
Interactive scalable condensation of reverse engineered UML class
diagrams for software comprehension
Osman, M.H.B.

Citation
Osman, M. H. B. (2015, March 10). Interactive scalable condensation of reverse engineered
UML class diagrams for software comprehension. Retrieved from
https://hdl.handle.net/1887/32210

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/32210

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/32210

Cover Page

The handle http://hdl.handle.net/1887/32210 holds various files of this Leiden University
dissertation.

Author: Osman, Mohd Hafeez Bin
Title: Interactive scalable condensation of reverse engineered UML class diagrams for
software comprehension
Issue Date: 2015-03-10

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/32210
https://openaccess.leidenuniv.nl/handle/1887/1�

Interactive Scalable Condensation of Reverse
Engineered UML Class Diagrams For Software

Comprehension

Mohd Hafeez Osman

March 2015

Interactive Scalable Condensation of Reverse
Engineered UML Class Diagrams For Software

Comprehension

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties

te verdedigen op dinsdag 10 maart 2015
klokke 11:15 uur

door

Mohd Hafeez Osman
geboren te Perak, Maleisië

in 1979

Promotiecommissie

Promotores : Prof. dr. J.N. Kok Universiteit Leiden
Prof. dr. M.R.V. Chaudron Chalmers and Gotëborgs Universitet

Copromotor : Dr. P. van der Putten Universiteit Leiden

Commissieleden : Prof. dr. T.H. Bäck Universiteit Leiden
Prof. dr. Y.-G. Guéhéneuc École Polytechnique de Montréal
Prof. dr. J.J. Vinju Technische Universiteit Eindhoven
Dr. Ir. F. Verbeek Universiteit Leiden

This research was financed by the government of Malaysia under the Federal Training
Award (HLP).

Images used on the cover :
1. Victory Boogie-Woogie (1942-1944), by Piet Mondrian
2. Gray Tree (1911), by Piet Mondrian

Copyright ©2015 by Mohd Hafeez Osman
Typeset by LATEX, printed by Ipskamp Drukkers
ISBN: 978-94-6259-588-0

“to my family...”

Contents

I Introduction and Background 1

1 Introduction 3
1.1 Research Context . 3
1.2 Problem Statement . 4
1.3 Research Objective . 5
1.4 Research Methods . 5
1.5 Roadmap . 6

2 Definitions 11
2.1 Software Comprehension . 11

2.1.1 Program Comprehension Model . 12
2.1.2 Cognitive Design Elements for Software Exploration 13

2.2 Forward and Reverse Engineering . 14
2.2.1 Forward Engineering . 16
2.2.2 Reverse Engineering . 17
2.2.3 Static and Dynamic Analysis . 17

2.3 The Unified Modeling Language . 18
2.3.1 UML Class Diagram . 19
2.3.2 UML Class Diagram for Software Comprehension 21
2.3.3 XML Metadata Interchange . 21

2.4 Machine Learning . 22
2.4.1 Definition of Machine Learning . 23
2.4.2 Types of Machine Learning . 23
2.4.3 Machine Learning Classification Algorithms 24
2.4.4 Performance Measure For Classification Algorithms 25

2.5 Summary . 28

ii CONTENTS

3 UML Usage in Open Source Software Development 31
3.1 Introduction . 31
3.2 Related Work . 32
3.3 Case Study . 33
3.4 Approach . 34
3.5 Results and Findings . 36

3.5.1 Usage of UML Diagrams . 36
3.5.2 Ratio between Design and Implementation 39
3.5.3 Level of Detail (LoD) . 39
3.5.4 Frequency of Updating UML Models 42
3.5.5 Key Classes . 43
3.5.6 Threats to Validity . 45

3.6 Conclusion and Future Work . 45

4 Assessing the Correctness and Completeness of UML CASE tools in Reverse
Engineering 47
4.1 Introduction . 47
4.2 Related Work . 49
4.3 Examined Tools and Properties . 50

4.3.1 Examined Tools . 50
4.3.2 Examined Properties . 50

4.4 Sample Cases . 52
4.4.1 Movie Catalog System (MovieCat) 52
4.4.2 Automatic Teller Machine (ATM) Simulation System 52

4.5 Approach . 52
4.5.1 Round-trip Capability . 52
4.5.2 Reconstruction of UML Diagram Types (package/class/sequence) 53

4.6 Result and Findings . 54
4.6.1 Reverse Engineering Capability . 54
4.6.2 Class Diagram Properties . 57

4.7 Discussion . 62
4.8 Conclusion and Future Work . 64

II UML Class Diagram Simplification 67

5 Eliciting Developer’s Views on Simplifying Class Diagrams 69
5.1 Introduction . 70
5.2 Related Work . 70

5.2.1 Eye Tracking . 70
5.2.2 Software Visualization . 71

5.3 Survey Methodology . 71

CONTENTS iii

5.3.1 Questionnaire Design . 72
5.3.2 Experiment Description . 74

5.4 Results and Findings . 74
5.4.1 Part A: Personal Background . 75
5.4.2 Part B: Selected Cases . 80
5.4.3 Part C: Class Diagram Indicators for Class Inclusion/Exclusion 83

5.5 Discussion . 87
5.5.1 Class Properties . 88
5.5.2 Class Role and Responsibility (RnR) 88
5.5.3 Class Diagram Simplification Tool Features 89
5.5.4 Threats to Validity . 89

5.6 Conclusion . 89
5.7 Future Work . 90

6 Exploring the Suitability of Object-Oriented Design Metrics as Features for
Class Diagram Simplification 91
6.1 Introduction . 92
6.2 Related Work . 93

6.2.1 Usage of design metrics . 93
6.2.2 Automated Abstraction of Class Models 93

6.3 Examined Properties and Tools . 94
6.3.1 Examined Properties . 94
6.3.2 Tools . 94

6.4 Survey Methodology . 94
6.4.1 Questionnaire Design . 94
6.4.2 Experiment Description . 98

6.5 Results and Findings . 98
6.5.1 Background of the Respondents (Part A) 98
6.5.2 Indicator for Class Inclusion . 100
6.5.3 Practical Simplification Problems (Part C) 104

6.6 Discussion . 112
6.6.1 Respondents’ Background . 113
6.6.2 Software Design Metrics . 113
6.6.3 Class Names and Coupling . 115
6.6.4 Class Diagram Preferences . 115
6.6.5 Threats to Validity . 115

6.7 Conclusion . 116
6.8 Future Work . 116

iv CONTENTS

7 Condensing Reverse Engineered Class Diagram using Object-Oriented De-
sign Metrics 117
7.1 Introduction . 117
7.2 Related Work . 119
7.3 Research Questions . 120
7.4 Approach . 121

7.4.1 Examined Predictors and Tools . 121
7.4.2 Case Studies . 122
7.4.3 Process . 123

7.5 Evaluation of Results . 127
7.5.1 Predictor Evaluation . 127
7.5.2 Benchmark Scoring Results . 129

7.6 Discussion . 131
7.6.1 Threats to Validity . 131

7.7 Conclusion and Future Work . 132
7.7.1 Future Work . 133

8 Condensing Reverse Engineered Class Diagrams through Class Name Based
Abstraction 135
8.1 Introduction . 135
8.2 Related Work . 136

8.2.1 Code Summarization . 136
8.2.2 Analysis of Execution Trace . 137

8.3 Research Questions . 138
8.4 Approach . 138

8.4.1 System Document . 139
8.4.2 Document Preprocessing . 139
8.4.3 Text Processing . 141
8.4.4 Text Classification . 146
8.4.5 Analyze Result . 146

8.5 Experiment Description . 146
8.5.1 Dataset . 146
8.5.2 Evaluation Measures . 146
8.5.3 Experiment . 147

8.6 Analysis of Results . 147
8.6.1 RQ1 : Influence of Predictors . 147
8.6.2 RQ2 : Most Influential Predictors 148
8.6.3 RQ3 : Classification Algorithms Performance 148
8.6.4 RQ4 : Set of Predictors Performance 148

8.7 Discussion . 152
8.7.1 Text Metrics Predictors Performance 152
8.7.2 Classification Algorithms . 152

CONTENTS v

8.7.3 Application of Classification Method 152
8.7.4 Threats to Validity . 154

8.8 Conclusion and Future Work . 154

9 Interactive Scalable Abstraction of Reverse Engineered UML Class Diagrams155
9.1 Introduction . 156
9.2 Related Work . 157

9.2.1 The Usage of Network Metrics . 157
9.2.2 The Usage of Software Version History 157
9.2.3 Other Related Work . 158

9.3 SAAbs Overview . 158
9.3.1 Input: XMI . 159
9.3.2 Process: XMI Parser . 159
9.3.3 Process: Feature Extraction . 160
9.3.4 Process: Classification . 163
9.3.5 Output: Class Ranking . 163
9.3.6 Output: Visualization . 164
9.3.7 Implementation . 165

9.4 Discussion . 168
9.4.1 E3: Provide abstraction mechanism 168
9.4.2 E4: Support goal-directed, hypothesis-driven comprehension . . 168
9.4.3 E5: Provide overviews of the system architecture at various levels

of abstraction . 168
9.4.4 E6: Support the construction of multiple mental models & E11:

Show the path that led to the current focus 168
9.4.5 E15: Provide effective presentation style 169

