
Interactive scalable condensation of reverse engineered UML class
diagrams for software comprehension
Osman, M.H.B.

Citation
Osman, M. H. B. (2015, March 10). Interactive scalable condensation of reverse engineered
UML class diagrams for software comprehension. Retrieved from
https://hdl.handle.net/1887/32210
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/32210
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/32210


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/32210 holds various files of this Leiden University 
dissertation. 
 
Author: Osman, Mohd Hafeez Bin 
Title: Interactive scalable condensation of reverse engineered UML class diagrams for 
software comprehension 
Issue Date: 2015-03-10 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/32210
https://openaccess.leidenuniv.nl/handle/1887/1�


Part I

Introduction and Background





Chapter1
Introduction

In this chapter, we present the research context, the problem that we address and
the goal of this research. This chapter also provides an overview of the research
approach by summarizing the main research steps, the relations between these steps
and their purpose. After reading this chapter, the readers should have a high-level
understanding of the problem domain, our scoping, and our approach.

1.1 Research Context

Software design is a critical activity in software development. This design embodies
the transition from a declarative requirement to a constructive representation that
forms the basis for the implementation. Software design is essential to software
implementation as well as to software maintenance. Documenting the software design
could significantly help the later stages in the software development activity because
the design is one of the critical documents to understand the software.

The effort and cost of software maintenance dominate the software development
life cycle. The understanding of a software system is one of the most crucial tasks in
software maintenance. More than 50% of the time consumed in software maintenance
is used for software comprehension. Software documentation, including the software
architecture or software design, is a highly useful material for system comprehension.
Unfortunately, software documentation is often out-of-sync with the implementation
[103],[172]. Reverse engineering is one of the options for recovering software architec-
ture from the implementation code. This method suffers from several problems; one of
them is that the resultant diagrams offer too detailed information. Recent Computer
Aided Software Engineering (CASE) tools offer to leave out some types of informa-
tion in software design diagrams (such as class diagrams) by leaving out attributes,
operations and parameters. However, these tools are unable to identify the essential



4 Introduction

information that helps the developer to understand or focus on specific concerns in
system design. In addition, a controlled experiment by Fernandez-Saez et al. [59]
found that many subjects did not consider reverse engineered diagrams to be helpful in
maintaining software. From their study, they hypothesize that a large amount of data
present in the reverse engineered class diagram overwhelms and demotivates users
because it surpasses the human capacity for processing information (see e.g. [112]).

The research in this thesis focuses on the software comprehension activity in the
software maintenance phase. We aim to provide a method and a tool for software
developers to create an overview of their system. In addition, we aim to support the
process of understanding software by enabling software developers to create multiple
views of their system at various levels of abstraction that may differ for different tasks.

1.2 Problem Statement

When a new software developer is assigned to a maintenance task, several questions
commonly arise as the software comprehension activity is started [93][92]. For instance,
“Where to start?”, “Which classes are important?”, “How can I pick up the central
classes needed for a more high-level, abstract view which is essential for understanding
the model as a whole?” [142] and, “How to make this comprehension task easy?”.
Because the software documentation is often out-of-sync, these questions are difficult
to answer; which makes the software comprehension task more challenging.

As mentioned in the previous section, reverse engineering techniques are capable
of recovering a system’s structure. A lot of CASE tools provide features that make the
reverse engineering process easy to be performed by software developers. However,
the resultant class diagrams constructed by these techniques typically contain such
a large amount information that it obstructs design comprehension. Building a de-
scriptive and understandable view of the software on the right level of abstraction is
one of the most challenging tasks in reverse engineering [162]. This has led us to the
following problem statements.

Problem Statement 1. “How can reverse engineered class diagrams be simplified to assist
software understanding?”

We perceive a need for a framework to condense the reverse engineered class dia-
grams to improve its understandability. An automatic framework is desired to discover
critical information, leaving out unnecessary information, and condense the reverse
engineered class diagrams. However, to provide the aforementioned framework, the
following issues also need to be addressed.

