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Chapter 1

Introduction

Induction is a proof and definition principle which is standard in mathematics and
computer science. Coinduction, its dual, is particularly suitable for defining infinite
and circular objects and proving properties about them. It is becoming increasingly
clear that coinduction provides a foundation for many infinite structures arising in
computer science, and in recent years it has been the subject of intense research
activity. Coinductive techniques have been used to reason about process calculi
and their behavioural properties (e.g., [Mil89, Par81, AFV01, TP97]), data struc-
tures such as a streams or infinite trees [HJ97, Rut03, APTS13], languages and
automata [BP13, Rut98a, Jac06a], recursive types [BH98, AC14], potentially infi-
nite data structures in functional languages and theorem provers [BPT15, APTS13,
HNDV13, LGCR09], and much more [San12a, SR12, KS14].

The broad spectrum of coinduction is unified by the theory of coalgebras, which
is a general approach to state-based systems and infinite behaviour. In this intro-
ductory chapter, we discuss the notions of coalgebra and coinduction, and describe
the contents of this thesis. First, we give the basic intuition of coinduction through
an example, in Section 1.1. Then we provide a short background on coalgebras,
in Section 1.2. The main aims and contributions of this thesis are stated in Sec-
tion 1.3, related work in Section 1.4 and the outline in Section 1.5.

1.1 Coinductive reasoning

Induction is most commonly known as a proof principle involving the natural num-
bers: to prove that a property holds for all natural numbers, one proves (a) that
it holds for 0, and (b) that if it holds for n, then it also holds for the successor
n + 1. The validity of this proof principle arises from the construction of natural
numbers as the least set that contains 0 and is closed under the successor function.
In general, induction concerns the least object satisfying some property, whereas
coinduction concerns the greatest object satisfying some property (in a suitable
universe).
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10 Chapter 1. Introduction

Consider, for instance, the set of finite lists of integers. This set is defined
inductively as follows: [] is a list (the empty list), and if n is an integer and l is a list
then their concatenation n : l is again a list. The set of lists is by definition the least
set that contains the empty list and is closed under concatenation. In contrast, the
set of streams (infinite sequences) of integers is defined coinductively. A stream
s decomposes as s0 : s′ where s0 is an integer (the head of the stream) and s′ is
again a stream (the tail). The set of streams is defined as the greatest set of which
each element decomposes in this way as a head and a tail.

Lists and streams are examples of inductively and coinductively defined objects.
We now turn to proof principles. Suppose we have two functions f, g on finite lists
that we would like to prove equal. To do so we may prove:

1. f([]) = g([]), and

2. for any list l and any natural number n: if f(l) = g(l) then f(n : l) = g(n : l).

If these two conditions are satisfied then f(l) = g(l) for any list l, by the induction
proof principle. Intuitively, this proof principle is valid since every list is constructed
by concatenating a finite number of elements to the empty list. More precisely, the
above two conditions ensure that the set {l | f(l) = g(l)} of lists on which f and
g agree, contains the empty list and is closed under concatenation. Therefore, it
contains every list, i.e., f(l) = g(l) for every list l.

Now, suppose f, g are functions on streams. Then the above inductive proof
principle does not apply, since streams are not constructed from the empty list.
Instead, to prove equality of arbitrary streams s and t, we use the decomposition
of streams into heads and tails, and observe that s = t precisely if the heads s0 and
t0 are equal and their tails s′ and t′ are again equal. This observation does not help
very much yet, but the point is that equality of streams is the largest relation R on
streams such that for every (s, t) ∈ R:

1. s0 = t0 (the heads are equal), and

2. (s′, t′) ∈ R (the tails are again related).

A relation on streams that satisfies the above two properties is called a (stream)
bisimulation. The fact that the greatest bisimulation is the equality relation is called
the coinduction proof principle. By the coinduction proof principle, to prove that any
two streams are equal, it suffices to construct a bisimulation that relates them. In
particular, if we manage to construct a bisimulation that relates f(s) = g(s) for any
stream s, then f = g. The coinduction proof principle turns out to be a powerful
tool for reasoning about streams (e.g., [Rut03, NR11]).

