
Interactive scalable condensation of reverse engineered UML class
diagrams for software comprehension
Osman, M.H.B.

Citation
Osman, M. H. B. (2015, March 10). Interactive scalable condensation of reverse engineered
UML class diagrams for software comprehension. Retrieved from
https://hdl.handle.net/1887/32210
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/32210
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/32210


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/32210 holds various files of this Leiden University 
dissertation. 
 
Author: Osman, Mohd Hafeez Bin 
Title: Interactive scalable condensation of reverse engineered UML class diagrams for 
software comprehension 
Issue Date: 2015-03-10 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/32210
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter4
Assessing the Correctness and
Completeness of UML CASE tools
in Reverse Engineering

This chapter focuses on Computer-aided Software Engineering (CASE) tools that
offer functionality for reverse engineering into Unified Modeling Language (UML)
models. Such tools can be used for design recovery and round-trip engineering.
For these purposes, the quality and correctness of the reverse engineering capability
of these tools are of key importance: Do the tools recover all important information
from the source code? Are the reverse engineering results correct? What kind of
information is presented in the result? Based on these questions, we compare eight
UML CASE tools (six commercial tools and two open source tools). We evaluate i)
the types of input that these tools can handle, ii) the types of diagrams that can be
reconstructed, and iii) the quality of resulting diagrams.

4.1 Introduction

The Unified Modeling Language (UML) is the standard for graphically representing
the design of object-oriented software systems. While UML diagrams are created in
forward design, these diagrams are poorly maintained. Maintaining correspondence

This chapter is adapted from publications entitled “An Assessment of Reverse Engineering Capa-
bilities of UML Case Tools”, In Proceedings of the 2nd Annual International Conference of Software
Engineering & Applications (SEA 2011) and “Correctness and Completeness of CASE tools in Reverse
Engineering Source Code into UML Model”, In GSTF Journal on Computing vol.2, num.1 (2012)



48 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

(between design and implementation) is particularly challenging because over time an
implementation tends to evolve considerably from its initial design [118]. Design mod-
els produced during the design phase are often forgotten during the implementation
phase-under time pressure usually–and thus, present major discrepancies with their
actual implementation are frequently present [72]. Lethbridge et al. [103] confirm the
widely held belief that software engineers typically do not update the documentation
as timely or completely as software process personnel and managers advocate. Tools
support during maintenance, re-engineering or re-architecting activities has become
important to decrease the time software personnel spend on manual source code
analysis and help to focus attention on important program understanding issues [97].

Nowadays, a lot of commercial and open source CASE tools support reverse en-
gineering. These tools provide the capability in reconstructing package and class
diagrams based on source code, objects and/or executable files. These tools also pro-
vide an automated and semi-automated analysis of the software system regarding
the software structure such as class, attribute and operation. Some of the CASE tools
extend the UML reverse engineering capabilities by supporting sequence diagrams
reconstruction (based on static analysis).

For this research, our motivation is to discover to what extent the CASE tools
are able to reverse engineer UML diagrams out of source code. This information is
useful because RE-CDs is one of the important inputs in this research. Particularly
in UML class diagrams, we want to know what type of information provided in the
RE-CD compared to the typical information that may exist in class diagrams (domain
model/forward design). The study of this chapter also aim to gather information
about CASE tool(s) that are suitable for the research in this thesis. In order to find the
answers, we examined and compared the reverse engineering capabilities provided
by the CASE tools. In total, eight CASE tools have been selected in this study, namely
Visual Paradigm, Rational Software Architect, StarUML, Altova UModel, MyEclipse,
Enterprise Architect, MagicDraw and ArgoUML. To understand how the tools analyze
class diagram, we conduct three experiments.

The first experiment aims at discovering the capability of the evaluated CASE tools
in performing the round-trip engineering [80] task. The second experiment evaluates
the tools’ capabilities of identifying class relationships (association, aggregation and
composition) based on the code stated in [72]. The third experiment assesses the
correctness and completeness of the tools in reverse engineering source codes into class
diagrams.

The chapter is structured as follows. Section 4.2 presents the related work. Section
4.3 briefly describes the examined tools and properties used in this evaluation. Section
4.4 describes the sample cases and Section 4.5 explains the approach of this experiment.
Section 4.6 presents our results and findings. Our evaluation is discussed in Section
4.7. This is followed by our conclusion and future work in Section 4.8.