Problem Statement 2. “What is the right level of abstraction of class diagrams?”
We perceive a need for an interactive, scalable condensation of reverse engineered

UML class diagram that provides the flexibility to developers to create multiple levels



Research Objective 5

of class diagram abstraction.
Hence, this research aims to address these issues by devising an automated frame-

work by simplifying UML class diagrams to assist software comprehension. The
following subsection explains our research objective to address these issues.

1.3 Research Objective

The central objective of this research is to devise an automated framework for simpli-
fying UML class diagrams to assist the software comprehension task. We use reverse
engineered class diagrams (obtained by static analysis) as the primary source of infor-
mation about a system.

To achieve this, our research focuses on discovering a suitable method to identify
the critical and non-critical information in reverse engineered class diagrams. We
also aim to provide a prototype implementation of this method through a tool. This
prototype should demonstrate the feasibility of the approach. The tool should be
interactive and the condensation of class diagrams should be scalable to allow the
software developer to generate views of designs at their desired levels of abstraction.

To accomplish our objectives, the following research questions (RQ) have been
formulated:

Main RQ: What method of condensing of reverse engineered class diagrams helps develop-
ers to understand the design of software systems?

To answer the Main RQ, we need to answer the following RQs:

• RQ1: Which information in class diagrams do developers find important for understand-
ing software designs?

• RQ2: Which object-oriented design metrics do developers find most indicative for class
importance?

• RQ3: How to automatically condense class diagrams using object-oriented design met-
rics?

• RQ4: Can the automatic condensation of class diagrams be enhanced by using class
names?

• RQ5: Does our automated framework for condensing class diagrams help developers to
understand the design of software systems?

1.4 Research Methods

The main objective of this research is to discover a method of enhancing the comprehen-
sion of reverse engineered class diagrams. To accomplish this goal, we apply various
research methods, including: surveys [137], case studies [46] and experiments [148].
Details about the research methods used are provided in Table 1.1.



6 Introduction

Table 1.1: Research Methods used in this Research

Chapter Methodology Primary Objective Primary Data

3 Field Study Descriptive Qualitative
4 Experiment Descriptive Quantitative
5 Survey Descriptive Qualitative

6 & 10 Survey Descriptive Quantitative
7 & 8 Experiment Validation Qualitative

In summary, we used surveys for eliciting information on how the software engi-
neers think classes diagrams could be simplified. An experiment is used to explore the
state-of-the-art of reverse engineering class diagrams. A field study [185] is used to
explore the usage of UML diagrams in open source software development. We used
experiments to explore and validate the effectiveness of some class condensation tech-
niques that we developed. We also used the survey method to validate our proposed
automated framework for condensing class diagrams.

We provide our experiments’ material (online) for the purpose of external replica-
tion and future research ([6] [122] [134]).

1.5 Roadmap

This section presents an outline (see Figure 1.1) of the chapters in this thesis. We sum-
marize the purposes of each chapter and relate the chapters to the research questions.
Also, we relate the chapters to our publications.

• Chapter 2: Definition. The purpose of this chapter is to define the principal con-
cepts used in this research. We briefly describe the Unified Modeling Language
(UML) and class diagrams. Also, we describe the concepts of forward and reverse
engineering, the basics of machine learning and explain the notion of software
comprehension.

• Chapter 3: UML Usage in Open Source Software Development. The purpose
of this chapter is two-fold: i) To present the examples on the use of UML diagrams
in Open Source Software Development (OSSD) and ii) To find suitable case studies
for automatic condensation of class diagrams research. For this purpose, we
select ten OSSD projects from different types of domains. We assess the UML
usage of OSSD projects, the level of detail (LoD) and the frequency of updating
diagrams. Our findings also cover the application of UML modeling in different
level of detail for different purposes, a change in focus on types of diagram
used over time, and findings on how the size of models relates to the size of the
implementation.