9.5 Conclusion and Future Work . 169

III Validation and Conclusion 171

10 Validation 173
10.1 Introduction . 173
10.2 Research Question . 174
10.3 Experiment Design . 174

10.3.1 Questionnaire Design . 174
10.3.2 Experiment Description . 176

10.4 Results . 177
10.4.1 RQ1: The Understandability of Condensed Class Diagrams . . . 178
10.4.2 RQ2: Choices of Class Diagram . 181
10.4.3 RQ3: Software Architecture Abstractor Framework 182
10.4.4 RQ4: Usefulness of the SAAbs Tool 182

vi CONTENTS

10.5 Discussion . 186
10.5.1 Choosing a Class Diagram . 186
10.5.2 Limitation of SAAbs . 187
10.5.3 Threats to Validity . 187

10.6 Conclusion and Future Work . 188

11 Conclusions 189
11.1 Summary of Findings . 189

11.1.1 RQ1: Which information in class diagrams do developers find impor-
tant for understanding software designs? 190

11.1.2 RQ2: Which object-oriented design metrics do developers find most
indicative for class importance? . 191

11.1.3 RQ3: How to automatically condense class diagrams using object-
oriented design metrics? . 191

11.1.4 RQ4: Can the automatic condensation of class diagrams be enhanced
by using class names? . 192

11.1.5 RQ5: Does our automated framework for condensing of class diagrams
help developers to understand the design of software systems? 193

11.2 Contributions . 194
11.3 Discussion . 194

11.3.1 Software Comprehension . 195
11.3.2 Condensation of Class Diagrams . 195

11.4 Future Work . 197
11.4.1 Enriching the Ground Truth . 197
11.4.2 Exploring Features . 198
11.4.3 Task-oriented Validation . 198
11.4.4 Class Segmentation . 199
11.4.5 Visualization of Result . 199

A Case Study Candidates 201

List of Figures 205

List of Tables 209

Bibliography 211

Samenvatting 227

List of Publications 229

Acknowledgments 231

About the Author 233

Part I

Introduction and Background

Chapter1
Introduction

In this chapter, we present the research context, the problem that we address and
the goal of this research. This chapter also provides an overview of the research
approach by summarizing the main research steps, the relations between these steps
and their purpose. After reading this chapter, the readers should have a high-level
understanding of the problem domain, our scoping, and our approach.

1.1 Research Context

Software design is a critical activity in software development. This design embodies
the transition from a declarative requirement to a constructive representation that
forms the basis for the implementation. Software design is essential to software
implementation as well as to software maintenance. Documenting the software design
could significantly help the later stages in the software development activity because
the design is one of the critical documents to understand the software.

The effort and cost of software maintenance dominate the software development
life cycle. The understanding of a software system is one of the most crucial tasks in
software maintenance. More than 50% of the time consumed in software maintenance
is used for software comprehension. Software documentation, including the software
architecture or software design, is a highly useful material for system comprehension.
Unfortunately, software documentation is often out-of-sync with the implementation
[103],[172]. Reverse engineering is one of the options for recovering software architec-
ture from the implementation code. This method suffers from several problems; one of
them is that the resultant diagrams offer too detailed information. Recent Computer
Aided Software Engineering (CASE) tools offer to leave out some types of informa-
tion in software design diagrams (such as class diagrams) by leaving out attributes,
operations and parameters. However, these tools are unable to identify the essential

4 Introduction

information that helps the developer to understand or focus on specific concerns in
system design. In addition, a controlled experiment by Fernandez-Saez et al. [59]
found that many subjects did not consider reverse engineered diagrams to be helpful in
maintaining software. From their study, they hypothesize that a large amount of data
present in the reverse engineered class diagram overwhelms and demotivates users
because it surpasses the human capacity for processing information (see e.g. [112]).

The research in this thesis focuses on the software comprehension activity in the
software maintenance phase. We aim to provide a method and a tool for software
developers to create an overview of their system. In addition, we aim to support the
process of understanding software by enabling software developers to create multiple
views of their system at various levels of abstraction that may differ for different tasks.

1.2 Problem Statement

When a new software developer is assigned to a maintenance task, several questions
commonly arise as the software comprehension activity is started [93][92]. For instance,
“Where to start?”, “Which classes are important?”, “How can I pick up the central
classes needed for a more high-level, abstract view which is essential for understanding
the model as a whole?” [142] and, “How to make this comprehension task easy?”.
Because the software documentation is often out-of-sync, these questions are difficult
to answer; which makes the software comprehension task more challenging.

As mentioned in the previous section, reverse engineering techniques are capable
of recovering a system’s structure. A lot of CASE tools provide features that make the
reverse engineering process easy to be performed by software developers. However,
the resultant class diagrams constructed by these techniques typically contain such
a large amount information that it obstructs design comprehension. Building a de-
scriptive and understandable view of the software on the right level of abstraction is
one of the most challenging tasks in reverse engineering [162]. This has led us to the
following problem statements.

Problem Statement 1. “How can reverse engineered class diagrams be simplified to assist
software understanding?”

We perceive a need for a framework to condense the reverse engineered class dia-
grams to improve its understandability. An automatic framework is desired to discover
critical information, leaving out unnecessary information, and condense the reverse
engineered class diagrams. However, to provide the aforementioned framework, the
following issues also need to be addressed.

Problem Statement 2. “What is the right level of abstraction of class diagrams?”
We perceive a need for an interactive, scalable condensation of reverse engineered

UML class diagram that provides the flexibility to developers to create multiple levels

Research Objective 5

of class diagram abstraction.
Hence, this research aims to address these issues by devising an automated frame-

work by simplifying UML class diagrams to assist software comprehension. The
following subsection explains our research objective to address these issues.

1.3 Research Objective

The central objective of this research is to devise an automated framework for simpli-
fying UML class diagrams to assist the software comprehension task. We use reverse
engineered class diagrams (obtained by static analysis) as the primary source of infor-
mation about a system.

To achieve this, our research focuses on discovering a suitable method to identify
the critical and non-critical information in reverse engineered class diagrams. We
also aim to provide a prototype implementation of this method through a tool. This
prototype should demonstrate the feasibility of the approach. The tool should be
interactive and the condensation of class diagrams should be scalable to allow the
software developer to generate views of designs at their desired levels of abstraction.

To accomplish our objectives, the following research questions (RQ) have been
formulated:

Main RQ: What method of condensing of reverse engineered class diagrams helps develop-
ers to understand the design of software systems?

To answer the Main RQ, we need to answer the following RQs:

• RQ1: Which information in class diagrams do developers find important for understand-
ing software designs?

• RQ2: Which object-oriented design metrics do developers find most indicative for class
importance?

• RQ3: How to automatically condense class diagrams using object-oriented design met-
rics?

• RQ4: Can the automatic condensation of class diagrams be enhanced by using class
names?

• RQ5: Does our automated framework for condensing class diagrams help developers to
understand the design of software systems?

1.4 Research Methods

The main objective of this research is to discover a method of enhancing the comprehen-
sion of reverse engineered class diagrams. To accomplish this goal, we apply various
research methods, including: surveys [137], case studies [46] and experiments [148].
Details about the research methods used are provided in Table 1.1.

6 Introduction

Table 1.1: Research Methods used in this Research

Chapter Methodology Primary Objective Primary Data

3 Field Study Descriptive Qualitative
4 Experiment Descriptive Quantitative
5 Survey Descriptive Qualitative

6 & 10 Survey Descriptive Quantitative
7 & 8 Experiment Validation Qualitative

In summary, we used surveys for eliciting information on how the software engi-
neers think classes diagrams could be simplified. An experiment is used to explore the
state-of-the-art of reverse engineering class diagrams. A field study [185] is used to
explore the usage of UML diagrams in open source software development. We used
experiments to explore and validate the effectiveness of some class condensation tech-
niques that we developed. We also used the survey method to validate our proposed
automated framework for condensing class diagrams.

We provide our experiments’ material (online) for the purpose of external replica-
tion and future research ([6] [122] [134]).

1.5 Roadmap

This section presents an outline (see Figure 1.1) of the chapters in this thesis. We sum-
marize the purposes of each chapter and relate the chapters to the research questions.
Also, we relate the chapters to our publications.

• Chapter 2: Definition. The purpose of this chapter is to define the principal con-
cepts used in this research. We briefly describe the Unified Modeling Language
(UML) and class diagrams. Also, we describe the concepts of forward and reverse
engineering, the basics of machine learning and explain the notion of software
comprehension.

• Chapter 3: UML Usage in Open Source Software Development. The purpose
of this chapter is two-fold: i) To present the examples on the use of UML diagrams
in Open Source Software Development (OSSD) and ii) To find suitable case studies
for automatic condensation of class diagrams research. For this purpose, we
select ten OSSD projects from different types of domains. We assess the UML
usage of OSSD projects, the level of detail (LoD) and the frequency of updating
diagrams. Our findings also cover the application of UML modeling in different
level of detail for different purposes, a change in focus on types of diagram
used over time, and findings on how the size of models relates to the size of the
implementation.

