Universiteit

4 Leiden
The Netherlands

Interactive scalable condensation of reverse engineered UML class

diagrams for software comprehension
Osman, M.H.B.

Citation

Osman, M. H. B. (2015, March 10). Interactive scalable condensation of reverse engineered
UML class diagrams for software comprehension. Retrieved from
https://hdl.handle.net/1887/32210

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license

Downloaded from: https://hdl.handle.net/1887/32210

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/32210

Cover Page

The handle http://hdl.handle.net/1887/32210 holds various files of this Leiden University
dissertation.

Author: Osman, Mohd Hafeez Bin

Title: Interactive scalable condensation of reverse engineered UML class diagrams for
software comprehension

Issue Date: 2015-03-10

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/32210
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter

Exploring the Suitability of
Object-Oriented Design Metrics as
Features for Class Diagram
Simplification

Class diagrams may include an overwhelming amount of information. For large
and complex class diagrams, there is a possibility that not all information in the
class diagram is important for understanding the system. In this chapter, we study
how to identify essential and secondary information in class diagrams. To this
end, we performed a survey with professionals, academics and students to enquire
how to decide which information in class diagrams is considered important. In
particular, we explore whether software design metrics can be used as a means of
identifying important classes in a class diagram.

In total, 25 complete responses were received. 76% of the respondents have average
or above skills with class diagrams. We discovered that the metric that counts
the number of public operations is the most important metric for indicating the
importance of a class in a diagram. Also, we discovered that class names and
coupling were influencing factors when it comes to excluding classes from a class
diagram.

This chapter is a more detailed version of a publication entitled “UML Class Diagram Simplification
- A Survey for Improving Reverse Engineered Class Diagram Comprehension”,In Proceedings of the 1st
International Conference on Model-Driven Engineering and Software Development(MODELSWARD 2013)

92 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

6.1 Introduction

The UML class diagram is one of the valuable artifacts in software development and
software maintenance. This diagram is helpful for software developers and software
maintainers in order to understand architecture, design, implementation and behavior
of software systems. UML class diagrams describe the static structure of programs at a
higher level of abstraction than source code [70].

Reverse engineering is one of the possible techniques to discover a software design
after the implementation phase. Reverse engineering is the process of analyzing the
source code of a system to identify its components and their interrelationships and
create design representations of the system at a higher level of abstraction [41]. With
this technique, recovery of a class diagram can be done based on the source code.
However, the resulting class diagrams from reverse engineering techniques often
suffers from too much detail and information. In particular, RE-CDs are typically a
detailed representation of the underlying source code, which makes it hard for the
software engineer to understand what the key elements in the software structure
are [126]. Although several Computer Aided Software Engineering (CASE) tools
have options to leave out several properties in a class diagram, they are unable to
automatically identify classes and information that are not useful or less important.
As part of a recent study [59], Ferndndez-Séez et al. found that developers experience
more difficulties in finding information in reverse engineered diagrams than in forward
designed diagrams and also find the level of detail in forward designed diagrams more
appropriate than in reverse engineered diagrams. For this reason, the information
that is needed by developers or maintainers to be shown in a class diagram should be
discovered.

In this chapter, we aim at simplifying UML class diagrams by leaving out unneces-
sary information without affecting the developer’s understanding of the system. Based
on the feedback in Chapter 5, the software developers indicated that the system struc-
tural information (e.g. relationship and class elements) influence the determination of
classes that could be included (inclusion) and classes that could be omitted (exclusion)
in the class diagrams. To this end, we have conducted a survey to gather information
from IT professionals, researchers or academics and students about what type of infor-
mation they focus on. The survey directed to the structural information based on the
object-oriented design metrics (i.e. the metrics from size category, inheritance category
and coupling category). We prepared a questionnaire that consisted of 24 questions
that are divided into 3 parts in order to discover this information.

The chapter is structured as follows. Section 6.2 discusses related work. Section
6.3 describes the properties and tools for this research. Section 6.4 explains about the
survey methodology while Section 6.5 presents the results and findings. We discuss
our findings in Section 6.6. This is followed by our conclusions in Section 6.7 and future
work in Section 6.8.

Related Work 93

6.2 Related Work

In this section, we discuss several studies that are related to the research in this chapter.

6.2.1 Usage of design metrics

Design metrics have been used for various purposes in software engineering. The
Chidamber and Kemerer metrics (widely known as CK metrics) are well-known object-
oriented metrics that is commonly used in software maintenance and fault proneness
research.

In software maintenance, Li et al. [104] use object-oriented metrics (CK) to predict
software maintenance effort. Their study shows a strong relationship between main-
tenance effort and object-oriented metrics. Their study also validates the results to
prove the ability of these metrics to predict the maintenance effort. Binkley et al. [27]
investigate more specific to coupling metrics in predicting maintenance measure. Their
study found that the coupling dependency metrics (CDM) is suitable for predicting
maintenance measures (e.g. a low level of coupling undergoes less maintenance and
have fewer maintenance faults). They also found that CDM also suitable to predict the
number of run-time failures.

There are several works on the usage of object-oriented design metrics associated
with fault-proneness. Briand et al. [36] [35] found that several CK metrics were
associated with the fault-proneness of classes. Also, Tang et al. [163] found that the
Weighted Methods Per Class (WMC) and Response for a Class (RFC) metrics are
associated with fault-proneness. El Emam et al. [53] found that inheritance and Export
Coupling (EC) Metrics are associated with fault-proneness. In later research, Gyimothy
et al. [73] discovered the Coupling between object (CBO) is the best metrics to predict
fault-proneness.

In our study, we used several object-oriented metrics to predict the class should be
included and should be excluded in the class diagram. We measure the influence of
the object-oriented metrics in predicting class inclusion/exclusion by the score ranking
based on the respondents” answers.

6.2.2 Automated Abstraction of Class Models

Falleri et al. [56] proposed an approach for class model normalization to produce a
simplified class diagram by removing redundant information. The Relational concept
analysis and Formal Concept analysis are used to process the normalization of the
class model. Similar to our study, they also suggest that the usage of elements name
for class model abstraction.

Egyed [51][52] proposed an approach for automated abstraction that allows de-
signers to “zoom out” on class diagrams to investigate and reason about their bigger
picture. This approach was based on a large number of abstraction rules. In total, the

94 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

article provides 121 rules to abstract a class diagram. However, this work is more
concentrated on the abstraction of classes relationship. It could not automatically select
the classes that should be included and should be excluded in class diagrams.

In our study, we conduct a survey to find out which object-oriented design metrics
influences the software developer in selecting the classes that should be included and
excluded.

6.3 Examined Properties and Tools

In this section, we describe i) the design metrics that we consider, and ii) the tools used
for this research.

