
Enhanced Coinduction
Rot, J.C.

Citation
Rot, J. C. (2015, October 15). Enhanced Coinduction. IPA Dissertation Series.
Retrieved from https://hdl.handle.net/1887/35814

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/35814

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/35814

Chapter 2

Coinduction for languages

The set of all languages over a given alphabet can be turned into an (infinite)
deterministic automaton. The proof principle of coinduction asserts that two lan-
guages are equal if they are bisimilar in this automaton. Thus, to show equality
of languages it suffices to construct a suitable bisimulation. Bisimilarity and coin-
duction are the basis of a practical proof method for language equality [Rut98a],
which has, for example, been used in effective procedures for deciding language
equivalence of regular expressions (e.g., [KN12, Rut98a, LGCR09, CS11]).

In the current chapter, we enhance this coinductive proof method using up-to
techniques. These techniques allow to prove bisimilarity, and thus language equal-
ity, by means of bisimulations up-to, which are often smaller and easier to con-
struct than actual bisimulations. We show how to apply up-to techniques through
a number of examples, including new proofs of classical results such as Arden’s
rule [HU79].

The up-to techniques introduced in this chapter are particularly suitable for
reasoning about operations and calculi on languages. To achieve a general picture
of sound up-to techniques, we consider behavioural differential equations [Rut03],
which give a syntactic format for specifying operations in terms of language deriva-
tives. We show that bisimulation up-to can be used for reasoning about any opera-
tion defined in this format, and use this to prove properties of the shuffle operator
and of languages defined by Boolean grammars.

Deterministic automata and their notion of bisimulation are instances of more
general concepts from the theory of coalgebras. Indeed, the current exposition is
based on the coalgebraic treatment of automata that was initiated in [Rut98a], and
the main results of this chapter can be obtained by instantiating the abstract coalge-
braic theory of coinduction up-to developed in subsequent chapters of this thesis.
Thereby, the current chapter provides a concrete, self-contained introduction to
coinduction and up-to techniques, that requires little background knowledge.

Outline. The next section contains preliminaries on languages and bisimulations.
In Section 2.2, we motivate and introduce bisimulation up-to for regular opera-

19

20 Chapter 2. Coinduction for languages

tions. Then in Section 2.3, this is generalized to soundness results for operations
given by behavioural differential equations, and applied to several other examples.
Further, we give an equivalent, semantic characterization of the class of operations
that are definable by behavioural differential equations. In Section 2.4, we treat
simulation up-to, to reason about language inclusion. In Section 2.5, we discuss
related work.

2.1 Bisimulations and coinduction

Throughout this chapter we assume a fixed alphabet A. The set of words is denoted
by A∗, the empty word by ε and the concatenation of words w and v by wv. We let
2 = {0, 1} be the set of Boolean values, where 0 ≤ 1. A language is a set of words,
which we represent as a function from A∗ to 2; the set of languages is denoted
by 2A

∗
. We abuse notation and use 0 and 1 to denote the empty language and the

language containing only the empty word respectively. Further we let any alphabet
letter a ∈ A denote the language that contains only the letter itself.

A (deterministic) automaton (DA) over A is a triple (X, o, t) where X is a set of
states, o : X → 2 is an output function, and t : X → XA is a transition function. A
state x ∈ X is final or accepting if o(x) = 1. We do not require X to be finite and
fix no initial states.

The classical definition of bisimulation applies to labelled transition systems,
which, in contrast to deterministic automata, do not have output and may feature
non-deterministic branching behaviour1.

Definition 2.1.1. Let (X, o, t) be a deterministic automaton. A relation R ⊆ X×X
is a bisimulation if for any (x, y) ∈ R:

1. o(x) = o(y), and

2. for all a ∈ A : (t(x)(a), t(y)(a)) ∈ R.

The largest bisimulation is denoted by ∼ and called bisimilarity; if x ∼ y then we
say x is bisimilar to y.

We will instantiate the notion of bisimulation to a special deterministic au-
tomaton, whose state space is given by the set of languages 2A

∗
. The output of a

language L is simply L(ε), that is, a language is an accepting state precisely if it
contains the empty word. For any a ∈ A, the a-transition from a language L is
given by language derivative La, defined as follows for all w ∈ A∗:

La(w) = L(aw) .

1Bisimulation-like techniques have been used earlier in the setting of automata. In fact, the stan-
dard reference [Par81] introduces bisimulations for automata rather than transition systems, and Theo-
rem 2.1.2 appears already there. For a historical account of bisimulation and coinduction, see [San12b].

2.1. Bisimulations and coinduction 21

Spelling out Definition 2.1.1, a relation R on languages is a bisimulation on this
automaton if for any (L,K) ∈ R:

L(ε) = K(ε) and for all a ∈ A : (La,Ka) ∈ R .

It turns out that bisimilarity of languages is a characterization of language equality.
This is called the coinductive proof principle, or simply coinduction [Rut98a]. A
more general account of coinduction is given in the next chapter.

Theorem 2.1.2 (Coinduction). For any two languages L,K:

L ∼ K iff L = K .

Proof. For the implication from right to left, one shows that the diagonal relation
{(L,L) | L ∈ 2A

∗} is a bisimulation. For the converse, one can prove that for any
languages L,K and any word w: if L ∼ K then L(w) = K(w), by (structural)
induction on w.

The above coinduction principle is a concrete proof method: to show that two
languages L,K are equal, it suffices to construct a bisimulation containing (L,K).

2.1.1 Regular operations

Consider the regular operations of union L+K, concatenation L ·K (often written
as LK) and Kleene star L∗. These are defined, for all w, as usual: (L + K)(w) =
L(w) ∨K(w), (L ·K)(w) = 1 iff there are v, u such that w = vu and L(v) = 1 =
K(u), and L∗ =

∑
i≥0 L

i, where L0 = 1 and Li+1 = L ·Li. In order to prove equiv-
alence of expressions involving the above operations, we may use bisimulations,
but this requires a characterization of the output (acceptance of the empty word)
and the derivatives of operations in terms of their arguments. Such a characteri-
zation was given for regular expressions by Brzozowski [Brz64]; we formulate this
in terms of languages (see, e.g., [Con71, page 41]).

Lemma 2.1.3. For any two languages L,K and for any a, b ∈ A:

0(ε) = 0 0a = 0
1(ε) = 1 1a = 0

b(ε) = 0 ba =

{
1 if b = a

0 otherwise
(L+K)(ε) = L(ε) ∨K(ε) (L+K)a = La +Ka

(L ·K)(ε) = L(ε) ∧K(ε) (L ·K)a = La ·K + L(ε) ·Ka

L∗(ε) = 1 (L∗)a = La · L∗

Remark 2.1.4. This characterization in terms of output and derivative can equiva-
lently be taken as the definition of the operations. This is achieved by constructing
a deterministic automaton on the state space of expressions over languages. Such
definition techniques, which are standard in the theory of coalgebras, are discussed
in more detail in Chapter 3.

