
Interactive scalable condensation of reverse engineered UML class
diagrams for software comprehension
Osman, M.H.B.

Citation
Osman, M. H. B. (2015, March 10). Interactive scalable condensation of reverse engineered
UML class diagrams for software comprehension. Retrieved from
https://hdl.handle.net/1887/32210

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/32210

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/32210

Cover Page

The handle http://hdl.handle.net/1887/32210 holds various files of this Leiden University
dissertation.

Author: Osman, Mohd Hafeez Bin
Title: Interactive scalable condensation of reverse engineered UML class diagrams for
software comprehension
Issue Date: 2015-03-10

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/32210
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter3
UML Usage in Open Source
Software Development

UML is the standard for modeling software designs and is commonly used in
commercial software development. However, little is known about the use of
UML in Open Source Software Development. This chapter evaluates the usage
of UML modeling in ten open-source projects selected from common open-source
repositories. It covers the types of UML diagrams that are used, the level of detail
that is applied, and the frequency of updating UML models. Our findings also
include the application of UML modeling at different levels of detail for different
purposes, the change in focus on types of diagram used over time, and research on
how the size of models relates to the size of the implementation.

3.1 Introduction

UML provides the facility for software engineers to specify, construct, visualize and
document the artifacts of a software-intensive system and to facilitate communication
of ideas [32]. For commercial software development, the use of UML is commonly
prescribed as part of a company-wide software development process while in open-
source software development (OSSD), there is typically no mandate on the use of
UML. Only if the community of developers of the OSSD feels the need (e.g. for their
communication) then UML diagrams are produced. Even though some open-source
projects employ UML diagrams, these diagrams do not completely correspond to the

This chapter is a more detailed version of a publication entitled “UML Usage in Open Source Software
Development : A Field Study”, In Proceedings of the 3rd International Workshop on Experience and
Empirical Studies in Software Modelling (EESSMod 2013)

32 UML Usage in Open Source Software Development

implementation code. For instance, the number of classes used in class diagrams is
typically less than the number of classes that exist in the implementation source code.
The usage of UML class diagrams also varies across projects. Almost all OSSD projects
that use UML choose to produce class diagrams. Some projects also constructed other
types of UML diagrams such as use case diagrams, sequence diagrams and activity
diagrams.

One of the benefits of UML is to ease communication between software developers.
The nature of OSSD is that software developers normally communicate with each
other using some online communication medium (e.g. discussion forum, e-mail,
IRC) rather than through face-to-face interaction. There is an anecdotal belief that
UML is rarely used in OSSD. However, there is no quantitative research to prove this
perception. In this chapter, we aim at evaluating the usage of UML diagrams in OSSD
projects. We want to investigate how UML is used in OSSD without the influence of
the stakeholders or users of the system. We assume that the UML diagrams that exist
in a project document means such diagrams are used in the project. The reason is that
when the cost (effort) is spent in developing an artifact, such artifact should be used
and provides a benefit in the development or maintenance phase [187].

We explore the publicly available software documentation to answer the following
questions: 1) What types of UML diagrams are used? 2) How does the size of the
design relate to the size of the implementation? 3) What level of detail is used in UML
diagrams? and 4) How does timing of changes in the implementation relate to the
changes in UML diagrams/documentation?

The chapter is structured as follows: Section 3.2 discusses related work. Section 3.3
describes the case studies used in this research. Section 3.4 explains the study approach
while Section 3.5 presents the results and findings. This is followed by our conclusion
and future work in Section 3.6.