6.3.1 Examined Properties

SDMetrics [180] is an object-oriented design measurement tool for the Unified Mod-
eling Language (UML). SDMetrics is capable of measuring 32 types of class diagram
metrics which are divided into five categories, namely Size, Coupling, Inheritance,
Complexity and Diagram. However, in this study, we only used 14 metrics from the
categories of Size, Coupling and Inheritance. These 14 metrics are selected based on
our initial experiments in Chapter 3. We reverse engineered the source codes of the
case studies presented in Chapter 3 and extracted all object-oriented design metrics
provided by SDMetrics. We found that only 14 metrics (as shown in Table 6.1) have
significant value for measurement.

6.3.2 Tools

SDMetrics [180] is used to measure the structural properties of object oriented design.
SDMetrics version 2.11 (academic license) is used for this purpose. We chose Enterprise
Architect [153] version 7.5 for creating forward design and RE-CDs for this survey.

6.4 Survey Methodology

This subsection describes the design of the questionnaire. We explain how the ques-
tionnaire was designed and why. We also describe our online survey experiment that
explains how the experiment was conducted.

6.4.1 Questionnaire Design

The questionnaire consisted of 3 parts i.e. part A, B and C. There was a total of 24
questions in this questionnaire.

Survey Methodology

Table 6.1: The Chosen Software Design Metrics [180]

95

No. | Metrics Category Description
1 NumAttr Size The number of attributes in the class.
2 NumOps Size The number of operations in the class.
3 NumPubOps | Size The number of public operations in a class.
4 Setters Size The number of operations in a class with a
name starting with ‘set’.
5 Getters Size The number of operations in a class with a
name starting with ‘get’, ‘is’, or ‘has’.
6 NOC Inheritance | Number of Children (NOC) calculates the
number of immediate subclasses subordi-
nated to a class in the class hierarchy.
7 DIT Inheritance | Depth Inheritance Tree (DIT) calculates the
longest path from the class (in the class
diagram) to the root of the inheritance tree.
8 CLD Inheritance | Class Leaf Depth (CLD) calculates the
longest path from the class to a leaf node in
the inheritance hierarchy below the class.
9 Dep_Out Coupling The number of dependencies where the
(import) class is the client.

10 | Dep_In coupling The number of dependencies where the
(export) class is the supplier.

11 | EC_Attr Coupling The number of times the class is externally
(import) used as attribute type.

12 | IC_Attr coupling The number of attributes in the class have
(export) another class or interface as their type.

13 | EC_Par Coupling The number of times the class is externally
(import) used as parameter type.

14 | IC_Par coupling The number of parameters in the class
(export) have another class or interface as their

type.

In part A, we aimed to discover the respondent’s personal characteristics and
experience with class diagrams. Meanwhile, Part B aimed to discover what object-
oriented design metrics that the respondents find influential in considering classes
that could be included in class diagrams. In part C, we aimed to discover what classes
the respondents leave out when looking at a diagram and what class diagram(s) the
respondents prefer when looking at different types of class diagram designs. This is
an online questionnaire and is hosted by LimeSurvey [5] and a printable version is
available at [130].

96 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

Table 6.2: Answers Multiple Choices Questions

Choices Answers

Class(es) definitely should not be included
Class(es) probably should not be included
Class(es) sometimes be included

Class(es) probably should be included
Class(es) definitely should be included

MmO N wm P>

Part A: Background of the Respondents

Part A consisted of 4 questions. Question 1 asked about the current status of the re-
spondents. Question 2 intended to collect information about the respondent’s location
(optional question). We asked how many years of experience the respondent has with
class diagrams in question 3. The last question asked the respondents to rate their skills
in creating, modifying and understanding class diagrams.

Part B: Class Diagram Indicators for Class Inclusion /Exclusion

This part consisted of 14 questions. The first 13 questions asked about the influence
of class diagram elements (based on object-oriented design metrics) to distinguish
classes that should be included or excluded. In detail, we asked opinions of software
developers on to whether they believe a particular metrics should be used for deciding
whether a class should be included or excluded. In each question, we briefly explained
about the metrics that was used in the question and five answers were offered. The
choices of answers are shown in Table 6.2.

The last question of part B (i.e. question 14) is to discover the reason of the respon-
dents for including and excluding a class in a class diagram. This question aimed to
collect the information complementary to object-oriented design metrics about the
reason of the respondents for including and excluding a class in a class diagram.

Part C: Practical Simplification Problems

Part C contained 6 questions. In this part, these well-known domain systems were
selected to avoid bias about the domain knowledge of the respondents. The following
class diagrams were involved in this survey:

1. Automated Teller Machine (ATM) simulation system: We used the forward
design of an ATM simulation system [28] that only contains class names and
class relationships. In total, there are 22 classes in this class diagram.

2. Library System: The Library System is a system that enables a user to borrow a
book from a library. This system which was taken from [55] contains 24 classes.
The RE-CD of this system was used in this questionnaire.

Survey Methodology 97

Table 6.3: Description of the Class Diagrams Used in the Questions

Question System Source of Diagram Level of Detail (LoD)
C1 ATM Machine Forward Design Low
C2 Library System Reverse Engineered High
C3 Pacman Game Forward Design High
C5 Pacman Game Reverse Engineered High

Table 6.4: Choices of Answers for Question 4

Choices Descriptions

A I prefer class diagram A (ATM System)

B I prefer class diagram B (Library system)

C I prefer class diagram C (Forward design Pacman)
D I prefer them all

E I do not prefer them

F

It does not matter which one

3. Pacman Game: Pacman’s Perilous Predicament is a turn-based implementation
of the classic Pacman game. To accommodate its turn-based nature, the game
play mechanics will be changed into more of a puzzle game. This project can be
found at [44]. In this questionnaire, we used the diagram of the second phase
(Milestone 2). We used two types of diagrams from this system, namely the
forward design and the RE-CD. The forward design consists of 17 classes while
the RE-CD contains 15 classes. The forward design was detailed and hence,
similar to the source code.

We also tried to simulate the various flavours of class diagrams from the software
industry by providing different Levels of Detail (LoD) of class diagrams and the sources
of class diagrams. Different flavours of class diagrams allowed us to differentiate the
indicators of class exclusion. The information about the class diagrams used in part C
is shown in Table 6.3. Next to these 4 questions, we made another 2 questions in which
we asked the respondent which class diagram he/she prefers. In the first question
(question 4 in part C), the respondents were required to choose between an ATM
system, a Library system and the forward design of a Pacman system. The respondents
were also required to provide the reason they chose the answer. In the second question
(question 6 in part C), the respondents were required to choose between the forward
design and the RE-CD of Pacman. The respondents were also required to give the
reason they chose the answer. Table 6.4 and 6.5 show the answer options for the
multi-choice questions.

