
Interactive scalable condensation of reverse engineered UML class
diagrams for software comprehension
Osman, M.H.B.

Citation
Osman, M. H. B. (2015, March 10). Interactive scalable condensation of reverse engineered
UML class diagrams for software comprehension. Retrieved from
https://hdl.handle.net/1887/32210
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/32210
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/32210


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/32210 holds various files of this Leiden University 
dissertation. 
 
Author: Osman, Mohd Hafeez Bin 
Title: Interactive scalable condensation of reverse engineered UML class diagrams for 
software comprehension 
Issue Date: 2015-03-10 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/32210
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter5
Eliciting Developer’s Views on
Simplifying Class Diagrams

Class diagrams play an important role in software development. However, in some
cases, these diagrams contain a lot of information that makes it hard for software
maintainers to use them to understand a system. In order to reduce the amount of
information in a class diagram, a method to simplify a class diagram is needed. This
simplified class diagram can be obtained by leaving out details that are not needed
by keeping the important information. In this chapter, we aim to discover how to
simplify class diagrams in such way that the system is easier to understand. For
this study, we performed a semi-structured survey to elicit the information about
what type of information developers would include or exclude in order to simplify
a class diagram. This study involved 32 software developers with 75 percent of
the participants having more than five years of experience with class diagrams.
As for the results, we found that the important elements in a class diagram are
class relationship, meaningful class names and class properties. We also found
that, in a simplified class diagram, GUI related information, private and protected
operations, helper classes and library classes could be excluded. In this survey, we
also tried to discover what types of features needed for automatic class diagram
simplification tools.

This chapter is a more detailed version of a publication entitled “Class Diagram Simplification: What is
in the Developer’s Mind?”, In Proceedings of the 2nd International Workshop on Experience and Empirical
Studies in Software Modelling (EESSMod 2012)



70 Eliciting Developer’s Views on Simplifying Class Diagrams

5.1 Introduction

UML models which are usually created during the design phase are often poorly kept
up-to-date during the realization and maintenance phase[172]. As the implementation
evolves, correspondence between design and implementation degrades from its initial
design [118]. For legacy software, reliable designs are often no longer available, while
those are considered valuable for maintaining such systems.

Normally, to understand a software system, a software developer needs both source
code and design. When new software developers want to join a development group;
they need a starting point in order to understand the whole project before they are
able to modify. It is important for a software developer to have an overview of the
system before they started the software maintenance activity. Tools that support during
maintenance, re-engineering or re-architecting activities have become important to
decrease the time software personnel spend on manual source code analysis and help to
focus attention on important program understanding issues [22]. In Chapter 3, we have
demonstrated that the forward design class diagrams constructed by the developers
in the open source software development community typically consist of critical or
key classes in the system. These classes are considered as the required relevant classes
to understand the system. For this reason, this study specifically aims at simplifying
UML class diagrams by leaving out unnecessary information without affecting the
developer’s understanding of the entire software. To this end, we have conducted a
survey to gather information from software developers about what type of information
should not be included in a class diagram and what type of information they focus on.
We prepared a questionnaire that consists of 15 questions which were divided into 3
parts in order to discover this information. In total, there were 32 participants that are
professional software developers in the Netherlands.

The chapter is structured as follows. Section 5.2 discusses related work and followed
by Section 5.3 that describes the survey methodology. Section 5.4 describes the result
and findings. We discuss our findings in Section 5.5 and present our conclusions in
Section 5.6. This is followed by our suggestion for future work in Section 5.7.

5.2 Related Work

In this section, we discuss some studies that are related to the research in this chapter.

5.2.1 Eye Tracking

Yusuf et al. [183] performed a study on assessing the comprehension of UML class
diagrams via eye tracking. They used eye-tracking equipment to collect a subject’s
activity data in a non-obtrusive way as the subjects are interacting with the class
diagram in performing a given task. Also, audio and video were recorded on every



Survey Methodology 71

subject during these tasks. Their goal was to obtain an understanding of how human
subjects use different types of information in UML class diagrams in performing their
tasks. The subjects are asked to answer several questions by viewing the class diagrams.
They created two types of questions: (1) questions that deal with the basics of the class
diagram, and (2) questions related to the software design. They concluded that experts
tend to use such things as stereotype information, colouring, and layout to facilitate
more efficient exploration and navigation of class diagrams. Also, experts tend to
navigate/explore from the center of the diagram to the edges, whereas novices tend to
navigate/explore from top-to-bottom and left-to-right. Thus, subjects have a variation
in the eye movements depending on their UML expertise and software-design ability
in resolving a given task.