Related Work 49

4.2 Related Work

This section discusses work that related to this study. The following researchers have
conducted several evaluations and comparisons of reverse engineering tools.

Kollmann et al. [94] presented a study that examined the reverse engineering
capabilities of two CASE tools (Rational Rose, Borland Together), and compared the
result with two academic prototypes (Fujaba, IDEA). Their study investigates the
strengths, weaknesses and similarities of the tools’ capability. In our research, we
examine six commercial CASE tools and two open source CASE tools that we believe
are commonly used in the industry. We extend the examination by observing the
capabilities of the tools in reverse engineering the source code into package diagram
and sequence diagram.

Koskinen and Lehmonen [97] analysedten reverse engineering tools in term of four
aspects: data structures, visualization mechanisms, information request specification
mechanisms and navigation features. Their research focused on the information
retrieval capabilities of the selected tools. However, not all of their selected tools were
capable of reconstructing UML diagrams. In our study, we selected tools that support
reconstruction of UML models.

Bellay and Gall [22] presented a study that compared reverse engineering tools
for the C programming language. Four reverse engineering tools were selected in the
study. Their study aimed to discover the strength and weakness of the selected reverse
engineering tools based on their usability, extensibility and applicability for embedded
software systems. The tools selected in their study were different in functionality and
capability. In contrast, our evaluated tools are comparable because the functionalities
of the evaluated tools are relatively similar.

Gahalaut and Khandnor [64] presented a study about reverse engineering Java
code. The study aimed to compare bytecode reverse engineering tools (decompiler)
with UML reverse engineering tools (Altova UModel and Enterprise Architect). The
inputs for this comparison were Java source code and Java class files. They stated
that the decompiler and the UML reverse engineering tools generated the same class
structures. However, our extended study found that although the structure were about
the same, the detail in class information and the relationship were different if we
compare RE-CDs that are constructed based on the class file and Java source file.

Akehurst et al. [13] focused on providing solutions to the issues of mapping
qualified associations and the UML 2.0 semantic variations of an association into Java 5.
They presented a comparison of forward engineering functionality of some CASE tools.
In contrast, our evaluation covers forward and reverse engineering of class diagrams
based on the user’s view. Their study was centered on how to generate code based
on the design. Our study evaluates and compares the tools’ capabilities to reverse
engineer basic class information and relationships.

Boklund et al. [30] performed a comparative study of forward and reverse engi-



50 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

neering in UML tools; focused on three-tier layered web services application. They
evaluated four modeling tools in the perspective of UML-Modeling, UML-based Code
Generation and Reverse Engineering UML-diagram from code. However, not all tools
that they have selected can be used in their evaluation. In contrast, our selected tools
are comparable in term of the tools capability and functionality.

Kearney and Power [87] proposed a framework and automated tool for benchmark-
ing UML CASE tools reverse engineering capabilities. The automated tools presented
in this study tightly rely on the input from software metrics tools. Although we conduct
our experiment semi-automated, we present more information rather than concentrate
only on software metrics.

4.3 Examined Tools and Properties

This section describes the examined tools and properties that are involved in this
experiment.

4.3.1 Examined Tools

The CASE tools were chosen based on the following criteria:

• Capable of performing forward and reverse engineering in Java.
• Capable of exporting UML Model to XML Metadata Interchange (XMI) format.

In total, eight well-known CASE tools are selected as listed in Table 4.1. For
commercial CASE tools, we used fully functional evaluation and academic evaluation
versions. We used SDMetrics [180] (version 2.11 – academic license) to extract UML
model information from different versions and different type of XMI files.

4.3.2 Examined Properties

The examined properties are divided into two parts: Reverse Engineering Capability
and Class Diagram Properties.

Reverse Engineering Capability

The reverse engineering tool’s capabilities are evaluated from three perspectives: UML
diagrams, supported programming languages and supported types of source.

• UML Diagrams
The selected types of UML diagram are: package diagram, class diagram and
sequence diagram. We analysed all selected diagrams by evaluating (1) the
process of reconstructing (reverse engineer) the diagrams, and (2) the output
in term of completeness and representation. Only static analysis is used for
reconstructing those diagrams.