Roadmap 7

Ch4: Reversex
engineeringxCASExtool

Ch3: UMLxDiagramsxinx
OpenxSourcexSoftwarex

Projects

Ch5: ElicitingxDevelopersxViewxonx
ClassxDiagram

Ch6: ExploringxthexSuitabilityxofx
ObjectBorientedxDesignxMetricsxasx

FeaturesxforxClassxDiagramx
Simplification

Ch7: UsingxObjectxOrientedxDesignx
Metrics

CondensingxReversex
EngineeredxClassxDiagram

Ch8: UsingxClassxNamexbasedxTextx
Metrics

Ch9: InteractivexScalablexSoftaware
Architecure Abstration TSAAbsIxtool

Ch10: ValidationxonxCondensedxClassx
DiagramxandxSAAbs tool

IntroductionxFxBackground

Case Study

ElicitingxinformationxforxClassx
DiagramxCondensation

Expert suggestion on

Condensation Criteria

Features and

classification algorithm

ToolxDevelopment

Tool and Methods

Validation

Ch2: Definition

Ch1: Introduction

Finding important information

in class diagrams

Figure 1.1: Thesis Roadmap

This chapter is a more detailed version of the following publication:

– Hafeez Osman and Michel R.V. Chaudron (2013). UML Usage in Open
Source Software Development : A Field Study. In Proceedings of the 3rd
International Workshop on Experience and Empirical Studies in Software Modelling
(EESSMod 2013), pages 23-32, Miami, USA

• Chapter 4: Assessing the Correctness and Completeness of UML CASE tools
in Reverse Engineering. The main purpose of this chapter is to demonstrate
the state-of-the-art of CASE tools for reverse engineering of source code into

8 Introduction

class diagrams. We assess the strengths and the weaknesses of the reverse engi-
neered class diagrams constructed by eight common CASE tools. We compare
and evaluate the types of input, the types of reverse engineered diagrams that
could be constructed, and the quality of resulting diagrams. This chapter covers
information about the correctness, completeness and the quality of the reverse
engineered class diagrams (as constructed by CASE tools). The results provide a
baseline of current reverse engineering of class diagrams by CASE tools.

This chapter is adapted from the following publications:

– Hafeez Osman and Michel R.V. Chaudron (2011). An Assessment of Re-
verse Engineering Capabilities of UML Case Tools. In Proceedings of the
2nd Annual International Conference on Software Engineering and Applications
(SEA 2011), pages 7-12, Singapore

– Hafeez Osman and Michel R.V. Chaudron (2012). Correctness and Com-
pleteness of CASE tools in Reverse Engineering Source Code into UML
Model. GSTF Journal on Computing vol.2, num.1, pages 193-201

• Chapter 5: Eliciting Developer’s Views on Simplifying Class Diagrams. In
this chapter, we aim to discover how to simplify class diagrams in such way
that the system is easier to understand. For this purpose, we conduct a semi-
structured survey to gain knowledge about the criteria that developers believe
are relevant for including or excluding in class diagrams. The results of this
survey suggest what are the important elements in a class diagram.

This chapter answers RQ1 and it is a more detailed version of the following
publication:

– Hafeez Osman, Arjan van Zadelhoff, Dave R. Stikkolorum and Michel
R.V. Chaudron (2012). UML Class Diagram Simplification: What is in
the Developer’s Mind? In Proceedings of the 2nd International Workshop on
Experience and Empirical Studies in Software Modelling (EESSMod 2012), pages
31-36, Innsbruck, Austria

• Chapter 6: Exploring the Suitability of Object-oriented Design Metrics as Fea-
tures for Class Diagram Simplification. The purpose of this chapter is to identify
suitable design metrics that influence the determination of class inclusion and
exclusion. We conduct a survey to investigate the suitability of object-oriented
design metrics (from software documents) in deciding on the inclusion and ex-
clusion of classes from class diagrams. The results indicate what software design
metrics are most important to users to decide whether to include a class in a class
diagram.

This chapter answers RQ2. It is a more detailed version of the following publica-
tion:

Roadmap 9

– Hafeez Osman, Arjan van Zadelhoff and Michel R.V. Chaudron (2012).
UML Class Diagram Simplification - A Survey for Improving Reverse
Engineered Class Diagram Comprehension. In Proceedings of the 1st Inter-
national Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2013), pages 291-296, Barcelona, Spain

• Chapter 7: Condensing Reverse Engineering Class Diagram using Object-
Oriented Design Metrics. The purpose of the study in this chapter is to investi-
gate the usefulness of object-oriented design metrics as features for identifying
class inclusion and exclusion. To this end, we conduct an experiment for condens-
ing reverse engineered class diagrams on the basis of software design metrics.
We use object-oriented design metrics as features for applying machine learning
classification approaches to classifying the classes for inclusion and exclusion.
The machine learning is used because it provides an automated method for
the classification process. Nine OSSD projects are used as case studies. This
experiment also identifies the classification algorithms that perform best for this
purpose.

This chapter answers RQ3 and it is adapted from the following publication:

– Hafeez Osman, Michel R.V. Chaudron and Peter van der Putten (2013). An
Analysis of Machine Learning Algorithms for Condensing Reverse Engi-
neered Class Diagrams. In Proceedings of the 29th International Conference on
Software Maintenance (ICSM 2013), Eindhoven, the Netherlands

• Chapter 8: Condensing Reverse Engineered Class Diagrams through Class
Name Based Abstraction. The purpose of this chapter is to improve the classifi-
cation of class inclusion and exclusion by using class names. We formulate text
metrics based on the frequency of occurrence of words in class names. We explore
multiple combinations of features and compare the results with the previous
outcomes (Chapter 7). The evaluation is performed using 10 OSSD projects. This
chapter presents the improvement of class inclusion and exclusion classification,
by using text and object-oriented design metrics as features.

This chapter answers RQ4 and it is adapted from the following publication:

– Hafeez Osman, Michel R.V. Chaudron and Peter van der Putten (2014).
Condensing Reverse Engineered Class Diagrams through Class Name
Based Abstraction. In Proceedings of the 2014 World Congress on Information
and Communication Technologies (WICT), Malacca, Malaysia

• Chapter 9: Interactive Scalable Abstraction of Reverse Engineered UML Class
Diagrams. In this chapter, we demonstrate our automated Software Architecture
Abstraction (SAAbs) framework for simplifying class diagrams based on class
inclusion/exclusion (Chapter 7 and 8). The SAAbs framework applies a machine

10 Introduction

learning classification algorithm to produce a class importance ranking for all
classes in a reverse engineered class diagram. This ranking is used for scalable
abstraction and visualization of the class structure of the system. We created a
tool that allows developers to interactively explore a reverse engineered class
diagram at multiple levels of abstraction.

Part of this chapter is adapted from the following publication:

– Hafeez Osman, Michel R.V. Chaudron and Peter van der Putten (2014).
Interactive Scalable Abstraction of Reverse Engineered UML Class Dia-
grams. In Proceedings of the 21st Asia-Pacific Software Engineering Conference
(APSEC 2014), Jeju, Korea

• Chapter 10: Validation. In this chapter, we conduct a user study to validate the
SAAbs framework and tool in providing a platform for assisting developers to
comprehend reverse engineered class diagrams. This chapter aims at i) discover-
ing the understandability of condensed class diagrams, ii) finding whether the
condensed class diagram generated by this approach is helpful in understanding
the software design and, iii) eliciting the usefulness of the SAAbs tool in assisting
software developers to understand the software.

This chapter answers RQ5. Part of this chapter is adapted from the following
publication:

– Hafeez Osman, Michel R.V. Chaudron and Peter van der Putten (2014).
Interactive Scalable Abstraction of Reverse Engineered UML Class Dia-
grams. In Proceedings of the 21st Asia-Pacific Software Engineering Conference
(APSEC 2014), Jeju, Korea

• Chapter 11: Conclusion. In this chapter, we summarize the results, draw conclu-
sions and discuss future work.

Chapter2
Definitions

In this chapter, we define common terms used in this research. We start with describ-
ing the term ‘software comprehension’ because it is a common theme throughout
this thesis. We also describe ‘cognitive design elements for software exploration’
because they are the basis for representing the results of our approach in a graphical
visualization. Also, ‘forward-’ and ‘reverse engineering’ process are explained be-
cause we use the information in these processes as the primary input in our studies.
We briefly describe UML because this design notation is the central notation used
in this research. We explain the basics of machine learning because this method is
used to classify the importance of elements of the software design.

2.1 Software Comprehension

Software comprehension (also known as program-/code-/system- comprehension) is
a critical activity in software maintenance. Software comprehension is a complicated
activity which requires a lot of time, effort and cost. In particular, studies have shown
that more than 50% of the time spent in software maintenance is spent on trying to
understand source code [20][23]. Software developers must familiarize themselves
when they are new to a system, but it is also the case that they must familiarize
themselves with new parts of a system as the system evolves. Table 2.1 lists several
definitions on program comprehension as found in the literature. Based on these
definitions, we define program comprehension in this research as:

Definition 2.1. “Program comprehension is a process of understanding a program
based on available software artifacts (such as documentations, as well as source code).”

Biggerstaff (1993) [25] characterizes what aspects of the software must be under-
stood through the comprehension process: “A person understands a program when they

12 Definitions

Table 2.1: Definitions of Program Comprehension

Author(s) Definitions
Rugaber (1995) [88] “Program comprehension as the process of acquiring knowl-

edge about a computer program”
Cimitile (2000) [89] “Program comprehension is the process of acquiring suffi-

cient knowledge about a software artifact so as to be able to
successfully accomplish a given task”

Ng et al. (2004) [116] “Program comprehension is the process of understanding a
program through feature and documentation analysis”

Maalej et al. (2014) [107] “Program comprehension is the activity of understanding
how a software system or a part of it works”

are able to explain the program, its structure, its behavior, its effects on its operational context,
and its relationships to its application domain in terms that are qualitatively different from the
tokens used to construct the source code of the program.”

Program comprehension is a tedious challenge that requires a lot of effort. Hence,
we believe that facilitating program comprehension will help software developers in
this activity. Several models have been proposed that characterize the cognitive process
of program comprehension. We discuss these program comprehension models in the
next subsection.

2.1.1 Program Comprehension Model

A software developer’s approach to program comprehension may be bottom-up, top-
down or a combination of both. This is relevant in the context of this thesis as it led us
to develop methods to view class diagrams at different levels of abstraction. We briefly
discuss these program comprehension models below.

Bottom-up Comprehension

Bottom-up comprehension models denote the bottom-up building of system under-
standing: by reading the code and then rationally chunking or grouping these state-
ments or representation into higher-level abstractions. These chunks (or abstractions)
are aggregated further until the entire system is comprehended [152].