Bisimulations were first introduced in concurrency theory by Milner and Park,
as a behavioural equivalence between processes [Mil80, Par81], providing the
foundation for much of the work on concurrency theory that followed. In fact,
bisimulations are of interest well beyond the study of processes, as a general coin-
ductively defined equivalence between systems with infinite behaviour, that comes
with a suitable proof principle. Indeed, bisimulations are also of interest to reason
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about streams, automata, and many other models of computation. The general
applicability of bisimulation and coinduction is based on the theory of coalgebras,
which we explain next.

1.2 Coalgebras

Inspired by Milner’s work on concurrent processes, Aczel applied bisimulations in
set theory, to define equality between non-wellfounded sets [Acz88]. Aczel’s work
is based on a coalgebraic presentation of transition systems, and he showed that
final coalgebras provide models of non-wellfounded sets as well as a mathemati-
cal interpretation of Milner’s process calculi. Aczel and Mendler then proposed a
coalgebraic generalization of bisimulations in terms of homomorphisms between
coalgebras, and used this to formulate a general coinductive proof principle for
behavioural equivalence [AM89].

The abstract coalgebraic definition of bisimulations in [AM89] and the associ-
ated coinductive proof principle formed the start of the development of coalgebra
as a mathematical theory of state-based systems. Coalgebras uniformly capture a
large class of models of interest, including various kinds of transition systems but
also automata and infinite or circular data structures. The common properties of
all these models are studied in universal coalgebra, as developed systematically by
Rutten in [Rut00].

The basic idea is that the type of a coalgebra is given by a functor, which de-
scribes the observations and dynamics. From a given functor that models the sys-
tem type of interest, one canonically obtains an associated notion of homomor-
phism and bisimulation. Moreover, under mild conditions on the functor there
exists a final coalgebra, which provides a canonical domain of behaviours. Every
coalgebra has a unique homomorphism into this final coalgebra. The unique exis-
tence of such a homomorphism is conceptually identified with a coinductive defi-
nition and proof principle [JR12]. Given a coalgebra, the homomorphism into the
final coalgebra assigns a semantics to it, which allows for coinductive definitions.
The fact that this homomorphism is unique gives rise to a proof method.

As an example, we consider stream systems, which are coalgebras for a functor
that maps a set X to the product N ×X with the natural numbers. A stream sys-
tem consists of a set X of states, an output function o : X → N, and a next state
function t : X → X. The final coalgebra for the functor under consideration con-
sists of all streams over the natural numbers, together with the functions head and
tail. The coalgebraic notions of bisimulation and coinduction for this functor in-
stantiate to stream bisimulations and the associated coinductive proof principle, as
described in the previous section. The coinductive definition principle, which states
that every stream system has a unique map into the final coalgebra of streams, al-
lows to define streams and operations on them by constructing suitable stream
systems [Rut03, HKR14].

All in all, coalgebra allows us to understand and prove properties of models of
computation at a high level of abstraction, and instantiate these results to a wide
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variety of concrete systems. Indeed, the theory of coalgebras is a lively research
area, with new perspectives and results for such diverse areas as modal logic, op-
erational semantics, probabilistic systems, infinite data structures and automata
theory (see, e.g., [Jac12, Mis15, Sil15, JNRS11] for a recent overview).

1.2.1 Classical and coalgebraic coinduction

A standard formalization of coinduction, which we call classical coinduction, is in
terms of complete lattices rather than coalgebras [San12a]. We briefly comment on
its relation with coalgebras; more details are in Chapter 3 of this thesis. Classical
coinduction is based on Knaster-Tarski’s theorem, which states that every monotone
function f on a complete lattice has a greatest fixed point gfp(f). The existence
of gfp(f) is a definition principle, the fact that it is the greatest post-fixed point a
proof principle. For instance, the bisimilarity relation of a given transition system
is the greatest fixed point of a certain function on the complete lattice of relations
on the state space. The proof principle then states that bisimilarity is the greatest
bisimulation. By varying the function f one obtains different coinductive predi-
cates, such as similarity, weak or branching bisimilarity, divergence of processes,
increasing streams, language inclusion of automata, and so on.

