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Chapter

Condensing Reverse Engineered
Class Diagram using
Object-Oriented Design Metrics

There is a range of techniques available to reverse engineer software designs from
source code. However, these approaches generate highly detailed representations.
The condensing of reverse engineered representations into more high-level design
information would enhance the understandability of reverse engineered diagrams.
This chapter describes an automated approach for condensing reverse engineered
diagrams into diagrams that look as if they are constructed as forward designed
UML models. To this end, we propose a machine learning approach. The training
set of this approach consists of a set of forward designed UML class diagrams
and reverse engineered class diagrams (RE-CD for the same system). Based on
this training set, the method learns to select the key classes for inclusion in the
high-level class diagrams. In this chapter, we studied a set of nine classification
algorithms from the machine learning community and evaluated which algorithms
perform best for predicting the key classes in an application.

7.1 Introduction

Up-to-date design documentation is important, not just for the initial design, but also
in later stages of development and in the maintenance phase. UML models created

This chapter is adapted from a publication entitled “An Analysis of Machine Learning Algorithms
for Condensing Reverse Engineered Class Diagrams”, In Proceedings of the International Conference on
Software Maintenance (ICSM 2013)
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during the design phase of a software project are often poorly kept up-to-date during
development and maintenance. As the implementation evolves, correspondence be-
tween design and implementation degrades [118]. For legacy software, faithful designs
are often no longer available, while these are considered valuable for maintaining such
systems.

A popular method to recover an up-to-date design of a system is reverse engineer-
ing. Reverse engineering is the process of analyzing the source code of a system to
identify the system’s components and their relationships and create design representa-
tions of the system at a higher level of abstraction [41]. Reverse engineering also refers
to methods aimed at recovering knowledge about a software system in support of
execution some of software engineering tasks [170]. Tool support during maintenance,
re-engineering or re-architecting activities has become important to decrease the time
that software personnel spends on manual source code analysis and helps to focus
attention on important program understanding issues [22]. However, current reverse
engineering techniques do not yet solve this problem adequately. In particular, RE-CDs
are typically a detailed representation of the underlying source code. This makes it
difficult for software engineers understand what the key elements in the software
structure are [125].

This study is partially motivated by a scenario when new programmers want to
join the development team. They need a starting point in order to understand the
whole system before they are able to modify it. Provided with the software design, the
programmer will normally browse the class design and try to synchronize the design
with the source code. There is a need for programmers recognize which classes in the
system play important roles or can be considered as key classes in the system.

Fernandez-Séez et al. [59] found that developers experience more difficulties in
finding information in reverse engineered diagrams than in forward designed diagrams
and also find the level of detail in forward designed diagrams more appropriate
than in reverse engineered diagrams. In order to achieve better reverse engineered
representations, we need to learn which information from the implemented system
to include and which information to leave out. A method to assist software engineers
to focus on the key classes and aspects of the design is needed. The identification of
key classes can also be used to simplify complex class diagrams or help to predict the
severity of a defect in a software system.

This study specifically aims at providing suitable classification algorithms to decide
which classes should be included in a high-level class diagram. We seek an automated
approach to classifying the key classes in an application. We require algorithms that
are able to produce a score, not just a classification, so that a user potentially has the
option to choose a particular level of abstraction for representing a reverse engineered
design (in particular RE-CD).

In this chapter, we focus on the use of design metrics as predictors (input variables
used by the classification algorithm). The advantage of using design metrics is that
these can be obtained very efficiently with little effort. This fits our objective of creating
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a method of practical use to software developers. Also, we analyse the predictive
power of the predictors to know how influential each of these predictors are, with
respect to the performance of the classifier.

We explore several classification algorithms for predicting key classes that should
be included in a class diagram. As the input for this study, we use sets of source codes
from the open source projects with corresponding UML models that contain forward
designed class diagrams. We use these class diagrams as ‘ground truth’ to validate
the quality of the prediction algorithms. The methods we study will ‘learn’ from the
forward designed class diagrams which classes should be selected from the RE-CDs.
In total, nine algorithms were selected for this comparison study. These algorithms
will be evaluated in terms of accuracy and robustness with respect to the information
that they recommend to keep in and leave out of the class diagram. The candidate
set of algorithms includes: J48 Decision Tree, k-Nearest Neighbor (k-NN), Logistic
Regression, Naive Bayes, Decision Tables, Decision Stumps, Radial Basis Function
Networks, Random Forests and Random Trees.