The Pennington comprehension model [135] describes two program abstractions
formed by software developers during comprehension [43]: (1) A program model is a low-
level abstraction consisting of knowledge of operations at a level close to the surface of
the program code and of control flow relations indicating the flow of execution, and (2)
A domain model (or situation model) is a higher-level abstraction comprising knowledge
of data flow and functional relationships. This comprehension model is frequently

Software Comprehension 13

chosen when the source code or domain of the system is not familiar to the software
developer.

Top-down comprehension

The top-down comprehension model (based on Brooks’s model [37]) denotes a hypothe-
sis-driven comprehension approach. This approach begins with the software develop-
ers making a general hypothesis about the program’s function. Such hypothesis are
formed based on information outside the program code such as design documents or
system descriptions. This initial hypothesis leads software developers to anticipate to
certain structures (objects and operations) in the program, producing another level of
more distinct hypotheses (sub-hypotheses). At this point, the software developer has
concrete things to look for in the program code, for which hypothesis verification is
attempted [43].

In contrast to the bottom-up approach, the top-down comprehension is usually
used for a system and a domain that is familiar to the software developer.

Integrated Model

Von Mayrhauser (1993) [173] introduced an integrated model that combines the top-
down and bottom-up model. This model is motivated by the argument that software
developers may switch flexibly between top-down to bottom-up comprehension mod-
els depending on the situation. In addition to the top-down and bottom-up comprehen-
sion model, the integrated model also involves the knowledge base (typically known
as human mind) that stores (1) any new information acquired straightforwardly from
the system; or (2) indirect information. Figure 2.1 illustrates this model and more detail
on the terms and terminology of this figure can be found in [174].

2.1.2 Cognitive Design Elements for Software Exploration

The time consumed for understanding existing implementation code is a significant
proportion of the time needed for maintaining, debugging and reusing the existing
code. This explains the importance of tool support for software comprehension. Tools
in this area can be characterized as being a software visualization tool or a software
exploration tool. Schäfer et al. [150] indicated that software visualization tools (e.g.,
[100],[86],[49]) assemble visualization techniques to intensify understanding, while
software exploration tools (e.g. [57],[145]) offer an essential software navigation facil-
ity (searching/browsing/summarizing/condensing). However, there is no concrete
boundary between these categories. In this research, we focus on software exploration
tools as we aim to provide an automated tool to explore the software design based on
the reverse engineered class diagram.

14 Definitions

Figure 2.1: Integrated Model [174]

A common feature in software exploration tools is the graphical representation of
the system structure together with the corresponding source code. Storey et al.[157]
introduced a set of guidelines for software exploration tools (as shown in Figure 2.2).
These guidelines are called ‘cognitive design elements’. From the guidelines that she
suggests, we prioritize a number which we aim to fulfill in our approach. The tool
developed in this research focuses on comprehension of software design. Hence,
we would like to incorporate the following guidelines to our tool: E3: Provide an
abstraction mechanism; E4: Support goal-directed hypothesis-driven comprehension;
E5: Provide an adequate overview of the system architecture at various levels of
abstraction; E6: Support the construction of multiple mental models1 (domain, situation,
program); E11: Indicate the maintainer’s current focus; and E15: Provide effective
presentation style.

2.2 Forward and Reverse Engineering

In software engineering, the software development life cycle (SDLC) is a schema that
characterizes the process of developing software. In other words, it is a conceptual
model used in software project management that describes the stages involved in
system development from preliminary feasibility review through maintenance. The

1A mental model describes developer’s mental representation of the system-to-analyze

Forward and Reverse Engineering 15

Improve program
comprehension

Reduce the maintainer’s
cognitive overhead

Cognitive Design
Elements to support
the construction of
a mental model to
facilitate program
understanding

Enhance top-down
comprehension

Enhance bottom-
up comprehension

Facilitate
navigation

Reduce
disorientation

Reduce the effect of
delocalized plans

Provide an adequate overview
of the system architecture at
various levels of abstraction

Support goal-directed,
hypothesis-driven
comprehension

Indicate the maintainer’s
current focus

Display the path that
led to the current focus

Indicate options for
reaching new nodes

Provide directional
navigation

Support arbitrary
navigation

Provide navigation
between mental models

Provide abstraction
mechanisms

Cross-reference mental
models

Provide effective
presentation styles

Integrate bottom-up
and top-down
approaches

Provide
orientation cues

Support the construction
of multiple mental models
(domain,situation,program)

Indicate syntactic and
semantic relations between
software objects

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

Reduce additional effort for
user-interface adjustment

Figure 2.2: Cognitive Design Elements for Software Exploration [156]

SDLC describes software development stages (at a high level) as: analysis, design,
implementation and maintenance. In this research, we focus on three stages of the
SDLC as illustrated in Figure 2.3 (stages that are coloured with blue). We use artifacts
from the design and implementation stage (as our input) to produce a result (output)
for the usage in the maintenance stage. The term software maintenance (from SDLC) is
typically used in this research. The following definition of software maintenance by
IEEE std 1219-1998 [1] is used in this research:

Definition 2.2. “Software maintenance is a modification of a software product after
delivery to correct faults, to improve performance or other attributes, or to adapt the
product to a modified environment.”

16 Definitions

Analysis

D
es
ig
n

Implementation

M
aintenance

Pla
n

Software Development

Life Cycle

(SDLC)

Figure 2.3: The Software Development Life Cycle

Figure 2.4: Relationship between Forward Eng., Reverse Eng. and Other Related Terms [41]

Regarding these stages (see Figure 2.4), there are two processes related to this
research: Forward Engineering and Reverse Engineering. The following subsections
briefly explain these processes.

2.2.1 Forward Engineering

The following definition of forward engineering by Chikofsky and Cross [41] is used
in this research.

Definition 2.3. “Forward engineering is the traditional process of moving from high-level
abstractions and logical, implementation-independent designs to the physical implementation
of a system.”

Forward and Reverse Engineering 17

The term forward design (FD) is used to indicate a design produced in a forward en-
gineering routine (constructed after the requirement stage). The FD usually addresses
the functional requirement of the system (mostly specific to the system domain) and
also the non-functional requirements.

2.2.2 Reverse Engineering

The following definition of reverse engineering by Chikofsky and Cross (1990) [41] is
used in this research.

Definition 2.4. “Reverse engineering is the process of analyzing a subject system to identify
the system’s components and their interrelationships, and create representations of the system
in another form or at a higher level abstraction.”

In general context, reverse engineering is the process of recovering knowledge
of software, based on the existing software artifacts. There are different types of
techniques can be used in the reverse engineering process, most importantly: static-
and dynamic analysis. We describe these next.

2.2.3 Static and Dynamic Analysis

This subsection briefly describes the definition of static and dynamic analysis that we
use in this research. For static analysis, the following definition by Jarzabek (2007) [85]
is used in this research.

Definition 2.5. “Static analysis means an analysis of a program text, without executing a
program, such as is typically done by a compiler front end.”

In most cases, the analysis is performed on the source code, and in other cases,
it is performed on the object code and execution file. Static analysis is suitable for
recovering the system structure (e.g. structural design).

For dynamic analysis, the following definition by Bell (1999) [19] is used in our
research:

Definition 2.6. “Dynamic analysis is the analysis of the properties of a running program.
Dynamic analysis derives properties that hold for one or more executions by examination of the
running program.”

An advantage of using dynamic analysis is its ability to detect objects dependencies
(at runtime). However, dynamic analysis cannot guarantee to discover the complete
functionality of the system for an overview for the developer. Amongst others, this
is because dynamic analysis can only pass through a limited subset of functions in
the systems within any practical time-bound. In addition, the source code (and hence
modules) that are passed through typically depend on the set of input values, which
for most practical purposes has infinitely many combinations. In this thesis, we work

18 Definitions

Figure 2.5: Taxonomy of UML Version 2.4 [68]

purely with static analysis for the recovery of the structure of software designs from
source codes.

Next, we explain the UML notation which is used for representing this static design
structure of software.

2.3 The Unified Modeling Language

The Unified Modeling Language (UML) is a graphical notation intended to provide
a standardized communication tool in software development. In practice, software
is almost always developed by a group of software engineers. For this reason, a
communication tool is critical to ensure good communication because the software
design should be well understood by everyone working on the project.

UML was introduced in 1997, and was developed based on existing object-oriented
design methods, namely the object-modeling technique (OMT) [146], Booch [31], and
Object-Oriented Software Engineering (OOSE) [83]. There are two kinds of UML
Diagrams: structure- and behavior diagrams. A taxonomy of UML diagrams is shown
in Figure 2.5. The structure diagrams demonstrate the structural parts of the system at
diverse levels of abstraction as well as how structural parts are related to one another.
On the other hand, the behavior diagrams demonstrate the behavior of a system, which
could be portrayed as an arrangement of actions of the system over time. Through
supporting both these structure and behavior diagrams, UML provides a graphical
representation of a system during design, implementation, as well as the maintenance
phase. The next subsection describes the UML-related terms that are commonly used
in this research.

The Unified Modeling Language 19

TravelAgency

+reserve()
+delete()
+complain()
+view()

Customer

Employee

access

Complaint

Reservation

CustomerInfo

Tour

send

keep information views

store1..*

make

1..*

on 1..*
cancel

administrate

+add/update/deleteadministrate

Figure 2.6: Tours Online Class Diagram (Domain Analysis)

2.3.1 UML Class Diagram

The most common diagram to demonstrate the structural view of a system is the
class diagram [147]. This view illustrates a collection of classes, possibly interfaces,
and relations between classes. Relationships that hold between classes convey critical
information about the design. The basic types of relationships in UML are associ-
ation (including aggregation and composition) and generalization (also known as
inheritance). These relations provide the foundation of the system structure.