Classical coinduction is very general in the kind of coinductive predicates that
can be defined, but it is specifically suitable for speaking about properties of a fixed
system. In contrast, coinduction as finality of coalgebras which model the systems
of interest (e.g., transition systems) carries a different intuition: it yields a struc-
tural account of the specific coinductive predicate of bisimilarity and of behavioural
equivalence, which is however uniform over all systems of the given type.

The classical approach can be rephrased as a special case of coalgebraic coin-
duction, by the observation that any preorder, and thus in particular any complete
lattice, forms a category. Post-fixed points in the lattice correspond to coalgebras in
the associated category, and a greatest fixed point corresponds to a final coalgebra.
In this sense, coinductive predicates on a given system are themselves coalgebras,
which live in a category of predicates.

To define coinductive predicates in this way as coalgebras in a category of
predicates, we need a way of speaking about properties or predicates on systems.
Such a structure of predicates can be given by the categorical notion of fibrations.
As observed by Hermida and Jacobs [HJ98] and further developed by Hasuo et
al. [HCKJ13], fibrations provide the basic infrastructure to define coinductive pred-
icates on coalgebras systematically and uniformly, in terms of a lifting of the functor
whose coalgebras are the systems of interest to a category of predicates.

1.3 Enhanced coinduction

The aim of this thesis is to develop methods that simplify and enhance coinductive
reasoning, with coalgebra as the framework of choice to obtain generally applicable
techniques. Our results are divided into two parts: the first part concerns the
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coinductive proof method, and the second part concerns coinductive definition
techniques.

1.3.1 Coinductive proofs

To prove that two processes are bisimilar, it suffices to construct a bisimulation.
However, this can be rather difficult in concrete instances. Already in the early
days of bisimulations, Milner proposed a simplified method of proving bisimilarity,
which he called bisimulation up to bisimilarity [Mil83]. This idea was further devel-
oped in the work of Sangiorgi [San98], who proposed several new enhancements
of the bisimulation proof method, including bisimulation up to context, a powerful
technique for reasoning about systems with algebraic structure, such as models of
process calculi. The gains of using up-to techniques to prove bisimilarity can be
spectacular, sometimes allowing to use proofs based on a singleton rather than an
infinite set. Indeed, up-to techniques have been extensively applied and are by
now standard in concurrency theory [PS12].

Enhancements of the bisimulation proof method are interesting not only in con-
currency theory. As an example, the coalgebraic study of automata [Rut98a] led to
a general view on determinization constructions [SBBR10] which has been com-
bined with up-to techniques, culminating in a novel, efficient algorithm for lan-
guage equivalence of non-deterministic automata [BP13, BP15], a problem that is
long known and has been studied extensively. Other examples of up-to techniques
outside concurrency theory are their use in stream calculus [Rut05, NR11], theo-
rem proving [EHB13], and decidability of weighted language equivalence [Win15].
Further, in Chapter 2 of this thesis we show how to apply up-to techniques for de-
terministic automata to reason about calculi on languages.

In this thesis, we introduce a coalgebraic framework of up-to techniques for
coinductive predicates, generalizing the enhancements of the proof method for
bisimilarity of processes to a wide range of coinductive predicates and a wide
range of state-based systems. We prove the soundness of enhancements such
as bisimulation up to context, bisimulation up to transitivity and bisimulation
up to bisimilarity, at this abstract level. Building on the work of Pous and San-
giorgi [San98, Pou07, PS12], we obtain a modular framework in which up-to tech-
niques can safely be combined to obtain new sound enhancements. To cover not
only bisimilarity but also other coinductive predicates, we base our approach on
functor liftings in the setting of a fibration, as pioneered by Hermida and Jacobs.
We show how to instantiate these results to obtain enhanced proof principles for
bisimilarity of weighted automata, streams and deterministic automata, and also
for other coinductive predicates such as divergence of processes, language inclu-
sion of weighted automata and similarity of processes.