We have collected a diverse collection of data sets consisting of nine pairs of UML
design class diagrams and associated Java source code derived from open source
software projects. The number of classes in the source code of these projects ranges
from 59 to 903. Out of these classes, 3% to 47% were found to be included in the
forward UML class diagram. The open source projects were chosen for a number of
reasons. We wanted the data to be representative for the diversity and complexity
of real world projects. The quality of documentation for open source projects varies
widely, and there is also a substantial variation in the ratio of classes in the forward
design versus classes in the source code. In open source projects, software design is not
a mandatory requirement, and these projects rely on volunteers working together in a
distributed fashion. Also, by using open source projects we make it easier for other
researchers to reproduce or compare against our results and develop new methods on
the same data.

The chapter is structured as follows: Section 7.2 discusses related research and
Section 7.3 describes the research questions. Section 7.4 explains the approach on how
we conducted the evaluation. Section 7.5 presents the results and Section 7.6 discusses
our findings. This is followed by conclusions and future work in Section 7.7.

7.2 Related Work

The following studies are related to our research from the perspective of identifying
key classes from software artifacts.

Zaidman and Demeyer [184] proposed a method for identifying key classes by
using Hyperlink-Induced Topic Search (HITS) web mining technique. They used
dynamic (runtime) analysis of source code as the input for the identification of key
classes. For validating their method, they manually identified key classes from the
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software documentation. Recall and precision were used to evaluate the approach
and they found that their approach was able to recall 90% of the key classes and
the precision was slightly under 50%. However, dynamic analysis approaches need
significant effort for collecting run-time traces.

Perin et al. [136] proposed ranking software artifacts using the PageRank algorithm.
They used the Pharo Smalltalk system and Moose re-engineering environment as case
studies. For the Pharo Smalltalk system, they reported that their approach was able to
detect 42% of the important classes (prediction based on classes) and to detect 52% of
the important classes when prediction was based on methods. However, no precision
result was presented for the Moose system.

Hammad et al. [77] proposed an approach to identify the critical software classes in
the context of design evolution. Version (commit) history and source code were used
as the input for this study. They assumed that the classes that were frequently changed
in the software evolution are the classes that are critical to the system. They found that
15% of the classes in the case studies were changed from six design changes.

Steidl et al. [154] presented an approach to retrieve important classes of a system
by using network analysis on the dependency graphs. They performed an empirical
study to find the best combination of centrality measurement and dependency graphs.
Classes recommended by their test project developers were used as the baselines. They
found that the centrality indices perform best when using the undirected dependency
graph that include information about inheritance, parameter and return dependency.

Our work also aims at identifying key classes, but we explore diverse classification
algorithms based on supervised machine learning. In contrast, static analysis is used
for our data collection as it is easy to obtain from open source projects. The aforemen-
tioned works validate their approach to identify the key classes in class diagrams by
comparing the prediction result with the information derived from software documen-
tation, repository and developer(s) recommendation. In this study, we validate our
approach by comparing selected classes against those actually found in the forward
design.

7.3 Research Questions

This section describes the research questions of this study that will be answered in
Section 7.5.

RQ1: Which design metrics are influential predictors in classifying key classes?
For each case study, we explore the predictive power of individual predictors.

RQ2: How robust is the classification to the inclusion of categories of predictors?
We explore how the performance of the classification algorithms is influenced by parti-
tioning the predictor-variables in different groups with different characteristics.
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RQ3: What are suitable classification algorithms in classifying key classes?
The candidate classification algorithms are evaluated to find out which algorithm(s)
are suitable for classifying the key classes in a class diagram.

7.4 Approach

This section describes the Examined Predictors and Tools, Case Studies and Process.

7.4.1 Examined Predictors and Tools

In this section, we describe i) the metrics that we used as inputs to the prediction
algorithms, and ii) the tools used for this research.