Class diagrams can be used throughout the software development life cycle (SDLC),
due to the fact that this diagram may carry diverse types of information - depending
on the SDLC processes and on the level of detail being considered. At the beginning
of the SDLC, the class diagram may be used to reflect the software requirements
(domain analysis class diagram). As development progresses, class diagrams can be
used to represent information that is more relevant to the construction of the system
(design level class diagram2). During or after the implementation of source code, a
class diagram may be recovered using reverse engineering techniques. Such a reverse
engineered class diagram is closely based on the source code and reflect the fine-grain
implementation structure of software systems. We call such reverse engineered class
diagrams as RE-CD. Figure 2.6, 2.7 and 2.8 illustrate these different types of class
diagrams. These examples of class diagrams are taken from Jalloul [84].

2Depending on the level of detail (LoD) of the class diagram, design level class diagrams may be turned to
code level class diagrams if a high LoD is applied.

20 Definitions

TravelAgency

-name
-address
0PhoneNb

0InterfacevU

ListOfEmpl

Starting_Page

-address

0designvU
0check_CustIDvU
0check_EmpPassvU

ListOfCust

Complain

0storevU
0sendByEmailvU

hasla

11

hasla

11

Database

-infovU
-addvU
-deletevU
0custnbvU

Payment

0accountingvU

Tour

0name
0destination

0displayvU

Reservation

0idFormvU
0calculatevU

TourData

0tourName
0hotelName
0categories
0singlePrice
0doublePrice
0triplePrice
0description

0choosevU

hasla

1

1

gets

AdditTour

-tourName
-additTourName
-description
-price

0displayvU
0selectAdditTourvU

calculate

1

inla

1

getlinfo

1..w

has

1..w

has

1..w

Use Case Model::CustomerCls

-CustID
-CustName
-Cust_email
-phone

0reservevU
0cancelvU
0complaintvU
0access_InfovU
0Update_CustnbvU

1..w

Use Case Model::EmployeeCls

-name
-ID
-password

-accessvU
-updatevU

accesses

0..w1

1..w

accesses

10..w

obtainlinfo
makesla

1

pays

fills

1

Figure 2.7: Tours Online Class Diagram (Design Level)

TravelAgency

-name
-address
-phoneNn

+interface()

Database

+info()
+add()
+delete()
+custnb()

Forms

TourData

-tourName
-hotelName
-categories
-singlePrice
-doublePrice
-triplePrice
-description

+choose()

CustomerCls

-CustID
-CustName
-Cust_email
-phone

+reserve()
+cancel()
+complaint()
+access_Info()
+Update_Custnb()

EmployeeCls

-name
-ID
-password

-access()
-update()

Starting_Page

-address

+design()
+check_CustID()
+check_EmpPass()

Complain

+store()
+sendByEmail()

Reservation

+idForm()
+calculate()

Tour

+name
+destination

+display()

Payment

+accounting()

AdditTour

-tourName
-additTourName
-description
-price

+display()
+selectAdditTour()

Figure 2.8: Tours Online RE-CD (Code Level)

The Unified Modeling Language 21

2.3.2 UML Class Diagram for Software Comprehension

A graphical representation (e.g. UML class diagram) can help software engineers
to comprehend large-scale systems. However, their effectiveness is subject to the
syntax and semantics of UML, spatial diagram layout and domain knowledge [166].
Yusuf et al. [183] show that experts (in class diagrams) tend to use such things as
stereotype3 information, colouring and layout to facilitate more efficient exploration
and navigations of class diagrams.

In this research, we focus on RE-CDs that are close to source code (code level class
diagrams). The stereotype information is not available in RE-CD and hence this infor-
mation is not used in our approach.

The work by [160], [183], [71], [151], [158] and [159] demonstrate the effect of layout
on system comprehension. However, we believe that the choice of layout is subjective
and highly depends on the user expertise and purpose of using the diagram. Thus, we
did not cover the layout of the RE-CD in this thesis. The aspect of layout remains open
or for future research. Nonetheless, in our research, we apply a colouring technique
to highlight those classes that are important in the class diagram. This colouring
technique aims to help the software developers to focus on the important classes.

2.3.3 XML Metadata Interchange

XMI stands for Extensible Markup Language (XML [176]) Metadata Interchange. It
is a standard for representing UML models using XML. The current version released
by the OMG is XMI 2.4.1 which has been formally published by the International
Organization for Standardization (ISO) as ISO/IEC 19509:2014 Information technology
– Object Management Group XML Metadata Interchange (XMI)[69].

The objective of XMI is to allow simple interchange of metadata between UML
modeling tools and Meta Object Facility (MOF)-based repositories within distributed
heterogeneous environments. The standards that are related to XMI are the following:

1. UML – Unified Modeling Language (ISO/IEC 19505)
2. MOF – Meta Object Facility (ISO/IEC 19508)
3. XML – eXtensible Markup Language [176]

The MOF defines a standard metamodel for applications, allowing UML models to
be interchanged among tools and repositories; XMI standardizes the format for these
interchanges [66]. It utilizes XML schemas to describe object-oriented models and
enable interoperability between UML-based tools. XMI is flexible. Thus, the XML
representation can be tailored to suit the user requirements. Most of the UML tools
extend the XMI format with their proprietary information, which result in that other
UML-based tools can not completely and correctly read the XMI file. This issue has

3A stereotype is a special type of class that represents a domain-specific concept. Graphically, a stereo-type
class can be adorned with a special graphical form or decorations so that it stands out from generic classes.

22 Definitions

been raised by Stevens [155] in 2003, but it still exists after more than ten years. In this
research, we aim to parse as much XMI flavours and versions as possible; to provide
an automated tool that usable for many XMI formats and hence UML tools. Finding a
way to solve this issue is one of the practical challenges in this research.

2.4 Machine Learning

This research aims at building a method to decide: what classes could be included
and what classes could be excluded in class diagrams in order to facilitate system
comprehension. Two approaches can be used to build this method:

1. Rule-based Approach
A rule-based system consists of if-then rules, facts, and an interpreter controlling
the application of the rules. Conventional rule-based expert systems, use human
expert knowledge to solve real-world problems that normally would require
human intelligence [12] and,

2. Machine Learning Approach
The machine learning approach is useful for domains where humans might not
have the knowledge needed to develop effective algorithms, where the program
must dynamically adapt to changing conditions [113].

Based on the datasets (see Chapter 3), we discovered that the machine learning
approach is more suitable to be used for our research. The reason is that there is no
explicit knowledge available in the dataset. Furthermore, the dataset is coming from
different types of domain and sizes. It is difficult for such context-sensitive problem to
be solved by using a rule-based approach. Also, the following reasons motivate us to
choose machine learning as the approach for class inclusion/exclusion selection:

• It provides algorithms that may facilitate to automatically4 classify the important
classes in a class diagram based on the training data (in our case, training data
are gathered from forward design and RE-CD);

• Human resources are not required to formulate rules. Therefore, it may avoid
the inefficiency of human learning [16].

• It considers context and it can utilize multiple sources of knowledge to formulate
the classification rules.

• It can adapt if new information becomes available.

Next, we explain the definitions of machine learning, types of machine learning,
machine learning classification algorithms and performance measure for classification
algorithms.

4With no or little human intervention.

Machine Learning 23

2.4.1 Definition of Machine Learning

The common definitions of machine learning are the following:
Arthur Samuel (1959) [149][113] defines machine learning as:

Definition. “ A field of study that gives computers the ability to learn without being explicitly
programmed.”

This definition outlines the basic concept of machine learning. Later, Mitchel (1997)
[113] introduces a further formalized definition of machine learning as shown in the
following.

Definition. “Well-posed Learning Problem: A computer program is said to learn from experi-
ence E with respect to some task T and some performance measure P, if its performance on T, as
measured by P, improves with experience E.”

However, Witten et al. (2005) [178] more focus on the ‘descriptions’ model (from
examples). They define machine learning as:

Definition. “The acquisition of structural descriptions from examples. The kind of descriptions
found can be used for prediction, explanation, and understanding.”

There are several types of machine learning provided to solve problems (depends
on the purpose and available data). The types of machine learning are described in the
next section.

2.4.2 Types of Machine Learning

The following describes four major types of machine learning algorithms:

• Supervised machine learning is the search for algorithms (see Figure 2.9) that reason
from externally supplied instances to produce general hypotheses, which then
make predictions about future instances [98]. The training data (input) have a
known label or predefined result, for example, a binary label of buy/not buy in
the stock market. Through the training process, a model is constructed to make
predictions of test instances (data). Examples of supervised learning tasks are
classification and regression.

• Unsupervised machine learning learns to characterize certain input pattern in a fash-
ion that reflects the statistical structure of the overall collection of input patterns
[45]. The input data are unlabeled, and no predefined results are provided. The
goal of unsupervised learning is to find some kind of structure in the data. An
example of a common unsupervised learning task is clustering.

• Semi-supervised learning is halfway between unsupervised and supervised learn-
ing [38]. The input data is a mixture of unlabeled and labeled sample. The
purpose of semi-supervised learning is to discover how combining labeled with
unlabeled data may change the learning behavior, and design algorithms that
benefit from such a combination.