5.2.2 Software Visualization

Koschke [95] performed a study of software visualization (SV) usage domains: software
maintenance, reverse engineering, and re-engineering. The goal of their study was to
help to ascertain the current role of software visualization in software engineering from
the perspective of researchers in these SV usage domains. Most of the questions were
opinion-related questions, meaning that they asked the subject whether he/she thought
that the visualization is appropriate (for example). Another part of the questionnaire
asked what kind of instruments they use in visualizing software and how they visualize
the software. The result of this study demonstrated that when the subject visualizing
artifacts, only 13 out of 82 subjects answered using “UML”. The most answered with
“graph” (49 subjects). This survey suggested that a suitable way of visualization be
achieved if we have a good understanding of when and why a certain visualization
technique is used based on the user’s purpose and their task. However, because of the
variety of purposes and users’ need, experiments in this field seem difficult.

Bassil et al. [21] conducted a study of SV tools that existed in the year 2000. This
study focused on functionality, practicality, cognitive and code analysis aspects that
users may be looking for at SV tools. The participants of this study were users of such
tools in their industries or users that used SV in a research setting. The participants
were asked to rate the usefulness and importance of these aspects in their SV tools,
and came up with their own desires. In general, the participants were quite pleased
with the SV tool at hand. Their study found that the reliability of SV tool was the
most important aspect. This is followed by the ease of using the tool and the ease of
visualizing large-scale software.

5.3 Survey Methodology

In this section, we describe i) How the questionnaire was designed and why; and ii)
How the experiment was conducted.



72 Eliciting Developer’s Views on Simplifying Class Diagrams

5.3.1 Questionnaire Design

The questionnaire was organized into three parts, i.e. Part A, B and C. In total, there
were 15 questions. In Part A, we aimed to discover information about the respondent’s
personal characteristics, knowledge and experience with UML class diagrams. Mean-
while, in Part B and C, we aimed to discover information about how the respondents
indicate classes that should be included in a class diagram. For this survey, we divide
this questionnaire into two different sets of questions. Both sets of questions had the
same questions in Part A and C. However, we differentiated the questions in Part B.
The questionnaire can be found at [129].

Part A: Personal Background

Part A consisted of six questions. Questions 1 to 4 in this questionnaire were intended to
access the information about the status of the respondents, years of working with class
diagrams, where they learned UML, and how the respondents rate their skills in class
diagrams. In questions 5 and 6, we wanted to compare the respondents’ preferences
for software documents (i.e. UML models or source code) for understanding a system.
This comparison is conducted to find if there is any influence of the respondents’
answer based on their preferred software document.

Part B: Selected Cases

This part contained three questions and each question consisted of a class diagram. In
this part, the respondents were required to mark information that can be left out in the
provided class diagram without affecting their understanding of the system. They were
also allowed to write any comments or suggestions according to what information they
find unnecessary in a class diagram. The following systems were used in this survey:

1. Automated Teller Machine (ATM) simulation system: This fully functional
ATM simulation system provides a class design and a complete implementation
source code. The class design was made by using forward design. However,
the class design only consists of class names and relationships. The complete
software documents based on UML that were provided consists of 22 design
classes. We reverse engineered1 the system’s source code to reconstruct the detail
design of this system.

2. Pacman Game: Pacman’s Perilous Predicament is a turn based implementation
on the classic Pacman arcade game [44]. In this study, we utilized the diagram
of the second phase (milestone) of this project since the number of classes in the
class diagram is not too high. The amount of classes in the source code in this

1From the options of the list of CASE tool evaluated in Chapter 4, we use Enterprise Architect [153]
version 7.5 to produce RE-CD.



Survey Methodology 73

Table 5.1: Level of Detail Description

No. Class Diagram Elements
Low Level of
Detail
(LLoD)

Medium Level
of Detail
(MLoD)

High Level of
Detail
(HLoD)

1 Classes Names YES YES YES
2 Attributes Names NO YES YES
3 Type in Attributes NO NO YES
4 Operations NO YES YES
5 Operations Return Type NO YES YES
6 Parameters in operation NO NO YES
7 Relationships YES YES YES

system is 17 while only 15 classes are stated in the class diagram design. Both
forward and reverse engineered1 designs were used in this survey.

3. Library System: Library System is a system that enables users to borrow books
from the library. This system is taken from [55]. This complete system consists of
24 classes in the source code. The reverse engineered1 design was used for this
survey.

As mentioned, this survey consisted of two different sets of questions. This part
differentiates the set of questions by providing different types of class diagrams. The
information about the sets of class diagrams is shown in Table 5.1.

Level of detail (LoD) represents the amount of information that is used to specify
models [117] (in this study: the UML class diagram). Different LoD was used to
simulate different types of LoD that normally exist in a class diagram (as demonstrated
in Chapter 3). In every set of the questionnaire, both Medium Level of Detail (MLoD)
and High Level of Detail (HLoD) is used. Figure 5.1 shows how the class diagrams
with different LoD are constructed and Table 5.2 briefly describes the types of class
diagrams used in both sets of questionnaire.