Examined Predictors

We used a set of software metrics that are typically used to characterize design char-
acteristic of classes in class diagrams as input to our classification algorithms. The
SDMetrics [180] tool is capable of computing 32 types of class diagram metrics. These
metrics are divided into five categories, namely Size, Coupling, Inheritance, Com-
plexity and Diagram. We select 11 class diagram metrics from the Size and Coupling
category. These categories of metrics were selected for the following reasons: i) our
survey in Chapter 5 and 6 demonstrated that developers use Size and Coupling as
predictors of key classes, ii) experts in the area of software metrics (Briand et al. [36]
and Genero et al. [29]) stated that Coupling is an important structural dimension in
object-oriented design, iii) the work in [188] and [73] showed that WMC (a metric in
the Size category) and CBO (a metric in the Coupling category) are influential for defect
prediction. The specific set of 11 metrics used is shown in Table 7.1.

Tools
The tools used in this study are the following:

* Reverse Engineering Tool: MagicDraw|[9] is a system modeling tool that provides
reverse engineering facilities. MagicDraw version 17.0 (academic evaluation
license) was used for this study.

e Software Metrics Tool: SDMetrics is a tool that computes a large set of metrics for
UML models. SDMetrics version 2.2 (academic license) was used for this study.

* Data Mining Tool: Waikato Environment for Knowledge Analysis (WEKA) is a
collection of machine learning algorithms for data mining tasks [178]. It contains
tools for data pre-processing, classification, clustering, and visualization. WEKA
version 3.6.6 was used for this study.
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Table 7.1: List of Class Diagram Metrics

Metrics Category | Description
NumAttr Size The number of attributes in the class.
NumOps Size The number of operations in the class. Also known as
WMC in [40] and Number of Methods (NM) in [99].
NumPubOps | Size The number of public operations in a class. Also known
as Number of Public Methods (NPM) in [99].
Setters Size The number of operations with a name starting with
‘set’.
Getters Size The number of operations with a name starting with
‘get’, “is’, or ‘has’.
Dep_Out Coupling | The number of dependencies where the class is the
(import) client.
Dep_In Coupling | The number of dependencies where the class is the sup-
(export) plier.
EC_Attr Coupling | The number of times the class is externally used as at-
(export) tributes type. This is a version of OAEC +AAEC in
[34].
IC_Attr Coupling | The number of attributes in the class have another
(import) | class or interface as their type. This is a version of
OAIC+AAIC in [34].
EC_Par Coupling | The number of times the class is externally used as a
(export) parameter type. This is a version of OMEC+AMEC in
[34].
IC_Par Coupling | The number of parameters in the class have another
(import) | class or interface as their type. This is a version of
OMIC+AMIC in [34].

7.4.2 Case Studies

We used the following criteria for selecting case studies:

* The software should be an open source software project that provides both the
implementation source code and forward design class diagram.
¢ The number of classes in the implementation (source code) > 50 classes.

Based on these criteria, nine open source software/systems were selected. In these
projects, we selected a forward UML class diagram from the documentation and then
selected a matching version of the source code. The number of classes in these case
studies ranges from 59 to 903 (see Table 7.2). The ratio between the number of classes
included in the UML class diagram and the number of classes in the implementation
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Table 7.2: List of Case Study

No. Project Total Classes in Total Classes in D:S ratio
Source Code (S)  Design (D) as %
1 ArgoUML 903 44 49
2 Mars 840 29 3.5
3 JavaClient 214 57 26.6
4 JGAP 171 18 10.5
5 Neuroph 2.3 161 24 14.9
6 JPMC 121 24 19.8
7 Wro4] 87 11 12.6
8 xUML 84 37 44.1
9 Maze 59 28 47.5

(source code) spreads across a wide range: from 3 to 47%. This large range in character-
istics of the input may be a difficulty for building a reliable classifier for our domain.
For this reason, we focus on algorithms that will produce a score for a class concordant
with the likelihood that it would be included in the UML diagram. This will allow
a developer to vary the amount of classes included, i.e. the level of abstraction, by
changing the threshold on the score. We make the case studies used for this research
available at [6] for future research and for validation of this study. Detailed information
about these case studies can be found in Section 3.3.

7.4.3 Process

This subsection describes the steps performed for this study. The inputs for this process
are forward designs and RE-CDs (constructed from the source code of the case studies).
The output of the machine learning phase is the list of key classes that can be used to
condense a class diagram. The approach is illustrated in Figure 7.1.