3.2 Related Work

Dobing and Parsons [48] performed a survey to find out to what extent UML is used
and for what purpose, what are the differences of the levels of detail used and how
successful UML usage is for communication in a team. The survey was conducted
using a web survey and participated by 171 UML practitioners. The research found
that the most used types of UML diagrams were use case diagrams and class diagrams
while collaboration diagrams were used the least. In [47], Dobing and Parsons also
conducted another survey to investigate the current practice in the use of UML. There
were 299 responses in the survey (with the endorsement of the Object Management
Group (OMG) [119]). The findings of this survey highlighted that the most used
UML diagrams were class diagrams, use case diagrams and sequence diagrams. This
research also discovered that class diagrams and sequence diagrams play a major role
in specifying system requirements for programmer, documenting the design for future

Case Study 33

maintenance and in clarifying understanding of the application among team members.
Grossman et al. [67] performed a study on the individual perspective of using

UML. This study also addressed the characteristics that affect the usage of UML.
Similar to [47] and [48], the result of the most important diagrams in ranking are use
case diagrams, class diagrams and sequence diagrams. Those studies also found out
that it is difficult to determine whether UML provides too much detail or too little
detail because it depends on the software technology (i.e. Enterprise System, Web-
based system, real-time system). The study suggested that UML diagrams need to be
customized based on the environment.

Yatani et al. [182] conducted an evaluation on the use of diagramming for com-
munication among OSSD developers and also performed semi-structured interview
with developers from a large OSSD project. This study highlighted a diverse types of
diagrams that is used for the communication between the contributors of the system.
Not all diagrams used for communication purposes were updated during the project.

Chung et al. [42] carried out a survey that was participated by 230 OSSD developers
and designers. Their findings demonstrate that 1) In terms of frequency of updating
designs, even though 76% agree that diagrams have value, only 27% practice diagram-
ming very often or all the time, and 2) The UML diagrams are only used for formal
documentation purposes.

Most of the related works use surveys to explore the usage of UML diagrams. These
surveys are based on the practitioners’ perspective of how they use UML. In contrast,
our study evaluates the use of UML modeling in OSSD projects by mining the project
documentation. Hence, this reflects the real artifacts produced by using the UML
notation.

3.3 Case Study

One of the challenges of this study was to find suitable OSSD Projects that use UML
diagrams. Based on research by Hutchinson et al. [81], Dobing and Parsons [48], and
Erickson et al. [54], we know that one of the most used UML diagrams is the class
diagram. For this reason, we performed a search for UML class diagram images using
the Google[3] search engine. In particular, we targeted our search on four open source
repositories: SourceForge[7], GoogleCode[4], GitHub[8] and BerliOS[2]. The primary
keyword used for the search was “Class Diagram”. Based on the hits of these searches,
we browsed the project repositories to assess their suitability for inclusion in this study.
Our initial list of candidate cases consisted of 57 projects (see Appendix A.1). We
refined the selection of the case study by using the following criteria:

• The project should have UML diagrams and corresponding source code (projects
that have multiple versions were preferred).

• The source code should be written in Java.

34 UML Usage in Open Source Software Development

• The amount of classes (in the source code) > 50 classes.

The reason for selecting projects in Java was that we intended to reverse engineer the
source code to class diagrams for analysis purposes. The reverse engineering tool that
we used for this study performs best with Java source code. We refine our selection of
case studies as follows:

1. Round 1: Out of 57 projects, we eliminate 21 projects that developed using C++,
C#, Pascal, Phyton, etc. (other than Java). Only 36 projects remain to be the
candidate.

2. Round 2: Discard 13 projects due to the number of classes below 50.
3. Round 3: Discard 6 projects because we prefer projects that have more than one

version.
4. Final Round: In total, 18 projects qualify for the final round. In this round,

we thoroughly explore the case studies artifacts (source code, class diagram,
documentation). As a result, we found that ten projects that are suitable for our
research. Most of the projects we discarded because the projects only provide
the latest source code in the repository, even though the projects have several
versions of releases (also class diagram).

The list of case studies is shown in Table 3.1. The total numbers of classes involved
in these case studies range from 50 to 2000.

3.4 Approach

This section describes the approach we used in this study. We conducted four main
activities in order to answer the following research questions:

RQ1: What types of UML diagrams are used?

Based on the project repository, we manually browsed the documentation and other
provided information about the software to find all the UML diagrams that were used
in the project.

RQ2: How does the size of the design relate to the size of the implementation?