Roadmap 7

Ch4: Reversex
engineeringxCASExtool

Ch3: UMLxDiagramsxinx
OpenxSourcexSoftwarex

Projects

Ch5: ElicitingxDevelopersxViewxonx
ClassxDiagram

Ch6: ExploringxthexSuitabilityxofx
ObjectBorientedxDesignxMetricsxasx

FeaturesxforxClassxDiagramx
Simplification

Ch7: UsingxObjectxOrientedxDesignx
Metrics

CondensingxReversex
EngineeredxClassxDiagram

Ch8: UsingxClassxNamexbasedxTextx
Metrics

Ch9: InteractivexScalablexSoftaware
Architecure Abstration TSAAbsIxtool

Ch10: ValidationxonxCondensedxClassx
DiagramxandxSAAbs tool

IntroductionxFxBackground

Case Study

ElicitingxinformationxforxClassx
DiagramxCondensation

Expert suggestion on 

Condensation Criteria

Features and 

classification algorithm

ToolxDevelopment

Tool and Methods

Validation

Ch2: Definition

Ch1: Introduction

Finding important information 

in class diagrams

Figure 1.1: Thesis Roadmap

This chapter is a more detailed version of the following publication:

– Hafeez Osman and Michel R.V. Chaudron (2013). UML Usage in Open
Source Software Development : A Field Study. In Proceedings of the 3rd
International Workshop on Experience and Empirical Studies in Software Modelling
(EESSMod 2013), pages 23-32, Miami, USA

• Chapter 4: Assessing the Correctness and Completeness of UML CASE tools
in Reverse Engineering. The main purpose of this chapter is to demonstrate
the state-of-the-art of CASE tools for reverse engineering of source code into



8 Introduction

class diagrams. We assess the strengths and the weaknesses of the reverse engi-
neered class diagrams constructed by eight common CASE tools. We compare
and evaluate the types of input, the types of reverse engineered diagrams that
could be constructed, and the quality of resulting diagrams. This chapter covers
information about the correctness, completeness and the quality of the reverse
engineered class diagrams (as constructed by CASE tools). The results provide a
baseline of current reverse engineering of class diagrams by CASE tools.

This chapter is adapted from the following publications:

– Hafeez Osman and Michel R.V. Chaudron (2011). An Assessment of Re-
verse Engineering Capabilities of UML Case Tools. In Proceedings of the
2nd Annual International Conference on Software Engineering and Applications
(SEA 2011), pages 7-12, Singapore

– Hafeez Osman and Michel R.V. Chaudron (2012). Correctness and Com-
pleteness of CASE tools in Reverse Engineering Source Code into UML
Model. GSTF Journal on Computing vol.2, num.1, pages 193-201

• Chapter 5: Eliciting Developer’s Views on Simplifying Class Diagrams. In
this chapter, we aim to discover how to simplify class diagrams in such way
that the system is easier to understand. For this purpose, we conduct a semi-
structured survey to gain knowledge about the criteria that developers believe
are relevant for including or excluding in class diagrams. The results of this
survey suggest what are the important elements in a class diagram.

This chapter answers RQ1 and it is a more detailed version of the following
publication:

– Hafeez Osman, Arjan van Zadelhoff, Dave R. Stikkolorum and Michel
R.V. Chaudron (2012). UML Class Diagram Simplification: What is in
the Developer’s Mind? In Proceedings of the 2nd International Workshop on
Experience and Empirical Studies in Software Modelling (EESSMod 2012), pages
31-36, Innsbruck, Austria

• Chapter 6: Exploring the Suitability of Object-oriented Design Metrics as Fea-
tures for Class Diagram Simplification. The purpose of this chapter is to identify
suitable design metrics that influence the determination of class inclusion and
exclusion. We conduct a survey to investigate the suitability of object-oriented
design metrics (from software documents) in deciding on the inclusion and ex-
clusion of classes from class diagrams. The results indicate what software design
metrics are most important to users to decide whether to include a class in a class
diagram.

