦ rfl
is beδ-compatible.

The above result also applies to coalgebras of the form 〈δ, id〉, similar to the
situation described for bδ-compatibility in Section 4.4.2.

Example 4.5.5. For an example of behavioural equivalence up-to, we consider the
general process algebra with transition costs (GPA) from [BK01]. GPA processes are
defined for a given set of labels A and a semiring S which, for this example, we
fix to be the semiring of reals R with the usual addition and multiplication. The
operational semantics of GPA is expressed in terms of weighted transition systems,
that is, coalgebras for the functor (M−)A (Example 3.1.1).

As shown in Section 2.3 of [BBB+12], the functor (M−)A does not preserve
weak pullbacks and therefore bisimulation up-to cannot be used in this context.
However, thanks to Theorem 4.5.3 we can use behavioural equivalence up-to.

First observe that, by instantiating the definition of be above to a coalgebra
δ : X → (MX)A, one obtains the function beδ : P(X × X) → P(X × X) defined
for a relation R ⊆ X ×X as

beδ(R) = {(x1, x2) | ∀a ∈ A, y ∈ X :
∑

y′∈[y]R

δ(x1)(a)(y′) =
∑

y′∈[y]R

δ(x2)(a)(y′)}

where [y]R denotes the equivalence class of y with respect to eq(R). Our notion of
behavioural equivalence coincides with the notion of bisimilarity in [BK01] (which
differs from coalgebraic bisimilarity).

To illustrate our example it suffices to consider a small fragment of GPA. The
set P of basic GPA processes is defined by

p ::= 0 | p+ p | (a, r).p

where a ∈ A, r ∈ R. The operational semantics of basic GPA processes is given by
the coalgebra δ : P → (MP)A defined for all a′ ∈ A and p′ ∈ P as follows:

δ(0)(a′)(p′) = 0

δ((a, r).p)(a′)(p′) =

{
r if a = a′, p = p′

0 otherwise
δ(p1 + p2)(a′)(p′) = δ(p1)(a′)(p′) + δ(p2)(a′)(p′)

As an example, the operational semantics of (a, 1).0 + (a,−1).(a, 0).0 is as follows.

0

(a, 1).0 + (a,−1).(a, 0).0

a,1
44iiiiiiiiiiii

a,−1 **TTTTTTTTTT

(a, 0).0

(4.6)

88 Chapter 4. Bisimulation up-to

Since 0 ≈ (a, 0).0, we have that (a, 1).0 + (a,−1).(a, 0).0 ≈ 0. More generally, it
holds that for all a ∈ A, r ∈ R, p1 and p2 ∈ P :

if p1 ≈ p2 then 0 ≈ (a, r).p1 + (a,−r).p2. (4.7)

We prove (4.7) using behavioural equivalence up to union with≈ (Theorem 4.5.3).
To this end, consider the relation

R = {(0, (a, r).p1 + (a,−r).p2) | p1 ≈ p2} .

Note that R is not a beδ-invariant. For instance, 0 does not make any transitions
whereas (a, 1).0 + (a,−1).(a, 0).0 makes two transitions, to processes that are not
in the same equivalence class with respect to eq(R) (see (4.6)); thus R 6⊆ beδ(R).

Instead, we prove that R is a beδ-invariant up to un≈, that is, R ⊆ beδ(R ∪ ≈).
We must show that for any p = (a, r).p1 + (a,−r).p2 and any process q ∈ P :∑

y′∈[q]R∪≈

δ(0)(a)(y′) = 0 =
∑

y′∈[q]R∪≈

δ(p)(a)(y′).

The left-hand equality comes from the semantics of the process 0. For the right-
hand equality, if p1 ∈ [q]R∪≈ then also p2 ∈ [q]R∪≈ (and vice versa), which means
that

∑
y′∈[q]R∪≈

δ(p)(a)(y′) = r − r = 0. If p1 6∈ [q]R∪≈, then p2 6∈ [q]R∪≈, so∑
y′∈[q]R∪≈

δ(p)(a)(y′) = 0. We conclude that R is a beδ-invariant up to un≈.

4.6 Discussion and related work

In this chapter we have proved the soundness of a range of bisimulation up-to
techniques by proving their compatibility. Compatible functions are sound, and
are closed under composition. We conclude with a technical summary of the main
compatibility results that are introduced in this chapter. In the table below we
assume an arbitrary coalgebra δ : X → BX, an algebra α : TX → X (for a functor
T) and a distributive law λ of the functor T over the functor B. All functions in
the table are defined in Section 4.2. Recall that if a function is bδ-compatible, then
bisimulation up to g is sound (Section 4.4).

Name Notation Condition bδ-compatibility
Union with S unS S is a bisimulation
Equivalence closure eq B preserves weak pullbacks
Bisimilarity closure bisδ B preserves weak pullbacks
Contextual closure ctxα (X,α, δ) a λ-bialgebra
Congruence closure cgrα (X,α, δ) a λ-bialgebra, B pres. weak pullbacks

Further, we proved soundness of several up-to techniques for behavioural equiv-
alence, by proving that they are beδ-compatible (Section 4.5). The equivalence

4.6. Discussion and related work 89

closure eq is beδ-compatible for any functor. The contextual closure ctxα is beδ-
compatible if (X,α, δ) is a λ-bialgebra, α is an algebra for a monad, and T pre-
serves reflexive coequalizers. It remains open whether the latter two assumptions
are necessary.

A discussion of related work can be found in Chapter 5, which generalizes all
of the above results on the soundness of bisimulation up-to.