22 Chapter 2. Coinduction for languages

Example 2.1.5. Let A = {a, b}. We prove that (a+ b)∗ = (a∗b∗)∗. To this end, we
start with the relation R = {((a+ b)∗, (a∗b∗)∗)} and try to show that it is a bisimu-
lation. So we must show that the outputs of (a+ b)∗ and (a∗b∗)∗ coincide, and that
their a-derivatives and their b-derivatives are related by R. Using Lemma 2.1.3,
we see that (a + b)∗(ε) = 1 = (a∗b∗)∗(ε). Moreover, again using Lemma 2.1.3, we
have ((a + b)∗)a = (a + b)a(a + b)∗ = (1 + 0)(a + b)∗ = (a + b)∗ and ((a∗b∗)∗)a =
(a∗b∗)a(a∗b∗)∗ = ((a∗)ab

∗ + a∗(ε) · (b∗)a)(a∗b∗)∗ = (a∗b∗ + 0)(a∗b∗)∗ = (a∗b∗)∗, so
the a-derivatives are again related (notice that apart from Lemma 2.1.3, we have
used some basic facts about union and concatenation). The b-derivative of (a+ b)∗

is (a + b)∗ itself; however, the b-derivative of (a∗b∗)∗ is b∗(a∗b∗)∗. But b∗(a∗b∗)∗

is equal to (a∗b∗)∗, so we are done. For an alternative proof that does not use the
latter equality, consider the relation R′ = R∪{((a+b)∗, b∗(a∗b∗)∗)}. As it turns out,
the pair ((a + b)∗, b∗(a∗b∗)∗) satisfies the necessary conditions as well, turning R′

into a bisimulation. We leave the details as an exercise for the reader, and conclude
(a+ b)∗ = (a∗b∗)∗ by Theorem 2.1.2.

Constructing a bisimulation (by hand) often follows the above pattern of us-
ing Lemma 2.1.3 to compute outputs and derivatives, extending the relation when
necessary, and showing that the outputs are equal and the derivatives related. In
the remainder of this chapter, we frequently use Lemma 2.1.3 without further ref-
erence to it.

If one restricts to regular languages, then the technique of constructing bisimu-
lations in this manner gives rise to an effective algorithm for checking equivalence
(cf. [Brz64, Con71, Rut98a]). However, the above coinductive proof method ap-
plies to equations over arbitrary languages, not only to regular ones, and in the
next sections we consider many such instances of equations.

2.2 Bisimulation up-to for regular operations

In this section, we introduce an enhancement of the bisimulation proof method for
equality of languages. We first illustrate the need for such an enhancement with a
few examples. Consider the property LL∗ + 1 = L∗. In order to prove this identity
coinductively, we may try to show that

R = {(LL∗ + 1, L∗) | L ∈ 2A
∗
}

is a bisimulation. Using Lemma 2.1.3, it is easy to see that (LL∗ + 1)(ε) = L∗(ε)
for any language L. Further, for any a ∈ A:

(LL∗ + 1)a = LaL
∗ + L(ε)LaL

∗ + 0 = LaL
∗ = (L∗)a

where the leftmost and rightmost equality are by Lemma 2.1.3, and in the second
step we use some standard identities. Now we have shown that the derivatives are
equal; this does not show that R is a bisimulation, since for that, the derivatives
need to be related by R. The solution, however, is straightforward. If we augment

2.2. Bisimulation up-to for regular operations 23

the relation R as follows:

R′ = R ∪ {(L,L) | L ∈ 2A
∗
}

then the derivatives of LL∗ + 1 and L∗ are related by R′; moreover, the diagonal
is easily seen to satisfy the properties of a bisimulation as well. This solves the
problem, but it is arguably somewhat inconvenient that additional work is required
to deal with derivatives that are already equal.

As another motivating example, we consider the relation

R = {(L∗L+ 1, L∗) | L ∈ 2A
∗
} .

The derivatives are (using Lemma 2.1.3):

(L∗L+ 1)a = LaL
∗L+ La + 0 = La(L∗L+ 1) and (L∗)a = LaL

∗

Clearly LaL∗ can be obtained from La(L∗L + 1) by replacing L∗L + 1 by L∗, and
indeed the latter two languages are related by R. However, since these derivatives
are not related directly by R, this argument does not show R to be a bisimulation.
Extending R to an actual bisimulation is possible but requires a bit of work that
one would rather skip.

To deal with examples such as the above in a more natural and easy way, we
introduce the notion of bisimulation up to congruence. This requires the definition
of congruence closure.

Definition 2.2.1. For a relation R ⊆ 2A
∗ × 2A

∗
, define the congruence closure of R

(with respect to +, · and ∗) as the least relation ≡ satisfying the following rules:

LRK

L ≡ K L ≡ L
L ≡ K
K ≡ L

L ≡ K K ≡M
L ≡M

L1 ≡ K1 L2 ≡ K2

L1 + L2 ≡ K1 +K2

L1 ≡ K1 L2 ≡ K2

L1 · L2 ≡ K1 ·K2

L ≡ K
L∗ ≡ K∗

In the sequel, we denote the congruence closure of a given relation R on languages
by ≡R, or ≡ if R is clear from the context.

The first rule ensures that R ⊆ ≡R. The three rules on the right in the first row
turn ≡R into an equivalence relation. The three rules on the second row ensure
that ≡R is closed under the operations under consideration, which in particular
means that ≡R relates languages obtained by (syntactic) substitution of languages
related by R. For example, if (L∗L+1, L∗) ∈ R, then we can derive from the above
rules that La(L∗L+ 1) ≡R LaL∗.

Definition 2.2.2. A relation R ⊆ 2A
∗ × 2A

∗
is a bisimulation up to congruence, or

simply a bisimulation up-to, if for any pair (L,K) ∈ R:

1. L(ε) = K(ε), and

2. for all a ∈ A : La ≡R Ka.

24 Chapter 2. Coinduction for languages

In a bisimulation up to congruence, the derivatives can be related by the con-
gruence ≡R rather than the relation R itself, and therefore, bisimulations up-to
may be easier to construct than bisimulations. Indeed, to prove that R is a bisimu-
lation up-to, the derivatives can be related by familiar equational reasoning.

A bisimulation up-to is, in general, not a bisimulation. However, as we show
below, it represents one, in the following sense: if R is a bisimulation up-to, then
≡R is a bisimulation.

Theorem 2.2.3. If R is a bisimulation up to congruence then for any (L,K) ∈ R, we
have L = K.

Proof. Let ≡ be the congruence closure of R. We show that any pair (L,K) in ≡
satisfies the properties

1. L(ε) = K(ε) and

2. for any a ∈ A: La ≡ Ka

of a bisimulation, by rule induction on (L,K) ∈ ≡. This amounts to showing that
≡ is closed under the inference rules of Definition 2.2.2. For the base cases:

1. for the pairs contained in R, the conditions are satisfied by the assumption
that R is a bisimulation up-to;

2. the case L ≡ L is trivial.