Examined Tools and Properties 51

Table 4.1: List of Evaluated CASE Tools

No CASE Tool Information Vendor License Type
1 Visual Paradigm

8.1
http://www.visual-
paradigm.com

Visual
Paradigm

Evaluation

2 MagicDraw 17.0 http://www.magicdraw.com No
Magic

Evaluation
(academic)

3 Altova Umodel
2011

http://www.altova.com Altova Evaluation

4 Enterprise Archi-
tect 8.0

http://www.sparxsystems.
com.au

Sparx
System

Evaluation

5 Rational Soft-
ware Architect
8.0.1

http://www-142.ibm.com
/software/products/my/en/
swarchitect-websphere

IBM Evaluation

6 MyEclipse 8.6 http://www.myeclipseide.
com

Genuitec Evaluation
(academic)

7 StarUML 5 http://staruml.sourceforge.
net

StarUML Open Source

8 ArgoUML http://argouml.tigris.org Tigris.org Open Source

• Supported Programming Languages
We study the capability of the CASE tools to reverse engineer source code from
several common programming languages: PHP5, C++, Java, C#, Delphi, Python
and Visual Basic (V.B). However, we perform reverse engineering using a sample
case developed in Java. Other programming languages are evaluated based on
the documentation/manual provided by the CASE tools’ provider.

• Additional Types of Input Formats
The supported input-types for reverse engineering UML diagrams (in addition
to source code; e.g. binaries).

Class Diagram Properties

We evaluate the class diagram properties based on the following elements:

• Attributes and Methods
– Number of attributes: The tools’ ability to reconstruct all attributes including

the type of attribute (public, private, protected) defined in the source code.
– Number of operations: The tools’ ability to reconstruct all methods (of all:

public, private, protected, constructor) defined in the source code.
• Relationship

– Number and types of relationship: The ability of the tools to reconstruct all
relationships between classes.



52 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

– Association relationship: The capability of the tool in detecting association
and binary association [68] relationship (i.e. aggregation1 and composition2).

4.4 Sample Cases

This section describes the sample of cases that are used in this evaluation.

4.4.1 Movie Catalog System (MovieCat)

This sample case is derived from [177]. We altered the relationships in this class
diagram to make sure all types of relationship were presented. This sample case is
selected because of a little amount of classes and the class diagram can be altered to
suit our purpose in this research. We use this sample case to evaluate the class diagram
properties.

4.4.2 Automatic Teller Machine (ATM) Simulation System

This sample case is selected because it has a fully functional simulation system, a
forward design and a complete implementation source code. It is developed by the
Department of Mathematics and Computer Science, Gordon College [28]. The complete
software documents consist of 22 designed classes. Various types of relationships
were used in the UML diagram such as association, composition, dependency and
inheritance. Some of the elements (especially class relationship) in this sample case
have been altered to suit our requirement for the experiment. This sample case was
used to evaluate the reverse engineering capability.

4.5 Approach

This section explains our approach to evaluating the tools. The evaluation is divided
into two parts which are: Round-trip Capability and Reconstruction of UML Diagram
types.

4.5.1 Round-trip Capability

We performed the round-trip capability experiment to assess the completeness of the
CASE tools in recovering all information specified in the forward design (illustrated

1Aggregation (or shared aggregation) is a part-of relationship [63]. It is used when part of an instance (or
class) is independent which means, if the related instance is deleted, the other instance may still exist.

2Composition (or composite aggregation) is a strong form of aggregation that requires a part instance be
included in at most one composite at a time. If a composite is deleted, all of its parts are normally deleted
with it [68].



Approach 53

UML Design UML Design’

Source Code

Code Engineering Reverse Engineering

Compare

1 2

3

Figure 4.1: Round-trip Engineering Experiment

in Figure 4.1). We expected to get an overview of an automation of software lifecycle
phases (i.e. software design->code generation->reverse engineering) using CASE
tools. This experiment begins with creating the forward design class diagram (UML
Design) that consisted of: (i) Attributes and Methods (private, protected, public) and,
(ii) Relationships (association, aggregation, composition, inheritance). We generate
the source code based on the UML Design through “Code Engineering” process, and
produce the UML Design’ by reverse engineer this source code. Then, we compare the
UML Design and UML Design’.