In set A, ATM system in MLoD and Library System in HLoD were used and in set
B, ATM system in HLoD and Library System in MLoD were used. In addition, we also
used different sources of class diagrams by utilizing forward design and RE-CD to
simulate the different flavors of class diagrams that exist in the software industry.

Part C: Class Diagram Indicators for Class Inclusion

This part consisted of six open-ended questions. The aim of these questions was to
discover what developers think about which information is needed in a class diagram
and which information could be left out. Table 5.3 describes the questions in part C.



74 Eliciting Developer’s Views on Simplifying Class Diagrams

Source Code

Reverse 
Engineered 

Class Diagram 

Low Level of 
Details (LLoD)

Medium Level 
of Details 
(MLoD)

High Level of 
Details (HLoD)

Reverse Engineer

Abstract

Figure 5.1: Level of Detail Class Diagrams Preparation

Table 5.2: Information on Set A and Set B

No. Class Diagram Set A Set B
1 ATM System Medium Level of Detail

(MLoD)
High Level of Detail
(HLoD)

2 Pacman Game Forward Engineered Design Reverse Engineered Design
3 Library System High Level of Detail (HLoD) Medium Level of Detail

(MLoD)

5.3.2 Experiment Description

The experiment was conducted on the 6th of June 2012 at Leiden Institute of Advanced
Computer Science (LIACS), Leiden. The participants of this survey were professional
software developers from Devnology [102] (a software developer community from all
over the Netherlands). In total, 32 Devnology members (out of 36) participated in the
survey. This survey was conducted as part of the Devnology community “Developer
Back to School” event at Leiden University. The participants had to answer every
question and were free to ask any questions during the questionnaire session. The time
given to answer the questionnaire was 60 minutes.

5.4 Results and Findings

This section presents our analysis and results of the answers given by the respondents.
This section is divided into three parts. In the first part, we present our findings of
part A (personal questions). The second part presents our findings of part B (selected
cases). In the last part, we present our findings of part C of the questionnaire. The full
responses to this survey are available at [131].



Results and Findings 75

Table 5.3: Detailed Explanation Part C

No. Question Description
1. Question C1: In software documentation, particularly in class 

diagrams, what type of information do you look for to understand a 
software system? (for example: relationships, operations, attributes, 
etc.)

To learn the type of information 
is important to understand the 
software system.

2. Question C2: In a class diagram, what type of information do you 
think can be left out without affecting your understanding of a 
system?

a. Classes (for example: Helper class, Interface class, Library 
class, …)

b. Operations (for example: private, protected, public, 
constructor, …)

c. Relationships (for example: labels, multiplicities, self-
relations)

d. Other(s):

To find out the type of 
information that can be left out 
from a class diagram.

3. Question C3: Do you think that a class diagram should show the full 
hierarchy of inheritance? If not, which parts could be left out? (for 
example: parent, child, intermediate parent/child, leaf, …)

To find out what type of 
information on inheritance 
relationship is important. 

4. Question C4: What criteria do you think indicate that a class (in a 
class diagram) is important for understanding a system?

To discover the criteria 
developers use to decide a class is 
important in a class diagram. 

5. Question C5: If you try to understand a class diagram, which 
relationships do you look at first? 
(Example: dependencies, inheritance, associations, etc .)

To determine which relationship 
that can be considered important 
in a class diagram.

6. Question C6: If there is a tool for simplifying class diagrams (e.g. 
obtained from reverse engineering), what features \functions would 
you expect from such a tool?

To find out what kind of features 
or functions are desired for a 
class diagram abstraction tool.

5.4.1 Part A: Personal Background

This part consists of six questions related to personal characteristics, knowledge and
experience. We present our findings for each question as well as other related informa-
tion.

Question A1: What is your role at the moment?

In this question, the respondents should state their role in software development.
The choices of answers that have been given to the respondents are Project Manager,
Architect, Designer, Programmer, and Tester. The respondents were allowed to select
more than one answer. As for the results, 81% of the respondents are programmers
and 50% of the respondents are software architects. As shown in Figure 5.2, 28% of
the respondents are software designers. Figure 5.2 also highlights that the majority
of the respondents are involved in the design and implementation phase in software
development. This means, half of the programmers are involved in designing the
software. All project managers that were involved in this study are also programmers.
This indicates that all the respondents that participated in this study are directly
involved in software development.



76 Eliciting Developer’s Views on Simplifying Class Diagrams

Project
Manager

Architect Analyst Designer Programmer Tester

% 9 50 13 28 81 3

0

20

40

60

80

100

%
 o

f 
th

e 
R

es
po

n
de

n
ts

% % % % % %

Figure 5.2: Role of the Respondents

> 10 years 7 to 9 years 5 to 6 years 3 to 4 years 1 to 2 years < 1 year

% 50 11 14 7 7 11

0

10

20

30

40

50

60

%
 o

f 
th

e 
R

es
po

n
d

en
ts

% % % % % %

Figure 5.3: Respondents Experience with Class Diagrams

Question A2: How many year(s) of experience do you have in working with class diagrams?