Our aim was to use one single tool for counting classes of both the design and the
implementation. Furthermore, for source code, we only wanted to count classes that
were actually designed for the project’s system, hence we exclude library classes (also
test-classes) that are imported, and would typically not be modeled. To this end, source
codes are reverse engineered (into class diagrams) using several CASE tools. The CASE
tools used in this study were MagicDraw [9] version 17.0 and Enterprise Architect
[153] version 7.5. The reverse engineered design was then exported to XML Metadata

Approach 35

Table 3.1: List of Case Studies

Project Description
No. of

Releases
URL Source

ArgoUML An open source UML modeling
tool and include support for all
standard UML 1.4 diagrams.

19 http://argouml.
sourceforge.net

Mars Sim-
ulation

Free software project to create a
simulation of future human settle-
ment of Mars.

26 http://mars-sim.
sourceforge.net/

JavaClient The project allows development
of applications for Player/Stage
using the Java programming lan-
guage.

3 http://java-player.
sourceforge.net/

JGAP Genetic Algorithms and Genetic
Programming package.

8 http://jgap.
sourceforge.net/

Neuroph Lightweight Java neural network
framework to develop common
neural network architectures.

9 http://neuroph
.sourceforge .net/

JPMC Java Portfolio Management Com-
ponent (JPMC) is a collection
of portfolio management compo-
nents.

1 http://jpmc.source
forge .net/

Wro4J It stands for Web Resource Opti-
mizer for Java. The project pur-
pose is to improve web applica-
tion page loading time.

3 http://code.google
.com/p/wro4j/

xUML-
Compiler
(xUML)

xUml-Compiler takes a user spec-
ified data model and associated
state machines and produces an
executable and testable system.

13 http://code.google
.com/p/xuml-
compiler/

Maze Maze-solver is a Micro-Mouse
maze editor and simulator.

2 http://code.google
.com/p/maze-
solver/

Gwt-
portlets

Free open source web framework
for building GWT (Google Web
Toolkit) applications.

6 http://code.google
.com/p/gwt-
portlets/

Interchange (XMI) files. These were loaded into a UML case tool in which we manually
removed all library classes. From the resulting XMI files, software design metrics were
computed using the SDMetrics [180] tool.

36 UML Usage in Open Source Software Development

Table 3.2: Levels of Detail in UML models

No Class Diagram Elements Low LoD High LoD

1 Classes (box and name) YES YES
2 Attributes NO YES
3 Types in Attributes NO YES
4 Operations NO YES
5 Parameters in Operations NO YES
6 Associations YES YES
7 Association Directionalities NO YES
8 Association Multiplicities NO YES
9 Aggregations YES YES
10 Compositions YES YES

RQ3: What level of detail is used in UML diagrams?

The level of detail (LoD) for all UML diagrams gathered from the projects’ repositories
was analysed using the level of detail that was defined by Fernández-Sáez et al. [60]
(as illustrated in Table 3.2). In addition, we also analyzed the diagrams to identify the
technique of constructing the UML diagram (forward or reverse engineering). The
UML diagrams were identified as RE-CD if they satisfy the symptoms (or weaknesses)
mentioned by Osman [125]. These tasks were done manually.

RQ4: How does timing of changes in implementation relate to the changes in UML diagram-
s/documentation?

For source code, we manually extracted the dates of releases from the project reposito-
ries. For UML diagrams, we looked at the date-information provided by the system
documentation, developer’s manual and other related documents in the project reposi-
tory.

3.5 Results and Findings

This section describes the result of this study. The results are grouped by the research
questions mentioned in the previous section.