Data Preparation

For data preparation, class diagram metrics were extracted from RE-CD (obtained
through reverse engineering process). Then, the information about the presence of a
class in the forward design was entered in a table.

The data preparation steps are described in Table 7.3. In this table, Step 1 to 3,
performed the extraction of all required data. Then, the data is cleaned up by removing
the external library and runtime classes since we only focused on the application and
domain related classes (as suggested in Chapter 5). Step 5 and 6 perform the merging
of data and Step 7 select the software metrics that are useful for prediction.

We expect that there is some noise in the predictors. For instance, the getters and
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Table 7.3: Data Preparation Steps

No. | Preparation Step Description

1. List all the classes that appear in the | To get the class in design vs. im-
UML design-class diagram plementation ratio

2. Reverse engineer the source code into a | To get the design from the source
class diagram using MagicDraw. Save | code prepared for the metrics
the class diagram in XML Metadata In- | tool input
terchange (XMI) file format

3. Calculate the software metrics of the | Class diagram metrics calcu-
RE-CD using SDMetrics and save in | lation and data mining input
CSV format preparation

4. Manually remove external library | To extract only developed classes
classes and runtime classes from the list | in the source code

5. Merge the software metrics information | To map between classes in de-
from the source code and the classes in | sign and classes from software
the forward design metrics obtained from the source

code

6. Amend the CSV file by adding the in- | Add the information about the
formation of “In Design” properties (N | class in design in the software
for not presented in Design Document, | metrics information
Y for presented in Design Document)

7. Remove software metrics properties | To extract only the selected inde-
that show no significant information | pendent variable (class diagram
(data cleanup) present an overall data | metrics) and present the sum-
summary in plot graph mary of data

125

setters predictor completely relies on the conformance of source code to naming con-
ventions (e.g. ‘get’,'has’). Not all case studies have this kind of naming convention.
In RQ2, we desired to explore the performance of the classification algorithms across
different group of predictors (based on predictors’ characteristics). Therefore, we ex-
perimented with different groups of predictors: Experiment A: the full set of predictors
(predictor set A), Experiment B: all metrics, but excluding metrics related to getters,
setters and Number of Public Operation (predictor set B), and Experiment C: a set of
predictors that only uses Coupling metrics (predictor set C). The details of all predictor
sets are shown in Table 7.4.

Data Processing

For every run of the classification algorithm, we randomly split the dataset (for every
case study) into 50% for the training set and the other 50% for the test set. To further
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Table 7.4: Predictor Sets

No. Predictor Predictor set A  Predictor set B Predictor set C
1 NumAttr Yes Yes No
2 NumOps Yes Yes No
3 NumPubOps Yes No No
4 Setters Yes No No
5 Getters Yes No No
6 Dep_out Yes Yes Yes
7 Dep_In Yes Yes Yes
8 EC_Attr Yes Yes Yes
9 IC_Attr Yes Yes Yes
10 EC_Par Yes Yes Yes
11 IC_Par Yes Yes Yes

improve reliability, we ran each experiment 10 times using different randomization.
The main reason for doing this is that the data are typically imbalanced where the
number of classes in design (the ‘positives’) is very low compared to the number of
classes in the source code. If we would have used 10-fold cross validation, it means that
we use only 10% of the data for testing and 90% for training. Thus, the possibility of any
positives to be included in the test data was very low, and test set error measurements
would not have been reliable (refer [62] for more detail discussion). For example,
let say we have an imbalanced dataset with 900 examples with only 1% (9) of the
examples are positive. If we used 10-fold cross validation, there is a possibility of the
positive example is not included in the test set. Thus, the True Positive Rate (TPR)
calculation is not reliable in this situation. We avoided detailed fine-tuning because
we assumed our end users have no knowledge of data mining. Algorithms ran with
default WEKA configuration. We used WEKA as the tool and algorithms ran with
WEKA default parameter setting; Except for k-Nearest Neighbor, for which we used
two different neighborhood size settings (1 and 5 neighbors). A different number of k
in k-NN may present a substantial difference in classification performance. Therefore,
this experiment investigates two sets of k-NN: (a) k=1 (extreme lowest value of k, or
plain nearest neighbor); and (b) k=5 (which we believe it represents a more average k
value for the dataset).