Out of 32 respondents, 28 (88%) of the respondents answered this question. Figure 5.3
shows the complete results of this question. From these results, we found that 50%
of the respondents are experienced with class diagrams for more than 10 years. The
results also show that 75% of the respondents have experience with class diagrams for
more than 5 years. Only about 11% (3 respondents) have less than 1 year experience in
class diagrams. Even though they have less experience in class diagrams, they have
the knowledge about UML as indicated by the answer of Question A3.

Question A3: Where did you learn about UML?

This question was intended to gather the information on (1) where the respondent
learned about UML and, (2) whether all the respondents know about UML or not.
The respondents were allowed to choose more than one answer. The choices were
the following: Did not learn UML, From Colleagues/Industrial Practice, Professional
Training, Learn by Myself, and polytechnic/University. The results show that 47% of



Results and Findings 77

0

HBO/University

LearnpbypMyself

ProfessionalpTraining

FrompColleaguesp/pIndustrialppractice

DidpnotplearnpUML

10 20 30 40 503 3 3 3 3 3

Figure 5.4: Where did the Respondent Learn about UML

the respondents had learned about UML in polytechnic or University and 25% have
taken professional training to learn UML. This indicates that 72% of the respondents
had formal training on UML. Meanwhile, 38% of the respondents learned UML by
themselves and 19% learned from their colleague(s) or industrial practice. There were
no participants that answered ‘No’. This shows that all participants of this survey have
some knowledge of UML. Figure 5.4 shows the complete results of this question.

Question A4: How do you rate your own skill in creating, modifying and understanding a
class diagram?

This question was aimed to gain knowledge about the skills of the respondents in
creating, modifying, and understanding class diagrams. Based on Figure 5.5, most of
the respondents (88%) have average and good skills in creating, modifying, and under-
standing class diagrams and only 3% have excellent skills related to class diagrams.
This indicates that over 90% of the respondents have average skills or above related to
class diagrams. Meanwhile, 2 respondents (6%) have low skills and only 1 respondent
(3%) has poor skills related to class diagrams. The 2 respondents that have low skills
are software architects (with no other role) and the only one respondent that has poor
skills is a programmer (with no other role).

Question A5: Indicate whether you (dis)like to look at the source code for understanding
a system? + Question A6: Indicate whether you (dis)like to look at UML models for
understanding a system?

Question A5 and A6 were aimed to discover the respondent’s opinion about the usage
of UML and source code as an artifact to understand a system. Most of the respondents
of this survey are programmers and we expected that the respondents would choose
the source code over UML. To present this result, we combined those two questions for
a comparison between the respondent’s like or dislike for UML and the respondent’s



78 Eliciting Developer’s Views on Simplifying Class Diagrams

Poor Low Average Good Exellent

% 3 6 44 44 3

0

10

20

30

40

50

%
 o

f 
th

e 
R

es
po

nd
en

ts

% % % % %

Figure 5.5: Respondent’s skill on Class Diagram

0

5

10

15

20

Strongly Dislike Dislike Neutral Like Really Like
UML Source Code

N
o.

 o
f 

R
es

p
on

d
en

ts

Figure 5.6: Respondents Like or Dislike Source Code vs UML

like or dislike for source code. The results shown in Figure 5.6 indicate that in general,
there is no substantial difference between Like or Dislike of source code versus UML
design. We may say based on this result that even experienced programmers found
that UML is helpful for system understanding.

We further investigated this result by separating this according to the role of the
respondents (specifically programmer, software architect, and software designer).
Figure 5.7 shows the results of question A5 and A6 for respondents with the role of
a programmer. The results show that the programmers are a bit more positive about
source code than UML, but the difference is not substantial. These results seem almost
the same as the overall results shown in Figure 5.6.

It was quite a surprise to see that a lot of software architects like using source code
more than UML to understand a system (Figure 5.8). The same goes for the software
designers; they like using source code more than UML to understand a system (Figure
5.9).

Others:

Combination of Question A1 & A4

The combination of results in question A1 and A4 is shown in Figure 5.10. This



Results and Findings 79

0

5

10

15

Strongly
Dislike

Dislike Neutral Like Really Like

UML Source Code

N
o.

 o
f 

R
es

p
on

d
en

ts

Figure 5.7: Programmers Like or Dislike Source Code vs UML

0
5

10
15

Strongly 
Dislike

Dislike Neutral Like Really Like

UML Source Code

N
o.

 o
f

R
es

p
on

d
en

ts

Figure 5.8: Software Architects Like or Dislike Source Code vs UML

0

5

10

Strongly Dislike Dislike Neutral Like Really Like

UML Source Code

N
o.