4.5.2 Reconstruction of UML Diagram Types (package/class/sequence)

To assess the capability and the quality of the reverse engineering of UML diagrams,
we conduct the following experiments.

UML Diagrams Reconstruction Capability

We evaluate the supported types of (reverse engineered) diagrams by i) reconstructing
the diagram using the CASE tools and/or ii) finding the information on the tools’
documentation/manuals. The tools’ capabilities of reconstructing UML diagrams are
analysed using a three-level scale which are described as follows:

• “+” : The tool is able to reverse engineer the specified diagram.
• “o” : The tool is able to reverse engineer the specified diagram, but present

minimal information. For instance, the CASE tool is capable of presenting classes,
attributes and operations but not relationships. Another example is the tool
needed user intervention to generate the sequence diagram.

• “-” : The tool is unable to reverse engineer the specified diagram.

The information about the supported programming language and supported types
of reverse engineering sources are gathered from the tool’s documentation or/and
manuals.



54 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

Detection of Aggregation, Association and Composition Relationship

The evaluation of reconstructing various types of class relationship is performed by
using the source code defined in [72]. We created a source code that represents each
evaluated relationship (i.e. aggregation, association and composition). Then, we
reverse engineer this source code to evaluate the ability of the CASE tools in detecting
multiple types of relationship.

Correctness and Completeness (CnC) of Reconstructed UML Diagram

This experiment aims at evaluating the completeness and correctness of the RE-CD
constructed by the CASE tools. For the expected result (concrete result), we manually
extract all class diagram information from the sample case design document and
implementation code. For instance, we calculate (manually) the number of attribute
and operation in every class in the class diagram. Then, the class diagram information
gathered from RE-CDs (from each tool) are compared with the expected result. The
evaluation is divided into two parts:

• CnC of Class Information: We tested all possible options to reconstruct the best
RE-CD for each tool. The diagrams then exported to XMI files. We extract the
metrics from the XMI files and compare the class diagram information with our
expected result.

• CnC of Reconstruction of Class Relationship: All possible reverse engineering options
are evaluated to achieve the best view of class relationship. Then, we manually
compare the RE-CD relationships with our expected result.

4.6 Result and Findings

In this section, we present our findings which include: Reverse Engineering Capability
and Class Diagram Properties.

4.6.1 Reverse Engineering Capability

In this subsection, we present the capability of the CASE tools in reconstructing the
UML Diagrams, the supported programming languages and the supported types of
source.

UML Diagrams

The results in Table 4.2 show that most of the tools were capable of reconstructing
package diagrams. Visual Paradigm, MagicDraw and Altova UModel are good at
reconstruction package diagram because these tools can perform this task automatically.
An example of a reverse engineered package diagram is shown in Figure 4.2.



Result and Findings 55

Table 4.2: Supported UML Diagrams for Reverse Engineering

No Tools UML Diagram
Package Class Sequence

1 Visual Paradigm 8.1 + + o
2 MagicDraw 17.0 + + o
3 Altova Umodel 2011 + + -
4 Enterprise Architect 8.0 o + -
5 Rational Software Architect 8.0.1 o + -
6 MyEclipse 8.6 o + o
7 StarUML 5 o + o
8 ArgoUML o o -

In terms of the class diagram, all the evaluated tools are good at automatically
reconstructing RE-CD (from source code) except ArgoUML. The reason is that the
ArgoUML was unable to reconstruct the class relationship other than inheritance. All
CASE tools give an option to generate the class diagram separately using the “drag
and drop” function.

The reconstruction of sequence diagrams requires a lot of manual intervention
because the users need to provide the information on the methods and classes that
should be in the sequence diagram. Based on our experiment, only four tools have
the capability of reverse engineering sequence diagrams. An example of a reverse
engineered sequence diagram is illustrated in Figure 4.3.

The Supported Programming Languages

The supported programming languages results are presented in Table 4.3. It shows
that the Enterprise Architect is able to reverse engineer all the programming languages
listed in this evaluation. We also found that all evaluated tools were able to reverse
engineer source code in Java.

