
Enhanced Coinduction
Rot, J.C.

Citation
Rot, J. C. (2015, October 15). Enhanced Coinduction. IPA Dissertation Series.
Retrieved from https://hdl.handle.net/1887/35814

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/35814

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/35814

Chapter 3

Preliminaries

In the previous chapter, we studied coinduction for languages and deterministic
automata. Deterministic automata are a special case of the theory of coalgebras,
which encompasses coinduction principles for a wide variety of systems. In the re-
maining chapters we develop theory at this more abstract coalgebraic level, so that
the results in Chapter 2 are just one instance, among others. In the current chapter
we recall standard notions and results on coalgebras, coinduction and algebras.
We assume familiarity with basic concepts from category theory such as functors
and natural transformations (see, e.g., [Awo10, Lan98]).

Below, we first fix some basic notation regarding sets, relations, functions and
categories. Then we introduce coalgebras, homomorphisms and bisimulations, and
discuss examples of coinductive techniques (Section 3.1). We proceed to discuss a
more classical interpretation of coinduction, and relate this to the coalgebraic per-
spective in Section 3.2. This discussion of coinduction is continued in Section 3.3,
where we recall an approach to coinduction based on the categorical notion of fi-
brations. We recall algebras for functors and monads in Section 3.4, and conclude
this chapter with a discussion of distributive laws and bialgebras (Section 3.5).

Section 3.3, on coinduction in a fibration, can be challenging to understand
without prior knowledge of fibrations. However, in this thesis it is only required for
Chapter 5. Moreover, most of Chapter 4 requires only basic concepts on coalgebras
(Section 3.1) and algebras (the beginning of Section 3.4).

Most of the material in this chapter is taken from the literature; for more in-
formation, see, e.g., [Rut00, JR12, Jac12, Len98] (coalgebras and coinduction),
[HJ98, HCKJ13] (coinduction in a fibration), [BW05, Awo10, Tur96] (algebras
and monads) and [TP97, Kli11, Bar04] (distributive laws and bialgebras).

Sets. By Set we denote the category of sets and functions. We write 1 for the
singleton {∗}, 2 for the two elements set {0, 1}, N for the set of natural numbers
and R for the set of real numbers. Given sets X and Y , X × Y is the Cartesian
product of X and Y (with the usual projection maps π1 and π2) and X + Y is the
coproduct, i.e., disjoint union (with coproduct injections κ1, κ2).

41

42 Chapter 3. Preliminaries

Relations. Given a relation R ⊆ X × Y , we write π1 : R → X and π2 : R → Y
for its left and right projection, respectively. Given another relation S ⊆ Y × Z we
denote the composition of R and S by R ◦ S. We let Rop = {(y, x) | (x, y) ∈ R}.
The diagonal relation on a set X is ∆X = {(x, x) | x ∈ X}.

Functions. Let f : X → Y be a function. The direct image of a set S ⊆ X under
f is denoted simply by f(S) = {f(x) | x ∈ S}, and the inverse image of V ⊆ Y
by f−1(V) = {x | f(x) ∈ V }. The kernel of f is given by ker(f) = {(x, y) |
f(x) = f(y)}. The pairing of two functions f, g with a common domain is denoted
〈f, g〉 and the copairing (for functions f, g with a common codomain) is denoted
by [f, g]. The set of functions from X to Y is denoted by Y X ; if we fix X, this
yields a (covariant) functor on Set. The i-fold application of a function f : X → X
is denoted by f i, i.e., f0 = id and f i+1 = f ◦ f i.

Categories. On any category, we write Id for the identity functor, and idX or
simply id for the identity morphism of an object X. The product of categories C
and D is denoted by C × D; an object of C × D is a pair consisting of an object
from C and one from D, and an arrow is a pair of arrows from C and D of the
matching types. Any two functors F : C → D and G : C′ → D′ yield a functor
F ×G : C×C′ → D×D′. We use the same notation for the product of functors (in a
category of functors and natural transformations), i.e., given F,G as above so that
C = C′, D = D′ and D has products, we let (F × G)(X) = FX × GX. It should
always be clear from the context which meaning of × is referred to.

Given a set X, P(X) is the set of subsets of X, and Pω(X) is the set of finite
subsets of X. Both P and Pω extend to functors on Set, defined on functions by
direct image: P(f)(V) = f(V) and Pω(f)(V) = f(V). Given a semiring S, we
denote byMX the set of linear combinations of X with coefficients in S. Formally,
it is defined byMX = {ϕ ∈ SX | supp(ϕ) is finite}, where supp(ϕ) = {x | ϕ(x) 6=
0}. This extends to a functor M : Set → Set, sending f : X → Y to M(f)(ϕ) =
λy.
∑
x∈f−1(y) ϕ(x). We often denote a linear combination ϕ ∈ MX by a formal

sum of the form
∑
sixi, where si ∈ S and xi ∈ X for all i.

3.1 Coalgebras

A coalgebra for a functor B : C → C, or B-coalgebra, is a pair (X, δ) where X is an
object in C and δ : X → BX a morphism. We often refer to X as the carrier or
state space, δ as the transition map or transition structure, and B as the behaviour
functor. A (coalgebra) homomorphism from (X, δ) to (Y, ϑ) is a map h : X → Y
such that ϑ ◦ h = Bh ◦ δ:

X
h //

δ

��

Y

ϑ

��
BX

Bh
// BY

3.1. Coalgebras 43

The category of B-coalgebras is denoted by B-coalg.
A B-coalgebra (Z, ζ) is final if there exists, for any B-coalgebra (X, δ), a unique

homomorphism from (X, δ) to (Z, ζ). Final coalgebras are unique up to isomor-
phism, therefore we often speak about the final coalgebra. In general, a final
B-coalgebra does not necessarily exist, but there are mild conditions on B un-
der which it does: for instance, when B is a bounded functor on Set (see, e.g.,
[Rut00]). The coinductive extension of a coalgebra (X, δ) is the unique homomor-
phism into the final coalgebra. Following [JR12], we make a conceptual identifica-
tion of (coalgebraic) coinduction with the use of finality in categories of coalgebras.
As we will see below, the unique existence of morphisms gives rise both to definition
principles and to proof principles.

In the remainder of this section we assume that B is a functor on Set. Given a
B-coalgebra (X, δ) and states x, y ∈ X, we say x and y are behaviourally equiva-
lent or observationally equivalent if there exists a coalgebra homomorphism h from
(X, δ) to some B-coalgebra so that h(x) = h(y). In particular, x, y ∈ X are be-
haviourally equivalent precisely if they are identified by the coinductive extension
of δ. The largest relation on X containing only behaviourally equivalent pairs is
called behavioural equivalence. We denote this relation by ≈δ, or simply ≈.

Example 3.1.1. We list several examples of coalgebras; see, e.g., [Rut00] for more.

1. Let BX = A × X, for a fixed set A. A B-coalgebra 〈o, t〉 : X → A × X is a
stream system (over A). For each state x ∈ X, we observe an output o(x) ∈ A,
and a next state t(x) ∈ X.

The finalB-coalgebra is 〈(−)0, (−)′〉 : Aω → A×Aω, whereAω = {σ | σ : N→
Aω} is the set of streams over A, and for any stream σ ∈ Aω: σ0 = σ(0) and
σ′(n) = σ(n+ 1) for all n ∈ N. The coinductive extension of a stream system
〈o, t〉 : X → A×X maps a state x to the stream (o(x), o(t(x)), o(t(t(x))), . . .).

Stream systems do not involve termination, and therefore they generate only
infinite streams. The final coalgebra of (A × Id) + 1 consists of all finite and
infinite streams over A.

2. A labelled transition system over a set of labels A is a coalgebra for the functor
BX = P(A × X). Indeed, a B-coalgebra consists of a set X of states and
a map δ : X → P(A × X) that sends each state to a set of transitions. We
write x a−→ y if (a, y) ∈ δ(x). Labelled transition systems can equivalently be
presented as coalgebras for the functor (P−)A. A finitely branching transition
system is a coalgebra for the functor Pω(A × Id). An image finite transition
system is a coalgebra for (Pω−)A.

