Universiteit

4 Leiden
The Netherlands

Interactive scalable condensation of reverse engineered UML class

diagrams for software comprehension
Osman, M.H.B.

Citation

Osman, M. H. B. (2015, March 10). Interactive scalable condensation of reverse engineered
UML class diagrams for software comprehension. Retrieved from
https://hdl.handle.net/1887/32210

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license

Downloaded from: https://hdl.handle.net/1887/32210

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/32210

Cover Page

The handle http://hdl.handle.net/1887/32210 holds various files of this Leiden University
dissertation.

Author: Osman, Mohd Hafeez Bin

Title: Interactive scalable condensation of reverse engineered UML class diagrams for
software comprehension

Issue Date: 2015-03-10

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/32210
https://openaccess.leidenuniv.nl/handle/1887/1�

o]

Conclusions

UML is recognized as the standard for describing software designs. Keeping UML
designs up-to-date with evolving source code is challenging and time-consuming.
For this purpose, automatic recovery of design diagrams in UML notation out of
implementation artifacts (i.e. source code, execution files/library) is an attractive op-
tion to obtain and maintain up-to-date design representations of systems. However,
understanding reverse engineered UML diagrams is often difficult. Hence, this
research aims at providing an automated framework to simplify reverse engineered
UML diagrams (specifically class diagram) for assisting software comprehension.
In this chapter, we summarize the findings based on the research questions posed in
Chapter 1 of this thesis. We describe the contributions of this research and outline
future work.

11.1 Summary of Findings

The goal of this research is to devise an automated framework for simplifying UML
class diagrams to assist the software comprehension task. The following is the main
research question that has been formulated to clarify the scope of this research:

Main RQ: What method of condensing of reverse engineered class diagrams helps develop-
ers to understand the design of software systems?

We decomposed this main research question into five research questions (described
in Chapter 1). At the start of our research, we conducted two studies to investigate
the usage of UML diagram in open source software development (OSSD) and the
state-of-the-art of reverse engineering source code into class diagrams. In doing so,
we identified several OSSD projects that are suitable for our research. We highlight

190 Conclusions

Table 11.1: Summary of Background Research Findings.

Study Findings
UML usage in OSSD

1. In software development, the focus of modeling
shifts from an initial focus on structural aspect in the
early phases of development towards fleshing out be-
havioural aspects of the design in the later stages of
development.

2. The frequency of updating UML diagrams is low when
compared to the frequency of updating source code.
As triggers for the updating of models, we identify: i)
major changes to the software, and ii) the joining of a
group of new developers into the project.

Reverse engineering
of source code into
class diagrams

1. Existing CASE tools are not able to correctly recover
aggregation and composition relationships from the
source code.

2. Existing CASE tools are not able to correctly recov-
er/represent the bidirectional relationship.

3. There is a wide variety in the quality of the class di-
agrams that are obtained via reverse engineering by
different CASE tools. Not all CASE tools are suitable
for reverse engineering source code to UML class dia-
grams.

findings of these studies in Table 11.1. Next, we recapitulate our research questions
and their main findings.

11.1.1 RQ1: Which information in class diagrams do developers find im-
portant for understanding software designs?

For this question, we conducted a semi-structured survey to gather data about develop-
ers’ views of classes that could be left out from a class diagram and classes that should
remain for good understandability of the system design. In this survey, 32 professional
software developers participated.

Our analysis focused on the characteristics of classes that could be left out. We
discovered that class relationships, and the role and responsibility of classes play major
roles in determining class inclusion/exclusion.

Specifically for class exclusion, we found that library classes and Graphical User

Summary of Findings 191

Interface (GUI) classes (esp. when generated automatically by an Integrated Develop-
ment Environment (IDE)) could be left out from the class diagram. These categories
of classes have a small relation to the application domain. In other words, this study
shows that for gaining an understanding of a new software system, developers (at least
in their initial exploration) focus on classes that are related to the application domain.

The aforementioned findings give us insights into the information of class diagrams
that are important for software developers (for inclusion) and information in class
diagrams that can be left out (for exclusion) in order to simplify a class diagram. Our
subsequent research is to use this information to devise an automated approach to
assist software comprehension.

11.1.2 RQ2: Which object-oriented design metrics do developers find most
indicative for class importance?

The second research question aimed to study the relevance of object-oriented design
metrics in deciding on class inclusion and exclusion in class diagrams. We addressed
this question by performing an online survey involving 25 participants from different
types of background (i.e. students, academic researchers and IT professionals).