 o
f 

R
es

p
on

d
en

ts

Figure 5.9: Software Designers Like or Dislike Source Code vs UML

Poor Low Average Good Excellent

Tester 0 0 1 0 0

Programmer 1 0 12 12 1

Designer 0 0 3 5 1

Analyst 0 0 2 1 1

Architect 0 2 6 7 1

Project Manager 0 0 0 3 0

0

5

10

15

20

25

30

N
o.

 o
f 

R
es

p
on

d
en

ts

Figure 5.10: Class Diagram Skill per Role



80 Eliciting Developer’s Views on Simplifying Class Diagrams

result surprisingly shows that there were software architects that rated themselves
poor in creating, modifying, and understanding class diagrams. However, based on
our informal interview with these respondents, a software architect mentioned that
they only use boxes and lines for their architectural work. This may be the reason why
there are software architects that have a poor skill in class diagrams.

5.4.2 Part B: Selected Cases

In Part B, the respondents have been provided with three class diagrams from different
systems and domains. Those class diagrams also varied in level of details (1 x LLoD, 1
x MLoD, 1 x HLoD). The results of this part were analyzed by combining the answers
based on the following categories: Attribute, Operation, Class, Relationship and
Package.

Category 1: Attribute

This category is divided into two subcategories: Properties and Types of Attribute.
We divided the Properties subcategory into three elements: Protected, Public and
Private. This basically means that if a respondent marked the private variables in
a class diagram or suggested to exclude the private attribute, we assumed that the
respondent chose not to include the private attribute element in class diagrams. We
also divided the Types of Attribute subcategory into three elements: No primitive
type, GUI related, and Constant. No primitive type means attribute that does not have
any primitive type. GUI related attributes are attributes that relate to Graphical User
Interface (GUI) libraries that are provided by development tools such as Textbox, Label
and Button.

Figure 5.11 shows the results of the Attribute category. 25% of the respondents
indicate a preference to leave out the GUI related attributes. For these respondents,
this information seemed not important and based on our informal interview, the
respondents were more concerned with classes that are created specifically for the
application. 19% of the respondents prefer to leave out Private and Constant types
of attributes. 13% of respondents propose to leave out Protected attributes. 3 out of
32 respondents (9%) think that all attributes should be left out. These respondents
commented they only need class names and relationships in a class diagram.

Category 2 : Operation

The results of the Operation category are presented in Figure 5.12. The results show
that 25% of the respondents chose to exclude the Constructors Without Parameters.
This type of operation is not important because it does not convey any important
information because the default initialization of an object is without parameters. Nev-
ertheless, 16% of the respondents suggested that all Constructors could be left out



Results and Findings 81

GUI Related Private Constant Protected Instance Variable Public

% % % % % % %25 19 19 13 6 0

0

5

10

15

20

25

30
%

 o
f 

th
e 

R
es

p
on

d
en

ts

Figure 5.11: Information of Attribute that Could be Left out

Constructor
Without
Parameter

Getters/Setters Constructor
General
Function

Event Handler

% 25 19 16 9 6

0

5
10
15
20

25
30

% % % % %

%
 o

f 
th

e 
R

es
p

on
d

en
ts

Figure 5.12: Types of Operation that could be Excluded in Class Diagrams

in a class diagram. For Getters and Setters, 19% of the respondents suggested that
these operations should be excluded from class diagrams. The reason for this could
be that it is a common operation that is created for accessing and modifying variables
in a class diagram. 9% of the respondents mentioned that General Functions should
not be included in class diagrams because these functions are commonly used and
well-known to programmers. Apart from the result presented in Figure 5.12, 15% of
the respondents indicated that all operations should be excluded from a class diagram.
These respondents mentioned that only class names and relationships are needed in a
class diagram.

Category 3: Class

Based on the respondents’ answers, we divide the class category into two subcategories:
(1) Types of Class and (2) Role (figure 5.13). The Types of Class subcategory consists
of Interface, Enumeration, and Abstract elements while the Role subcategory consists
of five elements which are Console, Listener, Input/Support Classes, Log, and GUI
Related. The Role means that the class(es) have a specific role in the system.



82 Eliciting Developer’s Views on Simplifying Class Diagrams

 

Figure 5.13: Class Category

Enumeration Interface abstract

% 38 19 13

0

10

20

30

40

%
 o

f 
th

e 
R

es
po

n
de

n
ts

% % %

Figure 5.14: Types of Class that could not be Included in Class Diagrams

For the subcategory Types of Class (Figure 5.14), 38% of the respondents chose
not to include Enumeration classes. Enumeration classes are classes whose values are
enumerated in the model as enumeration literals, which are not needed to understand a
system. This is followed by Interface classes with 19% and 13% suggested that Abstract
classes should not be included in simplified class diagrams.