Evaluation

In this study, the analyses are conducted using two evaluation measures: i) the uni-
variate analysis, and ii) the analysis of classification performance. These measures are
explained as follows:
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Univariate Analysis: To measure the predictive power of the predictors, we use the
information gain with respect to the class [76]. Univariate predictive power means
measuring how influential a single predictor is in predicting performance. The results
of this algorithm are normally used to select the most suitable predictor. Nevertheless,
in our study, we did not use it for predictor selection, but for an exploratory analysis of
the usefulness of various predictors (in this case: class diagram metrics).

For Univariate analysis, the predictors were evaluated by using the Information
Gain (InfoGain) Attribute Evaluator in WEKA. This method produces a value which
indicates the influence of a predictor in prediction performance based on the case
studies. A higher value of InfoGain denotes a stronger influence of the predictor (i.e.
closer to 1 is better).

Analysis of classification performance: As discussed in Chapter 2, classification per-
formance is analyzed by using the Area Under ROC Curves (AUC). The evaluation of
machine learning classification algorithms started with generating a confusion matrix
(as shown in Table 2.3), based on applying a classification algorithm using WEKA.

WEKA provides AUC calculations as a number between 0 and 1. A value closer to
1 means a better classification result, while a value close to 0.50 means the classification
performs almost randomly.

Based on an early observation on our case studies, we decided the threshold for the
AUC value = 0.60. This means, if the AUC value > 0.60, the classification algorithm is
considered to be usable for prediction for our specific problem.

7.5 Evaluation of Results

This section presents our evaluation on i) predictive power of predictors and ii)
overview of benchmark AUC results.

7.5.1 Predictor Evaluation

This subsection presents our univariate analysis results that measure the predictive
performance of each predictor using information gain.

RQ1. The results show the influence of a predictor for the classification algorithm. A
class diagram metric is considered to be influential for prediction when the value of
the InfoGain Attribute Evaluator is greater than 0. Table 7.5 shows that out of eleven
class diagram metrics used in this study, nine of them influenced the prediction in
the JavaClient project while xXUML and Mars have eight and seven influential class
diagram metrics. On the other hand, ArgoUML and JPMC have only one influential
class diagram metric. Table 7.5 also shows that the Coupling category metrics are
influential for every case study. In all cases, at least one of the Coupling metrics is
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Table 7.5: Univariate Predictor Performance (Information Gain)

Project NumAttr [NumOps |[NumPubOps |Setters [Getters |Dep out |Dep In [EC_Attr |IC_Attr |EC Par |IC_Par
ArgoUML 0.000 0.000 0.000 0.000 [ 0.000 0.024 0.000 0.000 0.000 0.000 [ 0.000
Mars 0.000 0.013 0.017 0.011 | 0.025 0.000 0.047 0.037 0.000 0.031 [ 0.000
JavaClient 0.093 0.048 0.044 0.000 [ 0.050 0.215 0.093 0.000 0.183 0.092 [ 0.225
JGAP 0.073 0.056 0.000 0.078 [ 0.000 0.047 0.000 0.000 0.000 0.058 [ 0.000
Neuroph 0.000 0.054 0.062 0.000 | 0.000 0.000 0.084 0.000 0.000 0.106 [ 0.000
JPMC 0.000 0.000 0.000 0.000 [ 0.000 0.000 0.000 0.000 0.059 0.000 [ 0.000
Wro4] 0.000 0.000 0.000 0.000 [ 0.000 0.000 0.212 0.111 0.000 0.196 [ 0.000
xUML 0.168 0.281 0.281 0.306 [ 0.147 0.240 0.000 0.000 0.085 0.000 [ 0.506
Maze 0.000 0.000 0.000 0.000 | 0.000 0.000 0.171 0.178 0.000 0.125 [ 0.000
No. of
InfoGain > 0 3 & 4 B 3 4 5 3 3 6 2
Average 0.037 0.050 0.045 0.044 | 0.025 0.058 0.067 0.036 0.036_| 0.068 | 0.081
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00 Function Decision | Decision RBF Random | Random
148 k-NN(D) | k-NN () Logistic | Bayes Table Stump | Network | Forest Tree
u Predictor Set A|  0.63 0.70 0.73 0.69 0.70 0.60 0.66 0.66 0.75 0.66
® Predictor Set B|  0.61 0.70 0.72 0.70 0.70 0.59 0.64 0.67 0.75 0.66
u Predictor Set C|  0.61 0.71 0.72 0.68 0.69 0.58 0.65 0.66 0.74 0.66