This research also discovered that the number of public operations (NPO) is the
most important object-oriented design metrics in deciding the class inclusion: classes
that have a high NPO are more likely to be recommended for inclusion in the class
diagram. The findings of this survey suggest that object-oriented design metrics
(esp. from the size and coupling category) are relevant features for deciding on class
inclusion and exclusion.

11.1.3 RQ3: How to automatically condense class diagrams using object-
oriented design metrics?

We studied the suitability of the object-oriented design metrics as features for predict-
ing class inclusion and exclusion in class diagrams. We applied a machine learning
approach to construct a classifier for class inclusion/exclusion using supervised learn-
ing methods. Nine open source software projects have been collected as case studies
for this.

Our study focused on the application and domain related classes. Therefore, we
filter the classes in these projects by removing external library and runtime classes.
These projects were selected because they all contain UML designs that are manually
created during the forward design. In these cases, we use the classes that exist in the
forward design as the ‘ground truth’, which is used for the training of the classifier. We
also compare the performance of nine classification (i.e. machine learning) algorithms
to determine the most suitable algorithms for deciding class inclusion/exclusion. These
classification algorithms produce a score for every class. This score enables the ranking
of classes according to their likelihood of inclusion. Because our datasets are typically

192 Conclusions

imbalanced, we use the Area under the ROC Curve (AUC) to evaluate the performance
of the classification algorithms.

Our findings demonstrate that Export Coupling Parameter (EC_Par), Dependency
In (Dep_In) and Number of Operation (NO) are the most influential features in clas-
sifying class inclusion/exclusion. The classification that is based on all features (i.e.
the 11 object-oriented design metrics) achieves the best AUC value. This means that
all features are considered valuable for the class inclusion/exclusion classification.
This research also found that Random Forests and k-Nearest Neighbor algorithms are
the most suitable for our prediction purpose. For nine case studies, Random Forests
produces an AUC score above 0.64 with an average AUC score of 0.74.

It is not reasonable to expect that this approach could produce a 100% correct
prediction of class inclusion/exclusion. One reason for this is the imbalance in the
dataset which is the basis for learning. Nevertheless, these datasets present realistic
scenarios found in software projects. This research has commenced a novel approach
of using machine learning based on the condensation of the RE-CDs.

11.1.4 RQ4: Can the automatic condensation of class diagrams be en-
hanced by using class names?

Prior research (RQ1 and RQ?2) indicated that the role and responsibility of classes
conveyed important information about a design. We tried to capture these notions in
our prediction by exploring the use of features based on class names. We came up with
text metrics based on class names by using text processing methods.

The experiments in this chapter followed the same structure as the experiment
for RQ3 where we evaluate each feature’s predictive power as well as the feature’s
performance. Nine classification algorithms (as in RQ3) were used in this experiment
and ten OSSD projects (nine of them from RQ3) were used as case studies. We use
the result of RQ3 as a reference benchmark to evaluate the improvement of the text
metrics in class inclusion/exclusion prediction. We study the effects of using different
categories of features, namely: text metrics (T), object-oriented design metrics (D) and
a combination of text and object-oriented design metrics (DT).

Our findings illustrate that using only text metrics does not perform as good
as using only design-metrics (object-oriented design metrics). However, using text
metrics in addition to design metrics leads to a small improvement over using only
design metrics in the prediction of class inclusion/exclusion. On average, the addition
of text metrics to object-oriented design metrics improved the prediction by 5.1%.
Across different projects, the improvement of adding text-metrics to design metrics
ranges from -6% to 22%. When taking the perspective of the classification algorithms,
performance was improved using the combination features (DT) for all algorithms
except k-NN (1) algorithm. By comparing the AUC score of all algorithms, the Random
Forests produces the best result that indicates this algorithm is the most suitable
algorithm for this purpose.

Summary of Findings 193

In terms of the predictive power of the text metrics, we found that the text metrics
calculated from the individual case studies have better predictive power than the text
metrics based on the combination of all case studies. This indicates that the text metrics
features are truly domain-oriented.

This research demonstrates an improvement of class inclusion/exclusion prediction
by using class names. We expect to further improve performance if we use other textual
information such as operation-, parameter- and attribute-names as prediction features.