Figure 5.15 shows the Role subcategory results. It shows that half of the respondents
suggested that GUI related classes and classes for logging tasks could be left out in order
to simplify a class diagram. Most GUI related classes are present in the Library system
and the Log class exists in the ATM system. The respondents suggested eliminating
these classes because without these classes they can still understand the system. The
Input role refers to classes that are used to take the input from the interface that directly
interact with the actor of the system. In the case of the ATM system, the “Money” and
“Card” classes are an example of input classes. 22% of the respondents said that this
type of class could be omitted from a class diagram. The “Console” and “Listener”
functions appear in the Pacman Game. These classes can be considered as classes that
interact with the user input and the other system input. 6% of the respondents chose to
exclude the listener classes from the class diagram while 3% of the respondents chose
to exclude the console classes.



Results and Findings 83

GUI Related Log Input Listener Console

% 50 50 22 6 3

0

10

20

30

40

50

60

% % % % %

%
 o

f 
th

e 
R

es
p

on
d

en
ts

Figure 5.15: Class Role that could be Excluded in Class Diagrams

Category 4: Relationship

The Relationship category is divided into two subcategories, which are Relationship
Label and Coupling ≤ 1. Almost all the respondents that participated in this survey
agreed that the Relationship element is important in a class diagram. However, there
are some information related to the Relationship element that could be omitted from
a class diagram. 31% of the respondents intend to exclude classes with Coupling ≤ 1
because it seems that classes that only have coupling ≤ 1 are not important and more
seen as a helper class. 6% of the respondents chose to remove the relationship labels.

Category 5: Package

The package category is introduced because there were several respondents that sep-
arated the class diagram in such way that there were two or more class diagrams
instead of one. The amounts of classes in the three class diagrams range from 15 to 22.
Specifically, in the Library System class diagram, there were 4 respondents that drew
several lines to separate the GUI related classes from the classes that were created by
the developer. They suggested that the class diagram should be separated into two
different diagrams. This basically means that they wanted to keep the GUI related
classes and classes created for the application separately.

5.4.3 Part C: Class Diagram Indicators for Class Inclusion/Exclusion

Part C consists of six open-ended questions. The analysis of this part was done
by observing the answers from the respondents and creating several keywords to
categorize these answers.

Type of Information in Class Diagrams for Understanding a Software System

The respondents were asked the following question: ‘In software documentation, partic-
ularly in class diagrams, what type of information do you look for to understand a software



84 Eliciting Developer’s Views on Simplifying Class Diagrams

Table 5.4: Keywords on Types of Information to Understand a System

No Category Keywords No Category Keywords
1

Relationship / 
Connectivity / 

Interaction

Association 3

Class 
structure / 
properties

Abstraction

Inheritance Method/Operation

Direction Attribute

Dependency Public Interface

Multiplicity Class Entities

2

Class 
Semantic

Classname (meaningful) Size Large/Small

Class Behaviour Public Properties

Business Entities Class Hierarchy

Main Classes/Object/Purpose Object related

Class functionality and 

responsibility 4
High level

Concept

Domain Design Pattern

Properties name and methods 

name Overview 

Reasoning
5

Others
Data

"Starting" point

All Generic ClassesOptional info

Class
Relationship

Class3Role3and
Responsibility

Class3Structure
and3Properties

High3level Others

% 81 59 44 34 6

0

10

20

30

40

50

60

70

80

90

% % % % %

%
 o

f 
th

e 
R

es
p

on
d

en
ts

Figure 5.16: Types of Information the Respondents Look for in Class Diagrams

system?’. Based on the answers, we created several keywords and categories as shown
in Table 5.4. The results in Figure 5.16 shows that class relationships are the most
important information in a class diagram that the respondents searched for, in order
to understand a class diagram. 81% of the respondents mentioned this. 59% of the
respondents searched for class Role and Responsibility (RnR) such as meaningful class
names and class functionality and behaviour. 44% of the respondents were looking
at class properties such as attributes, operations and class interfaces. This is followed
by 34% of the respondents that were looking at the high-level abstraction of the class
diagram for example design concepts, design patterns and class overviews.



Results and Findings 85

Helper%Class Library%Class Interfaces Logging
Persistency

Class
Utility%Class

Not%Related%to
Domain

Technical
Without

Relationship
3 44 25 22 9 3 3 3 3 3

0
5

10
15
20
25
30
35
40
45
50

3 3 3 3 3 3 3 3 3

%
 o

f 
th

e 
R

es
p

on
d

en
ts

Figure 5.17: Information of Classes that could be Omitted

These results show that the relationships between classes are important in class
diagrams. It is the primary information in a class diagram that most of the software
developers look into. The semantics of a class such as a meaningful name of classes,
operations and attributes also play a major role to assist the software developer in
understanding a system.

Type of Information that could be Omitted/Excluded

We asked the respondents to answer the following question: ‘In a class diagram, what
type of information do you think can be left out without affecting your understanding of a
system?’. The results are divided into four sections, which are: Classes, Operations,
Relationships, and Others.

