Interactive scalable condensation of reverse engineered UML class diagrams for software comprehension
Osman, M.H.B.

Citation

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/32210

Note: To cite this publication please use the final published version (if applicable).
The handle http://hdl.handle.net/1887/32210 holds various files of this Leiden University dissertation.

Author: Osman, Mohd Hafeez Bin
Title: Interactive scalable condensation of reverse engineered UML class diagrams for software comprehension
Issue Date: 2015-03-10
In this Appendix, we list the candidate projects for our case studies (Table A.1). Item mark with * are the selected case studies.

Table A.1: List of Case Study Candidates

<table>
<thead>
<tr>
<th>No</th>
<th>Project</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ArgoUML*</td>
<td>http://sourceforge.net/projects/argouml/</td>
</tr>
<tr>
<td>2</td>
<td>Bookszenbooks</td>
<td>http://code.google.com/p/bookszenbooks/</td>
</tr>
<tr>
<td>3</td>
<td>cmpt371t1</td>
<td>http://code.google.com/p/cmpt371t1/</td>
</tr>
<tr>
<td>4</td>
<td>Concurrentadt</td>
<td>http://code.google.com/p/concurrentadt/</td>
</tr>
<tr>
<td>5</td>
<td>CrimsonPortal</td>
<td>http://code.google.com/p/crimsonportal/</td>
</tr>
<tr>
<td>7</td>
<td>DocDoku</td>
<td>http://code.google.com/p/docdoku/</td>
</tr>
<tr>
<td>8</td>
<td>driving-bc</td>
<td>http://code.google.com/p/driving-bc/</td>
</tr>
<tr>
<td>9</td>
<td>DRMJ-Webshop</td>
<td>http://code.google.com/p/drmj-webshop/</td>
</tr>
<tr>
<td>11</td>
<td>Epydoc</td>
<td>http://epydoc.sourceforge.net/api/epydoc-module.html</td>
</tr>
<tr>
<td>12</td>
<td>europa-ps</td>
<td>http://code.google.com/p/europa-ps/</td>
</tr>
<tr>
<td>14</td>
<td>Fuge</td>
<td>http://fuge.sourceforge.net/dev/index.php</td>
</tr>
<tr>
<td>15</td>
<td>gelsanalyzer</td>
<td>http://code.google.com/p/gelsanalyzer/downloads/detail?name=MVC%20Class%20Diagram%20Iteration2.png&can=2&q=</td>
</tr>
<tr>
<td>Case Study Candidates</td>
<td>URL</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>16 GNetWatch</td>
<td>http://gnetwatch.sourceforge.net/doc.html</td>
<td></td>
</tr>
<tr>
<td>17 Google-voice-java</td>
<td>http://code.google.com/p/google-voice-java/</td>
<td></td>
</tr>
<tr>
<td>18 Gotogate</td>
<td>http://gotogate.googlecode.com/svn/trunk/</td>
<td></td>
</tr>
<tr>
<td>19 gwavmerger</td>
<td>http://gwavmerger.sourceforge.net/gwm-design/design.html</td>
<td></td>
</tr>
<tr>
<td>20 gwt-portlets*</td>
<td>http://code.google.com/p/gwtportlets/</td>
<td></td>
</tr>
<tr>
<td>21 gwtuml</td>
<td>http://code.google.com/p/gwtuml/</td>