The functor P(A× Id) does not have a final coalgebra, for cardinality reasons
(the transition map of any final coalgebra is an isomorphism). Nevertheless,
Pω(A× Id) has a final coalgebra: it consists of (finitely branching) trees edge-
labelled in A, and quotiented by strong bisimilarity in the usual sense (see
below). Similarly, (Pω−)A has a final coalgebra given by equivalence classes
of trees in which every node has only a finite number of a-successors, for
each a ∈ A.

44 Chapter 3. Preliminaries

3. Let BX = 2×XA. A coalgebra 〈o, t〉 : X → BX is a deterministic automaton;
a state x is accepting if o(x) = 1, and x makes an a-transition to y (denoted
x

a−→ y) if t(x)(a) = y.

The final coalgebra for 2 × IdA is the deterministic automaton introduced
in Section 2.1: its carrier is given by the set 2A

∗
of all languages over A, a

state accepts if the corresponding language contains the empty word, and
the transition map is given by language derivative. Given any deterministic
automaton 〈o, t〉 : X → 2×XA, the coinductive extension l : X → 2A

∗
is the

usual language semantics, i.e., for any x ∈ X: l(x)(ε) = o(x) and l(x)(aw) =
l(t(x)(a))(w).

More generally, we can consider Moore automata, which are coalgebras for
the functor BX = S × XA, where S is a set of outputs. The carrier of the
final coalgebra is SA

∗
.

4. A non-deterministic automaton is a coalgebra for BX = 2× (PωX)A. Given a
coalgebra 〈o, t〉 : X → 2× (PωX)A, for each state x ∈ X, a state is accepting
if o(x) = 1, and for each a ∈ A there is a set of next states t(x)(a). We write
x

a−→ y for y ∈ t(x)(a).

The final coalgebra of B does not consist of languages. Rather, it consists of
trees edge-labelled in A and node-labelled in 2, quotiented by strong bisim-
ilarity. Thus, the branching behaviour of automata is taken into account,
and therefore we obtain a finer notion of behavioural equivalence than that
arising from the usual language semantics.

5. Let S be a semiring, and M the associated functor mapping sets to linear
combinations with coefficients in S. A weighted transition system is a coal-
gebra for the functor BX = (MX)A. A weighted automaton is a weighted
transition system where states additionally feature output, i.e., a coalgebra
for the functor S× (M−)A. Weighted automata accept weighted languages,
but the final coalgebra of B distinguishes more, similar to the case of non-
deterministic automata; see [BBB+12] for details.

3.1.1 Coinductive definitions

The final B-coalgebra provides a canonical semantics for B-coalgebras. In particu-
lar, we can use finality to define operations on the final coalgebra. As an elementary
example, consider the functor R × Id of stream systems over the reals, and recall
that its final coalgebra is the set of streams Rω. To define a pointwise sum on
streams, we construct a coalgebra 〈o, t〉 : Rω × Rω → R × (Rω × Rω) as follows:
o(σ, τ) = σ0 + τ0 and t(σ, τ) = (σ′, τ ′) (where we use the operations (−)0 and (−)′,
which form the transition map of the final coalgebra, see Example 3.1.1 (1)). By

3.1. Coalgebras 45

finality this gives rise to a unique homomorphism h:

Rω × Rω h //_____

〈o,t〉
��

Rω

〈(−)0,(−)′〉
��

R× (Rω × Rω)
id×h

// R× Rω

which maps a pair of streams to their pointwise sum.
The above way of coinductively specifying and defining operations on streams is

a special case of behavioural differential equations [Rut03] (see also Chapter 2), in
which an operation is defined by specifying its initial value (−)0 and its derivative
(−)′. We illustrate this by defining several operators:

Initial value Differential equation Name
(σ + τ)0 = σ0 + τ0 (σ + τ)′ = σ′ + τ ′ sum
(σ × τ)0 = σ0 · τ0 (σ × τ)′ = σ′ × τ + [σ0]× τ ′ convolution product
[r]0 = r [r]′ = [0] constant (for any r ∈ R)

In the first column, the operations + and · on the right of the equations are the
standard operations on R. We associate a set T of terms to the above operators,
defined by the grammar

t ::= σ | t1 + t2 | t1 × t2 | [r] (3.1)

where σ ranges over Rω and [r] ranges over {[r] | r ∈ R}. Now the above dif-
ferential equations specify how to define a stream system T → R × T . The
unique coalgebra morphism T → Rω then provides the semantics of the opera-
tors [Rut03, HKR14]. In Section 3.5 we will see how to study such coinductive
definition methods in a structured, categorical way.

In Chapter 2 we have seen behavioural differential equations for languages;
notice that the characterization of union and concatenation of Lemma 2.1.3 re-
sembles the above definition of the sum and convolution product on streams. One
difference to the previous chapter is that there, we characterize pre-defined oper-
ations using differential equations, whereas here we use the differential equations
to define the operations.

Two more operations on streams, which we study in the next chapter, are shuffle
and shuffle inverse:

Initial value Differential equation Name
(σ ⊗ τ)0 = σ0 · τ0 (σ ⊗ τ)′ = σ′ ⊗ τ + σ ⊗ τ ′ shuffle product
(σ−1)0 = (σ0)−1 (σ−1)′ = −σ′ ⊗ (σ−1 ⊗ σ−1) shuffle inverse

The inverse is only defined on streams σ for which σ0 6= 0. We abbreviate [−1]⊗ σ
by −σ. The set of terms involving sum, shuffle product and inverse can be defined
as before by a grammar. However, since the inverse is only defined when σ0 6= 0,
it is not directly clear how to turn the set of terms into a stream system. We call

46 Chapter 3. Preliminaries

a term well-formed if the inverse is never applied to a subterm with initial value
0; this notion can be straightforwardly defined by induction, and we let Twf be
the set of well-formed terms. This set can now be turned into a stream system by
induction, using the above specification.

A different use of coalgebras is to study determinization constructions at an ab-
stract level, so that language semantics arises by finality [JSS12, SBBR13, Rut00].
Consider a non-deterministic automaton 〈o, t〉 : X → 2 × (PωX)A. As discussed
in Example 3.1.1, the coinductive extension of such an automaton does not map
a state to the language it accepts. However, we can turn this coalgebra into a
deterministic automaton

〈o], t]〉 : PωX → 2× (PωX)A

according to the standard powerset construction. This is a deterministic automa-
ton, and the language accepted by a singleton {x} is precisely the language ac-
cepted by the state x of the original non-deterministic automaton.

For another example of a determinization construction, consider a weighted au-
tomaton 〈o, t〉 : X → S×(MX)A. This induces a Moore automaton 〈o], t]〉 : MX →
S× (MX)A where o] : MX → S and t] : MX → (MX)A are the linear extensions
of o and t. By finality, a unique coalgebra homomorphism l : MX → SA∗ arises,
which corresponds to the language semantics of weighted automata. For a detailed
explanation see [BBB+12, Section 3] and Example 3.5.2.

3.1.2 Bisimulations and coinductive proofs

The definition of coalgebra homomorphisms provides us with a canonical notion of
behavioural equivalence. However, this does not directly give us associated proof
techniques, other than the rather abstract property that coinductive extensions are
unique. A more concrete proof method is provided by the notion of bisimilarity,
which is another fundamental part of the theory of coalgebras. Next, we introduce
bisimulations and show a number of concrete examples, and subsequently relate
bisimilarity to behavioural equivalence.

A relation R ⊆ X × Y is a bisimulation between coalgebras (X, δ) and (Y, ϑ)
if there exists a transition map γ : R → BR such that the projections π1 and π2 of
R are coalgebra homomorphisms, which means that the following diagram com-
mutes [AM89]:

X

δ

��

R
π1oo

γ

��

π2 // Y

ϑ

��
BX BR

Bπ1

oo
Bπ2

// BY

If (X, δ) = (Y, ϑ) then we call R a bisimulation on (X, δ). The greatest bisimulation
on a given coalgebra (X, δ) is called bisimilarity and is denoted by ∼δ, or simply ∼
if δ is clear from the context.

3.1. Coalgebras 47

Example 3.1.2.