98 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

Table 6.5: Choices of Answers for Question 6

Choices Descriptions

I prefer class diagram C (Forward design Pacman)

I prefer class diagram D (Reverse engineered design Pacman)
I prefer them Both

I do not prefer them

It does not matter which one

mg 0w >

Table 6.6: Total of Reponses

Responses Amount
Complete Responses 25
Incomplete Responses 73
Total Responses 98

6.4.2 Experiment Description

The experiment was conducted online (hosted by Limeservice [5]). The questionnaire
was published online from 15th of May until the 3rd of August 2012.

We first invited students and researchers at the Leiden Institute of Advanced
Computer Science (LIACS), Leiden, to our online questionnaire. Then, we promoted
the questionnaire by using social media like Facebook, Twitter and LinkedIn. We also
promoted this questionnaire to multiple online software developer forums.

The respondents were provided the facility to save the answers and the respondents
could continue for a later time. The total respondents that entered this questionnaire
were 98 (see Table 6.6). However, only 25 respondents completed this questionnaire.
Most of the incomplete responses stopped after the questions in Part A.

6.5 Results and Findings

In this section, we present our results and findings from this survey. This section is
divided into three subsections: Background of the Respondents, Indicator for Class
Inclusion and Practical Simplification Problems.

6.5.1 Background of the Respondents (Part A)

This subsection presents the results of part A of the questionnaire in which we asked
after the respondent’s background information.

Results and Findings 99

m Student

m Researcher/Academic

=T Professional

Figure 6.1: Role of the Respondents

5% 5%

5%

® The Netherlands
4% :
m Malaysia
4% = Sweden
u taly

m Austria
= Spain

m Czech Republic

Figure 6.2: Location of the Respondents

Roles and Locations

For the respondents’ role, 40% of the respondents mentioned that their current status
is Researcher/ Academic while 32% of the respondents are IT Professionals. 28% of the
respondents answered Student. None of the respondents answered “Other”. Figure 6.1
shows the results of all the respondents. This result shows that the distribution of the
respondent’s status is quite even.

For the respondents’ location, 45% of the respondents were from the Netherlands
and 32% of the respondents were from Malaysia. The detail of respondents’ location is
shown in Figure 6.2.

Skills and Experience with Class Diagrams

For the years of experience in using class diagram, 28% of the respondents stated
that their experience with class diagrams is less than 1 year. 24% of the respondents
mentioned that their experience with class diagrams is between 1 and 3 years while 16%
of the respondents answered this question with “3 - 7 Years”. 12% of the respondents
answered “7 - 10 Years” and 20% of the respondents mentioned that they had more
than 10 years of experience with class diagrams.

100 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

No. of Respondents
N

1

0 <1 Year 1-3 Years 3 -7 Years 7 -10 Years 10+ Years
= Excellent 0 0 0 0 4
u Good 0 1 1 2
u Average 1 5 3 1 0
H Low 4 0 0 0 0
® Poor 2 0 0 0 0

Figure 6.3: Class Diagram Skill and Years of Experience

In Question A4, we asked the respondent to rate his/her skills in creating, modi-
fying and understanding class diagrams. 40% of the respondents answered Average,
while 20% answered “Good”. 16% of the respondents answered Excellent. 16% of the
respondents rated their skill are Low and 8% of the respondents have Poor skill of
class diagrams. This indicate that 76% of the respondents rated their skill of average or
above. The complete results of the combination of these two questions are shown in
Figure 6.3.

6.5.2 Indicator for Class Inclusion

In this subsection, we present the result of part B. This part consisted of 14 questions.
Each of these questions asked whether some metric-value could be used as an indicator
of the importance of a class. For example,

“ B3: Do you think that a high number of Public operations (NumPubOps) is an indicator that
a class should be included in a class diagram? ”

For questions Bl to B13, the respondents were provided 5 answer options (see
Table 6.2) to be chosen as their answer. We analyzed these 13 questions by using a
score-system. The score-system is shown in Table 6.7.

The metrics are grouped into three categories which are: Size, Coupling and Inher-
itance. The details of these metrics are explained in Table 6.1. Figure 6.4 shows the
results of the Size category. The average score for the metrics in category of size is 18.3.

Results and Findings 101

Table 6.7: Score-System Metrics - Question B1-B13

Answer Score

Class(es) definitely should not be included 2
Class(es) probably should not be included -1
Class(es) sometimes be included 0
Class(es) probably should be included 1
Class(es) definitely should be included 2

30

N
wn

[393
(=)

No. of Points
Y

10

NumPubOps NumOps NumAttr Setters/Getters Average

Figure 6.4: Score Size Category (Question B1-B4)

From these results, we found that operations are very important in class diagrams. In
particular, public operations. This finding aligns with our findings in Chapter 5 where
the respondents did not like to see private and protected operations. In other words,
they find public operations better indicators for inclusion in a class diagram. As for
setters/getters, these have the lowest score in this category. This indicates that the
setters/getters are not an important element in a class diagram for the respondents. A
reason for this could be that it is a common operation. NumAttr and NumOps also
have an average amount of points. We can say that these metrics are normally needed
in a class diagram, but public operations are more preferred.

Figure 6.5 shows the results of the Coupling category. On average, the score for the
metrics in coupling category is 14.2. The results illustrate that Dep_Out and Dep_In
score 17 and 16 points, respectively. In Chapter 5, most of the respondents find the
class relationship is an important criteria of classes that should be included in class
diagrams. Therefore, if a class contains many dependencies, whether they are outgoing
or incoming, this class is important. This could be the reason that many respondents
stated that such a class should be included. EC_Attr has 15 points while IC_Attr has 17
points. If we compare the points between these two metrics and EC_Par (11 points)

102 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

16
14
| E

Dep_Out IC_Attr Dep_In EC_Attr EC_Par IC_Par Average

—
(=]

No. of Points

S N B N ®

Figure 6.5: Score Coupling Category (Question B5-B10)

and IC_Par (9 points), there is a huge difference. This indicates that the classes that
are declared and are used as an attribute are more important than the classes that are
declared and are used as a parameter in class operations.

The Inheritance category consists of three metrics: NOC, DIT, and CLD. The average
score for the metrics of this category is 10.7. From the results (Figure 6.6), NOC has
the highest score in this category (20 points). DIT and CLD have 7 points and 5 points,
respectively. These results suggest that the respondents may only be interested in
a part of an inheritance hierarchy. If a class has a high NOC, the class is important
since it has many immediate children and is also higher in the inheritance hierarchy.
However, if a class has a high DIT, then this class is somewhere at the bottom of this
hierarchy which means that there is a possibility that this class is not important. It is
not a surprise that CLD has a low score because normally if a class has a high number
of CLD then the class presents a very high-level of abstraction that is typically used to
group the classes under this class.

Question B14 asked the reasons for including or excluding a class from the class
diagram. The responses to open-ended question B14 were analyzed by grouping the
answers into categories. An answer to this open-ended question could contain multiple
keywords. The respondents stated that they wanted to include a class “when it is
important” but they did not say when a class is important. It is a weakness of the
survey-method that we could not ask for further questioning into more explicit factors
when this answer was given.