11.1.5 RQ5: Does our automated framework for condensing of class dia-
grams help developers to understand the design of software sys-
tems?

We validated our framework by conducting a semi-structured survey (a user study)
to assess the respondents (students, academic researchers, IT professionals) opinion
on the usefulness of the condensed class diagrams and our SAAbs tool in assisting in
software comprehension.

The respondents were asked to give their opinion on a set of various class diagrams.
We used the following diagrams: 1) the original forward design (FD); 2) the reverse
engineered class diagram (RE-CD) (as produced by a CASE tool); and 3) abstracted
RE-CDs (here 3 levels of abstraction were used: 25%, 50% and 75%). In total, 63
respondents participated this survey.

Our findings demonstrated that the level of 25% abstraction of RE-CD is rated
most understandable compared to other diagrams. The results showed that the rate
of understanding decreases when the amount of classes increases. We compared the
respondents’ preferred class diagrams between three levels of abstracted RE-CDs (25%,
50%, 75%) and the RE-CD (without abstraction).

The respondents were also asked to choose the one diagram that they prefer for
using for system comprehension. The result shows that there are two main groups
of the respondents: those that prefer to use the 25%-abstraction of the RE-CD and
those that prefer the RE-CD. It is beyond our expectation that the RE-CD is chosen for
system comprehension. Storrle [158] indicates that “layout quality does impact the
understanding of UML diagram”. When we observe the layout quality of the RE-CD
(based on the four level design principle [159]), we found that the RE-CD presented
in the questionnaire have a good layout quality, even though the number of classes is
high. This may be the respondents’ reason for choosing this diagram.

In this experiment, we also assess the respondents’ judgment on our SAAbs tool
that was developed to automate our approach. On average, the respondents give
a score of 5.4 on a 6 point-scale for the usefulness of the tool. In the future, further
studies should explore the use of the tool for performing maintenance tasks - both in
experiments and in industrial settings.

194

Conclusions

11.2 Contributions

The contributions of this research are summarized as follows:

Discovery of developer reasoning about class diagram simplification. This
research found out which criteria developers use when selecting classes for
creating a simplified system design.

Developing a classifier for class inclusion/exclusion prediction based on the
object-oriented design features. This research presented a novel approach for
predicting class inclusion/exclusion using object-oriented design metrics as
features. This approach showed how machine learning classification algorithms
can be used to classify classes that could be included and classes that could be
omitted.

Developing a classifier for class inclusion/exclusion based on the text features
of class names. We invented text metrics based on class names and enhanced
the prediction performance by combining these text-based features with object-
oriented design metrics.

An automated tool to support software comprehension by interactive explo-
ration of various levels of design abstraction. We developed an automated tool
for scalable and interactive condensation of class diagrams. This tool provides
multiple visualization techniques and offers various types of views to assist
developers in software comprehension tasks.

Findings on the use of modeling in open source projects. We expounded the
use of UML modeling in open source projects. Amongst others, we described
the types of diagrams used, the levels of detail of their representation and the
frequency of updating models. In addition, we identified and explained a pattern
regarding the change of focus on different types of diagram used over time.
Also, we identified a relation between the size of the models and the size of the
implementation.

Construction of a benchmark of open source projects using UML. This re-
search collected 10 open source projects that can be used as the benchmark
for predicting important classes in class diagrams. The projects were derived
from diverse types of domains and various sizes (the number of classes ranges
from 59 to 900).

11.3 Discussion

In this section, we reflect on the result of this research.

Discussion 195

11.3.1 Software Comprehension

To understand a system, software developers normally explore the system’s artifacts
(e.g. source code, software design). This activity supports the building of a cognitive
design elements by software developers. Storey et al. [157][156] has proposed a set of
15 guidelines elements that are recommended for software exploration tools. Out of
these 15 guidelines, we fulfilled 6 that fit the object-oriented system context.

In Chapter 5 and 6, we found that software developers focused on some information
(such as class names and relationship) in class diagrams to understand a system. This
is consistent with findings by Ko. et al [93] that software developers search for relevant
code based on identifier-names and comments. Once the developers found the relevant
code, they start to look at other related code (tracing relationships between classes).