1. Let 〈o, t〉 : X → A × X be a stream system. A relation R ⊆ X × X is a
bisimulation if for all (x, y) ∈ R: o(x) = o(y) and (t(x), t(y)) ∈ R.

As an example, let T be the set of terms as defined in Equation (3.1), and let
〈(−)0, (−)′〉 : T → R× T be the stream system defined by the corresponding
behavioural differential equations. Let us prove that s + u ∼ u + s for any
streams s, u. To this end, consider the relation R = {(s+u, u+s) | s, u ∈ Rω}.
For any s, u we have (s + u)0 = s0 + u0 = u0 + s0 = (u + s)0. Moreover,
(s + u)′ = (s′ + u′) R (u′ + s′) = (u + s)′. Thus, R is a bisimulation.
As we will see below in a more general fashion, this implies that s and u
are mapped to the same element in the final coalgebra, meaning that they
are assigned the same behaviour. Commutativity of the sum is admittedly a
rather trivial property, but it serves here to illustrate the basic methodology of
constructing a bisimulation. For many examples of such proofs for streams,
see [Rut03, HKR14]; we will also see more advanced proofs in Section 4.2.

2. On labelled transition systems, bisimilarity coincides with the classical notion
of strong bisimilarity introduced by Milner and Park [Mil80, Par81]. Given
δ : X → P(A×X), a relation R ⊆ X×X is a bisimulation if for all (x, y) ∈ R:
if x a−→ x′ then there is y′ such that y a−→ y′ and (x′, y′) ∈ R; and if y a−→ y′

then there is x′ such that x a−→ x′ and (x′, y′) ∈ R.

3. Let 〈o, t〉 : X → S × XA be a Moore automaton. A relation R ⊆ X × X
is a bisimulation if for all (x, y) ∈ R: o(x) = o(y) and for all a ∈ A:
(t(x)(a), t(y)(a)) ∈ R. The notion of bisimulation on deterministic automata
(Definition 2.1.1) is a special case, and a concrete example of such a bisimu-
lation is in Example 2.1.5.

4. Let δ : X → X + 1 be a coalgebra (for the functor BX = X + 1). A relation
R ⊆ X×X is a bisimulation if for any pair (x, y) ∈ R: either δ(x) = ∗ = δ(y)
or (δ(x), δ(y)) ∈ R.

Coalgebra homomorphisms preserve bisimilarity.

Lemma 3.1.3 ([Rut00], Lemma 5.3). Suppose f : X → Y and g : X → Z are
coalgebra homomorphisms. If R ⊆ X × X is a bisimulation then (f × g)(R) is a
bisimulation.

If the functor B preserves weak pullbacks, then the inverse image of a bisim-
ulation along a coalgebra homomorphism is again a bisimulation [Rut00, Lemma
5.9]. Thus, in that case, homomorphisms also reflect bisimilarity.

The uniqueness of morphisms into the final coalgebra is, by Lemma 3.1.3 and
the fact that the diagonal relation on any coalgebra is a bisimulation [Rut00, Propo-
sition 5.1], equivalent to the following property.

Theorem 3.1.4. Suppose B has a final coalgebra (Z, ζ). For any x, y ∈ Z:

x ∼ y iff x = y .

48 Chapter 3. Preliminaries

This is sometimes called strong extensionality, the coinductive proof principle
or simply coinduction. Together with Lemma 3.1.3, it entails that, given the bisim-
ilarity relation ∼ on any coalgebra:

x ∼ y implies h(x) = h(y) (3.2)

where h is the coinductive extension of that coalgebra. Thus, in order to prove that
two states have the same behaviour, it suffices to construct a bisimulation.

Example 3.1.5. The foundation of the previous chapter is its coinduction principle
Theorem 2.1.2, which states that bisimilarity of languages implies their equality.
Indeed, languages form the final coalgebra for the functor BX = 2 × XA of de-
terministic automata, and thus that coinduction principle is an instance of Theo-
rem 3.1.4. Further, Equation (3.2) asserts that bisimilarity on any deterministic
automaton implies behavioural equivalence. This means that, to prove that two
states of an arbitrary deterministic automaton accept the same language, it suffices
to prove that they are bisimilar.

If the functor B preserves weak pullbacks, then homomorphisms reflect bisimi-
larity, and thus together with Theorem 3.1.4 it implies the converse of (3.2).

Lemma 3.1.6. IfB preserves weak pullbacks then bisimilarity and behavioural equiv-
alence coincide, on any B-coalgebra.

As an example, the functor BX = 2 × XA preserves weak pullbacks. Conse-
quently, two states of a deterministic automaton accept the same language if and
only if they related by a bisimulation.

Weak pullback preservation is a mild condition: for instance, it is satisfied by
all functors mentioned in Example 3.1.1, except weighted automata and weighted
transition systems. For weighted systems, weak pullback preservation only holds
under certain conditions on the semiring [GS01, Kli09, BBB+12]. In the cases
where it does not hold, behavioural equivalence seems to be of more interest.

3.2 Classical and coalgebraic coinduction

A standard formalization of coinduction is in terms of complete lattices. This is,
for instance, the basis of Sangiorgi’s introductory text on coinduction [San12a].
This perspective on coinduction, which we call classical coinduction (as opposed to
coalgebraic coinduction) also plays an important role in this thesis, therefore we
recall the basics. In this section we also see how to define coalgebraic bisimula-
tions in the lattice-theoretic setting, and how classical coinduction is generalized
by coalgebraic coinduction, i.e., the finality principle in categories of coalgebras.

The starting point is a complete lattice: a partial order (L,≤) in which each
subset of L has both a least upper bound and a greatest lower bound. Given a
function f : L → L, an element x ∈ L is a fixed point of f if f(x) = x, and a post-
fixed point if x ≤ f(x). If f is monotone (that is, x ≤ y implies f(x) ≤ f(y)) then

3.2. Classical and coalgebraic coinduction 49

by the Knaster-Tarski theorem it has a greatest fixed point gfp(f), which is also the
greatest post-fixed point (see, e.g., [San12a]).

The existence of a greatest fixed point constitutes a coinductive definition prin-
ciple: we call gfp(f) the coinductive predicate defined by f . The fact that it is the
greatest post-fixed point constitutes a coinductive proof principle: to prove that
x ≤ gfp(f), it suffice to show that x ≤ f(x). In the sequel we shall sometimes refer
to post-fixed points of f as f -invariants.

Example 3.2.1. Consider the lattice L = P(Aω × Aω) consisting of relations on
streams, ordered by inclusion. Define the monotone function f : L→ L by

f(R) = {(σ, τ) | σ0 = τ0 and (σ′, τ ′) ∈ R}

where (−)0 and (−)′ form the transition structure of the final stream system, as in
Example 3.1.1 (1). A relation R is an f -invariant (post-fixed point of f) precisely if
it is a bisimulation on the final stream system. Since f is monotone, the coinductive
predicate (the greatest fixpoint) exists: it is given by bisimilarity on the final coal-
gebra of stream systems, that is, the diagonal relation on streams. The coinductive
proof principle asserts that any bisimulation is contained in bisimilarity.

Notice that the above example can be adapted to define bisimilarity on any
stream system with carrier X, by replacing Aω ×Aω by X ×X, and replacing (−)0

and (−)′ in the definition of f by the transition map of the stream system under
consideration. Classical coinduction easily accommodates other predicates than
bisimilarity, as shown by a few basic examples below.

Example 3.2.2.

1. Let 〈o, t〉 : X → A×X be a stream system where A is equipped with a partial
order ≤, and consider the lattice P(X × X) of relations on X ordered by
inclusion. We define a monotone function f : P(X×X)→ P(X×X) on this
lattice:

f(R) = {(x, y) | o(x) ≤ o(y) and (t(x), t(y)) ∈ R} .

A relation R is an f -invariant if for all (x, y) ∈ R, we have o(x) ≤ o(y) and
(t(x), t(y)) ∈ R. The coinductive predicate defined by f is the greatest such
relation. Two states x, y ∈ X are related by this coinductive predicate if the
stream generated by x is pointwise less than the stream generated by y.