In the section of classes, almost half of the respondents (44%) suggested that helper
classes could be omitted from a class diagram (see Figure 5.17). A quarter of the
respondents (25%) did not want library classes to appear in a class diagram. These
library classes could make a class diagram more complex. 22% of the respondents
suggested that the interface classes could be omitted from a class diagram.

In the section of Operations, the results (Figure 5.18) show that 66% of the respon-
dents chose to exclude private operations in a class diagram. 56% of the respondents
mentioned that constructors and destructors are not needed in a class diagram in order
to understand a system while only 9% of the respondents mentioned that they do
not need constructors without parameters. 41% of the respondents mentioned that
protected operations could be left out from a class diagram. A reason for this could be
that this type of operation can be assumed as a private operation, but appears public
to several classes only. It was quite a surprise that not many respondents suggested
removing getters and setters from the class diagram since these operations can be
integrated into other operations that a system actually needs.

In section Relationship, multiplicity is the most respondents mentioned not needed
in a class diagram. However, only 6% of the respondents mentioned this, which is a



86 Eliciting Developer’s Views on Simplifying Class Diagrams

Private
Constructor
/Destructor

Protected Getters6/Setters
Constructor

without
parameter

Supporting
/default
function

Public
Overload
function

GUI6event
handler

3 66 56 41 16 9 9 3 3 3

0

10

20

30

40

50

60

70

3 3 3 3 3 3 3 3 3

%
 o

f 
th

e 
R

es
p

on
d

en
ts

Figure 5.18: Information of Operations that could be Omitted

quite low percentage. 3% of the respondents do not need any Labels (or roles of the
relationships), Self Relations and References in a class diagram.

In terms of “Other information” in class diagrams that could be omitted, 9% of
the respondents stated that the private fields could be omitted from a class diagram.
Only 3% of the respondents suggested not to include technical, duplicates and UI
information in class diagrams.

The Criteria to Indicate Important Classes in Class Diagrams

We asked the respondents ‘What criteria do you think indicate that a class (in a class diagram)
is important for understanding a system?’. This question aimed to discover the criteria
to indicate important classes in a class diagram. As shown in Figure 5.19, 38% of
respondents think that the relationships are the most important criterion in a class
diagram. This also aligns with the results for question C1. 16% of the respondents
mentioned the following criteria are important in a class diagram: Meaningful class
name; Business or domain value; and Class position. Several respondents prefer
to search for the position of the class (in the layout) and most of the respondent’s
mentioned that classes located in the middle of a class diagram are the important
classes.

Type of Relationships that the Respondents Look at First

We asked the respondents ‘If you try to understand a class diagram, which relationships do
you look at first?’. In this question, we aimed to find out what type of relationship the
respondents look at first and three types of relationships were provided as example
answers (composition, aggregation, and realization). The results in Figure 5.20 show
that 41% of the respondents looked for association relationships, 19% searched for
dependency relationships, and 9% searched for inheritance relationships.



Discussion 87

Relationships
Meaningful
Classnames

BusinessI/
Domain Value

Position of
Class

FunctionalityI/
Responsibility

Size of Class
Simplified

Classes
Highlighted
Information

38 16 16 16 9 9 6 3

0

10

20

30

40

6 6 6 6 6 6 6 6 6

%
 o

f 
th

e 
R

es
p

on
d

en
ts

Figure 5.19: Important Criteria in a Class Diagram for Understanding a System

0

10

20

30

40

50

Association Dependency Inheritance

%
 o

f 
th

e 
R

es
p

on
d

en
ts

Figure 5.20: The Type of Relationship in Class Diagrams that the Respondents Look at First

Features/functions Expected in a Class Diagram Simplification Tool

We asked the respondents ‘If there is a tool for simplifying class diagrams (e.g. obtained
from reverse engineering), what features/functions would you expect from such a tool?’. In this
question, we tried to discover what kind of features the respondents are looking for if
there is a tool that could simplify a class diagram. The results (see Figure 5.21) show
that the respondents mainly want a tool that can hide/unhide information. The other
feature that relates to this is the drill up/down feature. 16% of the respondents wanted
to see more information about a class by hovering over a class in a class diagram for
example. Another feature that many respondents (13% of the respondents) wanted is
the changeable layout of the class diagram in which the navigation can be improved.

5.5 Discussion

In this section, we discuss the results and findings presented in the previous section.
The discussion is divided into four subsections: Class Properties, Class Role and
Semantics, Class Diagram Simplification Tool Features, and Threat to Validity.



88 Eliciting Developer’s Views on Simplifying Class Diagrams

Hide/Unh
ide

Informati
on

Drill
up/down

Show
more

Informati
on

Navigatio
n/Change
Layout

Give
Advice

Generate
Source
Code

Generate
from
different
XMI files

Classify
Classes in
Importanc

e

UIX
Classifier

Visual
indication
of data.