In a broader perspective, the SAAbs tool provides multiple architecture views that
may constitute an architecture reconstruction [96][139]. The work by Riva [144] iden-
tified multiple levels of reverse engineering (implementation, Design, Architecture).
In contrast to our approach, those levels are seen as separate discrete levels which
use concepts at different levels of abstraction for representing the system. We believe
that extracting higher level concepts are a much needed step in reverse engineering.
However, this requires a different ground truth compared to the one that we used in
our research. An actual gap in abstraction levels needs to be bridged. Our approach
focused instead on simplification through leaving out information.

11.3.2 Condensation of Class Diagrams

The condensation of class diagrams is the core discovery of this research. Commonly,
condensation can be achieved in two ways: by abstraction or aggregation (or a combi-
nation thereof) [109]. In our research context, we use abstraction instead of aggregation
because we want to facilitate both the bottom-up and top-down comprehension. For
this purpose, aggregation is not suitable because this method sometimes presents too
abstract views (or “big jump” view) compared to the complete design.

One may argue that using the abstraction method has the risk of loss precision
and coherency (because of eliding details). Also, the question of “what is the right
level of abstraction?” should be answered. We mitigated this risk and answered the
aforementioned question by providing the multiple levels of design abstraction. In
this way, the users may construct multiple levels of abstraction based on their need.
Such scaling allows the gradual construction of the abstraction of from a big to a small
number of classes (and vice versa). Also, the multiple levels of abstraction caters for
the different demands on system views of different stakeholders.

In the following subsection, we discuss two important inputs of our abstraction
methods: a) the “ground truth” and, b) the features used to identify the important
classes.

196 Conclusions

The “Ground Truth”

To find the important classes in a class diagram, we apply a supervised machine learn-
ing approach. As the baseline or “ground truth”, we use the classes that are included
in the (man-made) forward design. We believed that the forward design is closely
related to the system domain and represents the key system functionalities. Based on
our survey in Chapter 5, most of the professional software developers indicated that
the domain related class are important classes.

In contrast, Hammad et al. [77] and Bieman et al. [24] used version history informa-
tion to establish their baseline of key classes. They assume that classes that frequently
change in the evolution of a software are important classes. This is also a reasonable
assumption. However, this approach also has some threats: classes that frequently
change may also be classes that are not important in the domain, but more facility- or
manager-classed such as lookup classes, log classes and graphical user interface (GUI)
classes.

The Features to Identify the Important Classes

We used two main types of features for our classification: Object-oriented design met-
rics and text metrics. Both features proved to have some contribution to the ability
to predict the important classes in a class diagram. We discuss these features in the
following.

Feature: Object-oriented Design Metrics. Amongst the object-oriented design metrics, we
only focused on metrics from the size- and coupling-category. As a result, we found
that the Export Coupling Parameter (EC_Par), Dependency In (Dep_In) and NumOps
are the most influential metrics for predicting the important classes.

The EC_Par and Dep_In metrics are coupling-type metrics. This means that the
relationships of a class are an important factor in determining class importance. This
result is aligned with the findings of Briand et al. [36] and Genero et al. [29] which
also indicate that coupling is an important structural dimension in object-oriented
design. Also, Steidl et al. [154] and Thung et al. [164] worked with information on
class relationships to identify important classes in a class diagram. At the same time,
coupling remains merely a syntactical aspects of a design.

From a maintenance perspective, error-prone classes can also be considered as
important classes (because this is where lots of maintenance effort will be focussed).
Work in the area of prediction of faulty classes by Zhou et al. [188] and Gyimothy et al.
[73] mentions that coupling and numbers of methods (WMC) are the most influential
features to predict faulty classes. Likewise, we also found that the Number of opera-
tions (same with WMC) is one of the influential features. Hence, we can conclude that
the object-oriented design metrics are useful generic, application-independent features
for predicting important classes.

Future Work 197

Feature: Text Metrics. This research also shows that text metrics based on class names
could be used as predictors for class importance. However, the object-oriented design
metrics perform better than the text metrics. Our prediction’s performance increases
only when we combine these two predictors sets together. Work related to code
summarization [74][75][50] indicates that method-names and class-names are suitable
to summarize a class. These works found that method-names constitute better criteria
to summarize a class compared to class-names. Based on this, we expect a better
performance of our approach if we include other textual elements such as text in
methods, parameters and attributes.