3.5.1 Usage of UML Diagrams

The UML diagram that was mostly used in our set of OSSD projects is the class diagram.
This was to be expected because our main keyword of searching for the case study
was based on class diagrams. Table 3.3 shows which other types of diagrams were

Results and Findings 37

Table 3.3: UML Diagram Usage

No Project Use Case
Component
Diagram

Package
Diagram

Class
Diagram

Composite
Structure
Diagram

Object
Diagram

Sequence/
Interaction
Diagram

Activity
Diagram

State
Machine
Diagram

1 Maze No No No Yes (6) No No No No No

2 JavaClient No No No Yes (1) No No No No No

3 xUML No No No Yes (1) No No No No No

4 JPMC Yes (1) No Yes (1) Yes (4) No No No No No

5 Neuroph No No No Yes (3) No No No No No

6 Gwt-portlets No No No Yes (3) No No Yes (1) No No

7 Wro4J No No No Yes (3) No No No No No

8 JGAP No No No Yes (2) No No No No No

9 ArgoUML No Yes (1) Yes (12) Yes (30) No No Yes (2) Yes (1) No

10 Mars No Yes (2) No Yes (2) No No No Yes (1) No
Total no. of
diagrams used
(i.e. no. of 'yes ')

1 2 2 10 0 0 2 2 0

Total no. of
Diagram 1 3 13 55 0 0 3 2 0

Structure Diagram Behaviour Diagram

used. The term ‘Yes’ in Table 3.3 means that the project used at least one instance of
a UML diagram specified in the table. The numbers in Table 3.3 indicate the number
of diagrams constructed in the OSSD projects. Similar to most industrial use, none
of the OSSD projects used UML to model their complete system. The use of UML in
OSSD projects seems driven by a need to codify high-level knowledge. For example,
ArgoUML did not use sequence diagrams in their modeling until there was a new
feature. Only this new feature was explained by a sequence diagram.

In general, the case studies showed that the most used UML diagrams in OSSD are
use case, component, package, class, sequence/interaction and activity diagram. The
following subsections describe the results in more detail.

Use Case Diagram

A use case diagram is used to describe the desired functionality of the software product
[65]. Use case diagrams were used by only one of our evaluated OSSD project (see
JPMC in Table 3.3). Most of these OSSD projects have specified their goal, but the
specification and the interaction between users and system were explained in text.

Component Diagram

Component diagrams are used to divide the system into components and show their
relationships through breakdown of components into lower-level structure [63]. This
diagram is used to illustrate the high-level structure of large systems. Because of this

38 UML Usage in Open Source Software Development

reason, only complex projects among the case studies used this diagram. ArgoUML
and the Mars Simulation Project provided this diagram in their repositories. ArgoUML
provided one component diagram from an old design document to illustrate the
interaction between early developed component and packages. The Mars Simulation
project provided two component diagrams, i.e. ‘Top Level Diagram’ and ‘Simulation
Component Diagram’. The ‘Top Level Diagram’ illustrated dependencies between 3
components while the ‘Simulation Component Diagram’ illustrated more details about
the relationship between a simulation component and other related components.

Package Diagram

Package diagrams provide a grouping construct that allows to group design elements
together into higher-level units [63]. Package diagrams show the relationship between
higher level units. This diagram is used to explain the high-level structure of a system.
Only two of the case studies used this diagram. The JPMC project presents almost all
main packages and their dependencies in a package diagram. Meanwhile, ArgoUML
presented two package diagrams. The first package diagram in this project illustrated
the dependencies between domain-related packages and two other packages represent-
ing external libraries. The second package diagram illustrated the high-level package
in this project.

Class Diagram

Class diagram is the most used UML diagram in these case studies. Most of the
case studies only show classes that are important to the system. The correspondence
between design classes and implementation is discussed in subsection 3.5.2.

Sequence/Interaction Diagram

Sequence diagrams were used by two of our evaluated OSSD projects. However, both
projects have only one sequence diagram per project. ArgoUML introduced a sequence
diagram after eight version of releases. Table 3.7 shows that only after version 0.26,
a sequence diagram was introduced in the documentation. Perhaps, it is difficult to
generate the sequence diagram for the entire release. Hence, the developer of this
project used a sequence diagram to illustrate the flow of a new feature. The gwt-portlets
project used only one sequence diagram. We assume that the described flow contains
crucial information for the system. This is due to the classes that were involved in the
sequence diagram were presented in the project’s class diagram that shows the key
classes of the system.