Now assume languages L,K,M,N such that L ≡ K, M ≡ N , L(ε) = K(ε),
M(ε) = N(ε) and for all a ∈ A: La ≡ Ka and Ma ≡ Na. We need to prove that
(L+M,K +N), (LM,KN), (L∗,K∗), (K,L) and (L,N) (if K = M) again satisfy
the properties of a bisimulation, i.e., (L + M)(ε) = (K + N)(ε) and for all a ∈ A:
(L + M)a ≡ (K + N)a, and similarly for the other operations. We treat the case
of union: (L + M)(ε) = L(ε) ∨M(ε) = K(ε) ∨ N(ε) = (K + N)(ε); moreover
by assumption and closure of ≡ under + we have La + Ma ≡ Ka + Na, and so
(L+M)a = La +Ma ≡ Ka +Na = (K +N)a.

Concatenation and Kleene star are treated in a similar manner, and symmetry
and transitivity are not difficult either. Thus, by induction, ≡ is a bisimulation, so
by Theorem 2.1.2 we have L = K for any L ≡ K and for any (L,K) ∈ R, in
particular.

Any bisimulation is also a bisimulation up-to, so Theorem 2.2.3 is a generaliza-
tion of Theorem 2.1.2 for the case of languages. Consequently, its converse holds
as well.

We proceed with a number of proofs based on bisimulation up-to.

Example 2.2.4. Recall the relation R = {(L∗L + 1, L∗) | L ∈ 2A
∗} from the

beginning of this section. As we have seen, the a-derivatives are La(L∗L + 1) and
LaL

∗, which are not related by R; however they are related by ≡R. So R is a
bisimulation up-to, and consequently L∗L+ 1 = L∗, by Theorem 2.2.3. Moreover,
the relation {(LL∗ + 1, L∗) | L ∈ 2A

∗} from the beginning of this section is a
bisimulation up-to as well; there, the derivatives are equal and thus related by ≡R.

2.2. Bisimulation up-to for regular operations 25

Example 2.2.5. In order to prove M + KL ⊆ L ⇒ K∗M ⊆ L, we use that
K∗M ⊆ L if and only if K∗M + L = L, and try to prove that the relation

R = {(K∗M + L,L) |M +KL ⊆ L; L,K,M ∈ 2A
∗
}

is a bisimulation up-to. Let L,K,M be such languages and note that M + KL +
L = L. Since (M + KL + L)(ε) = L(ε) it follows that (M + L)(ε) = L(ε), so
(K∗M + L)(ε) = L(ε). For any alphabet letter a we have

(K∗M + L)a = KaK
∗M +Ma + La

= KaK
∗M +Ma + (M +KL+ L)a

= KaK
∗M +Ma +Ma +KaL+K(ε)La + La

= Ka(K∗M + L) +Ma +K(ε)La + La

≡R KaL+Ma +K(ε)La + La

= (M +KL+ L)a

= La .

In conclusion, R is a bisimulation up-to, proving M +KL ⊆ L⇒ K∗M + L = L.

The above approach of dealing with language inclusion by reducing it to equal-
ity is, in general, not the most efficient one. In Section 2.4, we introduce simulation
up-to which allows to deal with inequality more directly, and reprove the above ex-
ample in a shorter way.

Example 2.2.6. Arden’s rule, in a special case2, states that if L = KL+M for some
languages L,K and M , and K does not contain the empty word, then L = K∗M .
In order to prove its validity coinductively, let L,K,M be languages such that
K(ε) = 0 and L = KL + M , and let R = {(L,K∗M)}. Using that K(ε) = 0, we
have L(ε) = (KL+M)(ε) = (K(ε) ∧L(ε)) ∨M(ε) = (0 ∧L(ε)) ∨M(ε) = M(ε) =
1 ∧M(ε) = K∗(ε) ∧M(ε) = K∗M(ε). Further,

La = (KL+M)a = KaL+K(ε) · La +Ma

= KaL+Ma ≡R KaK
∗M +Ma = (K∗M)a

for any a ∈ A. So R is a bisimulation up-to, proving Arden’s rule.

While Arden’s rule is not extremely difficult to prove without using bisimula-
tions, the textbook proofs are longer and arguably more involved than the above
proof, which is not much more than taking derivatives combined with a bit of
algebraic reasoning, and does not require much ingenuity. Nevertheless, this coin-
ductive proof is completely precise. Giving a formal proof without using these
methods seems non-trivial; see [FS12] for the discussion of a proof within the
theorem prover Isabelle.

2We consider a more general version of Arden’s rule in Section 2.4.

26 Chapter 2. Coinduction for languages

In fact, [Rut98a] already contains a coinductive proof of Arden’s rule. However,
this is based on a bisimulation, in contrast to our proof, which is based on a bisim-
ulation up-to. Indeed, in [Rut98a] the infinite relation {(NL + O,NK∗M + O) |
N,O ∈ 2A

∗} is used, requiring more work in checking the bisimulation conditions.
In that case, one essentially closes the relation {(L,K∗M)} under (certain) con-
texts manually—this happens in a general and systematic fashion in the proof of
Theorem 2.2.3.

Example 2.2.7. We prove that for any language L: LL = 1⇒ L = 1 (this property
was used in [Koz90] to show that the universal Horn theory of Kleene algebra does
not coincide with that of the regular sets). Assume LL = 1 and let R = {(L, 1)}.
Since (LL)(ε) = 1(ε) = 1 also L(ε) = 1 = 1(ε). We show that the derivatives
of L and 1 are equal, turning R into a bisimulation up-to. First, for any a ∈ A:
LaL + La = LaL + L(ε)La = (LL)a = 1a = 0. Now, one easily proves that
this implies La = 0 (for example by showing that {(K, 0) | L + K = 0} is a
bisimulation). Thus La = 0 = 1a, so La ≡R 1a.

Example 2.2.8. We prove that LL = L ⇒ L∗ = 1 + L, by establishing a bisimu-
lation up-to (in fact, this example can also easily be proved by induction). To this
end, let L be a language with LL = L and consider the relation R = {(L∗, 1 +L)}.
Indeed, L∗(ε) = 1 = (1 +L)(ε), and for any a ∈ A: (L∗)a = LaL

∗ ≡R La(1 +L) =
La + LaL = La + L(ε)La + LaL = La + (LL)a = La + La = La.

The last example of this section concerns context-free languages. These can
be expressed in terms of language equations [GR62]. For example, the language
{anbn | n ∈ N} is the unique language L such that L = aLb+ 1.

