Universiteit

4 Leiden
The Netherlands

Interactive scalable condensation of reverse engineered UML class

diagrams for software comprehension
Osman, M.H.B.

Citation

Osman, M. H. B. (2015, March 10). Interactive scalable condensation of reverse engineered
UML class diagrams for software comprehension. Retrieved from
https://hdl.handle.net/1887/32210

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license

Downloaded from: https://hdl.handle.net/1887/32210

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/32210

Cover Page

The handle http://hdl.handle.net/1887/32210 holds various files of this Leiden University
dissertation.

Author: Osman, Mohd Hafeez Bin

Title: Interactive scalable condensation of reverse engineered UML class diagrams for
software comprehension

Issue Date: 2015-03-10

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/32210
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter

Definitions

In this chapter, we define common terms used in this research. We start with describ-
ing the term ‘software comprehension’ because it is a common theme throughout
this thesis. We also describe ‘cognitive design elements for software exploration’
because they are the basis for representing the results of our approach in a graphical
visualization. Also, ‘forward-" and ‘reverse engineering’ process are explained be-
cause we use the information in these processes as the primary input in our studies.
We briefly describe UML because this design notation is the central notation used
in this research. We explain the basics of machine learning because this method is
used to classify the importance of elements of the software design.

2.1 Software Comprehension

Software comprehension (also known as program-/code-/system- comprehension) is
a critical activity in software maintenance. Software comprehension is a complicated
activity which requires a lot of time, effort and cost. In particular, studies have shown
that more than 50% of the time spent in software maintenance is spent on trying to
understand source code [20][23]. Software developers must familiarize themselves
when they are new to a system, but it is also the case that they must familiarize
themselves with new parts of a system as the system evolves. Table 2.1 lists several
definitions on program comprehension as found in the literature. Based on these
definitions, we define program comprehension in this research as:

Definition 2.1. “Program comprehension is a process of understanding a program
based on available software artifacts (such as documentations, as well as source code).”

Biggerstaff (1993) [25] characterizes what aspects of the software must be under-
stood through the comprehension process: “A person understands a program when they

12 Definitions

Table 2.1: Definitions of Program Comprehension

Author(s) Definitions

Rugaber (1995) [88] “Program comprehension as the process of acquiring knowl-
edge about a computer program”

Cimitile (2000) [89] “Program comprehension is the process of acquiring suffi-

cient knowledge about a software artifact so as to be able to
successfully accomplish a given task”
Ng et al. (2004) [116] “Program comprehension is the process of understanding a
program through feature and documentation analysis”
Maalej et al. (2014) [107] “Program comprehension is the activity of understanding
how a software system or a part of it works”

are able to explain the program, its structure, its behavior, its effects on its operational context,
and its relationships to its application domain in terms that are qualitatively different from the
tokens used to construct the source code of the program.”

Program comprehension is a tedious challenge that requires a lot of effort. Hence,
we believe that facilitating program comprehension will help software developers in
this activity. Several models have been proposed that characterize the cognitive process
of program comprehension. We discuss these program comprehension models in the
next subsection.

2.1.1 Program Comprehension Model

A software developer’s approach to program comprehension may be bottom-up, top-
down or a combination of both. This is relevant in the context of this thesis as it led us
to develop methods to view class diagrams at different levels of abstraction. We briefly
discuss these program comprehension models below.

Bottom-up Comprehension

Bottom-up comprehension models denote the bottom-up building of system under-
standing: by reading the code and then rationally chunking or grouping these state-
ments or representation into higher-level abstractions. These chunks (or abstractions)
are aggregated further until the entire system is comprehended [152].

The Pennington comprehension model [135] describes two program abstractions
formed by software developers during comprehension [43]: (1) A program model is a low-
level abstraction consisting of knowledge of operations at a level close to the surface of
the program code and of control flow relations indicating the flow of execution, and (2)
A domain model (or situation model) is a higher-level abstraction comprising knowledge
of data flow and functional relationships. This comprehension model is frequently

Software Comprehension 13

chosen when the source code or domain of the system is not familiar to the software
developer.

Top-down comprehension

The top-down comprehension model (based on Brooks’s model [37]) denotes a hypothe-
sis-driven comprehension approach. This approach begins with the software develop-
ers making a general hypothesis about the program’s function. Such hypothesis are
formed based on information outside the program code such as design documents or
system descriptions. This initial hypothesis leads software developers to anticipate to
certain structures (objects and operations) in the program, producing another level of
more distinct hypotheses (sub-hypotheses). At this point, the software developer has
concrete things to look for in the program code, for which hypothesis verification is
attempted [43].