Results and Findings 39

Activity Diagram

Activity diagramming or activity modeling emphasizes the flow and conditions for
coordinating lower-level behaviour [68]. This study found that two OSSD projects
used the activity diagram. However, not all activity diagrams in these projects were
related to the software development. ArgoUML used an activity diagram to present
the flow of managing issues in ArgoUML project. Meanwhile, the Mars Simulation
project used one activity diagram for specifying a feature of the project.

3.5.2 Ratio between Design and Implementation

This subsection presents the results of analyzing the ratio between classes in the design
and classes in the implementation. Since there are multiple versions of both the design
and implementation in most of the case studies, we chose a pair with a high ratio of
design to implementation. For example, for the Neuroph project we selected version
2.3 because this version has a high number of designed classes. The project starts
updating UML diagrams at this point in time. The Maze project has the highest ratio of
classes in design to classes in the implementation. This is a relatively small project that
consisted of 69 classes in the implementation and 40% of these classes were represented
in the UML design. In absolute numbers, the highest number of classes in a design
was found in the JavaClient project with 57 classes. The data in Table 3.4 is depicted
graphically in Figure 3.1. This figure shows that the ratio between the number of
classes in the design and the number of classes in the implementation decreases when
the number of classes in the implementation increases. Based on our observation, most
of the projects had created UML diagrams in the early version of the release, but rarely
increase the amount of classes in the design.

3.5.3 Level of Detail (LoD)

This subsection describes the result of assessing the level of detail used in modeling,
as well as the use of reverse engineering in the case studies. The overall result is
illustrated in Table 3.5. The project that uses the most class diagrams is ArgoUML:
46 class diagrams. Out of this total number, 19 UML diagrams were constructed in
Low LoD and other 27 diagrams were constructed in High LoD. ArgoUML is the only
case study that used RE-CDs. There were 15 diagrams which were constructed using
reverse engineering techniques. Almost half of these diagrams were used to describe
the user interface from an old design documentation and other diagrams showed class
diagrams for selected classes. Most of the selected classes were classes that play a
key role in how the program works [165]. The Maze project showed some interesting
result in their construction of UML diagrams. There were six UML class diagrams
constructed in this project. A class diagram with low LoD displays 40% of the total
classes. These diagrams illustrate the relationships between domain-related classes

40 UML Usage in Open Source Software Development

Table 3.4: Classes in Design versus Classes in Implementation

No Project # of Class
Diagram

of Classes in
Design (D)

of Classes in
source code (S)

% D vs S

1 Maze 6 28 69 40.6
2 JavaClient 1 57 215 26.5
3 xUML 1 45 172 26.2
4 JPMC 4 24 126 19.1
5 Neuroph 3 24 179 13.4
6 gwt-Portlets 3 20 178 11.2
7 Wro4J 3 11 100 11.0
8 JGAP 2 18 191 9.4
9 ArgoUML 30 33 909 3.6
10 Mars Simulation 2 31 953 3.3

Total 55 291 3092 16.4

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000 1200

P
er

ce
n

ta
ge

 o
f

C
la

ss
es

 in
 D

es
ig

n

No. of Classes in Implementation

Case Study

Power (Case Study)

Mars Simulation

Maze

Neuroph

xUML
JavaClient

gwt-Portlets

JPMC

Wro4J JGAP

ArgoUML

Figure 3.1: Classes in Design vs Classes in Implementation

Results and Findings 41

Table 3.5: LoD and Forward/Reverse Class Diagram

No Project Low LoD High LoD Forward Reverse Total Class Diagram

1 ArgoUML 16 14 15 15 30

2 Maze 1 5 6 0 6

3 JPMC 0 4 4 0 4

4 Mars 2 0 2 0 2

5 Wro4J 2 1 3 0 3

6 Neuroph 1 2 3 0 3

7 Gwt-Portlets 1 2 3 0 3

8 JGAP 2 0 2 0 2

9 Javaclient 0 1 1 0 1

10 xUML 0 1 1 0 1

Total 25 30 40 15 55

and external library classes used in this system. The other five diagrams presented
class diagrams based on selected packages. We assume that the classes listed in the
design play an important role in the system. In the Mars Simulation project, the activity
diagram and the component diagram were constructed with in LoD.