Example 2.2.9. Let L,K,M be languages such that L = aKMb+1, K = aMLb+1
and M = aLKb + 1. Without thinking of what possible concrete descriptions
of L,K and M can be, we show that L = K = M . To this end, let R =
{(L,K), (K,M)}. Obviously L(ε) = K(ε) and K(ε) = M(ε). Moreover for any
alphabet letter b other than a, we have Lb = 0 = Kb and Kb = 0 = Mb. For
the a-derivatives we have La = KMb ≡R MKb ≡R MLb = Ka and similarly for
(M,K); so R is a bisimulation up-to, proving that L = K = M .

2.3 Sound operations for bisimulation up-to

In the previous sections, we considered the regular operations on languages, and
how their coinductive characterization can be used to prove equalities using bisim-
ulations up-to. Next, we introduce a general syntactic format of operations on lan-
guages, and prove that a corresponding notion of bisimulation up-to is sound for
any operation that can be characterized within this format. This format consists of
a well-defined class of behavioural differential equations (BDEs) [Rut98a, Rut03].
More precisely, it is a variant of the stream GSOS format given in [HKR14] for
stream systems. In fact, our format is a special case of abstract GSOS [TP97], a

2.3. Sound operations for bisimulation up-to 27

categorical specification format at the level of coalgebras. In the following chap-
ters, we recall abstract GSOS and prove soundness results for up-to techniques at
this level, to obtain proof techniques not only for deterministic automata but for
arbitrary coalgebras.

After introducing the general soundness results, we show several examples in-
volving language equations with Boolean connectives, and the shuffle product.
This section is concluded with a discussion of causal functions, which turn out to
give a semantic characterization of operations that can be defined by behavioural
differential equations [KNR11, HKR14].

A signature Σ is a countable set of operator names σ ∈ Σ with associated arities3

|σ| ∈ N. A language interpretation of a signature Σ is a set of functions

{σ̂ : (2A
∗
)|σ| → 2A

∗
}σ∈Σ .

In the sequel, every language interpretation for a signature is of the above type (on
languages), and so we simply speak about an interpretation and write {σ̂}σ∈Σ.

Definition 2.3.1. For a relation R ⊆ 2A
∗ × 2A

∗
, define the congruence closure ≡Σ

R

of R w.r.t. an interpretation {σ̂}σ∈Σ as the least relation ≡ satisfying the following
rules:

LRK

L ≡ K L ≡ L
L ≡ K
K ≡ L

L ≡ K K ≡M
L ≡M

L1 ≡ K1 . . . Ln ≡ Kn

σ̂(L1, . . . , Ln) ≡ σ̂(K1, . . . ,Kn)
for each σ ∈ Σ, n = |σ|

R is a bisimulation up-to (w.r.t. {σ̂}σ∈Σ), if for any (L,K) ∈ R:

1. L(ε) = K(ε), and

2. for all a ∈ A : La ≡Σ
R Ka.

Bisimulation up-to for the regular operators (Definition 2.2.1) is a special case
of the above definition. While Theorem 2.2.3 asserts that bisimulation up-to is a
sound proof technique in the case of union, concatenation and Kleene star, this is
not the case in general for other operations. This is illustrated by the following
example, adapted from [PS12].

Example 2.3.2. Assume for simplicity a singleton alphabet {a}. Consider the sig-
nature that only contains a unary operator h, whose interpretation is defined as
follows:

ĥ(L) =

{
0 if L = 0

1 otherwise

Now notice that 0a = 0 = ĥ(0), aa = 1 = ĥ(a), and 0(ε) = 0 = a(ε). Consequently
the relation R = {(0, a)} is a bisimulation up-to w.r.t. {ĥ}, whereas 0 6= a, so
bisimulation up-to with respect to {ĥ} is not sound.

3For notational convenience we assume that all operations have finite arity, but all the results hold
for non-finitary operations—such as the infinite sum—as well.

28 Chapter 2. Coinduction for languages

We introduce a condition that guarantees soundness, based on characterizing
the operations in terms of BDEs [Rut03]. Informally, this means that one specifies
the output of an operation in terms of the outputs of the arguments, and the deriva-
tives as an expression involving the arguments, their derivatives and their outputs.
The equations in Lemma 2.1.3 form an example. Indeed, behavioural differential
equations are best explained through concrete examples. To prove our soundness
theorem, however, we need a precise characterization.

Define the set of terms Σ∗(V) over a signature Σ and a set of variables V by the
grammar

t ::= v | σ(t1, . . . , tn)

where v ranges over V , σ ranges over Σ and n = |σ|. Given an interpretation
{σ̂}σ∈Σ we define a function

I : Σ∗(2A
∗
)→ 2A

∗

by induction: I(L) = L and I(σ(t1, . . . , tn)) = σ̂(I(t1), . . . , I(tn)). Substitution in t
of a term u for a variable x is denoted by t[x := u].

Definition 2.3.3. A (syntactic) behavioural differential equation (BDE) over a sig-
nature Σ for an operator σ ∈ Σ of arity n consists of a pair (o, d) of functions of the
form

o : 2n → 2 and d : A→ Σ∗(Vn)

where Vn is a set consisting of variables

• x1, . . . , xn,

• xε1, . . . , xεn and

• for each a ∈ A and each i ≤ n a variable xai ,

all of which are pairwise distinct.

The function o specifies the output of the operation given the output of the ar-
guments, and the function d specifies, for each alphabet letter, the derivative. This
derivative is given as a term; intuitively a variable xi represents the i-th argument
of the operation, a variable xεi represents its output, and a variable xai represents
the a-derivative of the i-th argument. For instance, the equations for language
concatenation in Lemma 2.1.3 would be presented as a behavioural differential
equation (o, d), where o : 2× 2→ 2 is conjunction, and d(a) = xa1 · x2 + xε1 · xa2 for
all a ∈ A.

To formalize the intuition that syntactic behavioural differential equations de-
fine actual equations on languages, we define for each n a function

ρn : Σ∗(Vn)→ ((2A
∗
)n → Σ∗(2A

∗
))

ρn(t)(L1, . . . , Ln) = t[xi := Li]i≤n[xai := (Li)a]i≤n,a∈A[xεi := Li(ε)]i≤n
(2.1)

2.3. Sound operations for bisimulation up-to 29

which substitutes each xi by Li, xai by the a-derivative (Li)a and xεi by L(ε). Now,
given a function σ̂ : (2A

∗
) → 2A

∗
, a BDE (o, d) for σ defines an equation for each

a ∈ A:
σ̂(L1, . . . , Ln)a = I(ρn(d(a))(L1, . . . , Ln)) (2.2)

which states in a precise manner that the a-derivative of σ̂(L1, . . . , Ln) behaves
according to the syntactic presentation d(a). For instance, if σ̂ is language compo-
sition and d(a) = xa1 · x2 + xε1 · xa2 then the equation corresponds to

(L1 · L2)a = (L1)a · L2 + L1(ε) · (L2)a .

If, for an arbitrary operation σ̂ and BDE (o, d) the equation 2.2 holds and, moreover,
the output of σ̂(L1, . . . , Ln) is given by o applied to the output of its arguments,
then we say σ̂ is given by (o, d). This is captured formally by the following defini-
tion.