Figure 7.2: Average AUC Score for Every Dataset.

listed as influential for prediction. This means that class diagram metrics categorized
in Coupling (i.e. IC_Par, EC_Par, IC_Attr, EC_Attr, Dep_In and Dep_out) have a strong
influence on prediction ability. If we compare Coupling metrics with Size metrics
(i.e. NumAttr, NumOps, NumPubOps, Getters, Setters) we found that only five case
studies listed at least one of the Size-metrics as influential predictor. EC_Par is the
most influential class diagram metrics because it is listed as influential in prediction
for six out of nine case studies.

RQ2. We have studied the predictors through three different experiments (based on the
predictor sets defined in Table 7.4). Figure 7.2 shows the average AUCs of classification
algorithms for all experiments. We expected to see a large difference in prediction
performance among the three experiments. However, there is not much difference in
prediction performance as we can see in Figure 7.2 the difference in average AUC is
only + 0.02. From this figure, we found out that the performances slightly degrade for
experiment C, but the amount of degradation is not very significant. This means, even
though the number of predictors in experiment C is smaller than in experiments A
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Table 7.6: Results for Predictor set C.

No. Project

J48
k-NN(1)
k-NN (5)

Naive Bayes
Decision Table
Decision Stump

RBF Network
Random Forest
Random Tree

1 ArgoUML 0.50 | 0.69 ] 0.69 0.56 ] 0.50] 0.55] 0.50 | 0.64] 0.60
0.00 ] 0.04 | 0.05 0.0610.00 [ 0.07]0.07] 0.04{0.03
2 Mars 0.5310.69[0.75[0.61[0.62]0.52(0.70] 0.58]0.73[0.61
0.06 | 0.03]0.05[{0.05]0.13]0.05]0.07]0.160.09] 0.08
3 JavaClient 0.76 | 0.83 ] 0.86[{0.81]0.79{0.78 [ 0.75[ 0.80| 0.86 0.81
0.09 1 0.03]0.04 [ 0.05] 0.04]0.07]0.06 | 0.04 [ 0.04]0.05
4 JGAP 0.54 1 0.60] 0.62 [ 0.67 | 0.66 ] 0.51] 0.59 ] 0.65 [ 0.72] 0.60
0.07]0.05[0.07{0.12{0.09] 0.02{0.04] 0.10]0.10{0.17
5 Neuroph 0.6110.79]10.82[{0.71] 0.87]0.56] 0.63]0.72{0.78] 0.68
0.1410.06]0.06{0.10] 0.04]0.09] 0.08]0.16{ 0.09] 0.08
6 JPMC 0.54 1 0.66] 0.67 [ 0.69 | 0.57] 0.50] 0.58 | 0.61 [ 0.69] 0.59
0.08 1 0.06 [ 0.06[0.08 [ 0.08]0.01[0.03]0.06]0.09(0.08
7 Wrodj 0.6310.70] 0.68 [ 0.77] 0.77] 0.62] 0.70 | 0.69 { 0.74] 0.68
0.1810.0910.19{0.16] 0.15]0.12] 0.13] 0.21{0.14] 0.14
8 xUML 0.7410.78 1 0.77{ 0.69] 0.73] 0.69] 0.72 ] 0.82{ 0.83] 0.75
0.06 { 0.07]0.06{0.12] 0.06] 0.10] 0.06 | 0.04 { 0.06] 0.06
9 Maze 0.67 1 0.61]0.64 [ 0.60 | 0.68]0.58] 0.63 ] 0.60 [ 0.70] 0.59
0.0710.10]0.14{ 0.11] 0.08] 0.07] 0.06] 0.10{ 0.10] 0.08
No. of InfoGain > 0.60 5 8 9 7 7 3 6 6 9 5

Average 0.61]0.71] 0.72 1 0.68 | 0.69 ] 0.58] 0.65] 0.66 ] 0.74] 0.66
0.09]0.08] 0.08 0.08] 0.10§ 0.10] 0.07] 0.10] 0.07] 0.08

g 2 |Function Logistic
O |

Note : The first row for each predictor set is the average AUC, the second row lists the standard
deviation. Cells with AUC < 0.60 are highlighted.

and B, the set of predictors is still reliable for prediction purposes. This shows that the
Coupling category (Predictor Set C) strongly influences the prediction performance.