2. Let 〈o, t〉 : X → A × X be a stream system. Consider the lattice P(X)
of subsets of X, ordered by inclusion, and define the monotone function
f : P(X)→ P(X) on this lattice as follows:

f(P) = {x | o(x) ≤ o(t(x)) and t(x) ∈ P} .

Then an f -invariant is a set P ⊆ X so that for all x ∈ P : o(x) ≤ o(t(x)),
and t(x) ∈ P . The coinductive predicate defined by f , which is the largest
f -invariant, thus captures increasing streams.

50 Chapter 3. Preliminaries

3. Let 〈o, t〉 : X → 2×XA be a deterministic automaton, and consider the mono-
tone function f on the lattice of relations on X, defined as follows:

f(R) = {(x, y) | o(x) ≤ o(y) and ∀a ∈ A. (t(x)(a), t(y)(a)) ∈ R}

A relation R is an f -invariant precisely if it is a simulation (Definition 2.4.1).
The coinductive predicate defined by f is similarity, the greatest simulation.

3.2.1 Coalgebraic bisimulations via relation lifting

In Example 3.2.1 we have seen how to capture bisimulations on stream systems
as invariants for a monotone function. Next, we recall a general method of defin-
ing a monotone operator on the lattice of relations on the state space of a given
coalgebra, so that the coinductive predicate defined by this monotone operator is
bisimilarity. This approach was introduced in [HJ98, Rut98b] (see also [Jac12];
and see [Sta11] for a comparison of different notions of bisimulations).

For a functor B : Set → Set, the (canonical) relation lifting Rel(B) of B maps a
relation on X to a relation on BX (for any X). It is defined as follows:

Rel(R ⊆ X ×X) = {(x, y) ∈ BX ×BX | ∃z.Bπ1(z) = x and Bπ2(z) = y}

where π1, π2 are the projections of R. Thus, Rel(B) is the image of BR under
〈Bπ1, Bπ2〉. For certain classes of functors there are concrete, inductively defined
characterizations of relation lifting [HJ98, Jac12].

Now, given a coalgebra δ : X → BX we define a function

bδ = (δ × δ)−1 ◦ Rel(B) : P(X ×X)→ P(X ×X) (3.3)

on the lattice of relations on X ordered by inclusion. Invariants of the function bδ
are bisimulations on δ (defined as in Section 3.1.2), as stated below.

Lemma 3.2.3. A relation R ⊆ X ×X on the carrier of a coalgebra δ : X → BX is
a bisimulation if and only if R ⊆ bδ(R). Bisimilarity on (X, δ) is the greatest fixed
point of bδ.

A bisimulation is a relation with a transition structure, whereas a bδ-invariant
is a relation with a special property. This formulation is taken from [Jac12], to
which we refer for a more elaborate comparison. Lemma 3.2.3 asserts that both
characterizations are equivalent.

Relation lifting satisfies a number of properties that are be used in subsequent
chapters; see [Jac12, Section 4.4] for proofs.

Lemma 3.2.4. For any functor B : Set→ Set:

1. Rel(B)(∆X) = ∆BX .

2. If R ⊆ S then Rel(B)(R) ⊆ Rel(B)(S).

3. (Rel(B)(R))op = Rel(B)(Rop).

3.2. Classical and coalgebraic coinduction 51

4. Rel(B)(R ◦ S) ⊆ Rel(B)(R) ◦ Rel(B)(S).

5. Rel(B)((f × f)−1(S)) ⊆ (Bf ×Bf)−1(Rel(B)(S)).

If B preserves weak pullbacks, then the inclusions in items 4 and 5 are equalities.

As a consequence of item 2 above, bδ is monotone.

Theorem 3.2.5. Let B : Set→ Set be a functor. The following are equivalent:

1. B preserves weak pullbacks.

2. Rel(B) preserves composition, i.e., Rel(B)(R ◦ S) = Rel(B)(R) ◦ Rel(B)(S).

This is originally due to Trnková [Trn80]; for an accessible proof, see [Jac12,
Theorem 4.4.6] or [KKV12, Fact 3.6].

3.2.2 Classical coinduction in a category

Classical coinduction can be phrased in terms of categories, via the basic observa-
tion that any preorder (X,≤) (and thus in particular any complete lattice) forms a
category, whose set of objects is X, and which has an arrow from x to y if and only
if x ≤ y. A functor F on such a category is a monotone function on the preorder,
and F -coalgebras are post-fixed points of F (seen as a monotone function). The
final F -coalgebra then corresponds to the coinductive predicate defined by (the
monotone map) F (see, e.g., [NR09, HCKJ13]).

The definition principle of classical coinduction here is reformulated to the def-
inition of a final F -coalgebra, whereas the proof principle is the existence of a
morphism from any F -coalgebra into the final coalgebra. In this setting, we will
often refer to F -coalgebras as F -invariants. Instantiated to a lattice, the finality
principle entails that any F -invariant is below the coinductive predicate defined
by F . In this sense, the identification of coinduction with finality in categories
of coalgebras still applies in this setting. However, the definition and proof prin-
ciples carry a significantly different intuition than those discussed in Section 3.1;
there, we were defining maps into the final coalgebra and reasoning about them,
whereas here we take the final coalgebra itself as the defined object of interest, and
the existence of arrows as a proof principle.

Example 3.2.6. Let PredX be the category of predicates on a fixed set X, as given
by the complete lattice of subsets of X. Let δ : X → Pω(A × X) be a labelled
transition system, where the set of labels A contains a distinguished element τ ∈ A.
We define a functor F : PredX → PredX by

F (P ⊆ X) = {x ∈ X | ∃y.(τ, y) ∈ δ(x)} . (3.4)

An F -invariant (F -coalgebra) is a predicate P ⊆ X so that for any x ∈ P , there
exists a τ -transition into a state that is again in P , that is, there is y ∈ P such
that (τ, y) ∈ δ(x). The coinductive predicate defined by F is simply the greatest

52 Chapter 3. Preliminaries

fixed point of F seen as a monotone function; thus, it is the largest subset of states
x ∈ X that may diverge, that is, states that have an infinite path of τ steps. In terms
of modal logic, these are the states that satisfy νu.〈τ〉u.

In the above example, the system of interest is modelled by a coalgebra for
the functor Pω(A × Id) : Set → Set. The invariants of interest are coalgebras in a
category of predicates.

3.3 Liftings and coinduction in a fibration

We have established coinduction as the principle of finality in a category of coal-
gebras. In Section 3.1 we have seen how to instantiate this to a setting where
coalgebras model the systems of interest, yielding a canonical way of assigning
behaviour and equivalence to a coalgebra. In this setting, coinduction provides
a systematic account of bisimilarity and behavioural equivalence for all systems
of the given type. On the other hand, in Section 3.2 we have seen how a differ-
ent instantiation of coinduction yields the classical lattice-theoretic account, which
is very flexible and allows to define many other predicates than bisimilarity, but
is mainly suitable to define predicates on a single system. Here, bisimilarity and
other predicates can be seen as objects that live in a category of predicates.

A very general and systematic approach for studying coinductive predicates on
coalgebras can be achieved if the coalgebras of interest live in the base category
of a fibration. This provides a means to speak about properties or predicates on
coalgebras of interest. In this setting, invariants and coinductive predicates on a
given coalgebra, are themselves coalgebras in a category of predicates, similar to
the situation in the previous section. The functor on these predicates is defined in
a uniform manner, based on a lifting of the behaviour functor.

This fibrational approach to coinductive predicates for coalgebras was proposed
in [HJ98], and further developed in [HCKJ13] (as well as [AGJJ12, GJF13]). Be-
low, we first list the necessary definitions related to fibrations (Section 3.3.1), and
then describe the fibrational approach to coinductive predicates (Section 3.3.2).
All of the examples in this thesis are based on two fibrations, described in Exam-
ple 3.3.1 and Example 3.3.2. Of the remaining chapters in this thesis, the material
in the current section is only necessary to understand Chapter 5.

3.3.1 Fibrations

We refer to [Jac99] for more information on fibrations, and recall only a few basic
definitions and results.