24 Definitions

Problem

IdentificationOofO
requiredOdata

DataOpre-processing

ParameterOtuning Training

DefinitionOofOtrainingOset

AlgorithmO
Selection

EvaluationO
withOtestOset

ClassifierOK?
No Yes

Figure 2.9: The Process of Supervised Machine Learning [98]

• Reinforcement machine learning is the learning of a mapping from situations to
actions so as to maximize a scalar reward or reinforcement signal [161]. The
learner is not told which action to take, but must discover which action results in
the best reward by trying them. The action may affect not only the immediate
reward, but also the next situation through all subsequent rewards.

This research applies supervised machine learning classification algorithms to
decide what classes could be included and what classes could be excluded (omitted)
in class diagrams. Next, we explain the supervised machine learning classification
algorithms that are used in our experiments.

2.4.3 Machine Learning Classification Algorithms

This subsection focuses on several supervised machine learning classification algo-
rithms that we believe are suitable for the purpose of this research. As illustrated
in Figure 2.9, a selection of classification algorithm(s) is needed to make sure our
proposed framework uses the algorithm(s) that fit with the datasets and the purpose
of research. Prior to making a selection of the classification algorithms, several ex-
ploratory experiments on a wider range of algorithms need to be conducted. In this
research, we do not expect that there will be a single silver bullet algorithm that will
outperform all others across all sets of problems. Also, we are not just interested in a
single algorithm that scores a top result on a given problem, but are looking for sets of

Machine Learning 25

classifiers5 (i.e. classification algorithms) that produce robust results across domains.
In this way, algorithms become more portable across problems with very different rates
of inclusion of classes in designs. We also aimed for a mix of classifiers in terms of
expected bias (what relationships can be captured) and variance (does the prediction
change when trained on different random samples) [171].

As discussed, we want to use a diverse set of algorithms representative for different
approaches. For example, Decision Trees, Stumps, Tables and Random Trees or Forests
all divide the input space up in disjoint smaller sub-spaces and make a prediction
based on the occurrence of positive classes in those sub-spaces. K-Nearest-Neighbour
(k-NN) and Radial Basis Functions (RBF) Networks are similar local approaches, but
the sub-spaces here are overlapping. In contrast, Logistic Regression and Naive Bayes
model parameters are estimated based on potentially large numbers of instances and
can thus be seen as more global models. The nine classification algorithms we consider
are described in Table 2.2 (refer [178] for more explanation).

Most of the classification algorithms in our experiments are designed to produce a
predicted outcome class label6 for each test instance [58]. However, this research aims
to produce ranking of classes on the importance; hence, we are more interested in the
classifier score for every instance rather than just a set of instance classification labels. A
high classifier score of a class indicates the class is important while a lower classifier score
indicates the class is less important.

The classification algorithm(s) for this research are selected based on the classifi-
cation performance and their robustness to all datasets. We explain the performance
measure of classification algorithms in the next section.

2.4.4 Performance Measure For Classification Algorithms

A performance measure of machine learning classification algorithms can be derived
from a confusion matrix (as shown in Table 2.3). Several performance measures to
compare classification algorithms (formulated based on the confusion matrix) are
described in Table 2.4 (refer [178] for more detail). Our datasets used in this research
are typically imbalanced (i.e. low proportion of classes in forward design and high
proposition of classes in RE-CD, as shown in Chapter 3, 7 and 8). Hence, the common
performance measures listed in Table 2.4 do not fit for our purpose. Referring to the
confusion matrix example in Table 2.3, the overall success rate (accuracy) is 95.24%. It
seems that the algorithm performs an excellent prediction. The 95.24% is calculated
by taking the sum of correct prediction divided by the overall number of predictions.
The percentage of correct prediction for TN is 98.8%, while TPR is 25%. The resulting
prediction performance for TP is very low, even though overall correct prediction is
very high.

5In this thesis, classifier refers to classification algorithms models, not the term classifier in UML.
6A binary-classification that attempts to produce ‘Yes’ or ‘No’ class labels.

26 Definitions

Table 2.2: The nine classification algorithms

Algorithms Description
Decision Table A Decision Table consists of rows and columns that associate

a set of conditions or tests with a set of actions. The machine
learning tool used in this research - Waikato Environment
for Knowledge Analysis (WEKA) [76] uses a simple Decision
Table Majority (DTM) classifier.

Decision Stumps Decision Stumps are decision trees consisting of just a single
level and split [171]. A decision stump makes a prediction
based on the value of just a single input feature, and is a good
baseline classifier to compare against decision trees and other
classifiers, to determine what results can already be achieved
with a very basic model.

J48 Decision Tree
(J48)

J48 is a WEKA implementation of the C.45 decision tree algo-
rithm [178]. This algorithm generates a classification-decision
tree for the given dataset by recursive partitioning of data.

k-Nearest
Neighbour (k-NN)

k-NN classification finds a group of k objects in the training
set that are most similar to the test object and bases its clas-
sification on the predominance of a particular class in this
neighborhood [179].

Logistic Regression
(LR)

LR uses a linear input combination of input variables to pro-
vide an output score, which is then mapped to a probability
by applying a logistic function [61].

Naive Bayes (NB) NB is a classification algorithm based on the Bayes rule of
conditional probability. It assumes that the presence/absence
of a particular feature of a class is unrelated (independence)
to the presence/absence of any other feature [110].

Radial Basis Func.
(RBF) Networks

RBF Networks are a type of feed-forward neural network.
We used simple normalized Gaussian functions that each
cover part of the input space and the activation of each of
these functions given an output is then fed into a basic feed-
forward neural network [120].

Random Forests Random Forests is a combination of tree predictors such that
each tree depends on the values of a random vector sampled
independently and with the same distribution of all trees in
the forest [33].

Random Tree The Random Tree algorithm builds a classification algorithm
tree considering K randomly chosen predictors at each node.
More explanation of Random Tree is provided in [101].

Machine Learning 27

Table 2.3: Confusion Matrix or Contingency Table

Prediction Result Actual Result
Y N

TP FN Y
FP TN N

Example:
Y N
11 33 Y
10 849 N

Note :
True Positive (TP) : A positive instance that is correctly classified as positive
False Positive (FP) : A negative instance that is incorrectly classified as positive
True Negative (TN) : A negative instance that is correctly classified as negative
False Negative (FN) : A positive instance that is correctly classified as negative

Table 2.4: Common Performance Measures and Terms

Terms and Measures Description

Overall Success Rate or
Accuracy (Acc) [15] Acc = TP + TN

TP + TN + FP + FN

True Positives Rate (TPR) or
Recall or Sensitivity [58] TPR = TP

TP + FN

False Positives Rate (FPR) [58]
or false alarm ratio FPR = FP

FP + TN

Precision Precision = TP

TP + FP

F-measure (F1) [26] F1 = 2 ∗ (Precision ∗ Recall
Precision + Recall)

28 Definitions

In this research, we search for algorithms that provide reliable estimates across the
score range, thus we evaluate using the Area Under ROC7 Curve (AUC) [79] value
rather than accuracy. For imbalanced data, the AUC also avoids the issue of favouring
models that just predict the majority outcome class. The larger the ROC area, the
better the classification algorithm is in term of classifying classes [14]. The AUC value
(calculated using WEKA) measures the performance of a model over the entire range of
model scores, i.e. how well it separates by changing the score threshold of a class over
the entire score range. Therefore, AUC shows the ability of the classification algorithms
to rank classes correctly as more likely to be included in the class diagram or not. AUC
is quite often be used to evaluate classification algorithms that utilized imbalanced
dataset [39].

Precision and recall are common in information retrieval for evaluating classification
performance [58]. However, these performance measures are not suitable to be used
for our dataset (due to imbalanced or class skew). The F-measure aims to improve by
balancing precision and recall, but the issue is that it still needs a fixed classification
threshold8 (in our case, there is no specified threshold as we aim to cover the whole
range of scores). Therefore, AUC is preferred over accuracy, precision, recall and F-
Measure (refer [62] for further discussion). The AUC measure is based on ROC graphs;
A two-dimensional graph in which TPR is plotted on the Y-axis and FPR is plotted on
the X-axis (see Figure 2.10 (a)). It indicates relative tradeoffs between true positives
and false positives. Figure 2.10 [58] compares two classifiers evaluated using ROC
curves and precision-recall curves. Figure 2.10 (a) and (b) show a balanced dataset (1:1
class distribution) while Figure 2.10 (c) and (d) show an imbalance dataset (1:10 class
distributions9 of the same classifier and same domain). This figure demonstrates that
the ROC curves (Figure 2.10 (a) and (c)) are identical, but the precision-recall curves
(Figure 2.10 (b) and (d)) differ substantially.

2.5 Summary

In this chapter, we defined the key concepts that are used in this research. We described
the UML as our focus of this research. In particular, this research utilized the forward
design and RE-CD as the main input. We use XMI as the input because it can be
generated by most of the common CASE tools. Machine learning is the heart of this
research as we use the classification algorithms to classify the classes that could be
included and classes could be omitted in order to simplify the class diagram. The list of
classified classes (included or excluded) from the classification process is meaningless if

7ROC means Receiver Operating Characteristics.
8A decision threshold is the cut-off degree employed to decide the final prediction of a classification

model. In binary classification, the final prediction is class positive if the model’s posterior probability of a
test example is above the threshold; or else it is class negative [168].

9The classifier and the underlying concept are the same; different only in class distribution

Summary 29

Figure 2.10: ROC and Precision-Recall Curves under Class Skew
(a) ROC curves (1:1 distribution) (b) precision-recall curves, (1:1 distribution)
(c) ROC curves, (1:10 distributions) (d) precision-recall curves, (1:10 distributions)

it is not presented graphically. Therefore, we refer to several cognitive design elements
for software exploration that we believe useful to assist the software developer in
understanding software.

This chapter only defines the common terms of this research. Other related terms
and also related works are presented in each chapter.