Definition 2.3.4. We say an interpretation {σ̂}σ∈Σ can be given by BDEs if for each
σ (with arity n) there is a BDE (o, d) over Σ such that for all languages L1, . . . , Ln:

σ̂(L1, . . . , Ln)(ε) = o(L1(ε), . . . , Ln(ε))

σ̂(L1, . . . , Ln)a = I(ρn(d(a))(L1, . . . , Ln))

where ρn is defined as in (2.1).

Remark 2.3.5. A behavioural differential equation (o, d) as in Definition 2.3.3 in-
duces for each set X a function

d′X : A→ (Xn × (XA)n × 2n → Σ∗(X))

which is natural in X, informally meaning that d′X(a) is defined uniformly over
every set X. This view allows for a neater formalization of presentation by BDEs
(Definition 2.3.4) with respect to operations on an arbitrary deterministic automa-
ton, which concides with Definition 2.3.4 for the case of the automaton of lan-
guages. Since we aim here to use as few technical notions as possible we postpone
such a treatment to Section 3.5. There, we recall a general approach to define and
study operations and calculi based on the theory of algebras and coalgebras, with
behavioural differential equations as a special case.

Lemma 2.1.3 states that the regular operations are captured by BDEs. So the
following theorem generalizes the proof principle of Theorem 2.2.3.

Theorem 2.3.6. If {σ̂}σ∈Σ can be given by BDEs, then for any relation R which is a
bisimulation up-to w.r.t. {σ̂}σ∈Σ: if (L,K) ∈ R then L = K.

Proof. Similarly to the proof of Theorem 2.2.3, we show that the congruence clo-
sure ≡ of R is a bisimulation, by proving by rule induction that

• L(ε) = K(ε) and

30 Chapter 2. Coinduction for languages

• for any a ∈ A: La ≡ Ka

holds for any (L,K) ∈ ≡. The base cases, i.e., if L = K or (L,K) ∈ R, are the
same as in Theorem 2.2.3.

The rules for symmetry and transitivity are not difficult. We treat the rule for an
operator σ ∈ Σ of arity n = |σ|. Let o and d be the functions from Definition 2.3.3
associated to σ which exist since {σ̂}σ∈Σ can be given by BDEs, and suppose we
have languages L1, . . . , Ln and K1, . . . ,Kn such that for all i:

Li ≡ Ki, Li(ε) = Ki(ε) and for all a ∈ A : (Li)a ≡ (Ki)a . (2.3)

Then we have

σ̂(L1, . . . , Ln)(ε) = o(L1(ε), . . . , Ln(ε))

= o(K1(ε), . . . ,Kn(ε)) = σ̂(K1, . . . ,Kn)(ε)

and for any a ∈ A:

σ̂(L1, . . . , Ln)a = I(ρn(d(a))(L1, . . . , Ln))

= I(d(a)[xi := Li]i≤n[xai := (Li)a]i≤n,a∈A[xεi := Li(ε)]i≤n)

≡ I(d(a)[xi := Ki]i≤n[xai := (Ki)a]i≤n,a∈A[xεi := Ki(ε)]i≤n)

= I(ρn(d(a))(K1, . . . ,Kn))

= σ̂(K1, . . . ,Kn)a

where the third step (relation by ≡) holds by the induction hypothesis (2.3).

Bisimulation up-to with respect to the function ĥ of Example 2.3.2 is not sound,
as we have seen. Indeed ĥ cannot be given by BDEs, since the output ĥ(L)(ε)
depends not only on L(ε) but on the entire language L.

2.3.1 Language equations with complement and intersection

Language complement L and intersection L ∧ K are defined as L(w) = ¬(L(w))
and (L ∧K)(w) = L(w) ∧K(w) respectively. Language equations including these
additional operations can be used to give semantics to conjunctive and Boolean
grammars, which extend context-free grammars with conjunction and comple-
ment [Okh13]. Complement and intersection have a known characterization in
terms of outputs and derivatives as well [Brz64]:

Lemma 2.3.7. For any two languages L,K and for any a ∈ A:

L(ε) = ¬(L(ε)) (L)a = (La)
(L ∧K)(ε) = L(ε) ∧K(ε) (L ∧K)a = La ∧Ka

The above characterization is in terms of BDEs, so by Theorem 2.3.6 we obtain
the soundness of bisimulation up-to.

2.3. Sound operations for bisimulation up-to 31

Example 2.3.8. There are unique languages L and K such that

L = aLa+ bLb+ a+ b+ 1 K = aKa+ bKb+ aA∗b+ bA∗a

L is the language of palindromes, i.e., words which are equal to their own reverse.
We claim that K is the language of all non-palindromes, and prove this formally
by showing that the relation R = {(L,K)} is a bisimulation up-to. The outputs are
easily seen to be equal: L(ε) = ¬(L(ε)) = ¬(1(ε)) = 0 = K(ε).

La = La = La+ 1 = La ∧ 1 = (La+A∗b+ 1) ∧ 1

≡R (Ka+A∗b+ 1) ∧ 1 = Ka ∧ 1 +A∗b ∧ 1 + 1 ∧ 1 = Ka+A∗b = Ka

In the fourth step, we unfold the complement La, the validity of which is itself a
nice exercise in bisimulation up-to. Further, the case of b-derivatives is of course
similar to the above. So R is a bisimulation up-to, proving that K indeed is the
complement of L.

2.3.2 Shuffle (closure)

The shuffle operation is defined on words w, v inductively as follows: w ⊗ ε =
ε⊗ w = w and aw ⊗ bv = a(w ⊗ bv) + b(aw ⊗ v) for any alphabet letters a, b. This
is extended to languages L,K as L ⊗K =

∑
w∈L,v∈K w ⊗ v. The shuffle closure is

defined as

L~ =

∞∑
i=0

L⊗i

where L⊗i is defined inductively by L⊗0 = 1 and L⊗i+1 = L ⊗ L⊗i . Notice that
the shuffle closure is very similar to the Kleene star; the difference is that here
shuffle is used instead of concatenation. Both shuffle and shuffle closure can be
characterized in terms of BDEs, as stated by the following lemma.

Lemma 2.3.9. For any two languages L,K and for any a, b ∈ A:

(L⊗K)(ε) = L(ε) ∧K(ε) (L⊗K)a = La ⊗K + L⊗Ka

L~(ε) = 1 (L~)a = La ⊗ L~

As an example of a proof using bisimulation up-to that involves the shuffle
operator, we treat the unfolding of the shuffle closure.