The Types of Source

Overall, all evaluated CASE tools can reverse engineer class diagrams out of source
code files (e.g. .java, .cpp and .cs). The CASE tools also offer an option to specify the
source directory, and then automatically determine the source code file from the direc-
tory. Visual Paradigm, Altova and Enterprise Architect are capable of decompiling and
reconstructing class diagram based on Java bytecode (.class), dynamic link library (.dll),
execution file (.exe) and Java archive (.jar). Then, the tools generate class information
that enable the users to construct a class diagram. The supported types of source are
presented in Table 4.4.



56 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

Figure 4.2: Altova Reverse Engineered Package Diagram

Figure 4.3: Reverse Engineered Sequence Diagram using Altova



Result and Findings 57

Table 4.3: Supported Programming Language for Reverse Engineering

No Tools PHP 5 C++ Java Delphi Phyton V.B C# Total ‘Y’
1 Visual

Paradigm
Y Y Y N Y N N 4

2 Altova
UModel

N N Y N N Y Y 3

3 MyEclipse N N Y N N N N 1
4 StarUML N Y Y N N N Y 3
5 MagicDraw N Y Y N N N Y 3
6 Rational

Software
Architect

N Y Y N N Y Y 4

7 Enterprise
Architect

Y Y Y Y Y Y Y 7

8 ArgoUML N Y Y N N N Y 3

4.6.2 Class Diagram Properties

This subsection presents the assessment of the class diagram properties. The results
are divided into: Round-trip Findings, Class Relationship Test, and Class Diagram
Correctness and Completeness.

Round-trip Findings

The CASE tools successfully round-trip the information for class attributes and op-
erations. However, the round-trip result for class relationships is different amongst
the CASE tools. In general, all CASE tools correctly round-trip association and inheri-
tance relationship. The aggregation and composition relationships were presented as
association. Only Rational Software Architect presented aggregation and composition
as a dependency. These aggregation and composition relationships were failed to be
detected during the round-trip experiment due to the code-engineering process (trans-
form design to source code) that defined those relationships as a link declaration [177]
in the source code. Therefore, the tools cannot differentiate the types of relationship
(example is in Figure 4.4). The discontinuity that may exist between object-oriented
modeling language and programming language may be the reason behind this result.
This discontinuity arises from the ambiguous concept in modeling languages and
lack of corresponding concepts in programming languages [72]. These relationships
represent different knowledge in software design. Unable to recognize these relation-
ships correctly may hinder the traceability between source code and design, hence,
obstructing software analysis.



58 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

(a) Forward Engineering Class Diagram

(b) Reverse Engineered Class Diagram

Figure 4.4: Round-trip Test Result



Result and Findings 59

Table 4.4: Additional Types of Input Format

No Tools Source Code
Class/Object
/Dynamic
Link Library

Executable Other

1 Visual
Paradigm

.java, .cpp,

.h, .php
.dll, .class, .inc .exe, .jar Source

Directory,
.zip

2 AltovaUModel .java .dll, Global
Cache (GAC),
MSVS .Net,
.class

.exe, .jar Source
Directory

3 MyEclipse .java - - Source
Directory

4 StarUML .java, .cpp,
.h, .cs

- - Source
Directory

5 MagicDraw .java, .cpp,
.h, .cc, .cs

- - Source
Directory

6 Rational Soft-
ware Architect

.java, .cpp,

.h, .cc
- - Source

Directory
7 Enterprise

Architect
.java, .h, .cs,
.hpp, .pas,
.php, .php4,
.inc, .py, .vb,
.cls, .frm, .ctl

.class, .dll .exe, .jar Source
Directory

8 ArgoUML .java, .cpp, .cs .class .jar Source
Directory

Class Relationship Test

The results of this experiment are illustrated in Table 4.5. It shows that all CASE
tools are unable to reconstruct the specified relationships based on the source code
(defined in [72]). Visual Paradigm, Altova UModel, StarUML, MyEclipse, MagicDraw
and Enterprise Architect unable to generate the association relationships, while the
aggregation and composition relationships were presented as association relationships.
An example of aggregation test results is shown in Figure 4.5.

Class Diagram Correctness and Completeness

Class Diagram Correctness and Completeness (CnC) evaluation is divided into two
parts: Attributes and Methods, and Relationship.