The text-metrics that are calculated based on individual software projects (case
studies) demonstrated a higher predictive power compared to metrics calculated
based on the combined set of software projects. The projects in our study come from
different types of domain; hence, it is difficult to retrieve or predict the domain-related
words across all domains. Klint et al. [91] shows that the collection of domain-related
words are challenging and requires a lot of efforts for a particular domain; thus, a text
metrics-based generalize the prediction model is difficult to realize.

The research opens an extensive perspective of condensing class diagrams in order
to ease the system comprehension. In the next section, we discuss directions for future
work.

11.4 Future Work

Our research can be considered as an initial work on simplifying reverse engineered
UML diagrams through machine learning. Based on the respondents of our surveys
(Chapter 5, 6 and 10), we can outline several directions for future work to improve this
work as well as implementing the technique to a broader perspective. The remaining
subsections describe directions for future work.

11.4.1 Enriching the Ground Truth

In Chapter 7 and 8, we used supervised machine learning to classify class inclusion/ex-
clusion. We assume that forward designed class diagrams (i.e. provided as part of the
documentation of these projects we studied) as the ‘ground truth’. We believe that
incorporating other information as the ‘ground truth’ may improve the classification
result. Several suggestions on which complementary sources of information to use are
the following:

* Version history: Classes that frequently change during the software evolution
could be classes that are important to the system. Also, other information such as
the severity level (based on defect classifications for a particular class) could be a
candidate to enrich the ‘ground truth’.

198 Conclusions

¢ Eye tracking information: One small field of empirical research focuses on
detecting important information in design documents based on tracking the focus
of human eyes when looking at a software design on a computer screen. The
information that users focus on in class diagrams could be additional information
to our ‘ground truth’.

* Software documentation: We only used the classes that are presented in the
class diagram (in software documentation) for the ‘ground truth’. We believe
there are more information in the text (such as classes that frequently mentioned)
that may improve our baseline of this study.

¢ Interactive Learning: Thung et al. [164] have demonstrated the improvement
of the AUC score when an optimistic classification technique is used. This
technique is a form of semi-supervised learning technique where users can give
input to generate a finer statistical model. Therefore, we believe that interactive
and dynamic refinement of the ‘ground truth’ may improve the selection of the
important classes in class diagrams.

¢ Dynamic Analysis: Dynamic analysis is the analysis of the properties of a run-
ning program [19]. This analysis can for example, measure the classes that are
being used most by an application. This information can be used to enhanced
the ‘ground truth’.

11.4.2 Exploring Features

This research has looked at the use of object-oriented design metrics, text metrics
and network metrics (work by Thung et al. [164]) as features for classifying class
inclusion/exclusion. We believe that there is other information that may be used
as features to predict class inclusion/exclusion. We believe that information from
operation-, parameter- and attribute-names may offer a significant predictive power
to the classification. There is also another possibility to use the information from the
software repository as additional features. Information such as source code metrics
and text from bug reports may be added to the features to improve the classification
result.

11.4.3 Task-oriented Validation

Preliminary findings of our user study show that the result of our approach and tool is
understandable and helpful for the software comprehension task. Therefore, we believe
that a validation based on more realistic maintenance tasks is required to strengthen
the validation of our proposed framework and get a broader perspective to enhance
the tool and technique. Through such a task-oriented validation, one could gather
more information on the tool’s actual usage.

Future Work 199

11.4.4 Class Segmentation

The respondents in Chapter 5 suggested a segmentation (grouping) of classes based
on features and functionality: Classes that have similar functionality or together
implement one feature should preferably be presented in the same segment or group.
Novel feature location techniques are needed to identify features in the class diagrams.

Another possible technique that can be used for class segmentation is program
slicing [169],[181]. Program slicing removes those parts of the program that have
no effect upon the semantic interest and concentrates on the selected aspects related
to some concern. Often these techniques are based on tracing of data-flow and de-
pendency analysis. It is also possible to combine the aforementioned technique with
our approach. Provided with the information of a specific feature (by using program
slicing or feature location), our approach can produce a rank of classes that suggest the
relevant classes to the features. Our existing visualization feature may help to visualize
the segmentation (and its embedding in a larger design).

11.4.5 Visualization of Result

In Chapter 10, the respondents gave several valuable suggestions to improve the pre-
sentation of the class diagram viewer. Therefore, we believe the following enhancement
may benefit to the tool:

* Layout: Investigation and application of more layout options such as central and
hierarchical layout.

* Interactive Viewer: Interactive editing to allow users full control of the layout of
diagrams.