1.3.2 Coinductive definitions

Coalgebras provide the means for studying the behaviour of state-based systems,
and to define and reason about operations on these systems. They yield a natu-
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ral setting to define the operational semantics of languages and calculi for a wide
range of computational models. In this context, the structure or syntax of a lan-
guage is modelled by algebras, whereas the observable behaviour is modelled by
coalgebras [RT93]. The semantics of the operators of a language is specified in
terms of the interplay between algebra and coalgebra.

As an example, the terms of a typical process calculus, such as CCS, form a
(free) algebra, and the behaviour is given in terms of transition systems. This
behaviour is defined by inductively turning the terms into a coalgebra, according to
the specification of each of the operators. Often, such specifications are presented
in the language of structural operational semantics [AFV01]. For example, the
parallel composition operator in CCS is defined by the following rules:

x
a−→ x′

x|y a−→ x′|y
y
a−→ y′

x|y a−→ x|y′
x

a−→ x′ y
a−→ y′

x|y τ−→ x′|y′
(1.1)

The first rule states that if a process x makes an a-transition to x′ then the parallel
composition x|y with any process y makes an a-transition to x′|y, and the second
rule is its converse. The third rule states how processes x and y can synchronize.
The above rules specify how the behaviour of the parallel composition operation
is determined from the behaviour of its arguments. Such rules define a coalgebra
(transition system) on terms, by induction. The semantics of the operator then
arises coinductively, as the homomorphism from this coalgebra on terms into the
final coalgebra.

It was observed by Turi and Plotkin that the interplay between algebra and
coalgebra can be captured elegantly and systematically through the categorical
concept of a distributive law [TP97]. In particular, they showed that distributive
laws can be presented by abstract GSOS specifications, providing a specification for-
mat for languages and calculi which is parametric in the type of behaviour and
the type of syntax, in which every specification induces a compositional semantics.
As a special case, this can be instantiated to the celebrated GSOS format, which
is a particular variant of structural operational semantics [TP97, Bar04, BIM95].
However, abstract GSOS has also been instantiated to obtain formats for proba-
bilistic systems [Bar04], weighted systems [Kli09], streams [HKR14, Kli11], and
more [Kli11]. Moreover, distributive laws have been used to devise coalgebraic
determinization procedures [SBBR10, JSS12, Bar04], for solving recursive equa-
tions (e.g., [Jac06b, MMS13]), and they play a crucial role in the enhancements of
coinductive proof methods proposed in this thesis.

In the second part of this thesis, we integrate distributive laws with equations.
We extend Turi and Plotkin’s framework with recursive assignment rules. This
allows, for instance, to define the replication operator !x in CCS by the rule

!x|x a−→ t

!x
a−→ t

(1.2)

which does not fit the GSOS format, since a GSOS rule can not have complex terms
such as !x|x in the premise. Subsequently we show that, using assignment rules, we
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can express the syntactic format for structural congruences proposed by Mousavi
and Reniers [MR05]. Structural congruences are a method to combine transition
system specifications with equations. We thus integrate (abstract) GSOS specifica-
tions with equations, which allows, for instance, to define the replication operator
!x in CCS by the equation !x = !x|x, and to replace the two symmetric rules in (1.1)
by a single rule and the equation x|y = y|x. Our main result is that the interpre-
tation of specifications extended with assignment rules (or equations in Mousavi
and Reniers’ format) is well-behaved, in the sense that bisimilarity is a congruence
and that bisimulation up-to techniques are sound. We thus provide a systematic
account of combining distributive laws with structural congruences, which was
mentioned as an open problem by Bartels [Bar04, page 166] and Klin [Kli07].