The Wro4J project used only class diagrams. Two of the class diagrams were in
Low LoD, while another class diagram was constructed in High LoD. This Low LoD
class diagram was used to describe the structure of classes in the system. Similar to
this project, Gwt-Portlets project also used a Low LoD class diagram to present the
high-level class structure in the project. Another two class diagrams showed the classes
and the relationship of important classes in the system. The Low LoD was also used
to present the higher level of abstraction of the system class diagram in JGAP project.
This project has two class diagrams from different versions of releases that showed the
class diagrams of the key classes in the system.

In Neuroph, three class diagrams were presented in the system repository. Two of
the diagrams were presented in High LoD. Those class diagrams were used to describe
the class diagrams of important or key classes in the system. Meanwhile, all JPMC
project‘s UML diagrams were constructed in High LoD. There were four class diagrams
showing the key classes of the system. The high-level abstractions of class structures
were presented in a package diagram and a component diagram.

The JavaClient and xUML-compiler project have only one High LoD diagram for
each project. The JavaClient project constructed a very complex and high LoD class
diagram that consisted of 67 classes. This class diagram consisted of classes that existed
in the first version of this system. Hence, it is different from other case studies that
normally showed the important, relevant or key classes in the system. The xUML-
compiler project constructed a High LoD class diagram that show the relations between
the domain-related classes and the external packages.

42 UML Usage in Open Source Software Development

In addition to LoD, we also evaluate the usage of reverse engineering in OSSD
projects. Initially, we expected the class diagrams that were constructed using reverse
engineering to have a High LoD. However, we found several RE-CDs that had Low
LoD in ArgoUML project. We found that only ArgoUML used reverse engineering
for reconstructing some of its class diagrams. However, several UML diagrams from
other projects also show several symptoms of RE-CDs (for example, “no aggregation
and composition relationship” and “multiple relationships for the same direction”).
Perhaps, these diagrams were constructed through reverse engineering, but were
subsequently modified manually and ended up looking like a forward engineering
design.

3.5.4 Frequency of Updating UML Models

This subsection presents the frequency of updating the UML models of the case studies.
Basically, we would like to know whether UML diagrams are used throughout the
projects or only in the initial phases. We analysed the case studies that have multiple
versions of releases to assess the frequency of updating the diagrams while the systems
evolve through subsequent releases. Even though there were multiple versions of
system releases for the Mars Simulation, JavaClient, JPMC, Gwt-Portlet, Maze and
xUML-compiler project, their UML diagrams were not changed. For instance, the Mars
Simulation project has released 26 versions of source code. The UML designs were only
uploaded on Dec 2009. Based on that date, we assume that this design corresponds
with the release version 2.87 and above. This indicates that the earlier 19 versions of
the software did not have a UML model. However, we could not disregard the fact
that the design may be created earlier than the date it was uploaded.

The result also shows that the frequency of updating UML diagrams is low. In
most of the case studies, a new UML diagram was created when there was a new
feature of the system introduced in a new version or release. Only the Neuroph and
ArgoUML project actually modified existing diagrams. Other projects only added new
diagrams to their documentation, but did not modify previously existing diagrams. In
the ArgoUML project, we found that there was an increasing amount of diagrams at the
same time as the number of project contributors increased. The work by Wen Zhang et
al. [186] shows that there was an increasing amount of participants in version 0.26. As
we can see in Table 3.6, the ArgoUML project updated and added a lot of UML diagrams
in version 0.26. We hypothesize that the documentation was elaborated to cater for
a group of newcomer developers that was looking for information about the design.
The creation of UML diagrams is perhaps being used to ease the communication of
the new developers. It is also possible that the new software developers created this
diagram to help their understanding of the system. In the next subsection, we discuss
the ArgoUML project as an example of a project that did update their UML designs
across multiple versions of releases.