Figure 6.7 shows the results of the question based on the keywords. It shows
that there are three keywords that are related to the answers the most. These are
Important/Relevant Class (29.6%), Domain Related (25.9%), and Coupling (18.5%).
The keyword “Important/Relevant” is a broad term, but that is what the respondent
answered. Hence, this answer is really obvious, but we cannot use it as a recipe to

Results and Findings 103

25

20

15

No. of Points

10

NOC DIT CLD Average

Figure 6.6: Score Inheritance Category (Question B11-B13)

35
30
25
20
15
10

% of the Respondents

Figure 6.7: Keywords to Include a Class in a Class Diagram

decide which class is important for them. Coupling on the other hand is a factor
that was expected. We stated in the survey in Chapter 5 that relationships are very
important to understand a class diagram. Here, we found the same result. 18.5% of the
respondents said that if a class has many relations, then that class should be included.

“Domain Related” are classes related to the concept or domain. Without these
classes, it is hard for a software maintainer to understand a system. Five respondents
mentioned the reasons for exclusion. One of these reasons is when a class is too small
or that it can be combined with another class. Another respondent stated that he/she
excludes a class if this class does not contain any important attributes or operations.
Once again, the respondent did not state when an attribute or an operation is important.
One respondent stated that he did not need any children classes. In other words, he
only needs the parent classes. Another respondent mentioned that he would keep

104 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

the classes, but would exclude the attributes and operations from these classes to
get a high-level abstraction. This answer is not really relevant to what we asked,
but it is interesting to show the needs of the class names and class relationships to
understand a system. The last respondent stated that he/she excludes helper classes or
technical-specific classes since they are not needed to understand a system.

6.5.3 Practical Simplification Problems (Part C)

In this part, we tried to elicit characteristics about classes that should not be included
in a class diagram. This information is gathered by asking the respondents to select
classes that should be excluded from the class diagram of three actual system designs.

Coupling

In question C1, a class diagram of an ATM System (as shown in Figure 6.8) was
presented without attributes and operations. Through this question, we aimed to
elicit information about the influence of coupling category and class names. The
overall results of this question are shown in Figure 6.9. The results show that 48%
of the respondents chose to exclude the class Money and 36% of the respondents
chose to exclude the OperatorPanel and Status class from the class diagram. We
observed that these 3 classes have a relatively low coupling (< 2). Next, 32% of the
respondents excluded the classes Deposit, EnvelopeAcceptor, ReceiptPrinter, Transfer
and Withdrawal. The coupling of those classes is equal to 2. This means that the
exclusion of 8 out of 24 classes of this class diagram could be explained based on their
coupling. The classes that were important in this class diagram are Transaction and
ATM. Only 4% of the respondents chose these classes as should not be included. Both
classes have a high amount of coupling. This indicates that the amount of coupling
plays a major role in selecting the classes that should or should not be included in a
class diagram.

Meaningful Class Names

A RE-CD from a Library System (as shown in Figure 6.10) was used for question C2
(“Figure 10” in this questionnaire). All elements in a class diagram were presented
(in HLoD) and we expected to discover the factors that are influential in selecting the
classes that could be excluded. The results of the survey are shown in Figure 6.11.
From question C2, we found that class names also play a major role in determining
whether a class should be included or excluded. The top three classes that were chosen
to be excluded are AboutDialog, MessageBox and QuitDialog. From the class names,
the respondents were able to predict what the functionality of the class is. AboutDialog,
MessageBox and QuitDialog clearly referred to functionality that is used to display
information. Thus, these classes are not considered important because they are only

Money

h

Cash Dispenser

(Customer Console

Card Reader

Results and Findings 105

e ———————————————

Card

balances

Session

——=1
Message =7 7 /|
- I
/ |
/ |
— / |
- / |
- \ / I
\ \ Status // :
____________ = |
\ |
\ / |
/ / |
/ |
\ /
/
\ ; Receipt
\ /
Envelope
Acceptor Network ToBank /
|
|
|
|
|
|
|
|
Operator Panel |
!
ATM Receipt Printer
Transaction
Withdrawal Deposit Inquiry Transfer
/ 7
AN \ / ,
\ / ~
\ v
AN \ / ~
N \\ / s
/
Account
Information

Figure 6.8: Class Diagram A (ATM System)

106 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

[Transaction]

[ATM]

[Customer Console]

[Card Reader]

[Session]

[Network ToBank]

[Log]

[Card Dispenser]

[Account Information]

[Receipt]

[Message]

[Inquiry]

[Card]

[Balances] |

[Withdrawal] |

[Transfer] |

[ReceiptPrinter] |

[Envelope Acceptor] |

[Deposit] |

[Status] |

[OperatorPanel] |
[Money]

"% 0 10 20 30 40 50 60

Figure 6.9: Respondents Selection of Classes that Should not be Included in an ATM System

used to display messages - which is not core functionality of this application. On the
other hand, the 5 classes that not many respondents chose to exclude from the class
diagram are classes that are related to the domain and have coupling more than 2.
Borrower, Reservation, Loan, Item and Title are classes that have a meaningful name
that might indicate the functionality of the classes and also are core concepts of the
domain i.e. Library System.

Enumeration and Interface Classes

In question C3, the respondents were asked to select the classes that could be left out of
a forward designed Pacman Game class diagram. Most of the classes in this diagram
have relationships and meaningful class names. The complete result of this question
is presented in Figure 6.12. The results indicate that 64% of the respondents chose to
exclude class Direction from the class diagram. This class is an Enumeration class with
coupling equals to 0 which might be the reason why this class should not be included
in a class diagram. 52% of the respondents selected to exclude the Iterator class while
40% of the respondents chose to exclude the Iterable class. Both classes are interface
classes that might indicate that those classes are not important or at least not related
to the domain of the application. These results illustrate that the enumeration and
interface types of classes are candidates for suppression in a simplifying this class
diagram.