In contrast to the bottom-up approach, the top-down comprehension is usually
used for a system and a domain that is familiar to the software developer.

Integrated Model

Von Mayrhauser (1993) [173] introduced an integrated model that combines the top-
down and bottom-up model. This model is motivated by the argument that software
developers may switch flexibly between top-down to bottom-up comprehension mod-
els depending on the situation. In addition to the top-down and bottom-up comprehen-
sion model, the integrated model also involves the knowledge base (typically known
as human mind) that stores (1) any new information acquired straightforwardly from
the system; or (2) indirect information. Figure 2.1 illustrates this model and more detail
on the terms and terminology of this figure can be found in [174].

2.1.2 Cognitive Design Elements for Software Exploration

The time consumed for understanding existing implementation code is a significant
proportion of the time needed for maintaining, debugging and reusing the existing
code. This explains the importance of tool support for software comprehension. Tools
in this area can be characterized as being a software visualization tool or a software
exploration tool. Schéfer et al. [150] indicated that software visualization tools (e.g.,
[100],[86],[49]) assemble visualization techniques to intensify understanding, while
software exploration tools (e.g. [57],[145]) offer an essential software navigation facil-
ity (searching/browsing/summarizing/condensing). However, there is no concrete
boundary between these categories. In this research, we focus on software exploration
tools as we aim to provide an automated tool to explore the software design based on
the reverse engineered class diagram.

14 Definitions

Top-Down
Schema (Plan)
o . Current Mental Model
Process Representation of
Program
& Codes & Codes
Top-Down
Beacons g Beacons
Structures
I3 ’

Match &£ Programming Plans 5 Match
Comprehension < A Strategic Plans) Comprehension
Processing NI B. Tactics Plans % Processing
'S C. Implementation Plans >

W& Y From From T-D
% Rules of Discourse ® Program
I = Model
$ %
Short-Term ~ < Short-Term
Momory Program Model 3 Momory
Structures
Micro- Situation Model Low Level-
Structures z;ﬁ;rgggomam Structures Mappings
Macro- High Level
Structures A. Text-Structure ngﬁam oomain Mgpplngs
Knowledge Knowledge
1. Control Primes (Real World Knowledge)
B f '2‘9’;3&":["5:@ Function Knowledge
2. Control-sequences
3. Data-Structures
4. Data-Flow (slices)
5. Syntax
Program Program
Model Model

Figure 2.1: Integrated Model [174]

A common feature in software exploration tools is the graphical representation of
the system structure together with the corresponding source code. Storey et al.[157]
introduced a set of guidelines for software exploration tools (as shown in Figure 2.2).
These guidelines are called ‘cognitive design elements’. From the guidelines that she
suggests, we prioritize a number which we aim to fulfill in our approach. The tool
developed in this research focuses on comprehension of software design. Hence,
we would like to incorporate the following guidelines to our tool: E3: Provide an
abstraction mechanism; E4: Support goal-directed hypothesis-driven comprehension;
E5: Provide an adequate overview of the system architecture at various levels of
abstraction; E6: Support the construction of multiple nental models' (domain, situation,
program); E11: Indicate the maintainer’s current focus; and E15: Provide effective
presentation style.

2.2 Forward and Reverse Engineering

In software engineering, the software development life cycle (SDLC) is a schema that
characterizes the process of developing software. In other words, it is a conceptual
model used in software project management that describes the stages involved in
system development from preliminary feasibility review through maintenance. The

LA mental model describes developer’s mental representation of the system-to-analyze

Forward and Reverse Engineering 15

Indicate syntactic and
semantic relations between g4
software objects

Enhance bottom- Reduce the effect of E2
up comprehension delocalized plans

Provide abstraction E3
mechanisms

Support goal-directed,

/ hypothesis-driven E4
comprehension
Improve program Enhance bp-domn
comprehension comprehension Provide an adequate overview gg
of the system architecture at
various levels of abstraction