A functor p : E → A is called a fibration when for every morphism f : X → Y in
A and every R in E with p(R) = Y there exists an object f∗(R) with p(f∗(R)) = X

and a morphism f̃R : f∗(R) → R such that p(f̃R) = f and f̃R is Cartesian, which
means that the following universal property holds: for all morphisms g : Z → X
in A and u : Q → R in E sitting above f ◦ g (i.e., p(u) = f ◦ g) there is a unique

3.3. Liftings and coinduction in a fibration 53

morphism v : Q→ f∗(R) such that u = f̃R ◦ v and p(v) = g.

Q

v $$J
J

J
J

u

**TTTTTTTTTTTTTTTTT

f∗(R)
f̃R

// R

Z

g %%KKKKKKKK
f◦g

**UUUUUUUUUUUUUUUUU

X
f
// Y

We shall often use a special case of the universal property of f̃R where p(Q) =
X. Then for any u : Q → R sitting above f there exists a unique v : Q → f∗(R)

above idX such that f̃R ◦ v = u:

Q

v
���
�

u

$$JJJJJJJJ

f∗(R)
f̃R

// R

X
f // Y

Given a fibration p : E → A, we call E the total category, andA the base category.
The fibre above an object X in A, denoted by EX , is the subcategory of E with
objects mapped by p to X and arrows mapped to the identity on X. We give a few
examples of fibrations below; see [Jac99] for many more.

A morphism f̃ as above is called a (p)-Cartesian lifting of f , and is unique up to
isomorphism. If we make a choice of Cartesian liftings, the association R 7→ f∗(R)
gives rise to the reindexing functor f∗ : EY → EX . On a morphism h : R→ S in EY ,
it is defined using the universal property of the Cartesian lifting f̃S:

f∗(R)
f̃R //

f∗(h)

���
�
� R

h

��
f∗(S)

f̃S

// S

Given morphisms f : X → Y and g : Y → Z in A, there is a natural isomorphism
(g ◦ f)∗ ∼= f∗ ◦ g∗ between reindexing functors.

A functor p : E → A is called a bifibration if both p and pop : Eop → Aop are
fibrations. Equivalently [Jac99, Lemma 9.1.2], p is a bifibration if each reindexing
functor f∗ : EY → EX has a left adjoint

∐
f :

EX

∐
f
++

⊥ EY
f∗

kk

54 Chapter 3. Preliminaries

We call
∐
f the direct image along f . This choice becomes more clear in the exam-

ples below.
For a fibration p : E → A we say that p has fibred finite (co)products if each fibre

has finite (co)products, preserved by reindexing functors. If p is a bifibration with
fibred finite products and coproducts, and A has finite products and coproducts,
then the total category E also has finite products and coproducts, strictly preserved
by p [Jac99, Example 9.2.5]. All bifibrations considered in this thesis are assumed
to have this structure.

Example 3.3.1 (The predicate bifibration). Let Pred be the category whose objects
are pairs of sets (P,X) with P ⊆ X and morphisms f : (P,X) → (Q,Y) are maps
f : X → Y so that f(P) ⊆ Q. The functor p : Pred → Set mapping (P,X) to
X is a fibration. The fibre PredX above X is the complete lattice of subsets of
X ordered by inclusion. For any map f : X → Y in Set the reindexing functor
f∗ : PredY → PredX maps (Q,Y) to (f−1(Q), X). Products and coproducts in
a fibre PredX correspond to intersection and union, respectively. Products and
coproducts in the total category E are simply computed as in Set. The functor f∗

has a left adjoint
∐
f mapping (P,X) to the direct image (f(P), Y).

We note that predicates can alternatively be seen as functions X → 2. Reindex-
ing along a function f then simply becomes precomposition with f .

Example 3.3.2 (The relation bifibration). Similarly, we can consider the cate-
gory Rel whose objects are pairs of sets (R,X) with R ⊆ X × X and morphisms
f : (R,X) → (S, Y) are maps f : X → Y such that (f × f)(R) ⊆ S. The functor
p : Rel → Set mapping (R,X) to X is a fibration. The fibre RelX above X is the
complete lattice of relations on X ordered by inclusion. For f : X → Y in Set the
reindexing functor f∗ : RelY → RelX maps (R, Y) to ((f × f)−1(R), X). Its left
adjoint

∐
f is given by direct image, that is,

∐
f (R,X) = ((f × f)(R), Y).

Given fibrations p : E → A and p′ : E ′ → A′ and a functor B : A → A′, we call
B : E → E ′ a lifting of B if the following diagram commutes:

E B //

p

��

E ′

p′

��
A

B
// A′

(3.5)

Such a lifting B restricts to a functor BX : EX → E ′BX between fibres, for any X in
A. We sometimes omit the subscript X when it is clear from the context. A lifting
(B,B) is a fibration map if it maps Cartesian morphisms to Cartesian morphisms.
This means that there is an isomorphism

(Bf)∗ ◦B ∼= B ◦ f∗ (3.6)

for any A-morphism f . An important example for this thesis is the canonical rela-
tion lifting Rel(B), which is a fibration map whenever B preserves weak pullbacks.

3.3. Liftings and coinduction in a fibration 55

Lemma 3.3.3. For anyB : Set→ Set, the lifting (Rel(B), B) is a fibration map (from
the relation fibration to itself) if B preserves weak pullbacks.

The isomorphism (3.6) means that Rel(B) preserves inverse images if B pre-
serves weak pullbacks, that is, in that case the inclusion Rel(B)((f × f)−1(S)) ⊆
(Bf ×Bf)−1(Rel(B)(S)) is an equality (see Lemma 3.2.4). The inclusion holds for
any functor B; it is a special case of the following lemma.

Lemma 3.3.4. Let p : E → A and p′ : E ′ → A′ be fibrations, and assume B : E → E ′
is a lifting of some functor B : A → A′. For any morphism f : X → Y in A there is a
natural transformation

θ : BX ◦ f∗ ⇒ (Bf)∗ ◦BY : EY → E ′BX .

If p and p′ are bifibrations then there is another natural transformation

θ′ :
∐
Bf ◦BX ⇒ BY ◦

∐
f : EX → E ′BY .

Proof. To define θR on an object R in EY , we apply B to the p-Cartesian lifting
f̃R : f∗(R)→ R and use the universal property of the p′-Cartesian lifting (̃Bf)BR:

B(f∗(R))

θR

���
�
�

B(f̃R)

))RRRRRRRRRRRRRRR

(Bf)∗(B(R))
(̃Bf)B(R)

// B(R)

Naturality follows from the universal property of (̃Bf)BR and the definition of
reindexing functors.

The natural transformation θ′ can be defined as follows:∐
Bf ◦BX +3 ∐

Bf ◦BX ◦ f∗ ◦
∐
f∐

Bfθ
∐
f

��∐
Bf ◦ (Bf)∗ ◦BY ◦

∐
f

+3 BY ◦
∐
f

using the unit of the adjunction
∐
f a f∗ and the counit of the adjunction

∐
Bf a

(Bf)∗. (The way we obtain θ′ from θ is an instance of a more general construction:
θ′ is called the (adjoint) mate of θ.)

3.3.2 Coinductive predicates in a fibration

Let p : E → A be a fibration, and let B : A → A be a functor whose coalgebras
model the systems of interest. We show how to define functors on the fibre above

56 Chapter 3. Preliminaries

the carrier of a B-coalgebra, such that the coalgebras for those functors are the in-
variants that model coinductive properties of the B-coalgebra in the base category.
Following [HJ98], we then say a coinductive predicate is a final coalgebra in a fibre.

The crucial observation of this approach to coinductive predicates, is that we
can uniformly define a functor EX → EX for any B-coalgebra δ : X → BX, from a
given lifting B : E → E of B. For a coalgebra δ : X → BX it is defined as follows:

EX
BX // EBX

δ∗ // EX

A coalgebra R→ δ∗◦BX(R) is called a δ∗◦BX -invariant; sometimes we shall refer
only to the carrier R as an invariant and leave the transition structure implicit. The
final δ∗ ◦BX -coalgebra (if it exists) can be seen as the coinductive predicate deter-
mined by B on the coalgebra δ. Finality of this coinductive predicate amounts to a
proof principle: any invariant has a morphism to the coinductive predicate. For in-
stance, if the state space X is a set and EX is the lattice of predicates, this principle
means that the carrier of any invariant is contained in the coinductive predicate.
We refer to [HCKJ13] for more details on the existence of final coalgebras in a
fibre.