Borrower
+ addLoan(Objld) : void ltem
+ addResenvation(Objld) : void 3
! s P
i :;;‘?:‘;’lf'ﬂ"::oi"l‘;‘fz:;‘g Ei BT + dlean(): void + getTitleName(): String
+ slininseRosenalion(ON): void s o0 vooeen Jiiisivn0: bockean
+ gelObjid() : Objld + llem()
I %“EWMW + iterate(String, boolean) : Persistent + ltem(Objld, int)
0= .| cbamoneconla) remsen + readRandomAccessle): vid
i e "f()s‘ 9 + Persstent() + setloan(Obild) : void
I ::‘NZ‘:"";L b "s"lgmg + read(RandomAccessFile) : void O Fandomaccessie): void
+
+ getsmet):Sung [-
: :4’1_1_);::::::::@”)0&‘:“ ot + wite(RandomAccessFile) : void
+ obtainNumLoans():int Loan
+ obtainNumResenvations(: int
+ obtenerReserva(int): Resenvation it 9’:ﬁ°’";]we"’ Bonorey
etlen
+ read(RandomAccessFile) : void bomover et
+ searchByName(Stiing): Borower g
+ seiCitySting): void Frame. + fem:\'eNameO String
+ selCountrySting) : void T
+ Shumbarsing vod dtonfame * Loanos, o
5 ~ cancelBution_Clicked(Event) : void + read(RandomAccesFile) : void
setStreel{Sting) - void
+ setSumame(Sting): void | sorowsr - CheciStatus): void QRIEE e dom Aocee) - oid
+ WiefRandomAcoss=File): void ~ FindBorowerinfomation_Clicked(Even): void
s ~ FindTitleButton_Clicked (Event): void
M :my,g o + handleEvent(Event): boolean
o 9 ~ itemList_ListSelect(Event): void
«property st + LenditemFrame()
+ seICP(String) : void + LendltemFrame(Stiing)
~ olBution_Glicked(Even): void Reservation
<urent [\-borower [\ borrower <urent iR EceowsHObik): void
+ resultTitle(Objld) : void + getBorrower(- Borover
+ show): void + getTille): Title
+ read(RandomAccessil) : void
+ Resenation()
+ Resenation(0bjld, Objid)
+ wite(RandomAccessFile) - void
Frane
ReservationFrame
Frams ~ cancelBution_Clicked(Event): void
- checiStatus) : voi
RRRBEC O FRiTe ~ findBorrowerButton_Clicked(Event): void S Tile
I - A i v
CancelButton_Clided(Event): void indTitleButton_Clicked Event): void | ——— ‘equalsObject): boolean
~ DeleteButton_Clicked(Event) : void + handleEvent(Event) : boolean
= i + addResenation(Objld) : void esuibirRandomAccessFile) : void
RIS EveriEEvent): boolean giion Clcked(Event): eid + findOnAuthor(Sting): Title getid():int
i + LSS bing) : T
rcud void fReamnatonFrame) + MndOnISBN(Sting) Title getName(): Sting
+ UpdateBomowerFrame(Objld, boolean) i+ ResmalionFrame(Sting) + findOnName(String) : Titl Objld()
~ UpdateButton_Clicked(Event): void + resutBorower(Objld): void N M‘T&")E(S‘T:f—'e ObidSting, in)
« UpdateFrame(Obild): void)i ;:A'ngvﬂv:(gmlm o + gellSBN(: Sting read(RandomAccessFile) : void
| it + getltem(int): em
Dialog] N+ getitemWithld(int) : ltem
+ getholtems): int
FindBorrowerDialog Frare + getNoReservations() : int
~ CancelBution_Clicied(Even): void CancelResery ationFrame T icnin: Fesoation
e + gefTille itle Dialog]
2= Dol ane, ooleer) ~ borowerLis_ListSelect(Even): void s GelTite): Sting
+ g(Frame, Sting, boolean) i e Do Quitbialog
~ FindButton_Clicked(Event): void R or=cliceed(Event): void. + getType():int
+ handleEvent(Event): boolean + CancelResenationFrame() + gefTypeAsSting(): Sting '+ handleEvent(Event) - boolean
~ olution_Ciicked(Even): void + CancelResenvationFrame(Sting) + iterteTitle(boolean): Title ~ noBution_Ciicked(Event): void
P) oid - checkStatus() : void + leerRandomAccesFile) : void + QuitDialog(Frame, boolean)
= findTitieButton_Clicked(Event): void Lite] * EmoveltemAtindexn): void + QuitDialog(Frame, Sting, boolean)
+ handleEvent(Event): boolean + removeResenation(Obild): void + show(): void
~ okBution_Clicked(Event): void + slAuthor{Sting): void ~ yesButton_Clicked(Event): void
+ resultTitle(Obild) : void + slISBN(Sting) : void
+ show): void + sTitle(Sting): void
Frame + siType(in): void
Frame Borrow erlnfoWindow Frame 4 ?ﬁe‘s‘ O g)
+ Tille(Sting, Sting, Sting, in
BorowerFrame n ReturnltemFrame i V- void
~ AddButon_Cliced(Even): void + BorowernfoWindow(Sting) ~ cancelBution_Cicked Event) vaid Diaog
+ BorowerFrame() = FindButon_ClickedEvent): void - cheaiStatus) void ouren e urent AboutDialo
+ BomwerFrame(Sting) + handleEvent(Event) : boolean ~ findTitleButton_Clicked(Event) : void i
= CancelBution_Clicked(Event): void ~ ofBution_Clicked(Event): void + handleEvent[Event): boolean + AboutDialog(Frame, boolean, Toolkit)
+ handleEvent(Event): boolean + resultBomower(Objld) : void ~ itemList_LigSelect(Event) : void + handleEvent(Event): boolean
+ show(): void + show(): void ~ olButton_Clicked(Event) void ~ okButton_Clicked(Event) : void
. + paint(Graphics): void
+ RetumitemFrame() + show): void
+ RetumitemFrame(Sting)
+ show(): void
Frame
Frame Frame
MainWindow Frame TitielnfoWindow
TileFrame
e = Aoou ActonEvent): void = findButton_Clicked(Event): void
Bl e iionshing) + actonEvent, Object) boolean ~ addButton_Clicked(Event): void + handleEvent(Even): boolean
e B e ActonEvent): void ~ cancelButton_Cicked(Event): void ~ olBution_Cicled(Even): void
o (T = BrowseAll_Action(Event): void + handleEvent(Event) : boolean + resulTitie(Objld) : void
i 5 + show): void + show(): void
B e venkEvent) : bootean Exit Acton(Event): void i i
' ki 120 RandicE veniEvent): booiean TitleFrame() TillelnfoWindow()
~ updateBomowerBution_Clicked(Even): void RS Eopwer Acion(Event): void R me(Sinng) i
~ updateTitleButton_Clicked(Event) : void = InsertTitle_Action(Event): void
~ Lenditem_Action(Event): void
+ Frame
Dialoy +
q pain(Graptics):vid B wacrrame Dislog
MessageBox ~ RemoveReservation_Action(Event): void FindTitleDialog
~ ReseneTile_Action(Event): void - Ciicled(Even): voi
T + reilBomower(Obid): void - cancelBution_Gicked(Event): void ~ cancelBution_Clicked(Event): void
Jites=aeBexFrame, Sting) + resilitie(Objld): void - deleteBution_Clicked(Event): void R ReCldedEvent): void
= ofBution_Clicied(Event): void B igton AcsoniEvent: vokd B e Even) : bootsan + FindTilleDialog(Frame, boolean)
i ow) - void + show():voi = removeltemBution_Clicked(Even): void + FindTitleDialog(Frame, Sting, boolean)
~ Tille_Action(Even): void + show(): void e entEwni) : boalazn
~ UpdateBorower_Action(Event): void - updateButton_Clicked(Event): void R e Eren) - void
~ UpdateTitleltems_Action(Event): void - UpdateFrame(Objld) : void + show): void
2 ild, boolean)