<td></td>
</tr>
<tr>
<td>22 httpdbase4j</td>
<td>http://httpdbase4j.berlios.de/</td>
<td></td>
</tr>
<tr>
<td>23 Jalli</td>
<td>http://jalli.berlios.de/</td>
<td></td>
</tr>
<tr>
<td>ral Network Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 JavaClient*</td>
<td>http://java-player.sourceforge.net/</td>
<td></td>
</tr>
<tr>
<td>27 JGAP*</td>
<td>https://sourceforge.net/project/screenshots.php?group_id=11618</td>
<td></td>
</tr>
<tr>
<td>28 jjack</td>
<td>http://jjack.berlios.de/</td>
<td></td>
</tr>
<tr>
<td>29 jpmc*</td>
<td>http://jpmc.sourceforge.net/diagrams.html</td>
<td></td>
</tr>
<tr>
<td>30 Jvending</td>
<td>http://jvending.sourceforge.net/</td>
<td></td>
</tr>
<tr>
<td>31 Krank</td>
<td>http://code.google.com/p/krank/</td>
<td></td>
</tr>
<tr>
<td>32 Mandragora Project</td>
<td>http://mandragora.sourceforge.net/referenceguide/how-to-extend.html</td>
<td></td>
</tr>
<tr>
<td>34 Maze-Solver*</td>
<td>http://code.google.com/p/maze-solver/wiki/MazeModelDoc</td>
<td></td>
</tr>
<tr>
<td>35 monopolj</td>
<td>http://code.google.com/p/monopolj/</td>
<td></td>
</tr>
<tr>
<td>36 MyDas</td>
<td>http://code.google.com/p/mydas/</td>
<td></td>
</tr>
<tr>
<td>39 Neuroph*</td>
<td>http://neuroph.sourceforge.net/</td>
<td></td>
</tr>
<tr>
<td>40 nmt-cs326-g5</td>
<td>https://code.google.com/p/nmt-cs326-g5/</td>
<td></td>
</tr>
<tr>
<td>42 Nymp</td>
<td>http://code.google.com/p/nymph/</td>
<td></td>
</tr>
<tr>
<td>43 ObjectLabKit</td>
<td>http://objectlabkit.sourceforge.net/apidocs/net/objectlab/kit/datecalc/jdk/CalendarPeriodCountCal-culator.html</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product</td>
<td>URL</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>45</td>
<td>OpenMeeting</td>
<td>http://code.google.com/p/openmeetings/</td>
</tr>
<tr>
<td>46</td>
<td>pacpounder</td>
<td>https://code.google.com/p/pacpounder/</td>
</tr>
<tr>
<td>47</td>
<td>Pendulim</td>
<td>http://code.google.com/p/pendulim/</td>
</tr>
<tr>
<td>49</td>
<td>Primitive Collections</td>
<td>http://pcj.sourceforge.net/docs/guide/pcj-guide.html</td>
</tr>
<tr>
<td>50</td>
<td>Qt OIC Container 3.5</td>
<td>http://qtioccontainer.sourceforge.net/uml.html</td>
</tr>
<tr>
<td>51</td>
<td>RandyLoops</td>
<td>http://randyloops.sourceforge.net/</td>
</tr>
<tr>
<td>52</td>
<td>rpcstruts</td>
<td>https://code.google.com/p/rcpstruts/</td>
</tr>
<tr>
<td>56</td>
<td>wro4J*</td>
<td>http://code.google.com/p/wro4j/</td>
</tr>
<tr>
<td>57</td>
<td>Xuml-compiler*</td>
<td>http://code.google.com/p/xuml-compiler/</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Thesis Roadmap ... 7