Support the construction

ntegrate bottom of multiple mental models E6
:’ﬂ top-down up (domain,situation,program)
Cognitive Design approaches \ Cross-reference mental E7
Elements to support models
the construction of
a mental model to
facilitate program S
understanding Provide directional ES
i navigation
Fadilitat Support arbitrary E9

iaat navigation
Provide navigation E10

between mental models

Indicate the maintainer’s
current focus E1

Provide

K N " Display the path that E12

Reduce the maintainer’s
it head
led to the current focus

Indicate options for
reaching new nodes

E13

Reduce additional effort for
Reduce user-interface adjustment E14

Provide effective E15

presentation styles

Figure 2.2: Cognitive Design Elements for Software Exploration [156]

SDLC describes software development stages (at a high level) as: analysis, design,
implementation and maintenance. In this research, we focus on three stages of the
SDLC as illustrated in Figure 2.3 (stages that are coloured with blue). We use artifacts
from the design and implementation stage (as our input) to produce a result (output)
for the usage in the maintenance stage. The term software maintenance (from SDLC) is
typically used in this research. The following definition of software maintenance by
IEEE std 1219-1998 [1] is used in this research:

Definition 2.2. “Software maintenance is a modification of a software product after
delivery to correct faults, to improve performance or other attributes, or to adapt the
product to a modified environment.”

16 Definitions

<,
Q 2
o L7
N b

Software Development
Life Cycle
(SDLC)

DeS/é’n

D
Z
D
>
)
2
®

Implementation

Figure 2.3: The Software Development Life Cycle

Requirements
constraints,
(ob}octivos. Design implementation
business rules)
Forward Forward
—_—] |__engineering _ | @ _________ engineering | = ___
Reverse Reverse
—_ engineering | engineering | = |
Design |~ Design
recovery — | """ TTT T recovery
e S
= e
Reengineering Reengineering
(renovation) (renovation)
Rest turi Re: cturing Re:!ocun;::rtlar:ioon.

Figure 2.4: Relationship between Forward Eng., Reverse Eng. and Other Related Terms [41]

Regarding these stages (see Figure 2.4), there are two processes related to this

research: Forward Engineering and Reverse Engineering. The following subsections
briefly explain these processes.

2.2.1 Forward Engineering

The following definition of forward engineering by Chikofsky and Cross [41] is used
in this research.

Definition 2.3. “Forward engineering is the traditional process of moving from high-level

abstractions and logical, implementation-independent designs to the physical implementation
of a system.”

Forward and Reverse Engineering 17

The term forward design (FD) is used to indicate a design produced in a forward en-
gineering routine (constructed after the requirement stage). The FD usually addresses
the functional requirement of the system (mostly specific to the system domain) and
also the non-functional requirements.

2.2.2 Reverse Engineering

The following definition of reverse engineering by Chikofsky and Cross (1990) [41] is
used in this research.

Definition 2.4. “Reverse engineering is the process of analyzing a subject system to identify
the system’s components and their interrelationships, and create representations of the system
in another form or at a higher level abstraction.”

In general context, reverse engineering is the process of recovering knowledge
of software, based on the existing software artifacts. There are different types of
techniques can be used in the reverse engineering process, most importantly: static-
and dynamic analysis. We describe these next.

2.2.3 Static and Dynamic Analysis

This subsection briefly describes the definition of static and dynamic analysis that we
use in this research. For static analysis, the following definition by Jarzabek (2007) [85]
is used in this research.

Definition 2.5. “Static analysis means an analysis of a program text, without executing a
program, such as is typically done by a compiler front end.”

In most cases, the analysis is performed on the source code, and in other cases,
it is performed on the object code and execution file. Static analysis is suitable for
recovering the system structure (e.g. structural design).

For dynamic analysis, the following definition by Bell (1999) [19] is used in our
research:

Definition 2.6. “Dynamic analysis is the analysis of the properties of a running program.
Dynamic analysis derives properties that hold for one or more executions by examination of the
running program.”

An advantage of using dynamic analysis is its ability to detect objects dependencies
(at runtime). However, dynamic analysis cannot guarantee to discover the complete
functionality of the system for an overview for the developer. Amongst others, this
is because dynamic analysis can only pass through a limited subset of functions in
the systems within any practical time-bound. In addition, the source code (and hence
modules) that are passed through typically depend on the set of input values, which
for most practical purposes has infinitely many combinations. In this thesis, we work

18 Definitions

Diagram

[1
Structure Behavior
Diagram Diagram
I I I []]
. Component Object Activity Use Case State Machine
Class Diagram Diagram Diagram Diagram Diagram Diagram
Composite N
Deployment Package Interaction
Structure Diagram Diagram i
Diagram 9 Diagram
[I
Profile Diagram Sequence Interaction
Diagram Oyervlew
Diagram
Communication Timing
Diagram Diagram

Figure 2.5: Taxonomy of UML Version 2.4 [68]

purely with static analysis for the recovery of the structure of software designs from
source codes.