Results and Findings 43

Table 3.6: Add, Remove and Modify of UML Diagrams in ArgoUML Project

Add Remove Modify

1 0.10.1 15 0 0 OldMDocument

2 0.12 18 0 0 CookbookM2003MwasMadded

3 0.14 0 0 0 CookbookM0.14MwasMaddedMbutMnoMchangesMforMUMLMdiagram

4 0.16 1 1 0 CookMbookM0.16MwasMadded.MKeyMclassesMclassMdiagramMwasMtakenMout

5 0.18.1 0 0 0 CookbookM0.18.1MwasMaddedMbutMnoMchangesMforMUMLMdiagram

6 0.20 3 0 0 CookbookM0.20MwasMadded.M

7 0.22 0 0 0 CookbookM0.22MwasMaddedMbutMnoMchangesMforMUMLMdiagram

8 0.24 1 0 0 CookbookM0.24MwasMadded

9 0.26 8 0 3 CookbookM0.26MwasMadded.

10 0.26.2 0 0 0 CookbookM0.26.2MwasMaddedMbutMnoMchangesMforMUMLMdiagram

UML Diagram RemarksNo Release
Version

ArgoUML

Table 3.7 shows which types of diagrams were used across subsequent versions over
time. The table shows that in the early versions of the software, diagrams were made
that represent the high-level structure of the system (component, package and class).
As development time progresses, diagrams are added that represent the dynamic
behaviour of the system through activity diagrams (v 0.16) and sequence diagrams (v
0.26). Also, at the later stages of development, component diagrams are no longer used.
We believe this trend to be typical of the use of modeling in software development in
general (for non-embedded applications): Firstly, the developers design the overall
structure (using component diagrams) and later continue to flesh out using behavioural
diagrams of the design. Figure 3.2 shows the evolution of UML diagrams in every
version of release. Figure 3.2 also shows the evolution of the number of classes. It is
explicitly shown that UML diagrams are rapidly created in the early stage of software
release and then occasionally updated.

3.5.5 Key Classes

This study shows that UML diagrams do not cover the entire scope of the implementa-
tion. Class diagrams only show the key classes in the system. The OSSD developers
identified the main classes of the system and showed these in a high-level class di-
agram. Perhaps, the package diagram is usually not used to present the high-level
abstraction because it is too brief and a complete class diagram is not used because
it contains too much information. In addition, we contacted one of the developers
of the case studies. He confirmed that the developer in his project constructed UML
diagrams only for important classes. Thus, we believed that there is a need for a class
diagram abstraction or condensation method to produce this kind of diagram; as also
suggested by Ichii et al. [82]. The studies performed by Andriyevska et al. [17] and
Osman et al. [133] may be useful for the class diagram abstraction.

44 UML Usage in Open Source Software Development

Table 3.7: List of UML Diagrams used in ArgoUML Project

No
Release
Version

Date Source
Component
Diagram

Package
Diagram

Class
Diagram

Activity
Diagram

Sequence/
Interaction
Diagram

1 0.10.1 09.10.2002
Old7Design7
Document

Yes Yes Yes No No

2 0.12 18.08.2003
Cookbook720037and7
Old7Design7
Document

Yes Yes Yes No No

3 0.14 05.12.2003
Cookbook720037and7
Old7Design7
Document

Yes Yes Yes No No

4 0.16 19.07.2004 Cookbook-0.16 No Yes Yes Yes No
5 0.18.1 30.04.2005 Cookbook-0.18.1 No Yes Yes Yes No
6 0.20 09.02.2006 Cookbook-0.20 No Yes Yes Yes No
7 0.22 08.08.2006 Cookbook-0.22 No Yes Yes Yes No
8 0.24 12.02.2007 Cookbook-0.24 No Yes Yes Yes No
9 0.26 27.09.2008 Cookbook-0.26 No Yes Yes Yes Yes