While distributive laws can be useful tools to understand the interaction be-
tween algebra and coalgebra, they can also be rather hard to describe. Typically,
one tries to apply a general method to obtain them, for example by presenting
them using abstract GSOS specifications, or using pointwise liftings of the functor
that models the type of behaviour [Jac06b, SBBR13]. However, these approaches
do not apply if the algebraic structure is modelled by a monad that is not free and
the semantics of interest does not arise from a pointwise lifting. This is the case,
for instance, in the coalgebraic presentation of context-free grammars proposed
in [WBR13].

We show how to present distributive laws for a monad with an equational pre-
sentation as the quotient of a distributive law for the underlying free monad, which
can in turn be conveniently described using an abstract GSOS specification. The
quotient exists under the condition that the original distributive law preserves the
equations of the monad, which essentially means that the congruences generated
by the equations are bisimulations. We demonstrate our approach by presenting
distributive laws for operations on streams and for context-free grammars in a sim-
ple manner.

1.4 Related work

The use of up-to techniques to enhance the bisimulation proof method for tran-
sition systems goes back to Milner [Mil83, Mil89]. The first systematic study of
soundness of up-to techniques for bisimilarity between processes is due to San-
giorgi [San98]. Sangiorgi’s approach to modularly construct sound up-to tech-
niques was then generalized to the setting of coinduction in complete lattices by
Pous [Pou07, PS12].

At the coalgebraic level, bisimulation up-to techniques were first studied by
Lenisa [Len99, LPW00] and by Bartels [Bar04]. They proved the soundness of the
specific technique of bisimulation up to context, under certain hypotheses. Both
Lenisa and Bartels explicitly mention techniques such as bisimulation up to bisim-
ilarity as an open problem, and Bartels conjectures that the combination of up-to
techniques can be achieved by finding a suitable abstract framework and an asso-
ciated generalization of Sangiorgi’s methods to combine sound up-to techniques
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(see [Bar04, page 166-167],[Len99, page 18]). In this thesis, we provide precisely
such a framework, which covers a wide range of enhancements including up-to
bisimilarity, but also many other techniques, and their combinations.

Another coalgebraic approach is due to Luo [Luo06], who adapts Sangiorgi’s
framework of up-to techniques to prove soundness of several up-to techniques.
Further, [ZLL+10] introduces bisimulation up-to where the notion of bisimulation
is based on a specification language for polynomial functors. All of the previous
works on up-to techniques for coalgebras focus on bisimulations; in contrast, the
results in this thesis are developed for general coinductive predicates.

Coinductive definition principles through bialgebraic methods have been an
active area of research since the work of Turi and Plotkin. The combination of
recursive constructs with bialgebraic semantics was suggested by Plotkin [Plo01]
and developed by Klin [Kli04], based on bialgebras in an order-enriched setting.
Instead, we only assume an order on the behaviour functor of interest, which al-
lows us to combine abstract GSOS specifications with recursive equations. This
combination is the basis of our concrete approach to structural congruences in
the bialgebraic setting. Our results on structural congruences build on the work
of Mousavi and Reniers [MR05]. While structural congruences are standard and
widely used in concurrency theory, Mousavi and Reniers provided the only system-
atic study of structural congruences so far.

The construction of distributive laws as quotients, which we propose in this the-
sis, yields an instance of a morphism of distributive laws in the sense of [Wat02].
Quotients of distributive laws are studied in [MM07], with a different aim: they
study distributive laws of one monad over another in order to compose these mon-
ads. Further, [LPW04] introduces several constructions on distributive laws, in-
cluding a certain kind of quotient. Our main new contributions are an associated
proof principle that ensures that a quotient distributive law exists, a self-contained
presentation of all the necessary ingredients, and the application to stream calculus
and the coalgebraic approach to context-free languages proposed in [WBR13].