Next, we explain the UML notation which is used for representing this static design
structure of software.

2.3 The Unified Modeling Language

The Unified Modeling Language (UML) is a graphical notation intended to provide
a standardized communication tool in software development. In practice, software
is almost always developed by a group of software engineers. For this reason, a
communication tool is critical to ensure good communication because the software
design should be well understood by everyone working on the project.

UML was introduced in 1997, and was developed based on existing object-oriented
design methods, namely the object-modeling technique (OMT) [146], Booch [31], and
Object-Oriented Software Engineering (OOSE) [83]. There are two kinds of UML
Diagrams: structure- and behavior diagrams. A taxonomy of UML diagrams is shown
in Figure 2.5. The structure diagrams demonstrate the structural parts of the system at
diverse levels of abstraction as well as how structural parts are related to one another.
On the other hand, the behavior diagrams demonstrate the behavior of a system, which
could be portrayed as an arrangement of actions of the system over time. Through
supporting both these structure and behavior diagrams, UML provides a graphical
representation of a system during design, implementation, as well as the maintenance
phase. The next subsection describes the UML-related terms that are commonly used
in this research.

The Unified Modeling Language 19

TravelAgency

access keep information views

+reserve()
+delete()
+complain()
+view()

1% store

Complaint make

on 1.* Tour

cancell \

1% CustomerInfo
Reservation
send
administrate
Customer
administrate +add/update/delete

Employee

Figure 2.6: Tours Online Class Diagram (Domain Analysis)

2.3.1 UML Class Diagram

The most common diagram to demonstrate the structural view of a system is the
class diagram [147]. This view illustrates a collection of classes, possibly interfaces,
and relations between classes. Relationships that hold between classes convey critical
information about the design. The basic types of relationships in UML are associ-
ation (including aggregation and composition) and generalization (also known as
inheritance). These relations provide the foundation of the system structure.

Class diagrams can be used throughout the software development life cycle (SDLC),
due to the fact that this diagram may carry diverse types of information - depending
on the SDLC processes and on the level of detail being considered. At the beginning
of the SDLC, the class diagram may be used to reflect the software requirements
(domain analysis class diagram). As development progresses, class diagrams can be
used to represent information that is more relevant to the construction of the system
(design level class diagram®). During or after the implementation of source code, a
class diagram may be recovered using reverse engineering techniques. Such a reverse
engineered class diagram is closely based on the source code and reflect the fine-grain
implementation structure of software systems. We call such reverse engineered class
diagrams as RE-CD. Figure 2.6, 2.7 and 2.8 illustrate these different types of class
diagrams. These examples of class diagrams are taken from Jalloul [84].

2Depending on the level of detail (LoD) of the class diagram, design level class diagrams may be turned to
code level class diagrams if a high LoD is applied.

20

Definitions

TravelAgency
ListOfEmpl has a “name has a ListOfCust
-address
———. 1| +Phonenb 1 Al —

+Interface()

1
*
has a L.
1% Use Case Model::CustomerCls
1
Use Case Model::EmployeeCls N -CustID
Lt Starting_Page TR

:l;;me accesses -address accesses :gﬁz;_eemall

-password 0.% 1 +d:sigkn(é . 1 0.% | +reserve()

-access() +check,Eustp 0 +cancel()

-update() +check EmpPass() +complaint()
+access_Info()
+Update_Custnb()

fill
Database o
Reservation pays, 1
-info() gets Complain
_:gi‘(t)eo +idl|=or|m()()
) +calculatef
+custnb() 1 :store()’
Payment
ina
TourData +accounting()
il AdditTour
+tourName
+hotelName Tour -tourName
+categories -additTourName
+singlePrice :Sggziiation has -description
+doublePrice 1.% 1..% | -price
:gézlce::tti:sn +display0 +display()
+selectAdditTour()
+choose()

Figure 2.7: Tours Online Class Diagram (Design Level)