Chapter3
UML Usage in Open Source
Software Development

UML is the standard for modeling software designs and is commonly used in
commercial software development. However, little is known about the use of
UML in Open Source Software Development. This chapter evaluates the usage
of UML modeling in ten open-source projects selected from common open-source
repositories. It covers the types of UML diagrams that are used, the level of detail
that is applied, and the frequency of updating UML models. Our findings also
include the application of UML modeling at different levels of detail for different
purposes, the change in focus on types of diagram used over time, and research on
how the size of models relates to the size of the implementation.

3.1 Introduction

UML provides the facility for software engineers to specify, construct, visualize and
document the artifacts of a software-intensive system and to facilitate communication
of ideas [32]. For commercial software development, the use of UML is commonly
prescribed as part of a company-wide software development process while in open-
source software development (OSSD), there is typically no mandate on the use of
UML. Only if the community of developers of the OSSD feels the need (e.g. for their
communication) then UML diagrams are produced. Even though some open-source
projects employ UML diagrams, these diagrams do not completely correspond to the

This chapter is a more detailed version of a publication entitled “UML Usage in Open Source Software
Development : A Field Study”, In Proceedings of the 3rd International Workshop on Experience and
Empirical Studies in Software Modelling (EESSMod 2013)

32 UML Usage in Open Source Software Development

implementation code. For instance, the number of classes used in class diagrams is
typically less than the number of classes that exist in the implementation source code.
The usage of UML class diagrams also varies across projects. Almost all OSSD projects
that use UML choose to produce class diagrams. Some projects also constructed other
types of UML diagrams such as use case diagrams, sequence diagrams and activity
diagrams.

One of the benefits of UML is to ease communication between software developers.
The nature of OSSD is that software developers normally communicate with each
other using some online communication medium (e.g. discussion forum, e-mail,
IRC) rather than through face-to-face interaction. There is an anecdotal belief that
UML is rarely used in OSSD. However, there is no quantitative research to prove this
perception. In this chapter, we aim at evaluating the usage of UML diagrams in OSSD
projects. We want to investigate how UML is used in OSSD without the influence of
the stakeholders or users of the system. We assume that the UML diagrams that exist
in a project document means such diagrams are used in the project. The reason is that
when the cost (effort) is spent in developing an artifact, such artifact should be used
and provides a benefit in the development or maintenance phase [187].

We explore the publicly available software documentation to answer the following
questions: 1) What types of UML diagrams are used? 2) How does the size of the
design relate to the size of the implementation? 3) What level of detail is used in UML
diagrams? and 4) How does timing of changes in the implementation relate to the
changes in UML diagrams/documentation?

The chapter is structured as follows: Section 3.2 discusses related work. Section 3.3
describes the case studies used in this research. Section 3.4 explains the study approach
while Section 3.5 presents the results and findings. This is followed by our conclusion
and future work in Section 3.6.

3.2 Related Work

Dobing and Parsons [48] performed a survey to find out to what extent UML is used
and for what purpose, what are the differences of the levels of detail used and how
successful UML usage is for communication in a team. The survey was conducted
using a web survey and participated by 171 UML practitioners. The research found
that the most used types of UML diagrams were use case diagrams and class diagrams
while collaboration diagrams were used the least. In [47], Dobing and Parsons also
conducted another survey to investigate the current practice in the use of UML. There
were 299 responses in the survey (with the endorsement of the Object Management
Group (OMG) [119]). The findings of this survey highlighted that the most used
UML diagrams were class diagrams, use case diagrams and sequence diagrams. This
research also discovered that class diagrams and sequence diagrams play a major role
in specifying system requirements for programmer, documenting the design for future

Case Study 33

maintenance and in clarifying understanding of the application among team members.
Grossman et al. [67] performed a study on the individual perspective of using

UML. This study also addressed the characteristics that affect the usage of UML.
Similar to [47] and [48], the result of the most important diagrams in ranking are use
case diagrams, class diagrams and sequence diagrams. Those studies also found out
that it is difficult to determine whether UML provides too much detail or too little
detail because it depends on the software technology (i.e. Enterprise System, Web-
based system, real-time system). The study suggested that UML diagrams need to be
customized based on the environment.

Yatani et al. [182] conducted an evaluation on the use of diagramming for com-
munication among OSSD developers and also performed semi-structured interview
with developers from a large OSSD project. This study highlighted a diverse types of
diagrams that is used for the communication between the contributors of the system.
Not all diagrams used for communication purposes were updated during the project.

Chung et al. [42] carried out a survey that was participated by 230 OSSD developers
and designers. Their findings demonstrate that 1) In terms of frequency of updating
designs, even though 76% agree that diagrams have value, only 27% practice diagram-
ming very often or all the time, and 2) The UML diagrams are only used for formal
documentation purposes.

Most of the related works use surveys to explore the usage of UML diagrams. These
surveys are based on the practitioners’ perspective of how they use UML. In contrast,
our study evaluates the use of UML modeling in OSSD projects by mining the project
documentation. Hence, this reflects the real artifacts produced by using the UML
notation.

3.3 Case Study

One of the challenges of this study was to find suitable OSSD Projects that use UML
diagrams. Based on research by Hutchinson et al. [81], Dobing and Parsons [48], and
Erickson et al. [54], we know that one of the most used UML diagrams is the class
diagram. For this reason, we performed a search for UML class diagram images using
the Google[3] search engine. In particular, we targeted our search on four open source
repositories: SourceForge[7], GoogleCode[4], GitHub[8] and BerliOS[2]. The primary
keyword used for the search was “Class Diagram”. Based on the hits of these searches,
we browsed the project repositories to assess their suitability for inclusion in this study.
Our initial list of candidate cases consisted of 57 projects (see Appendix A.1). We
refined the selection of the case study by using the following criteria:

• The project should have UML diagrams and corresponding source code (projects
that have multiple versions were preferred).

• The source code should be written in Java.

34 UML Usage in Open Source Software Development

• The amount of classes (in the source code) > 50 classes.

The reason for selecting projects in Java was that we intended to reverse engineer the
source code to class diagrams for analysis purposes. The reverse engineering tool that
we used for this study performs best with Java source code. We refine our selection of
case studies as follows:

1. Round 1: Out of 57 projects, we eliminate 21 projects that developed using C++,
C#, Pascal, Phyton, etc. (other than Java). Only 36 projects remain to be the
candidate.

2. Round 2: Discard 13 projects due to the number of classes below 50.
3. Round 3: Discard 6 projects because we prefer projects that have more than one

version.
4. Final Round: In total, 18 projects qualify for the final round. In this round,

we thoroughly explore the case studies artifacts (source code, class diagram,
documentation). As a result, we found that ten projects that are suitable for our
research. Most of the projects we discarded because the projects only provide
the latest source code in the repository, even though the projects have several
versions of releases (also class diagram).

The list of case studies is shown in Table 3.1. The total numbers of classes involved
in these case studies range from 50 to 2000.

3.4 Approach

This section describes the approach we used in this study. We conducted four main
activities in order to answer the following research questions:

RQ1: What types of UML diagrams are used?

Based on the project repository, we manually browsed the documentation and other
provided information about the software to find all the UML diagrams that were used
in the project.

RQ2: How does the size of the design relate to the size of the implementation?

Our aim was to use one single tool for counting classes of both the design and the
implementation. Furthermore, for source code, we only wanted to count classes that
were actually designed for the project’s system, hence we exclude library classes (also
test-classes) that are imported, and would typically not be modeled. To this end, source
codes are reverse engineered (into class diagrams) using several CASE tools. The CASE
tools used in this study were MagicDraw [9] version 17.0 and Enterprise Architect
[153] version 7.5. The reverse engineered design was then exported to XML Metadata

Approach 35

Table 3.1: List of Case Studies

Project Description
No. of

Releases
URL Source

ArgoUML An open source UML modeling
tool and include support for all
standard UML 1.4 diagrams.

19 http://argouml.
sourceforge.net

Mars Sim-
ulation

Free software project to create a
simulation of future human settle-
ment of Mars.

26 http://mars-sim.
sourceforge.net/

JavaClient The project allows development
of applications for Player/Stage
using the Java programming lan-
guage.

3 http://java-player.
sourceforge.net/

JGAP Genetic Algorithms and Genetic
Programming package.

8 http://jgap.
sourceforge.net/

Neuroph Lightweight Java neural network
framework to develop common
neural network architectures.

9 http://neuroph
.sourceforge .net/

JPMC Java Portfolio Management Com-
ponent (JPMC) is a collection
of portfolio management compo-
nents.

1 http://jpmc.source
forge .net/

Wro4J It stands for Web Resource Opti-
mizer for Java. The project pur-
pose is to improve web applica-
tion page loading time.

3 http://code.google
.com/p/wro4j/

xUML-
Compiler
(xUML)

xUml-Compiler takes a user spec-
ified data model and associated
state machines and produces an
executable and testable system.

13 http://code.google
.com/p/xuml-
compiler/

Maze Maze-solver is a Micro-Mouse
maze editor and simulator.

2 http://code.google
.com/p/maze-
solver/

Gwt-
portlets

Free open source web framework
for building GWT (Google Web
Toolkit) applications.

6 http://code.google
.com/p/gwt-
portlets/

Interchange (XMI) files. These were loaded into a UML case tool in which we manually
removed all library classes. From the resulting XMI files, software design metrics were
computed using the SDMetrics [180] tool.

36 UML Usage in Open Source Software Development

Table 3.2: Levels of Detail in UML models

No Class Diagram Elements Low LoD High LoD

1 Classes (box and name) YES YES
2 Attributes NO YES
3 Types in Attributes NO YES
4 Operations NO YES
5 Parameters in Operations NO YES
6 Associations YES YES
7 Association Directionalities NO YES
8 Association Multiplicities NO YES
9 Aggregations YES YES
10 Compositions YES YES

RQ3: What level of detail is used in UML diagrams?