Example 3.3.5. Recall from Example 3.2.6 the functor F whose final coalgebra is
the divergence predicate on some coalgebra for the functor BX = Pω(A×X). We
define a lifting B : Pred→ Pred of B:

BX(P ⊆ X) = {S ⊆ Pω(A×X) | ∃y ∈ P.(τ, y) ∈ S}

Then, given any δ : X → BX, we consider the composition

PredX
BX // PredBX

δ∗ // PredX

where δ∗ is the reindexing functor, i.e., inverse image along δ. The functor δ∗ ◦BX
now coincides with F from Example 3.2.6. Here it is defined uniformly on any
B-coalgebra, based on a lifting of B that does not mention any concrete transition
system.

Example 3.3.6. The functor bδ : RelX → RelX , defined for a given coalgebra
δ : X → BX using relation lifting (see Section 3.2.1), decomposes as

RelX
Rel(B)X// RelBX

δ∗ // RelX

A δ∗ ◦ Rel(B)X -invariant is simply a bδ-invariant. Equivalently, it is a bisimulation
(Lemma 3.2.3).

Given a lifting B of B, we thus have a way of defining a functor on the fibre
EX above the carrier of any B-coalgebra. We now emphasize that this uniformly
defines a predicate on B-coalgebras, by showing that coalgebra homomorphisms
preserve invariants (and also reflect them, under a certain condition). The second
item appears as Proposition 3.11 in [HCKJ13], with a proof in the appendix.

3.4. Algebras 57

Proposition 3.3.7. Let p : E → A be a bifibration, B : E → E a lifting of a functor
B : A → A and let h : X → Y be a coalgebra morphism from δ : X → BX to
ϑ : Y → BY .

• If R is a δ∗ ◦BX -invariant, then
∐
h(R) is a ϑ∗ ◦BY -invariant.

• If S is a ϑ∗ ◦ BY -invariant and (B,B) is a fibration map, then h∗(S) is a
δ∗ ◦BX -invariant.

Proof. Since h is a coalgebra homomorphism, we have Bh ◦ δ = ϑ ◦ h. Thus

δ∗ ◦ (Bh)∗ ∼= (Bh ◦ δ)∗ = (ϑ ◦ h)∗ ∼= h∗ ◦ ϑ∗ . (3.7)

Using the unit of the adjunction
∐
Bh a (Bh)∗ and the counit of

∐
h a h∗ we

construct the mate of the above natural transformation (read from left to right):∐
h ◦ δ∗ =⇒

∐
h ◦ δ∗ ◦ (Bh)∗ ◦

∐
Bh =⇒

∐
h ◦ h∗ ◦ ϑ∗ ◦

∐
Bh =⇒ ϑ∗ ◦

∐
Bh .

We can use this to construct a natural transformation

γ :
∐
h ◦ δ∗ ◦BX =⇒ ϑ∗ ◦

∐
Bh ◦BX =⇒ ϑ∗ ◦BY ◦

∐
h

where the second part is given by Lemma 3.3.4. Then any δ∗ ◦ B-invariant, that
is, a coalgebra R → δ∗ ◦ BX(R) in EX , yields a coalgebra (invariant)

∐
h(R) →

ϑ∗ ◦BY ◦
∐
h(R) in EY , simply by applying

∐
h and the natural transformation γ.

For the second item, we construct a natural isomorphism

h∗ ◦ ϑ∗ ◦BY ∼= δ∗ ◦ (Bh)∗ ◦BY ∼= δ∗ ◦BX ◦ h∗

using (3.7) and the fact that (B,B) is a fibration map. Then, given an invariant
S → ϑ∗ ◦BY (S), we apply the isomorphism to get the invariant h∗(S)→ h∗ ◦ ϑ∗ ◦
BY (S) ∼= δ∗ ◦BX ◦ h∗(S).

As stated in Lemma 3.2.3, a relation R is a bisimulation on a coalgebra δ pre-
cisely if it is a δ∗ ◦ Rel(B)-invariant. Thus, the first item of the above Proposi-
tion 3.3.7 is a generalization of the fact that coalgebra homomorphisms preserve
bisimilarity (Lemma 3.1.3), for B instantiated to the canonical relation lifting
Rel(B) (Lemma 3.1.3 mentions two homomorphisms rather than one; this can
also be accommodated in the current setting by choosing a slightly different fi-
bration). Moreover, if B preserves weak pullbacks, then (Rel(B), B) is a fibration
map (Lemma 3.3.3). Hence, a special case of the second item is that bisimulations
are preserved by inverse image along coalgebra homomorphisms, whenever the
functor B preserves weak pullbacks.

3.4 Algebras

In this thesis, algebras play an important role to model coalgebras whose carrier
has algebraic structure; for example, the set of closed terms over some signature.

58 Chapter 3. Preliminaries

Other examples include automata over sets or linear combinations of states, which
arise in determinization constructions.

An algebra for a functor T : C → C, or T -algebra, is a pair (X,α) where X is
an object in C and α : TX → X is a morphism. We call X the carrier and α the
algebra structure. An (algebra) homomorphism from α : TX → X to β : TY → Y
is a function h : X → Y such that h ◦ α = β ◦ Th. The category of algebras and
their homomorphisms is denoted by T -alg.

An initial T -algebra is an initial object in the category T -alg. Thus, given an
initial T -algebra (A, κ) there exists, for each T -algebra (X,α) a unique algebra
homomorphism from (A, κ) to (X,α). We call such a morphism the inductive ex-
tension of (X,α). Similar to the case of final coalgebras, initial algebras exist under
mild conditions on the functor.

A signature Σ is a (possibly infinite) set of operator names σ ∈ Σ with (finite)
arities |σ| ∈ N. Equivalently, it is a polynomial functor on Set:

ΣX =
∐
σ∈Σ

{σ} ×X |σ| ∼= {σ(x1, . . . , x|σ|) | σ ∈ Σ and ∀i. xi ∈ X}

(Σ(f : X → Y))(σ(x1, . . . , xn)) = σ(f(x1), . . . , f(xn))

(3.8)

A Σ-algebra coincides with the standard notion of an interpretation of the signature
Σ: a set X together with a function of type X |σ| → X for every operator σ (see
also Section 2.3). The carrier of the initial Σ-algebra is given by the set of all closed
terms over the signature.

3.4.1 Monads

A monad is a triple T = (T, η, µ) where T : C → C is a functor, and η : Id ⇒ T and
µ : TT ⇒ T are natural transformations called unit and multiplication respectively,
such that the following diagrams commute:

T
ηT +3

BBBBBBBB

BBBBBBBB TT

µ

��

T

||||||||

||||||||
Tηks

T

TTT

µT

��

Tµ +3 TT

µ

��
TT µ

+3 T

(3.9)

An Eilenberg-Moore algebra for T (or T -algebra, or algebra for the monad T) is a
T -algebra α : TX → X such that the following diagram commutes:

X
ηX //

CCCCCCCC

CCCCCCCC TX

α

��

TTX
Tαoo

µX

��
X TXα
oo

A T -algebra homomorphism is simply a T -algebra homomorphism. We denote the
category of T -algebras and their homomorphisms by T -Alg, and the associated
forgetful functor by U : T -Alg→ C.

3.4. Algebras 59

Throughout this thesis we often use T to denote a monad and T to denote a
functor. Accordingly, a T -algebra is an (Eilenberg-Moore) algebra for a monad,
whereas a T -algebra is an algebra for a functor.

Given any C-object X, the algebra (TX, µX) satisfies a universal property: for
any T -algebra (A,α) and any arrow f : X → A, there is a unique algebra homo-
morphism f] : TX → A such that f] ◦ ηX = f , given by f] = α ◦ Tf .

Let (T, η, µ) and (K, θ, ν) be monads. A monad morphism is a natural transfor-
mation σ : T ⇒ K such that the following diagram commutes:

Id
η +3

θ

�$
@@@@@@@

@@@@@@@ T

σ

��

TT
µks

σσ

��
K KKν
ks

(3.10)

where σσ = Kσ ◦ σT = σK ◦ Tσ.