CustomerCls
-CustID
-CustName
-Cust_email
-phone
TravelAgency / +reserve()
-name +cancel()
-address Eorns +complaint()
-phoneNn +access_Info()
+Update_Custnb()
+interface()
EmployeeCls Starting_Page
-name -address
-ID
+design()
Ep3sSWOrd +check_CustiD()
-access() +check_EmpPass()|
-update()
Complain
Database
+store()
+info() +sendByEmail()
+add()
+delete() Reservation
+custnb()
+idForm()
TourData +calculate()
-tourName Tour n
_hotelName y AdditTour
-categories +name) -tourName
-singlePrice +destination +accounting() _additTourName
-doublePrice . ~description
-triplePrice +display() -price
-description
+display()
+choose() +selectAdditTour()

Figure 2.8: Tours Online RE-CD (Code Level)

The Unified Modeling Language 21

2.3.2 UML Class Diagram for Software Comprehension

A graphical representation (e.g. UML class diagram) can help software engineers
to comprehend large-scale systems. However, their effectiveness is subject to the
syntax and semantics of UML, spatial diagram layout and domain knowledge [166].
Yusuf et al. [183] show that experts (in class diagrams) tend to use such things as
stereotype’ information, colouring and layout to facilitate more efficient exploration
and navigations of class diagrams.

In this research, we focus on RE-CDs that are close to source code (code level class
diagrams). The stereotype information is not available in RE-CD and hence this infor-
mation is not used in our approach.

The work by [160], [183], [71], [151], [158] and [159] demonstrate the effect of layout
on system comprehension. However, we believe that the choice of layout is subjective
and highly depends on the user expertise and purpose of using the diagram. Thus, we
did not cover the layout of the RE-CD in this thesis. The aspect of layout remains open
or for future research. Nonetheless, in our research, we apply a colouring technique
to highlight those classes that are important in the class diagram. This colouring
technique aims to help the software developers to focus on the important classes.

2.3.3 XML Metadata Interchange

XMI stands for Extensible Markup Language (XML [176]) Metadata Interchange. It
is a standard for representing UML models using XML. The current version released
by the OMG is XMI 2.4.1 which has been formally published by the International
Organization for Standardization (ISO) as ISO/IEC 19509:2014 Information technology
— Object Management Group XML Metadata Interchange (XMI)[69].

The objective of XMl is to allow simple interchange of metadata between UML
modeling tools and Meta Object Facility (MOF)-based repositories within distributed
heterogeneous environments. The standards that are related to XMI are the following:

1. UML - Unified Modeling Language (ISO/IEC 19505)
2. MOF - Meta Object Facility (ISO/IEC 19508)
3. XML - eXtensible Markup Language [176]

The MOF defines a standard metamodel for applications, allowing UML models to
be interchanged among tools and repositories; XMI standardizes the format for these
interchanges [66]. It utilizes XML schemas to describe object-oriented models and
enable interoperability between UML-based tools. XMI is flexible. Thus, the XML
representation can be tailored to suit the user requirements. Most of the UML tools
extend the XMI format with their proprietary information, which result in that other
UML-based tools can not completely and correctly read the XMI file. This issue has

3 A stereotype is a special type of class that represents a domain-specific concept. Graphically, a stereo-type
class can be adorned with a special graphical form or decorations so that it stands out from generic classes.

22 Definitions

been raised by Stevens [155] in 2003, but it still exists after more than ten years. In this
research, we aim to parse as much XMI flavours and versions as possible; to provide
an automated tool that usable for many XMI formats and hence UML tools. Finding a
way to solve this issue is one of the practical challenges in this research.

2.4 Machine Learning

This research aims at building a method to decide: what classes could be included
and what classes could be excluded in class diagrams in order to facilitate system
comprehension. Two approaches can be used to build this method:

1. Rule-based Approach
A rule-based system consists of if-then rules, facts, and an interpreter controlling
the application of the rules. Conventional rule-based expert systems, use human
expert knowledge to solve real-world problems that normally would require
human intelligence [12] and,

2. Machine Learning Approach
The machine learning approach is useful for domains where humans might not
have the knowledge needed to develop effective algorithms, where the program
must dynamically adapt to changing conditions [113].

Based on the datasets (see Chapter 3), we discovered that the machine learning
approach is more suitable to be used for our research. The reason is that there is no
explicit knowledge available in the dataset. Furthermore, the dataset is coming from
different types of domain and sizes. It is difficult for such context-sensitive problem to
be solved by using a rule-based approach. Also, the following reasons motivate us to
choose machine learning as the approach for class inclusion/exclusion selection:

e It provides algorithms that may facilitate to automatically* classify the important
classes in a class diagram based on the training data (in our case, training data
are gathered from forward design and RE-CD);

¢ Human resources are not required to formulate rules. Therefore, it may avoid
the inefficiency of human learning [16].

e [t considers context and it can utilize multiple sources of knowledge to formulate
the classification rules.