10 0.26.2 19.11.2008 Cookbook-0.26.2 No Yes Yes Yes Yes
11 0.28 23.03.2009 Cookbook-0.26.2 No Yes Yes Yes Yes
12 0.28.1 16.08.2009 Cookbook-0.26.2 No Yes Yes Yes Yes
13 0.30 06.03.2010 Cookbook-0.26.2 No Yes Yes Yes Yes
14 0.30.1 06.05.2010 Cookbook-0.26.2 No Yes Yes Yes Yes
15 0.30.2 08.07.2010 Cookbook-0.26.2 No Yes Yes Yes Yes
16 0.32 28.01.2011 Cookbook-0.26.2 No Yes Yes Yes Yes
17 0.32.1 23.02.2011 Cookbook-0.26.2 No Yes Yes Yes Yes
18 0.32.2 03.04.2011 Cookbook-0.26.2 No Yes Yes Yes Yes
19 0.34 15.12.2011 Cookbook-0.26.2 No Yes Yes Yes Yes

935

1457
1523

1789

1855

2132 2153

Number of Classes, 1809

15

33

36

37

42 Number of UML Diagram, 42

0

5

10

15

20

25

30

35

40

45

0

500

1000

1500

2000

2500

0.10.1 0.12 0.14 0.16 0.18.1 0.20 0.22 0.24 0.26 0.26.2 0.28 0.28.1 0.30 0.30.1 0.30.2 0.32 0.32.1 0.32.2 0.34

T
ot

al
 n

o.
 o

f
C

la
ss

es

N
o.

 o
f

U
M

L
 D

ia
gr

am

Release Version

Figure 3.2: ArgoUML Evolution in UML Diagrams and Number of Classes

Conclusion and Future Work 45

3.5.6 Threats to Validity

This section describes the threats to validity of this study. In terms of case study
selection, there could be more case studies if we include more open source repositories
and also include projects developed other than Java programming language. The
selected projects may not be representative of all the OSSD because the selected case
studies can be considered as small and medium type of system development and
also specific to Java-based project. In addition, referring to figure 3.1, we also do not
have projects with a number of classes between 250 and 800. The result could be
different if more large projects are included in this study. We used the keywords of
“Class Diagram” when we search for the suitable case study. We realized that there
are possibility that we missed some projects that have UML diagrams, but stored in
CASE tool’s format (such as .zargo-ArgoUML and .uml-StarUML). The study was done
based on using only the information in the project repositories and also the projects’
websites. It may be the case that developers use UML in their communication or for
internal use without uploading their diagrams in the project repository. This study
also only uses the date listed as the upload date of the documents in the repositories.
The document may be created far before the uploaded date. Thus, the matching of the
date of documentation and the version may not be accurate.

3.6 Conclusion and Future Work

This study explored if UML diagrams are used in OSSD projects. To this end, ten case
studies were collected from online repositories. Four main questions were studied:
What types of UML diagrams are used? How does the ratio of the design relates to
the size of the implementation? What level of detail is used in UML diagrams? and
How does timing of changes in the implementation relate to the changes in UML
diagrams/documentation? The main purpose of UML modeling in projects is to ease
the communication between the developers. This also seems to apply to OSSD projects.
UML diagrams (specifically class diagrams) with a low level of detail are used to show
a high-level abstraction of the structure of the system. UML diagrams with a high-level
of detail are used to elaborate key aspects of the design or complex aspects of the
design. By studying the evolution of UML models across versions, we found that the
focus of modeling shifts from structural aspects in the early phases of development, to
dynamic behaviour in the later stages of development.

The frequency of updating UML models is low. We found two triggers for updating
UML diagrams: 1) if there are changes in the features of the system, and 2) if there
is a group of newcomers joining the project. The latter cause confirms the role of
UML models as a way of codifying design knowledge for communicating the design.
Overall, this chapter shows that open source projects can be used as empirical sources
for studying the usage of UML modeling.

46 UML Usage in Open Source Software Development

For future work, it would be interesting to extend this study by performing a
broader survey or interview OSSD developers to find out the reasons for or against
using UML diagrams in their development. Also, it is interesting to ask developers
for their pattern in updating UML models. Furthermore, future work could be to find
more case studies and to extend the case studies to languages other than Java. This
would allow differentiating results between programming languages.