Example 3.4.1. We list a few examples of monads.

1. The powerset functor P is a monad, with unit η : Id ⇒ P and multiplication
µ : PP ⇒ P given by:

ηX(x) = {x} and µX(S) =
⋃
U∈S

U .

The finite powerset functor Pω extends to a monad in a similar way.

2. Given a semiring S, the functorM extends to a monad, by taking

ηX(x)(y) =

{
1 if x = y

0 otherwise
µX(ϕ)(x) =

∑
ψ∈SX

ϕ(ψ) · ψ(x)

The case of Pω is obtained by taking the Boolean semiring. Notice that µ is
well-defined since its argument ϕ has finite support, by definition ofM.

3. Suppose Σ is a polynomial functor representing a signature (3.8). Consider
the functor Σ∗, which maps a set X to the set of terms over Σ with variables
in X, as given by the grammar t ::= x | σ(t1, . . . , t|σ|), where x ranges over
X and σ ranges over the operator names. Given f : X → Y , the function
Σ∗f : Σ∗X → Σ∗Y is defined by substitution. The functor Σ∗ extends to a
monad, where the multiplication µ glues terms over terms, and the unit η
interprets a variable as a term. This monad is defined properly below; it is
called the free monad for Σ.

Let Σ: C → C be an arbitrary functor. A free Σ-algebra for a C-object X is an
initial Σ + X-algebra. The existence of free algebras for every object X amounts
to the existence of a left adjoint F to the forgetful functor U : Σ-alg → C. It is a
standard fact in category theory that an adjunction yields a monad; we spell out

60 Chapter 3. Preliminaries

some of the details. Suppose a left adjoint F to U exists, let Σ∗ = UF : C → C
and let η : Id ⇒ Σ∗ be the unit of the adjunction. The functor F induces a natural
transformation κ : ΣΣ∗ ⇒ Σ∗ such that (the copairing of)

ΣΣ∗X
κX // Σ∗X X

ηXoo (3.11)

is the free Σ-algebra for X. This means that for any Σ-algebra (Y, α) and any
f : X → Y there exists a unique homomorphism f] as in the following diagram:

ΣΣ∗X
Σf] //

κX

��

ΣY

α

��
Σ∗X

f] //____ Y

X

ηX

OO

f

::vvvvvvvvvv

Then the free monad for Σ is defined as (Σ∗, η, µ) where η is the unit of the adjunc-
tion, and µ is defined on a component X as the unique morphism µX : Σ∗Σ∗X →
Σ∗X such that µX ◦ ηΣ∗X = id.

Example 3.4.2. Suppose Σ∗ is the (underlying functor of the) free monad for Σ
arising from a signature, as described in Example 3.4.1 (3). The fact that Σ∗X is
a free Σ-algebra amounts to the following: given any Σ-algebra A, there is a one-
to-one correspondence between maps f : X → A and algebra homomorphisms
f] : Σ∗X → A. Here f can be viewed as a variable assignment, and f] as its
inductive extension to terms.

Suppose (Σ∗, η, µ) is the free monad for a functor Σ. Any Σ-algebra α : ΣX →
X then yields an Eilenberg-Moore algebra α̂ : Σ∗X → X, defined by the unique
extension of idX to an algebra morphism from Σ∗X to X. In fact, this construction
yields an isomorphism between the category Σ-alg of algebras for the functor Σ
and the category Σ∗-Alg of algebras for the free monad Σ∗.

3.5 Bialgebras and distributive laws

Bialgebras consist of an algebra and a coalgebra structure over a common carrier.
The interaction between algebra and coalgebra can be captured by distributive laws.
These provide enough structure to study operational semantics, determinization
and recursive equations in a systematic manner; see [TP97, Bar04, Kli11, JSS12]
for more information.

Let T,B : C → C be functors. A distributive law of T over B is a natural trans-
formation λ : TB ⇒ BT . This is the simplest type of distributive law, and we
sometimes refer to it as a distributive law between functors. Given such a λ, a

3.5. Bialgebras and distributive laws 61

λ-bialgebra is a triple (X,α, δ) so that α : TX → X is a T -algebra, δ : X → BX is a
B-coalgebra and the following diagram commutes:

TX
α //

Tδ

��

X
δ // BX

TBX
λX

// BTX

Bα

OO

(3.12)

A λ-bialgebra homomorphism is a map that is both an algebra and a coalgebra
homomorphism. Any distributive law defines liftings of T and B:

B-coalg
T //

��

B-coalg

��
C

T
// C

T -alg
B //

��

T -alg

��
C

B
// C

defined on objects by

T (X, δ) = (TX, λX ◦ Tδ) B(X,α) = (BX,Bα ◦ λX)

Notice that (3.12) commutes iff δ is a B-coalgebra with carrier (X,α) iff α is a
T -algebra with carrier (X, δ). Indeed, the category of λ-bialgebras is isomorphic to
the category of B-coalgebras and the category of T -algebras.

If B has a final coalgebra (Z, ζ), we can use T and coinduction to construct a
bialgebra on Z:

TZ

Tζ

��

α //____ Z

ζ

��

TBZ

λZ

��
BTZ

Bα
// BZ

This bialgebra is final in the category of λ-bialgebras.

Lemma 3.5.1. Let λ : TB ⇒ BT be a distributive law (between functors). The final
coalgebra (Z, ζ) lifts to a final λ-bialgebra.

Similarly, if T has an initial algebra (A, κ) then we can lift it to an initial λ-
bialgebra, see, e.g., [Kli11] for details. Instead of spelling this out, we will consider
initial bialgebras and their properties for a more general type of distributive law in
the next subsection.

62 Chapter 3. Preliminaries

3.5.1 Distributive laws of monads over (copointed) functors

Let T = (T, η, µ) be a monad. A distributive law of T over B is a natural transfor-
mation λ : TB ⇒ BT such that the following diagrams commute:

B
ηB +3

Bη �%
CCCCCCC

CCCCCCC TB

λ

��
BT

TTB

µB

��

Tλ +3 TBT
λT +3 BTT

Bµ

��
TB

λ
+3 BT

A distributive law λ as above induces a lifting B : T -Alg → T -Alg of B to the
category of Eilenberg-Moore algebras for the monad T . In fact, there is a one-
to-one correspondence between distributive laws λ as above and liftings of B to
T -Alg [Joh75, TP97].

Suppose λ is a distributive law of T over B. Any coalgebra δ : X → BTX
can then be extended to a homomorphism δ] : (TX, µX) → B(TX, µX) so that
δ] ◦ ηX = δ. Notice that δ] is defined by

TX
Tδ // TBTX

λTX // BTTX
BµX // BTX (3.13)

This yields another lifting T̂ : TB-coalg → B-coalg of T . Now, consider the coin-
ductive extension below:

X

δ

��

ηx // TX

δ]

{{vvvvvvvvv
h //___ Z

ζ

��
BTX

Bh
// BZ

(3.14)

Since the final B-coalgebra lifts to a final B-coalgebra (similar to Lemma 3.5.1),
the coinductive extension h is an algebra homomorphism. This can be interpreted
as stating that the semantics is compositional, in the sense that behavioural equiv-
alence on δ] is a congruence.

The above use of distributive laws to turn TB-coalgebras into B-coalgebras
(and obtaining a semantics from the coinductive extension) is sometimes inter-
preted as a general way of solving corecursive equations (e.g., [Bar04, Jac06b]); it
is also called the generalized powerset construction [SBBR13, JSS12].

Example 3.5.2 ([SBBR13, JSS12]). In Section 3.1.1 we have seen informally how
to determinize non-deterministic automata. This construction arises from a dis-
tributive law λ : Pω(2× IdA)⇒ 2× (P−)A of the powerset monad over the functor
2× IdA, given by

λX(S) =

 ∨
(o,t)∈S

o, λa.
⋃

(o,t)∈S

t(a)

 .

3.5. Bialgebras and distributive laws 63

Spelling out the details of the construction in Equation 3.13 yields the classical
powerset construction, as in Section 3.1.1. The composition h ◦ ηX in (3.14) is
the usual language semantics of non-deterministic automata (obtained via deter-
minization).