¢ [t can adapt if new information becomes available.

Next, we explain the definitions of machine learning, types of machine learning,
machine learning classification algorithms and performance measure for classification
algorithms.

4With no or little human intervention.

Machine Learning 23

2.4.1 Definition of Machine Learning

The common definitions of machine learning are the following:
Arthur Samuel (1959) [149][113] defines machine learning as:

Definition. “ A field of study that gives computers the ability to learn without being explicitly
programmed.”

This definition outlines the basic concept of machine learning. Later, Mitchel (1997)
[113] introduces a further formalized definition of machine learning as shown in the
following.

Definition. “Well-posed Learning Problem: A computer program is said to learn from experi-
ence E with respect to some task T and some performance measure P, if its performance on T, as
measured by P, improves with experience E.”

However, Witten et al. (2005) [178] more focus on the “descriptions’” model (from
examples). They define machine learning as:

Definition. “The acquisition of structural descriptions from examples. The kind of descriptions
found can be used for prediction, explanation, and understanding.”

There are several types of machine learning provided to solve problems (depends
on the purpose and available data). The types of machine learning are described in the
next section.

2.4.2 Types of Machine Learning

The following describes four major types of machine learning algorithms:

® Supervised machine learning is the search for algorithms (see Figure 2.9) that reason
from externally supplied instances to produce general hypotheses, which then
make predictions about future instances [98]. The training data (input) have a
known label or predefined result, for example, a binary label of buy/not buy in
the stock market. Through the training process, a model is constructed to make
predictions of test instances (data). Examples of supervised learning tasks are
classification and regression.

* Unsupervised machine learning learns to characterize certain input pattern in a fash-
ion that reflects the statistical structure of the overall collection of input patterns
[45]. The input data are unlabeled, and no predefined results are provided. The
goal of unsupervised learning is to find some kind of structure in the data. An
example of a common unsupervised learning task is clustering.

» Semi-supervised learning is halfway between unsupervised and supervised learn-
ing [38]. The input data is a mixture of unlabeled and labeled sample. The
purpose of semi-supervised learning is to discover how combining labeled with
unlabeled data may change the learning behavior, and design algorithms that
benefit from such a combination.

24 Definitions

Identification of
required data

!

I Data pre-processing |
—)l Definition of training set |

Algorithm
Selection

i

Parameter tuning l—>| Training |

Evaluation
with test set

No Yes
OK? Classifier

Figure 2.9: The Process of Supervised Machine Learning [98]

* Reinforcement machine learning is the learning of a mapping from situations to
actions so as to maximize a scalar reward or reinforcement signal [161]. The
learner is not told which action to take, but must discover which action results in
the best reward by trying them. The action may affect not only the immediate
reward, but also the next situation through all subsequent rewards.

This research applies supervised machine learning classification algorithms to
decide what classes could be included and what classes could be excluded (omitted)
in class diagrams. Next, we explain the supervised machine learning classification
algorithms that are used in our experiments.

2.4.3 Machine Learning Classification Algorithms

This subsection focuses on several supervised machine learning classification algo-
rithms that we believe are suitable for the purpose of this research. As illustrated
in Figure 2.9, a selection of classification algorithm(s) is needed to make sure our
proposed framework uses the algorithm(s) that fit with the datasets and the purpose
of research. Prior to making a selection of the classification algorithms, several ex-
ploratory experiments on a wider range of algorithms need to be conducted. In this
research, we do not expect that there will be a single silver bullet algorithm that will
outperform all others across all sets of problems. Also, we are not just interested in a
single algorithm that scores a top result on a given problem, but are looking for sets of

Machine Learning 25

classifiers” (i.e. classification algorithms) that produce robust results across domains.
In this way, algorithms become more portable across problems with very different rates
of inclusion of classes in designs. We also aimed for a mix of classifiers in terms of
expected bias (what relationships can be captured) and variance (does the prediction
change when trained on different random samples) [171].