2.1 Integrated Model [174] .. 14
2.2 Cognitive Design Elements for Software Exploration [156] 15
2.3 The Software Development Life Cycle 16
2.4 Relationship between Forward Eng., Reverse Eng. and Other Related Terms [41] ... 16
2.5 Taxonomy of UML Version 2.4 [68] 18
2.6 Tours Online Class Diagram (Domain Analysis) 19
2.7 Tours Online Class Diagram (Design Level) 20
2.8 Tours Online RE-CD (Code Level) 20
2.9 The Process of Supervised Machine Learning [98] 24
2.10 ROC and Precision-Recall Curves under Class Skew 29

3.1 Classes in Design vs Classes in Implementation 40
3.2 ArgoUML Evolution in UML Diagrams and Number of Classes 44

4.1 Round-trip Engineering Experiment 53
4.2 Altova Reverse Engineered Package Diagram 56
4.3 Reverse Engineered Sequence Diagram using Altova 56
4.4 Round-trip Test Result ... 58
4.5 Example of Diagram on Aggregation Test 61
4.6 Number of Attributes and Methods 61
4.7 Bidirectional Relationship with Two Separate Links 63

5.1 Level of Detail Class Diagrams Preparation 74
5.2 Role of the Respondents ... 76
5.3 Respondents Experience with Class Diagrams 76
5.4 Where did the Respondent Learn about UML .. 77
5.5 Respondent’s skill on Class Diagram ... 78
5.6 Respondents Like or Dislike Source Code vs UML ... 78
5.7 Programmers Like or Dislike Source Code vs UML .. 79
5.8 Software Architects Like or Dislike Source Code vs UML 79
5.9 Software Designers Like or Dislike Source Code vs UML 79
5.10 Class Diagram Skill per Role ... 79
5.11 Information of Attribute that Could be Left out .. 81
5.12 Types of Operation that could be Excluded in Class Diagrams 81
5.13 Class Category ... 82
5.14 Types of Class that could not be Included in Class Diagrams 82
5.15 Class Role that could be Excluded in Class Diagrams .. 83
5.16 Types of Information the Respondents Look for in Class Diagrams 84
5.17 Information of Classes that could be Omitted ... 85
5.18 Information of Operations that could be Omitted ... 86
5.19 Important Criteria in a Class Diagram for Understanding a System 87
5.20 The Type of Relationship in Class Diagrams that the Respondents Look at First ... 87
5.21 The Features that a Tool Should have for Simplifying UML Class Diagrams 88

6.1 Role of the Respondents ... 99
6.2 Location of the Respondents .. 99
6.3 Class Diagram Skill and Years of Experience .. 100
6.4 Score Size Category (Question B1-B4) .. 101
6.5 Score Coupling Category (Question B5-B10) ... 102
6.6 Score Inheritance Category (Question B11-B13) .. 103
6.7 Keywords to Include a Class in a Class Diagram .. 103
6.8 Class Diagram A (ATM System) ... 105
6.9 Respondents Selection of Classes that Should not be Included in an ATM System ... 106
6.10 Class Diagram B (Library System) ... 107
6.11 Respondents Selection of Classes that should not be Included in a Library System ... 108
6.12 Respondents Selection of Classes that should not be Included in a Pacman Game (Forward Design) ... 108
6.13 Pacman Game Forward Design (Class Diagram C) ... 110
6.14 Reverse Engineered Pacman Game (Class Diagram D) 111
6.15 Respondents Selection of Classes that should not be Included in a Pacman Game (Reverse Engineered Design) ... 112

7.1 Design Abstraction Process ... 124
7.2 Average AUC Score for Every Dataset .. 128
7.3 AUC Score >= 0.60 ... 130
7.4 Application of Random Forests Classification Algorithm. 130

8.1 Overall Framework ... 139

9.1 Overall Framework : Input, Process and Output 159
9.2 Selection of the Candidate-Important Classes 160
9.3 The SAAbs Tool Displaying Ranking of Classes 163
9.4 Textual Results of Classification 164
9.5 SAAbs tool Viewing Class+Package Diagram in Different Level of Abstraction ... 166
9.6 Highlighting of Less Important Classes 167
9.7 Greyscale Coloring: Less Important Classes with Darker Shades of Gray. 167

10.1 Flow of the Experiment ... 177
10.2 Distribution of the Respondents 177
10.3 Respondents’ Experience with Class Diagram 178
10.4 Skills of Understanding Class Diagram 178
10.5 The Understandability of Condensed Class Diagram 179
10.6 The Respondents’ Role vs. Understandability Score 180
10.7 The Respondents’ Experience vs. Understandability Score 180
10.8 Choices of Class Diagrams 181
10.9 The Respondents’ Experience vs. Choice of Class Diagram 182
10.10Level of Abstraction of RE-CD for Software Comprehension 183
10.11The Rating of the Usefulness of SAAbs Tool 183
10.12The Respondent’s Role vs the Tool’s Features 184
10.13The Tool’s Features vs the Respondent’s Experience 185
10.14The Respondent’s Skill vs the Tool’s Features 185
10.15The Limitations of the SAAbs Framework and Tool 186
List of Tables