Example 2.3.10. Let L be any language; then L~ = L⊗ L~ + 1. To show this, let
R = {(L~, L ⊗ L~ + 1}. Then L~(ε) = 1 = (L ⊗ L~ + 1)(ε). Moreover for any
alphabet letter a:

(L~)a = La ⊗ L~ = La ⊗ (L~ + L~)

≡R La ⊗ (L~ + L⊗ L~ + 1) = La ⊗ (L~ + L⊗ L~)

= La ⊗ L~ + La ⊗ L⊗ L~ = La ⊗ L~ + L⊗ La ⊗ L~

= (L⊗ L~ + 1)a

using Lemma 2.3.9, Lemma 2.1.3 and some basic identities. Thus R is a bisimula-
tion up-to, proving L~ = L⊗ L~ + 1.

32 Chapter 2. Coinduction for languages

2.3.3 Causal functions

The format of BDEs defined in this section is a straightforward extension of the one
for streams, given in [KNR11, HKR14]. There, it is shown that functions that can
be given by BDEs are exactly those that are causal, and vice versa. This result can
be extended to the case of languages. As a consequence of Theorem 2.3.6, we then
obtain causality of functions as an equivalent, semantic condition for soundness of
up-to techniques. Here, we assume the alphabet A to be finite.

For any language L and any k ∈ N we define L|k ∈ 2A
∗

by

L|k(w) =

{
L(w) if |w| ≤ k
0 otherwise

where |w| is the length of a word w. Define the relation ≈k as follows:

L ≈k K iff L|k = K|k .

A function σ̂ : (2A
∗
)n → 2A

∗
is causal if for all languages L1, . . . , Ln, K1, . . . ,Kn

and for any k ∈ N:

L1 ≈k K1, . . . , Ln ≈k Kn implies σ̂(L1, . . . , Ln) ≈k σ̂(K1, . . . ,Kn) .

Causality means that equality up to length k is a congruence, for any k. In other
words, membership in σ̂(L1, . . . , Ln) of words of length less than k depends only
on the words in L1, . . . , Ln of length less than k. For example, the function ĥ from
Example 2.3.2 is not causal: whether or not ĥ(L) contains the empty word depends
on the entire language L.

Lemma 2.3.11. The set of all causal functions can be given by BDEs.

Proof. The core of the proof is that the derivatives of causal functions can be ex-
pressed in terms of causal functions again. We only show how this works for a
unary function σ̂ : 2A

∗ → 2A
∗
; the extension to other arities is straightforward. Let

A = {a1, . . . , al} be a finite alphabet. Consider, for an alphabet letter a ∈ A, the
function

σ̃a : (2A
∗
)l+1 → 2A

∗

defined as σ̃a(M,K1, . . . ,Kl) = (σ̂(M(ε)+a1K1 + . . .+alKl))a. Then σ̃a is causal,
and it follows that

σ̂(L)a = σ̃a(L(ε), La1 , . . . , Lal) .

We have thus expressed the derivative σ̂(L)a in terms of another causal function,
which takes the output and derivatives of L as arguments. Further, since σ̂ is
causal, the output σ̂(L)(ε) depends only on L(ε).

In order to prove the converse, that is, any operation that can be given by BDEs
is causal, we need the following.

2.3. Sound operations for bisimulation up-to 33

Lemma 2.3.12. Let k ∈ N. Suppose that for all σ̂ in some set {σ̂}σ∈Σ, and for all
languages L1, . . . , Ln,K1, . . . ,Kn (where n = |σ|) we have

L1 ≈k K1, . . . , Ln ≈k Kn implies σ̂(L1, . . . , Ln) ≈k σ̂(K1, . . . ,Kn) . (2.4)

Then for any list of variables x1, . . . , xm, any term t ∈ Σ∗(x1, . . . , xm) over operators
in Σ, and any languages L1, . . . , Lm:

L1 ≈k K1, . . . , Lm ≈k Km implies I(t[xi := Li]i≤m) ≈k I(t[xi := Ki]i≤m) .

Proof. Let L1, . . . , Ln,K1, . . . ,Kn be languages such that L1 ≈k K1, . . . , Lm ≈k
Km, and suppose that (2.4) holds. We prove that I(t[xi := Li]i≤m) ≈k I(t[xi :=
Ki]i≤m) by structural induction on t.

For the base case, if t is a variable xj then I(t[xi := Li]i≤m]) = Lj and I(t[xi :=
Ki]i≤m) = Kj , and we need to prove Lj ≈k Kj which trivially follows from our
assumption.

Suppose I(tj [xi := Li]i≤m) ≈k I(tj [xi := Ki]i≤m) for all j ≤ n. Then

I(σ(t1, . . . , tn)[xi := Li]i≤m)

= I(σ(t1[xi := Li]i≤m, . . . , tn[xi := Li]i≤m))

= σ̂(I(t1[xi := Li]i≤m), . . . , I(tn[xi := Li]i≤m))

≈k σ̂(I(t1[xi := Ki]i≤m), . . . , I(tn[xi := Ki]i≤m))

= I(σ(t1[xi := Ki]i≤m, . . . , tn[xi := Ki]i≤m))

= I(σ(t1, . . . , tn)[xi := Ki]i≤m)

where the second step (relating by ≈k) follows by the induction hypothesis and the
assumption (2.4).

Theorem 2.3.13. A function σ̂ : (2A
∗
)n → 2A

∗
is causal if and only if it is contained

in a set of functions which can be given by BDEs.

Proof. From left to right, the result follows from Lemma 2.3.11. For the other
direction, assume a set of functions given by BDEs. We prove that

L1 ≈k K1, . . . , Ln ≈k Kn implies σ̂(L1, . . . , Ln) ≈k σ̂(K1, . . . ,Kn) (2.5)

for every σ̂ (with n the arity of σ̂) in the set and for every k, by induction on k.
Take any σ̂, with arity n, and given by the BDE (o, d). The base case (k = 0)

holds since L1 ≈0 K1, . . . , Ln ≈0 Kn implies

σ̂(L1, . . . , Ln)(ε) = o(L1(ε), . . . , Ln(ε))

= o(K1(ε), . . . ,Kn(ε)) = σ̂(K1, . . . ,Kn)(ε) .

Now suppose (2.5) holds for some k ∈ N, and suppose that we have languages
L1, . . . , Ln,K1, . . . ,Kn such that Li ≈k+1 Ki for each i ≤ n. We need to prove:

σ̂(L1, . . . , Ln) ≈k+1 σ̂(K1, . . . ,Kn) . (2.6)

34 Chapter 2. Coinduction for languages

Since Li ≈k+1 Ki by assumption, we have for each i ≤ n: Li ≈k Ki, Li(ε) ≈k
Ki(ε) and for each a ∈ A: (Li)a ≈k (Ki)a. By the induction hypothesis (2.5) and
Lemma 2.3.12 it follows that, for each a ∈ A:

I(d(a)[xi := Li]i≤n[xai := (Li)a]i≤n,a∈A[xεi := Li(ε)]i≤n)

≈k I(d(a)[xi := Ki]i≤n[xai := (Ki)a]i≤n,a∈A[xεi := Ki(ε)]i≤n)

where d is the function that specifies the derivative of σ̂, and thus

σ̂(L1, . . . , Ln)a = I(ρn(d(a))(L1, . . . , Ln))

= I(d(a)[xi := Li]i≤n[xai := (Li)a]i≤n,a∈A[xεi := Li(ε)]i≤n)

≈k I(d(a)[xi := Ki]i≤n[xai := (Ki)a]i≤n,a∈A[xεi := Ki(ε)]i≤n)

= I(ρn(d(a))(K1, . . . ,Kn))

= σ̂(K1, . . . ,Kn)a .