As discussed, we want to use a diverse set of algorithms representative for different
approaches. For example, Decision Trees, Stumps, Tables and Random Trees or Forests
all divide the input space up in disjoint smaller sub-spaces and make a prediction
based on the occurrence of positive classes in those sub-spaces. K-Nearest-Neighbour
(k-NN) and Radial Basis Functions (RBF) Networks are similar local approaches, but
the sub-spaces here are overlapping. In contrast, Logistic Regression and Naive Bayes
model parameters are estimated based on potentially large numbers of instances and
can thus be seen as more global models. The nine classification algorithms we consider
are described in Table 2.2 (refer [178] for more explanation).

Most of the classification algorithms in our experiments are designed to produce a
predicted outcome class label® for each test instance [58]. However, this research aims
to produce ranking of classes on the importance; hence, we are more interested in the
classifier score for every instance rather than just a set of instance classification labels. A
high classifier score of a class indicates the class is important while a lower classifier score
indicates the class is less important.

The classification algorithm(s) for this research are selected based on the classifi-
cation performance and their robustness to all datasets. We explain the performance
measure of classification algorithms in the next section.

2.4.4 Performance Measure For Classification Algorithms

A performance measure of machine learning classification algorithms can be derived
from a confusion matrix (as shown in Table 2.3). Several performance measures to
compare classification algorithms (formulated based on the confusion matrix) are
described in Table 2.4 (refer [178] for more detail). Our datasets used in this research
are typically imbalanced (i.e. low proportion of classes in forward design and high
proposition of classes in RE-CD, as shown in Chapter 3, 7 and 8). Hence, the common
performance measures listed in Table 2.4 do not fit for our purpose. Referring to the
confusion matrix example in Table 2.3, the overall success rate (accuracy) is 95.24%. It
seems that the algorithm performs an excellent prediction. The 95.24% is calculated
by taking the sum of correct prediction divided by the overall number of predictions.
The percentage of correct prediction for TN is 98.8%, while TPR is 25%. The resulting
prediction performance for TP is very low, even though overall correct prediction is
very high.

5In this thesis, classifier refers to classification algorithms models, not the term classifier in UML.
6 A binary-classification that attempts to produce ‘Yes’ or ‘No’ class labels.

26 Definitions

Table 2.2: The nine classification algorithms

Algorithms

Description

Decision Table

A Decision Table consists of rows and columns that associate
a set of conditions or tests with a set of actions. The machine
learning tool used in this research - Waikato Environment
for Knowledge Analysis (WEKA) [76] uses a simple Decision
Table Majority (DTM) classifier.

Decision Stumps

Decision Stumps are decision trees consisting of just a single
level and split [171]. A decision stump makes a prediction
based on the value of just a single input feature, and is a good
baseline classifier to compare against decision trees and other
classifiers, to determine what results can already be achieved
with a very basic model.

Neighbour (k-NN)

{;1488])3ec1s10n Tree J48 is a WEKA implementation of the C.45 decision tree algo-
rithm [178]. This algorithm generates a classification-decision
tree for the given dataset by recursive partitioning of data.

k-Nearest

k-NN classification finds a group of k objects in the training
set that are most similar to the test object and bases its clas-
sification on the predominance of a particular class in this
neighborhood [179].

Logistic Regression
(LR)

LR uses a linear input combination of input variables to pro-
vide an output score, which is then mapped to a probability
by applying a logistic function [61].

Naive Bayes (NB)

NB is a classification algorithm based on the Bayes rule of
conditional probability. It assumes that the presence/absence
of a particular feature of a class is unrelated (independence)
to the presence/absence of any other feature [110].

Radial Basis Func.
(RBF) Networks

RBF Networks are a type of feed-forward neural network.
We used simple normalized Gaussian functions that each
cover part of the input space and the activation of each of
these functions given an output is then fed into a basic feed-
forward neural network [120].

Random Forests

Random Forests is a combination of tree predictors such that
each tree depends on the values of a random vector sampled
independently and with the same distribution of all trees in
the forest [33].

Random Tree

The Random Tree algorithm builds a classification algorithm
tree considering K randomly chosen predictors at each node.
More explanation of Random Tree is provided in [101].