Results and Findings

107

Figure 6.10: Class Diagram B (Library System)

108 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

[Borrower]
[Reservation] |

[Loan] |mes

[ltem] —

[Title] ——
[ReservationFrame] j——
[UpdateTitleFrame] ——
[ReturnitemFrame] p——

[Persistent] ——
[LenditemFrame] e s—
[FindTitleDialog] |ee——

[CancelReservationFrame]
[BorrowerinfoWindow]
[UpdateBorrowerFrame]
[TitleFrame] |

[Objid] |
[FindBorrowerDialog] |
[MainWindow] |
[BrowseWindow] |
[TitlelnfoWindow] |

[BorrowerFrame] |
[QuitDialog] |
[MessageBox] m
[AboutDialog] | = . ! ' T
=% 0 10 20 30 40 50 60 70

Figure 6.11: Respondents Selection of Classes that should not be Included in a Library System

[Maze]
[GameModel]
[Player]

[Ghost]
[Character]

[Tile]
[GameLevel]
[GamelListener]
[ConsoleControl]

[GameEvent]
[ConsoleView]

[Mazelterator]
[GameListenerAdapter]
[PacShell]

[lterable]

[Iterator]

[Direction]

=% 0 10 20 30 40 50 60 70

Figure 6.12: Respondents Selection of Classes that should not be Included in a Pacman Game
(Forward Design)

Results and Findings 109

Table 6.8: The Preferences between Class Diagram A (C1), B (C2) and C (C3)

Answers Number of in Respondent’s Role Respondent’s Skill
Respondents %
Student | Researcher/ | IT Poor | Low | Avg | Good | Excellent
Academic Pro.
I prefer 5 20 0 2 3 0 0 2 1 2
class
diagram A
(Figure 6.8)
I prefer 2 8 0 1 1 0 0 2 0 0
class
diagram B
(Figure 6.10)
I prefer 12 48 6 5 1 1 3 6 1 1
class
diagram C
(Figure 6.13)
I prefer 1 4 1 2 0 0 0 0 1 0
them all
I do not 2 8 0 0 2 0 0 0 1 1
prefer them
It does not 3 12 0 0 1 1 1 0 1 0
matter
which one
Total 25 100 | 7 10 8 2 4 10 5 4

Level of Detail

Referring to the class diagram A (question C1), class diagram B (question C2), and class
diagram C (question C3), the respondents have been asked which flavour of the class
diagram is preferred to be used. The detail information of LoD for the class diagrams
is explained in Table 6.3.

The results in Table 6.8 show that almost half of the respondents (48%) preferred
working with class diagram C (see Figure 6.13). This diagram is a HLoD forward
design class diagram. They mentioned that the class diagram is clear, the necessary
information is provided (e.g. attributes and operations) and most of the presented
classes are important. This diagram was preferred by students and researchers and one
IT Professional. 20% of the respondents preferred to use class diagram A. Most of the
respondents that chose this diagram were Researchers/Academic and IT Professionals
with the skill in class diagrams ranging from Average to Excellent. It seems that most
of the respondents that have a good skill and experience in class diagrams prefer to use
this diagram. The respondents mentioned that they preferred this diagram because it
is simple, less technical, domain-oriented, systematic and has meaningful classes. 8%
of the respondents preferred class diagram B. Another 8% did not prefer any of the

110 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

; SiameModel GameEvent
«interface»
e ietaner - ghosts: List<Ghost> T —
- level: GameLevel — i
il + source: GameModel
+ gameOver(GameEvent) : void Kf---—-——————————— - levels: List<String>
B e tnplcte(GameEvent) : void - listeners: List<GameListener> PRNreirosy) GamoModa)
+ playerDeath(GameEvent) : void - player: Player
+ playerMove(GameEvent) : void
+ addGameListener(GameListener) : void
A AV3 + GameModel(String) : int Ghost
| N + getGhost(int) : Ghost
| + getMaze() : Maze - target: Character
ConsoleView + getNumGhosts() : int <
GamelLit + getPlayer() : Player + getNextMove() : Tile
il iew() : int + loadLevel(String) : void + Ghost(Tile, Character) : int
+ gameOver(GameEvent) : void + ConsoleView(GameModel) : int + makeMove(Direction) : boolean
+ levelC) : void + void + removeGameListener(GameListener) : void
+ playerDeath(GameEvent) : void + gameOver(GameEvent) : void + resetLevel() : void
+ playerMove(GameEvent) : void + levelComplete(GameEvent) : void + stateCheck() : void
A + playerD) : void + updateGhosts() : void
+) : void
: N
| /j
| Player
! et Mazelterator s Vv
= B - lives: int
ConsoleControl i ghoslSt’\a’IﬂS List<Tile> - maxY: int T
- maze: Maze I + getlives() : int
bi: BufferedinputStream - playerStart: Tile i ::,e::"g "[‘I:El]l] + isDead() : boolean
- continueGame: boolean Bl + loseLife() : boolean
- model: GameModel + addGhostStart(Tile) : void + Player(Tile, int) : int
+ :boolean i + setTile(Tile) : boolean
+ ConsoleControl(GameModel) : int + clearPlayerStart() : void)i a?;lﬁ’:r(;m:’::"e:'“ Tl
- execute() : boolean + GameLevel(Maze) : int B hedg:Tie h \V4
+ gameOver(GameEvent) : void + getGhosts(): int M) voia
+ run() : void + getGhostStart(int) : Tile e haracter
+ getMaze() : Maze T
+ getPlayerStart() : Tile ! - currentTile: Tile
+ isComplete() : boolean \vi
+ setPlayerStart(Tile) : void + Character(Tile) : int
«interfacen : .
e + getNeighbour(Direction) : Tile
PacShell + getTile() : Tile
R + move(Direction) : boolean
+ main(String[)) : void + sefTile(Tile) : boolean
Maze
- maxX: int "
- maxY: int et
B lertaces == el - exits: map<Direction, Tile>
lterable<Tile> |- __ _ _ _ + passDots: int - visited: boolean
+ xCoord: int
+ addExit(int, int, Direction, boolean) : boolean llicoord: int
+ addTile(int, int) : boolean
+ clearMaze() : void ENEaDeH) - void
T + dotsRemaining() : int - % clearDot() : void
Direction + getMaxX() :int + getExit(Direction) : Tile
+ getMaxY() : int + getShortName() : String
NORTH + getNeighbour(Tile, Direction) : Tile b GetXCoord() : Int
EAST + getPassDots() : int B e Coord() : int
SOUTH + getTile(int, int) : Tile % hasDot) : boolean
WEST + isComplete() : boolean + removeExit(Direction) : boolean
+ iterator() : lterator<Tile> + setExit(Direction, Tile) : boolean
+ getOpposite() : Direction + Mazefint, int, boolean) : int % Tileqint, int) - Int
+ removeExit(int, int, Direction, boolean) : boolean + toString() : String
+ removeTile(int, int) : boolean
+ setPassDots(int) : void

Figure 6.13: Pacman Game Forward Design (Class Diagram C)

presented class diagrams. As reason for this, they stated that there is “no story” in the
class diagrams and that the class diagrams only show the solution, not the foundation
of the domain.