Similarly, the determinization of weighted automata arises from a distributive
law λ : MB ⇒ BM where BX = S×XA and λ is defined by

λX

(∑
ri(oi, ti)

)
=
(∑

ri · oi, λa.
∑

ri · ti(a)
)
.

The composition h ◦ ηX in (3.14) maps a state to the weighted language that it
accepts, see [JSS12, BBB+12].

There is yet another type of distributive law, which is particularly suitable for
operational semantics, as we will see below. To define it we need the notion of a
copointed functor, which is a pair (B, ε) where B : C → C is an endofunctor and
ε : B ⇒ Id a natural transformation. A coalgebra for a copointed functor (B, ε) is
a B-coalgebra (X, δ) such that εX ◦ δ = id. We will frequently consider copointed
functors (B × Id, π2); such a functor is called the cofree copointed functor for B. It
is easy to see that B-coalgebras are in one-to-one correspondence to coalgebras for
(B × Id, π2). Now, a distributive law of a monad (T, η, µ) over a copointed functor
(B, ε) is a distributive law λ of (T, η, µ) over B such that, additionally, the axiom

TB

λ

��
Tε

�%
BBBBBBB

BBBBBBB

BT
εT
+3 T

is satisfied. (We note that this can be further generalized by considering distributive
laws of monads over comonads; for a formal definition see, e.g., [Kli11].)

3.5.2 Abstract GSOS

In this section we consider abstract GSOS, which provides specification formats
for defining operations on coalgebras, and allows to study operational semantics
in a general fashion. It is a generalization of GSOS, which is a syntactic format
for transition system specifications (see Example 3.5.4 below). An abstract GSOS
specification of Σ over B is a natural transformation ρ : Σ(B× Id)⇒ BΣ∗. The fol-
lowing result [TP97] states that distributive laws of monad over copointed functor
can be presented by abstract GSOS specifications.

Lemma 3.5.3. There is a one-to-one correspondence between abstract GSOS specifi-
cations ρ of Σ over B and distributive laws ρ† of the free monad Σ∗ over the cofree
copointed functor B × Id.

64 Chapter 3. Preliminaries

For a full proof, see [LPW04, Bar04]. Given ρ, ρ† is defined on a component X
using initiality:

ΣΣ∗(BX ×X)

κBX×X

��

Σρ†X // Σ(BΣ∗X × Σ∗X)

〈ρΣ∗X ,Σπ2〉
��

BΣ∗Σ∗X × ΣΣ∗X

BµX×κX
��

Σ∗(BX ×X)
ρ†X // BΣ∗X × Σ∗X

BX ×X

ηBX×X

OO

BηX×ηX

44iiiiiiiiiiiiiiiii

(3.15)

A model of ρ is a triple (X,α, δ) where α : ΣX → X is a Σ-algebra and δ : X →
BX a B-coalgebra, such that the diagram

ΣX
α //

Σ〈δ,id〉
��

X
δ // BX

Σ(BX ×X)
ρX

// BΣ∗X

Bα̂

OO

commutes. There is a one-to-one correspondence between models for ρ and ρ†-
bialgebras; more precisely, a triple (X,α, δ) is a model of ρ iff (X, α̂, 〈δ, id〉) is a
ρ†-bialgebra. Based on this correspondence, it is easy to establish that behavioural
equivalence on (the coalgebra part of) any ρ-model is a congruence. The ρ-model
corresponding to the initial ρ†-bialgebra is sometimes referred to as the operational
model of ρ. We consider a few examples of abstract GSOS for particular choices
of the behaviour functor B; for many other instances of abstract GSOS, see (the
references in) [Kli11].

Example 3.5.4. Abstract GSOS is a generalization of GSOS, a format for transition
system specifications introduced in [BIM95]. Given a signature, a GSOS rule for an
operator σ of arity n is of the form

{xij
aj−→ yj}j=1..m {xik

bk
6→}k=1..l

σ(x1, . . . , xn)
c→ t

(3.16)

where m is the number of positive premises, l is the number of negative premises,
and a1, . . . , am, b1, . . . , bl, c ∈ A are labels. The variables x1, . . . , xn, y1, . . . , ym are
pairwise distinct, and t is a term over these variables.

GSOS rules for a signature Σ induce abstract GSOS specifications of Σ over the
functor BX = (PωX)A of labelled transition systems. Conversely, every GSOS

3.5. Bialgebras and distributive laws 65

specification arises from an abstract GSOS specification. This correspondence was
first observed in [TP97], and proved in detail in [Bar04]; see also [Kli11] for a
detailed explanation. The unique ρ-model on the initial algebra corresponds to the
supported model of a GSOS specification. The well-known fact that bisimilarity on
the supported model of a GSOS specification is a congruence, thus follows from
the abstract underlying theory of distributive laws.

A simple example of a GSOS specification is given by the parallel composition
operation. Let A = N ∪N ∪ {τ} where N is a set of labels and N = {a | a ∈ N};
we let a = a. The parallel composition is then defined by the following rules:

x
a−→ x′

x|y a−→ x′|y
y
a−→ y′

x|y a−→ x|y′
x

a−→ x′ y
a−→ y′

x|y τ−→ x′|y′

We define this as an abstract GSOS specification ρ : Σ((Pω−)A × Id) ⇒ Pω(Σ−)A,
where ΣX = X × X (we model a binary operator). Then, on a component X,
ρX : ((PωX)A ×X)× ((PωX)A ×X)→ (Pω(Σ∗X))A is given by

ρ(f, x, g, y)(τ) ={(x′|y) | x′ ∈ f(τ)} ∪ {(x|y′) | y′ ∈ g(τ)}
∪ {(x′|y′) | x′ ∈ f(a) and y′ ∈ g(a)}

and for any a ∈ A with a 6= τ :

ρ(f, x, g, y)(a) = {(x′|y) | x′ ∈ f(a)} ∪ {(x|y′) | y′ ∈ g(a)} .

Notice that the carrier of the operational model of ρ is empty; this is because we
did not add any constants to the signature and the specification. If we do, then the
operational model will be a transition system whose states are the terms built from
these constants and the parallel operator, and where the behaviour of a term p|q is
dictated by the GSOS rules above.

Example 3.5.5. Behavioural differential equations for streams, such as those de-
fined in Section 3.1.1, can be presented by abstract GSOS specifications of Σ over
BX = A × X, where Σ is the signature functor representing the syntax. The
precise format and definitions are well explained in [HKR14]. For example, to
define the operations of sum, convolution product and the constants [r] we take
ΣX = X ×X +X ×X + R and define ρ : Σ((R× Id)× Id)⇒ R× Σ∗ by cases:

ρ
[r]
X = (r, [0])

ρ+
X((a, x′, x), (b, y′, y)) = (a+ b, x′ + y′)

ρ×X((a, x′, x), (b, y′, y)) = (a · b, (x′ × y) + (a× y′))

The shuffle product is also easily defined this way. The shuffle inverse is a bit more
problematic, since it is not always defined. One ad-hoc way of solving this is by
just assigning it some fixed constant value in those cases.

The operational model of ρ then consists of the closed terms over Σ, and its
coalgebra structure is defined by induction according to ρ. The coinductive exten-
sion yields the semantics, and this is compositional with respect to the algebraic
structure induced on the final coalgebra.

66 Chapter 3. Preliminaries

Similarly, the format of behavioural differential equations for deterministic au-
tomata presented in Definition 2.3.3 induces GSOS specifications for the functor
BX = 2×XA. We did not formally prove the converse, i.e., that every such spec-
ification arises from an abstract GSOS specification, although this seems rather
likely. The format of behavioural differential equations in Definition 2.3.3 thus
consititutes a concrete, syntactic presentation of GSOS specifications for determin-
istic automata.

The GSOS format for streams and the one for deterministic automata give rise
to specific types of behavioural differential equations. BDEs can be defined more
generally, for instance involving second derivative, which can not be expressed in
these formats. The advantage of (abstract) GSOS is that it is quite expressive and
covers most examples encountered in the literature, while these specifications are
still well-behaved: they give rise to a compositional semantics, and have distribu-
tive laws and bialgebras as a solid underlying mathematical theory.