Since, moreover, σ̂(L1, . . . , Ln)(ε) = σ̂(K1, . . . ,Kn)(ε) we get (2.6) as desired.

By Theorem 2.3.6 and the above result we directly obtain causality as a suffi-
cient condition for the soundness of bisimulation up-to.

Corollary 2.3.14. Suppose every function of an interpretation {σ̂}σ∈Σ is causal.
Then bisimulation up-to w.r.t. {σ̂}σ∈Σ is sound, i.e., if R is a bisimulation up-to w.r.t.
{σ̂}σ∈Σ then (L,K) ∈ R implies L = K.

2.4 Simulation (up-to)

So far we have focused on techniques for showing equality of languages. Of course,
these methods can also be used to prove language inclusion, since L ⊆ K iff L +
K = K. However, there is a more direct way: instead of bisimulations, one can
construct simulations, which in practice turns out to be easier for proving language
inclusion.

Definition 2.4.1. Let (X, o, t) be a deterministic automaton. A simulation is a
relation R ⊆ X ×X such that for any (x, y) ∈ R:

1. o(x) ≤ o(y), and

2. for all a ∈ A : (t(x)(a), t(y)(a)) ∈ R.

The difference with bisimulation is that condition (1) is relaxed: if x is a final
state then y should be final as well, but if x is not final then the output of y does
not matter.

Theorem 2.4.2. If R ⊆ 2A
∗ × 2A

∗
is a simulation (on the automaton of languages

defined in Section 2.1) then for any (L,K) ∈ R: L ⊆ K.

2.4. Simulation (up-to) 35

Thus simulation is a concrete proof principle for language inclusion, just like
bisimulation is a proof principle for language equality.

Simulation up-to is based on a precongruence rather than a congruence closure;
the difference is that the precongruence is not symmetric, and it relates L to K
whenever L is included in K.

Definition 2.4.3. For a relationR ⊆ 2A
∗×2A

∗
, define the precongruence closure 5Σ

R

of R w.r.t. an interpretation {σ̂}σ∈Σ as the least relation 5 satisfying the following
rules:

LRK

L 5 K

L ⊆ K
L 5 K

L 5 K K 5M

L 5M

L1 5 K1 . . . Ln 5 Kn

σ̂(L1, . . . , Ln) 5 σ̂(K1, . . . ,Kn)
for each σ ∈ Σ, n = |σ|

R is a simulation up-to (w.r.t. an interpretation {σ̂}σ∈Σ), if for any (L,K) ∈ R:

1. L(ε) ≤ K(ε), and

2. for all a ∈ A : La 5Σ
R Ka.

Our soundness criterion for bisimulation up-to, which is that the operations
can be given by BDEs, turns out not to be strong enough for simulation up-to, as
witnessed by the following example.

Example 2.4.4. The complement operation can be given by BDEs (Lemma 2.3.7).
Consider the relation R = {(aA∗, 0)}. We have (aA∗)(ε) = 0 = 0(ε). Moreover
(aA∗)a = A∗ = 0 and 0a = 0 = A∗. Since 0 ⊆ A∗, we have 0 5R A∗ and
thus (aA∗)a 5R 0a, showing that R is a simulation up-to. But clearly aA∗ 6⊆ 0,
so simulation up-to with respect to language complement is not a sound proof
principle.

Our solution is to require in addition that the operations under consideration
satisfy a monotonicity condition.

Definition 2.4.5. A set {σ̂}σ∈Σ of operations is given by monotone BDEs if

1. {σ̂}σ∈Σ is given by BDEs, and

2. for each σ ∈ Σ: the associated (output) function o : 2n → 2 is monotone, i.e.,
if oj ≤ uj for all j with 1 ≤ j ≤ n then o(o1, . . . , on) ≤ o(u1, . . . , un).

Theorem 2.4.6. If {σ̂}σ∈Σ can be given by monotone BDEs then for any relation R
which is a simulation up-to w.r.t. {σ̂}σ∈Σ: if (L,K) ∈ R then L ⊆ K.

Proof. The proof is mostly that of Theorem 2.3.6. One proves by induction that
5, the precongruence closure of R, is a simulation. The only difference is the first
part of the inductive step, which concerns the output. Suppose σ̂ is an operation
of arity n, from a set {σ̂}σ∈Σ of operations given by monotone BDEs, and let o be

36 Chapter 2. Coinduction for languages

its output function. Let L1, . . . , Ln and K1, . . .Kn be languages such that for all j:
Lj(ε) ≤ Kj(ε). Then

σ̂(L1, . . . , Ln)(ε) = o(L1(ε), . . . , Ln(ε))

≤ o(K1(ε), . . . ,Kn(ε)) = σ̂(K1, . . . ,Kn)(ε)

where we use the assumption that o is monotone.

Example 2.4.7. The general version of Arden’s rule states that, given languages K
and M , the least solution of L = KL+M is K∗M . Furthermore, if K(ε) = 0 then
it is the unique one, as we have seen in Example 2.2.6. For the proof of the general
statement, first notice that K∗M is indeed a solution since K∗M = (KK∗+1)M =
KK∗M + M . To show that it is the least one, let L be any language such that
L = KL + M and consider the relation R = {(K∗M,L)}. Then R is a simulation
up-to, since (K∗M)(ε) = M(ε) ≤ (KL+M)(ε) = L(ε) and for any a:

(K∗M)a = KaK
∗M +Ma 5R KaL+Ma

⊆ KaL+K(ε)La +Ma = (KL+M)a = La .

Thus K∗M is the least solution.

The reader is invited to formulate and prove a version of Arden’s rule, where
shuffle and shuffle closure (Section 2.3.2) replace concatenation and Kleene star.
Further, in Example 2.2.5 we proved M + KL ⊆ L ⇒ K∗M ⊆ L using a bisimu-
lation up-to. The proof using a simulation up-to is the same as (part of) the above
proof of Arden’s rule. One might expect that M + LK ⊆ L ⇒ MK∗ ⊆ L has a
similar treatment, but due to the asymmetry of the derivative of concatenation the
proof is different.