Reverse Engineered Class Diagram which Conformed to Forward Design

In question C5, the class diagram used was slightly different from the class diagram
presented in question C3 because this class diagram was constructed by using a reverse
engineering technique (see Figure 6.14). In this question, we tried to discover if there
was any difference in selecting the classes that should not be included in a class diagram
in a Re-CD that is close or almost similar to the forward design class. The result shows
that the class Direction and PacShell were selected by 72% of the respondents to be left

Results and Findings

111

Tile Iterator
Mazelterator
- exits: Map<Direction, Tile> tileArray -
- visited: boolean maxX: int Ghost
- xCoord: int - maxY: int
- yCoord: int - tileArray: Tile ([J]) - target: Character
- xPointer: int
+ clearDot() : void - yPointer: int + getNextMove() : Tile
+ getExit(Direction) : Tile + Ghos(Tile, Character)
+ getXCoord() : int + hasNext() : boolean
+ getYCoord() : int + Mazelterator(int, int, Tile[][])
+ hasDot() : boolean _currentTile | * next() : Tile
+ removeExit(Direction) : boolean + remove() : void
+ resetDot() : void -playen _target
+ setExit(Direction, Tile) : boolean Player
+ shortName() : String Character
+ Tile(int, int) » - lives: int
+ toString() : String - currentTile: Tile

-mazeTiles

Character(Tile)
getNeighbour(Direction) : Tile
getTile() : Tile
move(Direction) : boolean

oo+ o+

getLives() : int
isDead() : boolean
loseLife() : boolean
Player(Tile, int)
setLives(int) : void

+oF k4

P

getOpposite() : Direction

ltorable setTile(Tile) : boolean setTile(Tile) : boolean
Maze
.- -player,
- maxé. '": GameLevel
- maxY: in
- mazeTiles: Tile ([J[]) - ghostStarts: List<Tile>
- passDots: int -maze - maze: Maze
- playerStart: Tile
+ addExit(int, int, Direction, boolean) : boolean
+ addTile(int, int) : boolean + addGhostStart(Tile) : void
+ clearMaze() : void + clearGhostStart(int) : boolean
+ dotsRemaining() : int + clearPlayerStart() : void
+ getMaxX() : int + Gamelevel(Maze)
+ getMaxY() : int + getGhosts() : int
+ getNeighbour(Tile, Direction) : Tile + getGhostStart(int) : Tile
+ getPassDots() : int + getMaze() : Maze
+ getTile(int, int) : Tile + getPlayerStart() : Tile
+ isComplete() : boolean + isComplete() : boolean
+ iterator() : Iterator<Tile> + setPlayerStart(Tile) : void
+ Maze(int, int, boolean) level
+ removeExit(int, int, Direction, boolean) : boolean
+ removeTile(int, int) : boolean
+ setPassDots(int) : void
GameModel
«imerface» GamelListenerAdapter - ghosts: List<Ghost>
GamelListener - level: GamelLevel
+ gameOver(GameEvent) : void i N list<String>
+ gameOver(GameEvent) : void Q’ ________ levels: List<String:
+ levelComplete(GameEvent) : void + levelComplete(GameEvent) : void - listeners: List<GameListener>
+ playerDeath(GameEvent) : void i p:ayer’\DAea(I':(((s;ameEEven()):vo.:;i - player: Player
+ playerMove(GameEvent) : void taliplayervove(GameEvent) : voi
+ addGameListener(GameListener) : void
A + GameModel(String)
| + GameModel(GameLevel)
+ int) :
ConsoleView -model gelGhOSt("_“) : Ghost
ConsoleControl i) g5tMaze() : Maze
I aView() + getNumGhosts() : int
- bi: BufferedinputStream + getPlayer() : Player
+ ConsoleView(GameModel) ’ i
" - continueGame: boolean + loadLevel(String) : void
+ drawMaze(GameModel) : void i
4+ gameOver(GameEvent) : void - model: GameModel + makeMove(Direction) : boolean
g) . + removeGameListener(GameListener) : void
+ levelComplete(GameEvent) : void T
. + ConsoleControl(GameModel) + resetLevel() : void
+ playerDeath(GameEvent) : void J0me
+ playerMove(GameEvent) : void - execute() : boolean - stateCheck() : void
s . + gameOver(GameEvent) : void - updateGhosts() : void
+ levelComplete(GameEvent) : void _source
+ run() : void
GameEvent
Direction
jacshell - source: GameModel
NORTH i i o oo
SOUTH + main(Stringll) : void + GameEvent(GameModel)
EAST + getSource() : GameModel
WEST

Figure 6.14: Reverse Engineered Pacman Game (Class Diagram D)

112 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

Tile] |
[GameModel] |
[Player]
[Maze]
[GamelLevel]
[GameEvent]
[Character] |
[Ghost] |
[Mazelterator] |
[GameListener] |
[ConsoleView] |
[ConsoleControl] |
[GamelListenerAdapter] |
[PacShell] |
[Direction]

"%

o

0 20 30 40 50 60 70 80

Figure 6.15: Respondents Selection of Classes that should not be Included in a Pacman Game
(Reverse Engineered Design)

out from the class diagram. Compared to question C3, the Iterator and Iterable classes
were differently presented in this reverse engineered diagram. The complete result of
question C5 is shown in Figure 6.15.

Reverse Engineered vs. Forward Engineer Class Diagram

Question C6 aimed to discover which type of class diagrams was preferred by the
respondents i.e. RE-CD or forward designed class diagrams. The RE-CD used in this
question was different from the RE-CD in question C2 because this RE-CD was derived
from a system that was implemented (or coded) closely with the forward design. The
results in Table 6.9 show that most of the respondents (mainly researcher) preferred
the class diagram D (the RE-CD from question C5 as illustrated in Figure 6.14). 40% of
the respondents chose this diagram because it is more detailed, clear, interface classes
and it is easier to understand. 20% of the respondents did not choose any of the two
class diagrams because they did not have a preference. The reason mentioned by these
respondents was that both class diagrams are equally good and similar. On the other
hand, 16% of the respondents preferred the class diagram C (from question C3). There
is no pattern of selection present in this result in terms of the respondents’ role and
skill.

If we compare the results of this question and the results of Section 6.5.3, we found
that RE-CD is chosen if the source code was closely following the forward design,
because then the difference between forward design and its RE-CD is small.