1.1 Research Methods used in this Research 6
2.1 Definitions of Program Comprehension 12
2.2 The nine classification algorithms 26
2.3 Confusion Matrix or Contingency Table 27
2.4 Common Performance Measures and Terms 27
3.1 List of Case Studies .. 35
3.2 Levels of Detail in UML models 36
3.3 UML Diagram Usage .. 37
3.4 Classes in Design versus Classes in Implementation 40
3.5 LoD and Forward/Reverse Class Diagram 41
3.6 Add, Remove and Modify of UML Diagrams in ArgoUML Project 43
3.7 List of UML Diagrams used in ArgoUML Project 44
4.1 List of Evaluated CASE Tools 51
4.2 Supported UML Diagrams for Reverse Engineering 55
4.3 Supported Programming Language for Reverse Engineering 57
4.4 Additional Types of Input Format 59
4.5 Class Relationship Test Result 60
4.6 Relationship Correctness 62
5.1 Level of Detail Description 73
5.2 Information on Set A and Set B 74
5.3 Detailed Explanation Part C 75
5.4 Keywords on Types of Information to Understand a System 84
6.1 The Chosen Software Design Metrics [180] 95
6.2 Answers Multiple Choices Questions .. 96
6.3 Description of the Class Diagrams Used in the Questions 97
6.4 Choices of Answers for Question 4 .. 97
6.5 Choices of Answers for Question 6 .. 98
6.6 Total of Responses ... 98
6.7 Score-System Metrics - Question B1-B13 101
6.8 The Preferences between Class Diagram A (C1), B (C2) and C (C3) 109
6.9 The Preference between Class Diagram C and D 113
6.10 Overall Score for Software Design Metrics 114
7.1 List of Class Diagram Metrics .. 122
7.2 List of Case Study ... 123
7.3 Data Preparation Steps ... 125
7.4 Predictor Sets ... 126
7.5 Univariate Predictor Performance (Information Gain) 128
7.6 Results for Predictor set C .. 129
8.1 List of Case Study ... 140
8.2 The Top List of Common Words in Class Diagrams 144
8.3 The Top List of UnCommon Words in Class Diagrams 145
8.4 Information Gain Results for Text Predictors 149
8.5 Classification Algorithms Performance on Predictors Sets (AUC Score ≥ 0.60) ... 149
8.6 Random Forests Result for Predictors Sets 151
8.7 Classification Result from Text Predictor (T) 153
9.1 The List of Prediction Features .. 162
10.1 Type of Class Diagram used in this study 175
11.1 Summary of Background Research Findings 190
A.1 List of Case Study Candidates ... 201
Bibliography

[98] S.B. Kotsiantis. Supervised machine learning: A review of classification tech-
Applications in Computer Engineering: Real Word AI Systems with Applications in
eHealth, HCI, Information Retrieval and Pervasive Technologies, pages 3–24, Amster-
and 205).

[99] A. Lake and C.R. Cook. Use of factor analysis to develop OOP software complexity
(cited on pages 122 and 162).

[100] M. Lanza and S. Ducasse. Polymetric views - A lightweight visual approach
to reverse engineering. IEEE Transactions on Software Engineering, 29(9):782–795,

(cited on page 26).

on page 74).

[103] T.C. Lethbridge, J. Singer, and A. Forward. How software engineers use docu-
(cited on pages 3 and 48).

In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
ACM. (cited on page 138).

development page 141).

[107] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke. On the comprehension of pro-
gram comprehension. ACM Transactions on Software Engineering and Methodology

tomatic clustering to produce high-level system organizations of source code.

classification. In AAAI-98 workshop on learning for text categorization, volume 752,