7.5.2 Benchmark Scoring Results

RQ3. The classification algorithms were evaluated by measuring the average and
standard deviation of the AUC over ten runs for each predictor set. Table 7.6 shows an
example of results for experiment C. We have highlighted those cells that contain very
weak classification results, i.e. AUC < 0.60. Note that an AUC of 0.50 means that the
classifier produces completely random result. For our study, we consider a value of
AUC of 0.60 or higher indicates a useful algorithm. This means, the classification algo-
rithms that are able to produce this score for almost all case studies for all experiments
are considered suitable for classifying key classes.

After performing the experiments, we found that the Random Forests and K-
Nearest Neighbor (k-NN(5)) algorithms perform the best in classifying the key classes
in class diagrams in terms of overall AUC, as well as robustness over various predictor
sets. Figure 7.3 shows the prediction performance of all selected classification algorithm.
This figure illustrates the number of case studies (for each predictor set) in which the
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Figure 7.4: Application of Random Forests Classification Algorithm.

classification algorithm produces an AUC score greater than 0.60. Random Forests and
k-NN(5) perform the best prediction where both classification algorithms produced
AUC scores above 0.60 for at least 8 case studies of all datasets. Meanwhile, Naive
Bayes, Random Tree, Function Logistic, RBF Network and Decision Stump performed
less robust prediction across all predictor set. These classification algorithms performed
reasonably well. They produced an AUC above the threshold for 6 to 8 case studies.
J48 and Decision Table appear not to be suitable to be used in these case studies, given
the low number of results with AUC > 0.60 (between 3 to 5). The average AUC score
of more than 0.72 for Random Forests and k-Nearest Neighbor (k-NN(5)) shows their
suitability for all predictor set. Figure 7.4 illustrates the application of our method. In
particular, it applies the Random Forests classification algorithm to the JavaClient case
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study. As a result, a confusion matrix was generated. It shows that the total number of
classes is 214 with 57 of the classes in the forward design. The generated confusion
matrix shows that 36 out of 57 classes are correctly predicted as should be present in
the class diagram. Also, 141 out of 157 classes are correctly predicted as should be
omitted from the abstract class diagram. On the other hand, there are 21 false negatives
(predicted as leave out, but should be included) and 16 classes that are false positives
(predicted as ‘include’, but should not be included).

7.6 Discussion

With this result, we can conclude that the class diagram metrics from the Coupling
and Size category can be good predictors for classifying key classes in class diagrams.
In summary, there are three class diagram metrics that should be considered as in-
fluential predictors: Export Coupling Parameter (EC_Par), Dependency In (Dep_In)
and Number of Operation (NumOps). This finding is consistent with the findings in
Chapter 5 and Chapter 6 where the Number of Operation and Relationship (related to
coupling) are the elements that are most software developers looked at in order to find
the important classes in a class diagram.

The results show that k-NN(5) and Random Forests perform best and are suitable
classification algorithms in this study. We took a step forward by exploring this
classification algorithm by applying the algorithm individually to several case studies.
As a result, some of the predicted True Positive in the algorithm k-NN(5) are predicted
False Negative in the Random Forests and vice versa. We compared all the result
manually from those two algorithms applied to several case studies and some of the
true and false results are different. The possibility to enhance this predictive power
is by combining those classification algorithms to achieve the best result. Given the
imbalanced data, all selected algorithms were not able to produce high AUC scores.

This study was aimed at discovering suitable classification algorithms that could
provide a rank score concordant with the likelihood for classes to be included in the
UML class diagram. Based on this result, we are able to produce an approach for
ranking classes for importance. This will allow the software engineer to generate a
UML diagram at different levels of detail. To construct the abstraction of the class
diagrams, the software engineer may apply the abstraction of relationship in class
diagrams as presented by Egyed [52].