6.6 Discussion

In this section, we discuss the results and findings presented earlier in this chapter.
This section is divided into 5 parts which are: Respondents’ Background, Software

Discussion 113

Table 6.9: The Preference between Class Diagram C and D

Answers Number of in Respondent’s Role Respondent’s Skill
Respondents | %
Student | Researcher/ | IT Poor | Low | Avg | Good | Excellent
Academic Pro.
I prefer class | 10 40 1 7 2 1 1 5 2 1
diagram D
(Figure 6.13)
I prefer class | 4 16 1 0 3 0 1 1 1 1
diagram C
(Figure 6.14)
I prefer them | 3 12 1 2 0 0 0 2 1 0
both
Idon’t prefer | 3 12 2 1 0 0 2 0 0 1
them
It doesn’t 5 20 2 0 3 1 0 2 1 1
matter which
one
Total 25 100 | 7 10 8 2 4 10 5 4

Design Metrics, Class Names and Coupling, Class Diagrams Preferences, and Threats
to Validity.

6.6.1 Respondents’ Background

In Part A, the respondents’ profiles to this questionnaire were quite evenly distributed.
The location of the respondents showed that most of the respondents are from The
Netherlands and Malaysia. This is due to the professional and personal network of the
author.

In terms of the respondent’s skill and experience with class diagrams, we found
that 72% of the respondents have more than 1 year of experience with UML and that
76% of the respondents have rated themselves average or above if it comes to creating,
modifying and understanding class diagrams. Even though 28% of the respondents
said that they had less than one year of experience, we can still state that all the
respondents have knowledge about class diagrams.

6.6.2 Software Design Metrics

We asked which metrics could be used as indicators for inclusion or exclusion of
classes from class diagrams. We classified metrics in 3 categories: Size, Coupling and
Inheritance. The overall ranking of the score is shown in Table 6.10.

114 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

Table 6.10: Overall Score for Software Design Metrics

No. Design Metrics Score
1 NumPubOps 25
2 NOC 20
3 NumOps 18
4 NumAttr 17
5 Dep_Out 17
6 IC_Attr 17
7 Dep_In 16
8 EC_Attr 15
9 Setters/Getters 13
10 EC_Par 11
11 IC_Par 9
12 DIT 7
13 CLD 5

In the Size category, we found that the higher number of public operations, is the
more people prefer this class. There is a clear preference for public operations over
operations in general because public operations are considered to more often stand for
important functionality.

In the Coupling category, we found that the classes that have many incoming
and outgoing dependencies are preferred for inclusion. We found that IC_Attr and
EC_Attr have higher scores than EC_Par and IC_Par. The reason might be that a class
that is declared as an attribute is more important because it can be used across many
operations in the class.

In the Inheritance category, we discovered that for a class that has a high NOC, the
class should be included in a class diagram. This parent class is helpful to show the
abstraction of a group of classes. For DIT, a higher number of DIT does not indicate it
is an important class because it basically means that this particular class is located very
low in the inheritance hierarchy which means that this class is too detailed and most of
the times not needed. For CLD, if a class has a high value for this metric this that this
class is very abstract, meaning that this class alone will not be enough to understand
the whole hierarchy.

As for the complete results, we found that NumPubOps has the highest points
across all metrics. Also, all the metrics received a positive score, even though some only
slightly, while a negative score is also possible. Hence, each of these can be considered
in our subsequent studies on how to best use these metrics in selecting classes for
in/exclusion.

Discussion 115

6.6.3 Class Names and Coupling

In Part C, we showed that coupling is a highly influential factor when we are trying
to exclude classes from a class diagram. Another influencing factor is the class name.
From our observation, the class names are an influencing factor since it may indicate the
class role and responsibility. Through class names, the respondents make assumptions
of the class functionality (role, responsibility, service) and as well as the flow of the
system. Many respondents excluded Graphical User Interface (GUI) related classes in
the Library system because of the class role and responsibility (class name based), and
coupling.

Aside from these two big influencing factors, many respondents excluded types
of classes like enumeration and interface. Either of these classes did not contain any
information in it or the coupling was very low. Another reason of why the interface
classes are excluded could be that these classes are generic and not key for the domain of
an application. Overall, we suggest that the role and responsibility of the classes (based
on class names) could be an influencing factor in deciding class inclusion/exclusion.

6.6.4 Class Diagram Preferences

In question C4, we found that most of the respondents preferred to use HLoD of
the forward design. The reasons the respondents gave was that this class diagram
is clear and the necessary information is provided in this class diagram. Meanwhile,
in question C6, most of the respondents had chosen the RE-CD (HLoD). The reason
might be that the RE-CD that was provided has few differences from the forward
design. The respondent stated that they preferred this diagram because they find it
more detailed and it is easier to understand. Some of the respondents also mentioned
that the interface classes are removed, which make it a better class diagram.

From our observation, the RE-CD of the Library system was not preferred because
the structures of the classes were not well-presented. This might be because the
implementation was not conforming to the design or there was no design in the system
before implementation.

6.6.5 Threats to Validity

Although the respondents of this survey were quite well distributed between the
status roles (Student, Researcher/Academic and IT Professional), we consider that the
amount of full responses was still a small number. The locations of the respondents
were biased to The Netherlands and Malaysia. Most of the questions in this study
require the respondent to choose the best answers. We have made several assumptions
about why the respondents chose these answers and these assumptions may not be
accurate.

116 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

6.7 Conclusion

In this survey, we revealed the metrics that indicate the classes that could be left out.
We also found the flavour of class diagrams that developers prefer to work with. From
the results, we found that the most important software design metric is the Number of
Public Operations. This means that if a class has a high number of public operations
then this indicates that this class is important and should be included in a class diagram.
In this survey, we also found that the class names and coupling are influencing factors
when selecting a class to be excluded from a class diagram.

With these results, we can highlight which classes should be included or excluded
in RE-CDs. This is based on our results and analysis by looking at the metrics and
behaviour the respondents had in Part C. Although the number of responses on this
questionnaire is not that high, we managed to find some influencing factors for deciding
on class-inclusion or exclusion from a class diagram.

6.8 Future Work

This chapter reports an early study on how to simplify class diagrams and we see a
number of ways to extend this work. We propose to validate the results by using an
industrial case study and discover the suitability of the simplified class diagram for
the practical usage. It would also be interesting to include other metrics that we have
not chosen and check whether they are important or not and ask why the respondent
chose the answer to get the reason.

From the results, we found that class role and responsibility are important indicators
in a class diagram. We would like to suggest a study on the names (class, operation
and attribute) that the software developers find important or meaningful in order to
understand a system. We discovered some weakness in the questionnaire and our
suggestion is to improve this questionnaire by increasing the amount of responses. It
would be interesting to see what the results are with a larger group of respondents.