Prediction Result Actual Result

Y N

TP FN Y

FpP TN N

Example:

Y N

11 33 Y

10 849 N

Note :

True Positive (TP) A positive instance that is correctly classified as positive
False Positive (FP) A negative instance that is incorrectly classified as positive
True Negative (TN) A negative instance that is correctly classified as negative
False Negative (FN) A positive instance that is correctly classified as negative

Machine Learning

Table 2.3: Confusion Matrix or Contingency Tnble

Table 2.4: Common Performance Measures and Terms

Terms and Measures Description
Overall Success Rate or Acc TP+ TN
Accuracy (Acc) [15] = TP+ TN +FP +FN
True Positives Rate (TPR) or TPR - TP
Recall or Sensitivity [58] " TP+FN
False Positives Rate (FPR) [58] FP
. FPR =
or false alarm ratio FP + TN
Precision Precision =
recision TP FP
F-measure (F:) [26] Fi= 2. (Frecision x Recall
Precision + Recall

28 Definitions

In this research, we search for algorithms that provide reliable estimates across the
score range, thus we evaluate using the Area Under ROC’ Curve (AUC) [79] value
rather than accuracy. For imbalanced data, the AUC also avoids the issue of favouring
models that just predict the majority outcome class. The larger the ROC area, the
better the classification algorithm is in term of classifying classes [14]. The AUC value
(calculated using WEKA) measures the performance of a model over the entire range of
model scores, i.e. how well it separates by changing the score threshold of a class over
the entire score range. Therefore, AUC shows the ability of the classification algorithms
to rank classes correctly as more likely to be included in the class diagram or not. AUC
is quite often be used to evaluate classification algorithms that utilized imbalanced
dataset [39].

Precision and recall are common in information retrieval for evaluating classification
performance [58]. However, these performance measures are not suitable to be used
for our dataset (due to imbalanced or class skew). The F-measure aims to improve by
balancing precision and recall, but the issue is that it still needs a fixed classification
threshold® (in our case, there is no specified threshold as we aim to cover the whole
range of scores). Therefore, AUC is preferred over accuracy, precision, recall and F-
Measure (refer [62] for further discussion). The AUC measure is based on ROC graphs;
A two-dimensional graph in which TPR is plotted on the Y-axis and FPR is plotted on
the X-axis (see Figure 2.10 (a)). It indicates relative tradeoffs between true positives
and false positives. Figure 2.10 [58] compares two classifiers evaluated using ROC
curves and precision-recall curves. Figure 2.10 (a) and (b) show a balanced dataset (1:1
class distribution) while Figure 2.10 (c) and (d) show an imbalance dataset (1:10 class
distributions’ of the same classifier and same domain). This figure demonstrates that
the ROC curves (Figure 2.10 (a) and (c)) are identical, but the precision-recall curves
(Figure 2.10 (b) and (d)) differ substantially.

2.5 Summary

In this chapter, we defined the key concepts that are used in this research. We described
the UML as our focus of this research. In particular, this research utilized the forward
design and RE-CD as the main input. We use XMI as the input because it can be
generated by most of the common CASE tools. Machine learning is the heart of this
research as we use the classification algorithms to classify the classes that could be
included and classes could be omitted in order to simplify the class diagram. The list of
classified classes (included or excluded) from the classification process is meaningless if

"ROC means Receiver Operating Characteristics.

8 A decision threshold is the cut-off degree employed to decide the final prediction of a classification
model. In binary classification, the final prediction is class positive if the model’s posterior probability of a
test example is above the threshold; or else it is class negative [168].

9The classifier and the underlying concept are the same; different only in class distribution

Summary 29

e i o
0.8 // eses os} vV e
// ‘insts.precall.+’ —\\
7 ‘insts2.precall.+' —
06} f 06}
/
0.4 ,v‘ 04
0.2 , 0.2
0 0
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
(a) (b)
1 —r 1 — .
~ i H ‘instsx10.precall +* —

N“'inslsxl(),mc.-#-' —_— i ‘insts2x10.precall.+ —
0.8 / ‘insts2x10.roc.+” —— 0.8 '

0.6 :‘;// 0.6

0.4 _flf 0.4
02 | o2t/ \\\
0 , 0 ,
0 02 04 06 08 1 o 02 04 06 08 1
©) (d)

Figure 2.10: ROC and Precision-Recall Curves under Class Skew
(a) ROC curves (1:1 distribution) (b) precision-recall curves, (1:1 distribution)
(c) ROC curves, (1:10 distributions) (d) precision-recall curves, (1:10 distributions)

it is not presented graphically. Therefore, we refer to several cognitive design elements
for software exploration that we believe useful to assist the software developer in
understanding software.

This chapter only defines the common terms of this research. Other related terms
and also related works are presented in each chapter.