1.5 Outline

In Chapter 2 we prove the soundness of up-to techniques for language equivalence
and inclusion, and explain how to use these techniques through a wide range of
examples. This chapter requires little background knowledge, and it serves as a
self-contained introduction to bisimulation and bisimulation up-to. Chapter 2 is
based on:

• [RBR13b] Jurriaan Rot, Marcello Bonsangue, and Jan Rutten. Coinductive
proof techniques for language equivalence. LATA 2013.

• [RBR15] Jurriaan Rot, Marcello Bonsangue, and Jan Rutten. Proving lan-
guage inclusion and equivalence by coinduction. To appear in Information
and Computation, 2015. (Extended version of [RBR13b].)
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Chapter 3 contains preliminaries on coalgebras, coinduction, fibrations, alge-
bras and distributive laws, that form the technical background of the subsequent
chapters. It is not necessary to understand all of the preliminaries to proceed with
the other chapters. In particular, much of the development of Chapter 4 can be
understood without knowledge of distributive laws, and the background material
on fibrations is only required in Chapter 5.

In Chapter 4 we introduce bisimulation up-to techniques for coalgebras. We
prove the soundness of techniques such as up-to-context, up-to-bisimilarity and
up-to-equivalence, and their combinations. To illustrate this theory, we show how
to use bisimulation up-to techniques to reason about streams, weighted automata
and (non)deterministic automata. The soundness of bisimulation up-to techniques
for deterministic automata of Chapter 2 is a special case. Chapter 4 is based on:

• [RBB+15] Jurriaan Rot, Filippo Bonchi, Marcello Bonsangue, Damien Pous,
Jan Rutten, and Alexandra Silva. Enhanced coalgebraic bisimulation. To
appear in Mathematical Structures in Computer Science, 2015.

To a smaller extent, Chapter 4 is based on the predecessor of the above paper:

• [RBR13a] Jurriaan Rot, Marcello Bonsangue, and Jan Rutten. Coalgebraic
bisimulation-up-to. SOFSEM 2013.

In Chapter 5 we generalize the results of Chapter 4 to arbitrary coinductive
predicates, based on a fibrational approach to coinductive predicates. Our results
in this chapter provide a flexible approach to defining general up-to techniques
for coinductive predicates and proving their soundness in a modular way. We in-
stantiate this abstract framework to prove the soundness of up-to techniques for
similarity of transition systems, language inclusion of weighted automata, and di-
vergence of processes. Chapter 5 is based on:

• [BPPR14] Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot.
Coinduction up-to in a fibrational setting. CSL-LICS 2014.

Chapter 6 integrates Turi and Plotkin’s approach to abstract GSOS with equa-
tions. We show how to interpret recursive equations in this context, and prove
that they can be encoded by constructing new specifications. We use this to show
how abstract GSOS can be combined with structural congruences, for a particular
format of equations. Chapter 6 is based on:

• [RB14] Jurriaan Rot and Marcello Bonsangue. Combining bialgebraic seman-
tics and equations. FoSSaCS 2014.

Further, Chapter 6 is based on an extended version [RB15] which is currently under
review.

In Chapter 7 we study distributive laws of monads over functors. We show how
to present such distributive laws as quotients of distributive laws involving a free
monad, which can in turn be given more easily through abstract GSOS specifica-
tions. Chapter 7 is based on:
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• [BHKR13] Marcello Bonsangue, Helle Hvid Hansen, Alexander Kurz, and
Jurriaan Rot. Presenting distributive laws. CALCO 2013.

• [BHKR15] Marcello Bonsangue, Helle Hvid Hansen, Alexander Kurz, and
Jurriaan Rot. Presenting Distributive Laws. Logical Methods in Computer
Science, 2015.

The papers [BHKR13, BHKR15, BPPR14] are a joint effort between the authors.
For the other papers mentioned above [RBR13b, RBR15, RBB+15, RBR13a, RB14],
the author of this thesis is responsible for the main ideas, technical development
and most of the writing.