60 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

Table 4.5: Class Relationship Test Result

No Tools Association Aggregation Composition
1. Visual Paradigm No relationship

presented
Present as asso-
ciation

Present as asso-
ciation

2. Altova UModel No relationship
presented

Present as asso-
ciation

Present as asso-
ciation

3. MyEclipse No relationship
presented

Present as asso-
ciation

Present as asso-
ciation

4. StarUML No relationship
presented

Present as asso-
ciation

Present as asso-
ciation

5. MagicDraw Present as de-
pendency

Present as asso-
ciation and de-
pendency

Present as asso-
ciation and de-
pendency

6. Rational Software
Architect

Present as de-
pendency

Present as de-
pendency

Present as de-
pendency

7. Enterprise Archi-
tect

No relationship
presented

Present as asso-
ciation

Present as asso-
ciation

8. ArgoUML No relationship
presented

No relationship
presented

No relationship
presented

1. CnC of Attributes and Methods evaluation presents the capability of the CASE
tools in identifying class attributes and methods (or operations). The results are
presented in Figure 4.6 and the explanations are the following:

• Number of Attribute(NA): We expected the tools to extract 79 attributes
(NA) from the sample case. Visual Paradigm, Enterprise Architect and
Rational Software Architect successfully extracted all the attributes. How-
ever, Rational Software Architect can only show the attributes by using the
“Drag and Drop” function instead of using the “Transform” function. The
class diagram generated from the “Transform” function did not show any
attribute even though it exist in the tools “Project Explorer” pane. Further-
more, the generated XMI file also does not include any attribute. Other tools
like Altova UModel, MyEclipse, StarUML and MagicDraw were unable to
extract all the expected attributes.

• Number of Operations(NO): We expected the tools to extract 91 operations.
However, most of the tools found more than expected. The reason is that
the additional operations come from the “superclass” operations. StarUML
did not completely extract all operations because it was unable to extract 4
constructors of 4 classes. On the other hand, Visual Paradigm extracted 77
operations.



Result and Findings 61

Figure 4.5: Example of Diagram on Aggregation Test

0

20

40

60

80

100

120

VisualDParadigm AltovaUModel MyEclipse StarUML MagicDraw Enterprise
Architect

RationalDSoftware
Architect

ArgoUML

N
o.

 o
f 

A
tt

ri
b

ut
es

/O
p

er
at

io
n

s

NumberDofDAttribute NumberDofDOperation

Figure 4.6: Number of Attributes and Methods



62 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

Table 4.6: Relationship Correctness

Association Inheritance
No Tools No. of

Relationship
Total Correctness

(%)
Total Correctness

(%)
1 Visual

Paradigm
31 27 54.05 4 100

2 StarUML 31 27 54.05 4 100
3 Enterprise

Architect
31 27 54.05 4 100

4 Rational
Software
Architect

30 26 67.57 4 100

5 MagicDraw 31 27 54.05 4 100
6 MyEclipse 20 16 27.03 4 100
7 Altova

UModel
31 27 54.05 4 100

8 ArgoUML 4 0 0 4 100

2. CnC of Class Relationship evaluates the tools’ capability of extracting association
and generalization (inheritance) relationships. Other class relationships are not
included in this evaluation as the Round-trip results (see Section 4.6.2) shows
that the evaluated tools can only identify these relationships. For this purpose,
we extracted all link declarations from our sample case (ATM simulation system)
and used it as the expected result. In total, there are 41 relationships identified
that consist of 37 association relationships and 4 generalization relationships.
Of these relationships, three of them were bidirectional. The overall results
are presented in Table 4.6. We found that only Rational Software Architect
was capable of reconstructing bidirectional relationship. Other tools (except
ArgoUML) reconstruct bidirectional relations by means of two separate links
in opposite directions (example in Figure 4.7). Rational Software Architect also
capable of presenting two separated relationships that directed to the same class
as a single relationship. Other tools identified this kind of relationships as two
separated associations.

4.7 Discussion

This section discusses the experiment results.