This chapter answers RQ2. It is a more detailed version of the following publica-
tion:



Roadmap 9

– Hafeez Osman, Arjan van Zadelhoff and Michel R.V. Chaudron (2012).
UML Class Diagram Simplification - A Survey for Improving Reverse
Engineered Class Diagram Comprehension. In Proceedings of the 1st Inter-
national Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2013), pages 291-296, Barcelona, Spain

• Chapter 7: Condensing Reverse Engineering Class Diagram using Object-
Oriented Design Metrics. The purpose of the study in this chapter is to investi-
gate the usefulness of object-oriented design metrics as features for identifying
class inclusion and exclusion. To this end, we conduct an experiment for condens-
ing reverse engineered class diagrams on the basis of software design metrics.
We use object-oriented design metrics as features for applying machine learning
classification approaches to classifying the classes for inclusion and exclusion.
The machine learning is used because it provides an automated method for
the classification process. Nine OSSD projects are used as case studies. This
experiment also identifies the classification algorithms that perform best for this
purpose.

This chapter answers RQ3 and it is adapted from the following publication:

– Hafeez Osman, Michel R.V. Chaudron and Peter van der Putten (2013). An
Analysis of Machine Learning Algorithms for Condensing Reverse Engi-
neered Class Diagrams. In Proceedings of the 29th International Conference on
Software Maintenance (ICSM 2013), Eindhoven, the Netherlands

• Chapter 8: Condensing Reverse Engineered Class Diagrams through Class
Name Based Abstraction. The purpose of this chapter is to improve the classifi-
cation of class inclusion and exclusion by using class names. We formulate text
metrics based on the frequency of occurrence of words in class names. We explore
multiple combinations of features and compare the results with the previous
outcomes (Chapter 7). The evaluation is performed using 10 OSSD projects. This
chapter presents the improvement of class inclusion and exclusion classification,
by using text and object-oriented design metrics as features.

This chapter answers RQ4 and it is adapted from the following publication:

– Hafeez Osman, Michel R.V. Chaudron and Peter van der Putten (2014).
Condensing Reverse Engineered Class Diagrams through Class Name
Based Abstraction. In Proceedings of the 2014 World Congress on Information
and Communication Technologies (WICT), Malacca, Malaysia

• Chapter 9: Interactive Scalable Abstraction of Reverse Engineered UML Class
Diagrams. In this chapter, we demonstrate our automated Software Architecture
Abstraction (SAAbs) framework for simplifying class diagrams based on class
inclusion/exclusion (Chapter 7 and 8). The SAAbs framework applies a machine



10 Introduction

learning classification algorithm to produce a class importance ranking for all
classes in a reverse engineered class diagram. This ranking is used for scalable
abstraction and visualization of the class structure of the system. We created a
tool that allows developers to interactively explore a reverse engineered class
diagram at multiple levels of abstraction.

Part of this chapter is adapted from the following publication:

– Hafeez Osman, Michel R.V. Chaudron and Peter van der Putten (2014).
Interactive Scalable Abstraction of Reverse Engineered UML Class Dia-
grams. In Proceedings of the 21st Asia-Pacific Software Engineering Conference
(APSEC 2014), Jeju, Korea

• Chapter 10: Validation. In this chapter, we conduct a user study to validate the
SAAbs framework and tool in providing a platform for assisting developers to
comprehend reverse engineered class diagrams. This chapter aims at i) discover-
ing the understandability of condensed class diagrams, ii) finding whether the
condensed class diagram generated by this approach is helpful in understanding
the software design and, iii) eliciting the usefulness of the SAAbs tool in assisting
software developers to understand the software.

This chapter answers RQ5. Part of this chapter is adapted from the following
publication:

– Hafeez Osman, Michel R.V. Chaudron and Peter van der Putten (2014).
Interactive Scalable Abstraction of Reverse Engineered UML Class Dia-
grams. In Proceedings of the 21st Asia-Pacific Software Engineering Conference
(APSEC 2014), Jeju, Korea

• Chapter 11: Conclusion. In this chapter, we summarize the results, draw conclu-
sions and discuss future work.