7.6.1 Threats to Validity

This study assumed that all the classes that existed in the forward designs were the
important classes. There is a possibility that some of these classes were not important
or not the key classes of the system. Also, there is a possibility that the forward design
used is too ‘old” or in other words obsolete compared to the version of the source code
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used. Feedback from the system developer may enhance the accuracy of these key
classes from forward design. However, collecting such feedback requires more effort.

The input of this study is dependent on the RE-CD constructed by the MagicDraw
CAGSE tools. As mentioned in Chapter 4, there are several weaknesses of CASE tools’
reverse engineering features. This weakness may influence the accuracy of the class
diagram metrics calculation. There is a higher risk for large system that the CASE tool
may leave out several information of some classes.

We only cover nine open source case studies. Based on the amount of classes, we
can consider that the case studies represent small to medium size projects. The result
may differ if we include large systems in our case studies.

7.7 Conclusion and Future Work

In this study, we proposed an approach for condensing RE-CD by selecting the key
classes in it. We studied how well machine learning techniques perform in selecting
the key classes in a class diagram by using supervised learning methods. The machine
learning algorithms were trained on a set of open source projects. These projects
contain a forward design class diagram which was used as a reference (‘ground truth’)
for validating the quality of the condensation. Given the imbalanced nature of the data,
Area under ROC curve was used as a performance evaluator for these algorithms.

This study evaluated (1) the influential predictors in classifying key classes and,
(2) compared various machine learning classification algorithms on nine case studies
derived from open source software projects, to identify candidate algorithms with the
most accurate as well as robust behavior across predictor sets. We discovered that the
Export Coupling Parameter, Dependency In and Number of Operation are the most
influential predictors for classiying key classes in a class diagram. On these predictor
sets, Random Forests and k-Nearest Neighbor provided the best results. For all listed
case studies, the Random Forests method scores an AUC above 0.64 and the average
AUC:s for every prediction set is 0.74. These algorithms are able to produce a predictive
score that can be used to rank important classes by relative importance. Based on this
class-ranking information, a tool can be developed that provides views of RE-CDs at
different levels of abstraction. In this was, developers may generate multiple levels
of class diagram abstractions, ranging from highly detailed class diagram (equal to
source code) to abstract class diagram (satisfying architect’s preference for high-level
views). In a broader perspective, this approach supports both the “Bottom-Up” and
also the “Top-Down” approach for understanding of programs [157].

The results of this research may be improved by finding complementary explanatory
variable. We also expect better results by taking the meaning of classes into account
(see Chapter 8). Finding the set of projects suitable for this study was a very time-
consuming task. This set can now be used by the scientific community as a benchmark
for further studies.
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7.7.1 Future Work

For future work, there is a number of ways to extend this work. Alternative input
parameters for predicting the key classes in a class diagram could be investigated.
This could include the use of other types of design metrics, for example, based on
(semantics of) the names of classes, methods and predictors. There are also possibilities
to use source code metrics such as Line of Code (LOC) and Lines of Comments as
additional predictors for the classification algorithms. Moreover, we could look at
the identification of ‘features” as a unit of inclusion or exclusion in the UML class
diagrams. Also, more extensive benchmarking should take place, for instance by
learning models on one problem and testing it on another, or testing out an ensemble
approach that combines classification algorithms. Specific approaches exist to better
transfer knowledge across different problems, such as transfer learning.

Another approach to deal with limited availability of ‘ground truth’-data for vali-
dation is to use a semi-supervised or interactive approach, where a user first selects
some limited top level classes, then the system learns and recommends further classes
to be included, and the user responds by confirming or rejecting the recommendations.
Building an interactive application may also help to guide future research.

In terms of predictive performance, it could be interesting to compare the result of
this study with other approaches. This study uses the classes in the forward design as
the ‘ground truth’. In version history mining, the classes that are frequently changing
are seen as candidates for key classes [77]. It is also interesting to compare our approach
with other works that apply different algorithms such as HITS web mining (used in
[184]), network analysis on dependency graphs (used in [154]) and PageRank [136],
and provide guidelines in which cases that approach would be preferred, or to create
hybrid approaches.

We extend this research by validating the result of our proposed technique for
condensing UML class diagrams in Chapter 10. The result of this study also allows
us to create an automated tool to condense class diagrams. The automated tool is
presented in Chapter 9 .