Example 2.4.8. In order to proveM+LK ⊆ L⇒MK∗ ⊆ L, consider the relation
R = {(MK∗, L) | M + LK ⊆ L; L,K,M ∈ 2A

∗}. Let L,K,M be such languages;
then M(ε) ≤ L(ε), so (MK∗)(ε) ≤ L(ε). For any a ∈ A, we have

(MK∗)a = MaK
∗ +M(ε)KaK

∗ = (Ma +M(ε)Ka)K∗

In order to see that this is related by 5R to La, we start with our assumption
M+LK ⊆ L and compute derivatives: (M+LK)a ⊆ La, so Ma+LaK+L(ε)Ka ⊆
La. Reformulating this as (Ma + L(ε)Ka) + LaK ⊆ La, we have

((Ma + L(ε)Ka)K∗, La) ∈ R .

Since M(ε) ≤ L(ε) we thus obtain

(MK∗)a = (Ma +M(ε)Ka)K∗ ⊆ (Ma + L(ε)Ka)K∗ 5R La

as desired, showing that R is a simulation up-to.

We conclude with the soundness of an axiom that concerns the interplay be-
tween shuffle and concatenation and that is used, for example, in concurrency
theory [HMSW11].

2.5. Discussion and related work 37

Example 2.4.9. The exchange law states that

(M ⊗ L)(K ⊗N) ⊆ (MK)⊗ (LN)

for any languages M,L,K,N . Consider the relation

R = {((M ⊗ L)(K ⊗N), (MK)⊗ (LN)) |M,K,L,N ∈ 2A
∗
} .

Then

((M ⊗ L)(K ⊗N))(ε) = M(ε) ∧ L(ε) ∧K(ε) ∧N(ε) = ((MK)⊗ (LN))(ε)

and for any alphabet letter a:

((M ⊗ L)(K ⊗N))a
= (Ma ⊗ L+M ⊗ La)(K ⊗N) + (M ⊗ L)(ε)(Ka ⊗N +K ⊗Na)
= (Ma ⊗ L)(K ⊗N) + (M ⊗ La)(K ⊗N) + (M(ε) ∧ L(ε))(Ka ⊗N)

+(M(ε) ∧ L(ε))(K ⊗Na)
5R (MaK)⊗ (LN) + (MK)⊗ (LaN)

+(M(ε)Ka)⊗ (L(ε)N) + (M(ε)K)⊗ (L(ε)Na)
⊆ (MaK)⊗ (LN) + (MK)⊗ (LaN)

+(M(ε)Ka)⊗ (LN) + (MK)⊗ (L(ε)Na)
= (MaK +M(ε)Ka)⊗ (LN) + (MK)⊗ (LaN + L(ε)Na)
= ((MK)⊗ (LN))a

This shows that R is a simulation up-to and proves the exchange law.

The proof in the above example is clearly easier than one where the inclusion
would be reduced to checking equality by means of bisimilarity.

2.5 Discussion and related work

We presented bisimulation up-to as a proof method for language equivalence, and
simulation up-to as a proof method for language inclusion. These techniques are
sound enhancements of the coinductive proof method based on (bi)simulation, if
the operations under consideration adhere to the format of behavioural differential
equations presented in this chapter. For the soundness of simulation up-to, the
operations additionally need to satisfy a monotonicity condition.

Deterministic automata are coalgebras, and the notions of bisimulation and
coinduction introduced in Section 2.1 are instances of general definitions [Rut98a].
The up-to techniques introduced in this chapter are also instances of much more
general results developed in subsequent chapters of this thesis. In fact, the for-
mat of BDEs can be represented by a distributive law, which immediately proves
the soundness (actually, a stronger notion) of bisimulation up-to. Moreover, the
monotonicity condition for simulation up-to arises from a result in Chapter 5 that
requires that the distributive law lifts to a certain category.

38 Chapter 2. Coinduction for languages

A discussion of related work with respect to more general up-to techniques is
postponed to Chapter 5. Relevant in the present context is the work of Bonchi
and Pous [BP13], which consists of a new algorithm for checking equivalence of
non-deterministic automata based on bisimulation up to congruence, improving
the state of the art significantly (see also [HR15]). That algorithm is based on
the algebraic structure of the powerset of states, obtained by determinization. Our
approach is different in that we consider algebraic structures for arbitrary calculi
on languages (given by behavioural differential equations). Moreover, we do not
focus on the algorithmic aspect, but consider up-to techniques for infinite state
systems, in order to prove, e.g., inequalities over arbitrary languages.

Bisimulation up-to techniques have been applied to facilitate coinductive defi-
nitions and proofs in Coq [EHB13]. In fact, the latter paper uses causal contexts on
streams as a condition for soundness; as shown in [HKR14] (and extended to lan-
guages in this chapter), this condition is equivalent to requiring that the operations
under consideration can be defined by behavioural differential equations.

Our techniques are more widely applicable than only to regular languages, as
we have shown in a number of examples involving equations over arbitrary lan-
guages. Nevertheless, we recall some of the related work on checking equiva-
lence of regular expressions, for which a wide range of different tools and tech-
niques has been developed. We only recall the ones most relevant to our work.
CIRC [LGCR09] is a general coinductive theorem prover, which can deal with reg-
ular expressions. Recently, various algorithms based on Brzozowski derivatives
and bisimulations have been implemented in Isabelle [KN12] and formalized in
type theory, yielding an implementation in Coq [CS11] (while [CS11] does not
mention bisimulations explicitly, their method is based on constructing a bisimu-
lation). There is another Coq implementation of regular expression equivalence,
which is based on partial derivatives [MPdS12]. An efficient algorithm for de-
ciding equivalence in Kleene algebra, based on automata but not on derivatives
and bisimulations, was recently implemented in Coq as well [BP12]. We refer
to [NT14] for an overview and comparison between these approaches. Of course,
one can reason about regular expressions in Kleene algebra. This is however a
fundamentally different approach than the coinductive techniques of the present
chapter. In [Gra05], a proof system for equivalence of regular expressions is pre-
sented, based on bisimulations but not on bisimulation up-to. In [HN11], a general
coinductive axiomatization of regular expression containment is given, based on
an interpretation of regular expressions as types. The authors of [HN11] instanti-
ate their axiomatization with the main coinductive rule from [Gra05]. The focus
of [HN11] is on constructive proofs based on parse trees of regular expressions. In
contrast, our approach is based on bisimulations between languages.

The presented proof techniques apply to undecidable problems such as lan-
guage equivalence of context-free grammars. Indeed, automation is not aimed at
in this chapter. Nevertheless, the present techniques can be seen as a foundation
for novel interactive theorem provers, and extensions of fully automated tools such
as [KN12, LGCR09, CS11].

If one works with syntactic terms, such as regular expressions, rather than with

2.5. Discussion and related work 39

languages, the notion of bisimulation up to bisimilarity becomes relevant. In the
corresponding proof method, one relates terms modulo bisimilarity. Since we work
directly with languages, in our case this is not necessary, but for dealing with terms
our techniques can easily be combined with up-to-bisimilarity—see the subsequent
chapters of this thesis for details. Bisimulation up to bisimilarity (alone, with-
out context and equivalence closure) was originally introduced in [Mil83], and in
the context of automata and languages simulation up to similarity was introduced
in [Rut98a].