• Strength : Most of the tools are excellent in recovering the class attributes and
methods. From the result, the tools were capable of extracting source code, visu-



Discussion 63

Figure 4.7: Bidirectional Relationship with Two Separate Links

alizing the class diagram and enabling manipulation of the generated diagrams.
Some of the tools such as Altova UModel and Visual Paradigm are able to gen-
erate the class diagram automatically; most of the tools need user intervention
to drag and drop the classes in the project explorer-canvas to recreate a class
diagram. This drag and drop function can be useful to the user to select the
reverse engineered classes that they desired to visualize in the class diagram. Of
course, user intervention requires additional effort.

• Weakness: All CASE tools are unable to identify all the class relationships cor-
rectly. Most of the tools identify aggregation and composition relationships as
association relationships. Rational Software Architect has presented the result
differently by presenting dependency relationships for all class relationships that
were tested. For further investigation, we tested all evaluated tools by gener-
ating the source code based on the design and then we reverse engineered the
generated source code to produce the design (Round-trip). As the result, this
test indicated that we were unable to generate the same design that we created.
We observed the generated source code and it showed that the tools did not dif-
ferentiate code generation between those types of relationship. This may be the
reason of the tools are unable to recover the class relationship correctly. Incorrect
code generation would lead to inaccurate synchronization between source code



64 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

and software design document. The design document becomes out-of-sync that
decays the knowledge of the document.
The tools’ weaknesses in generating code (forward engineering) and reverse
engineer source code for class relationship have mentioned by Ralf Kollmann
et al. (2002) [94] and Akehurst et al. (2007) [13]. Although this study is more
recent, the tools are still unable to generate correct class relationships. However,
two tools (MagicDraw, Rational Software Architect) give additional information
by presenting dependency relationships as an addition to class relationship
(association, aggregation and composition). The aggregation and composition
relationship are essential to show how the software works. This relationship
information may give some hints for the software engineer or the software
maintainer which classes are important based on the software design before they
browse the source code. The class relationship knowledge (especially which class
to initialize after another) has to be discovered before the software engineer or
software maintainer touch the source code.

Today, CASE tools support the reverse engineering capability not only by using
source code as input but also support object or class files and executable files such as .jar
and .exe. Some tools such as Altova UModel, Rational Software Architect and Visual
Paradigm offer more functionality where they are able to present sequence diagrams
based on the reverse engineering result. Although they are not able to automatically
generate the sequence diagram, it at least may help the software engineer or the
software maintainer to understand the class interactions.

Overall, from the user point of view, the functionality to do reverse and forward
engineering are easy to access by the user and the tools give good instruction and
information to the user to use the functionality and analyze the results.

The experiments that were conducted in this chapter rely on manual evaluation of
the test result and from the support of software metrics tool. As we know that some of
the inputs are based on XMI files, we did not consider a faulty XMI generation by UML
CASE tools. We also did not consider if the software metrics tool used was unable to
extract some of the metrics from the XMI files.

4.8 Conclusion and Future Work

This chapter has provided an assessment of the reverse engineering capability of eight
CASE tools (six commercial and two open source). We have assessed the tools by
evaluating the reverse engineering features that are provided. In summary, all CASE
tools are capable of performing reverse engineering from source code to class diagrams
and package diagrams. Some of the tools can also reverse engineer sequence diagrams,
but need a little help from the user. The tools also support various types of input
formats other than source code, such as class or object files and executable files. Even



Conclusion and Future Work 65

though these input formats offer additional options to the user, the resulting diagrams
differ from the results from using source code as input.

Generally, there are not many differences between the capabilities of the CASE
tools in reverse engineering into UML. Almost all the evaluated tools have relatively
the same strengths and weaknesses: CASE tools do not completely show all class
information, and CASE tools are also not capable of correctly and completely presenting
the class relationships – especially aggregation and composition.

For future work, we propose this evaluation to be extended to larger systems to
evaluate the scalability and performance of the tools. Also, future research in reverse
engineering should try to come up with abstraction mechanisms for leaving out details
and emphasize important information from RE-CD.

From this research, after the correctness and completeness of the RE-CD is identified,
the studies on condensation of RE-CD in Chapter 7, 8 and 9 will consider the following
information:

1. Aggregation and composition as association relationship.
2. Two directional relationships (with different direction) should present as bidirec-

tional relationship.
3. Two directional relationships (with the same direction) should present as a single

relationship.
4. Only several CASE tools are suitable to reverse engineer source code to the class

diagrams.