Generate
from
Source
Code

Change
Log

3 31 22 16 13 6 3 3 3 3 3 3 3

0

5

10

15

20

25

30

35

3 3 3 3 3 3 3 3 3 3 3 3

%
 o

f 
th

e 
R

es
p

on
d

en
ts

Figure 5.21: The Features that a Tool Should have for Simplifying UML Class Diagrams

5.5.1 Class Properties

Relationships in a class diagram are considered the important elements to understand
a system through class diagrams. Most of the respondents in this survey looked at the
association relationship first. This shows that the association relationship is important
in class diagrams. In this survey, we found that most of the respondents suggested
leaving out or separating the GUI related information from the class diagrams. The
respondents focus more on application-specific class diagrams information. The GUI
classes appear in RE-CD because Rapid Application Development (RAD) tools inject
or generate source code for this. In terms of class operations, most of the respondents
suggested leaving out the private and protected type of operations. These types of op-
erations are only used for internal classes and member classes for protected operations.
We also discovered that constructor/destructor operations could be omitted from class
diagrams. Particularly in Part B, we found that most of the respondents suggested that
constructors without parameters should be excluded.

5.5.2 Class Role and Responsibility (RnR)

One of the useful discoveries in this study is the importance of the class RnR in a class
diagram. By using this information, they can get an overall idea of how the system
works and get some hints of the functionalities of classes in a class diagram. In this
survey, we also discovered that classes that could be left out in a class diagram (in the
context of system overview) are helper classes, library classes and interface classes.
Most of the respondents suggested leaving out helper classes. Nevertheless, it is not
easy to automatically identify helper classes.



Conclusion 89

5.5.3 Class Diagram Simplification Tool Features

This study found that the desired features for a simplification tool are to hide/unhide
information; and drill up and down a class diagram. These features are desired because
they help to zoom in and zoom out in class diagrams. From our informal discussion
with the respondents, simplification of class diagrams is needed when they want to
understand the overall system design, but detailed information in class diagrams
is needed for modification tasks. Hence, both simplified and detailed diagrams are
essential.

5.5.4 Threats to Validity

In this subsection, we discuss the internal and external threats to the validity of this
survey.

Internal validity: The three selected cases used in Part B are considered as medium size.
The result may be different if a larger size of software system is used. In this survey,
we concerned about the time constraint for the respondents to complete the survey. By
using these selected cases, the survey was able to complete in given time frame. Also,
we believe that the class diagrams in these selected cases are representative.
External validity: We acknowledge that the number of respondents in this is small.
However, we showed that 75% of these respondents have experience more than 5 years
in class diagrams. We also believe that a survey and informal discussion about class
diagrams with 32 professional developers in the same place and time contribute to a
significant result.

5.6 Conclusion

This chapter presented a study on how to simplify a class diagram without affecting
their understanding of a system. In particular, the questions in this survey were
about what information could be left out from a class diagram and also what kind of
important information should remain. 32 professional software developers from the
Netherlands participated in this survey.

From the results, the most important elements in class diagrams are the relation-
ships. Class relationships are important to show the structure of a system. The type
of relationships that the developers look at first are the association and dependency
relations. In this survey, we discovered that the class diagram’s role and responsibility
are important because most of the respondents search for meaningful class names and
class roles in order to get a high-level understanding of how a system works. This
means, meaningful class names, operation names and attribute names are important
for system understanding.



90 Eliciting Developer’s Views on Simplifying Class Diagrams

To simplify a class diagram, most of the respondents chose to exclude GUI related
information and also library classes. This shows that most of the software developers
focus on application-specific classes, but not the generic or utility classes. Most of
the respondents also mentioned that helper classes should be excluded to simplify
a diagram. However, it is not easy to automatically identify helper classes. Private
operations, protected operations and constructors (without parameter) are types of
operations that could be left out in order to simplify a class diagram. These types
of operations seem not to be important. Although we are aware that research on
validation of our approach needs to be done, we found several useful indicators that
could be used for class diagrams simplification.

5.7 Future Work

This study was an early experiment on how to simplify class diagrams and we see a
number of ways to extend this work. In Part B, we have used RE-CDs and forward
engineered class diagrams in two separate groups. Also, we have used different Levels
of Detail in different sets of groups. A comparison of these different flavors of class
diagrams in terms of what information the respondents suggest to leave out can be
the future work to extend this study. It would be interesting to compare the results
between these class diagrams and see if there are any differences in what the software
developers are excluding from these diagrams. We propose to validate the resulting
class diagram by using an industrial case and discover the suitability of the simplified
class diagram for the practical usage.

From the results, we found that class role and responsibility are one of the important
indicators in a class diagram. The role and responsibility of a class are detected by
using the class names, operations names and attributes names. We suggest a study
on the names (classes, operations and attributes) that the software developers find
important or meaningful in order to understand a system. The results of this study are
used to predict the important classes in a class diagram in chapter 8.