The level of detail (LoD) for all UML diagrams gathered from the projects’ repositories
was analysed using the level of detail that was defined by Fernández-Sáez et al. [60]
(as illustrated in Table 3.2). In addition, we also analyzed the diagrams to identify the
technique of constructing the UML diagram (forward or reverse engineering). The
UML diagrams were identified as RE-CD if they satisfy the symptoms (or weaknesses)
mentioned by Osman [125]. These tasks were done manually.

RQ4: How does timing of changes in implementation relate to the changes in UML diagram-
s/documentation?

For source code, we manually extracted the dates of releases from the project reposito-
ries. For UML diagrams, we looked at the date-information provided by the system
documentation, developer’s manual and other related documents in the project reposi-
tory.

3.5 Results and Findings

This section describes the result of this study. The results are grouped by the research
questions mentioned in the previous section.

3.5.1 Usage of UML Diagrams

The UML diagram that was mostly used in our set of OSSD projects is the class diagram.
This was to be expected because our main keyword of searching for the case study
was based on class diagrams. Table 3.3 shows which other types of diagrams were

Results and Findings 37

Table 3.3: UML Diagram Usage

No Project Use Case
Component
Diagram

Package
Diagram

Class
Diagram

Composite
Structure
Diagram

Object
Diagram

Sequence/
Interaction
Diagram

Activity
Diagram

State
Machine
Diagram

1 Maze No No No Yes (6) No No No No No

2 JavaClient No No No Yes (1) No No No No No

3 xUML No No No Yes (1) No No No No No

4 JPMC Yes (1) No Yes (1) Yes (4) No No No No No

5 Neuroph No No No Yes (3) No No No No No

6 Gwt-portlets No No No Yes (3) No No Yes (1) No No

7 Wro4J No No No Yes (3) No No No No No

8 JGAP No No No Yes (2) No No No No No

9 ArgoUML No Yes (1) Yes (12) Yes (30) No No Yes (2) Yes (1) No

10 Mars No Yes (2) No Yes (2) No No No Yes (1) No
Total no. of
diagrams used
(i.e. no. of 'yes ')

1 2 2 10 0 0 2 2 0

Total no. of
Diagram 1 3 13 55 0 0 3 2 0

Structure Diagram Behaviour Diagram

used. The term ‘Yes’ in Table 3.3 means that the project used at least one instance of
a UML diagram specified in the table. The numbers in Table 3.3 indicate the number
of diagrams constructed in the OSSD projects. Similar to most industrial use, none
of the OSSD projects used UML to model their complete system. The use of UML in
OSSD projects seems driven by a need to codify high-level knowledge. For example,
ArgoUML did not use sequence diagrams in their modeling until there was a new
feature. Only this new feature was explained by a sequence diagram.

In general, the case studies showed that the most used UML diagrams in OSSD are
use case, component, package, class, sequence/interaction and activity diagram. The
following subsections describe the results in more detail.

Use Case Diagram

A use case diagram is used to describe the desired functionality of the software product
[65]. Use case diagrams were used by only one of our evaluated OSSD project (see
JPMC in Table 3.3). Most of these OSSD projects have specified their goal, but the
specification and the interaction between users and system were explained in text.

Component Diagram

Component diagrams are used to divide the system into components and show their
relationships through breakdown of components into lower-level structure [63]. This
diagram is used to illustrate the high-level structure of large systems. Because of this

38 UML Usage in Open Source Software Development

reason, only complex projects among the case studies used this diagram. ArgoUML
and the Mars Simulation Project provided this diagram in their repositories. ArgoUML
provided one component diagram from an old design document to illustrate the
interaction between early developed component and packages. The Mars Simulation
project provided two component diagrams, i.e. ‘Top Level Diagram’ and ‘Simulation
Component Diagram’. The ‘Top Level Diagram’ illustrated dependencies between 3
components while the ‘Simulation Component Diagram’ illustrated more details about
the relationship between a simulation component and other related components.

Package Diagram

Package diagrams provide a grouping construct that allows to group design elements
together into higher-level units [63]. Package diagrams show the relationship between
higher level units. This diagram is used to explain the high-level structure of a system.
Only two of the case studies used this diagram. The JPMC project presents almost all
main packages and their dependencies in a package diagram. Meanwhile, ArgoUML
presented two package diagrams. The first package diagram in this project illustrated
the dependencies between domain-related packages and two other packages represent-
ing external libraries. The second package diagram illustrated the high-level package
in this project.

Class Diagram

Class diagram is the most used UML diagram in these case studies. Most of the
case studies only show classes that are important to the system. The correspondence
between design classes and implementation is discussed in subsection 3.5.2.

Sequence/Interaction Diagram

Sequence diagrams were used by two of our evaluated OSSD projects. However, both
projects have only one sequence diagram per project. ArgoUML introduced a sequence
diagram after eight version of releases. Table 3.7 shows that only after version 0.26,
a sequence diagram was introduced in the documentation. Perhaps, it is difficult to
generate the sequence diagram for the entire release. Hence, the developer of this
project used a sequence diagram to illustrate the flow of a new feature. The gwt-portlets
project used only one sequence diagram. We assume that the described flow contains
crucial information for the system. This is due to the classes that were involved in the
sequence diagram were presented in the project’s class diagram that shows the key
classes of the system.

Results and Findings 39

Activity Diagram

Activity diagramming or activity modeling emphasizes the flow and conditions for
coordinating lower-level behaviour [68]. This study found that two OSSD projects
used the activity diagram. However, not all activity diagrams in these projects were
related to the software development. ArgoUML used an activity diagram to present
the flow of managing issues in ArgoUML project. Meanwhile, the Mars Simulation
project used one activity diagram for specifying a feature of the project.

3.5.2 Ratio between Design and Implementation

This subsection presents the results of analyzing the ratio between classes in the design
and classes in the implementation. Since there are multiple versions of both the design
and implementation in most of the case studies, we chose a pair with a high ratio of
design to implementation. For example, for the Neuroph project we selected version
2.3 because this version has a high number of designed classes. The project starts
updating UML diagrams at this point in time. The Maze project has the highest ratio of
classes in design to classes in the implementation. This is a relatively small project that
consisted of 69 classes in the implementation and 40% of these classes were represented
in the UML design. In absolute numbers, the highest number of classes in a design
was found in the JavaClient project with 57 classes. The data in Table 3.4 is depicted
graphically in Figure 3.1. This figure shows that the ratio between the number of
classes in the design and the number of classes in the implementation decreases when
the number of classes in the implementation increases. Based on our observation, most
of the projects had created UML diagrams in the early version of the release, but rarely
increase the amount of classes in the design.

3.5.3 Level of Detail (LoD)

This subsection describes the result of assessing the level of detail used in modeling,
as well as the use of reverse engineering in the case studies. The overall result is
illustrated in Table 3.5. The project that uses the most class diagrams is ArgoUML:
46 class diagrams. Out of this total number, 19 UML diagrams were constructed in
Low LoD and other 27 diagrams were constructed in High LoD. ArgoUML is the only
case study that used RE-CDs. There were 15 diagrams which were constructed using
reverse engineering techniques. Almost half of these diagrams were used to describe
the user interface from an old design documentation and other diagrams showed class
diagrams for selected classes. Most of the selected classes were classes that play a
key role in how the program works [165]. The Maze project showed some interesting
result in their construction of UML diagrams. There were six UML class diagrams
constructed in this project. A class diagram with low LoD displays 40% of the total
classes. These diagrams illustrate the relationships between domain-related classes

40 UML Usage in Open Source Software Development

Table 3.4: Classes in Design versus Classes in Implementation

No Project # of Class
Diagram

of Classes in
Design (D)

of Classes in
source code (S)

% D vs S

1 Maze 6 28 69 40.6
2 JavaClient 1 57 215 26.5
3 xUML 1 45 172 26.2
4 JPMC 4 24 126 19.1
5 Neuroph 3 24 179 13.4
6 gwt-Portlets 3 20 178 11.2
7 Wro4J 3 11 100 11.0
8 JGAP 2 18 191 9.4
9 ArgoUML 30 33 909 3.6
10 Mars Simulation 2 31 953 3.3

Total 55 291 3092 16.4

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000 1200

P
er

ce
n

ta
ge

 o
f

C
la

ss
es

 in
 D

es
ig

n

No. of Classes in Implementation

Case Study

Power (Case Study)

Mars Simulation

Maze

Neuroph

xUML
JavaClient

gwt-Portlets

JPMC

Wro4J JGAP

ArgoUML

Figure 3.1: Classes in Design vs Classes in Implementation

Results and Findings 41

Table 3.5: LoD and Forward/Reverse Class Diagram

No Project Low LoD High LoD Forward Reverse Total Class Diagram

1 ArgoUML 16 14 15 15 30

2 Maze 1 5 6 0 6

3 JPMC 0 4 4 0 4

4 Mars 2 0 2 0 2

5 Wro4J 2 1 3 0 3

6 Neuroph 1 2 3 0 3

7 Gwt-Portlets 1 2 3 0 3

8 JGAP 2 0 2 0 2

9 Javaclient 0 1 1 0 1

10 xUML 0 1 1 0 1

Total 25 30 40 15 55

and external library classes used in this system. The other five diagrams presented
class diagrams based on selected packages. We assume that the classes listed in the
design play an important role in the system. In the Mars Simulation project, the activity
diagram and the component diagram were constructed with in LoD.

The Wro4J project used only class diagrams. Two of the class diagrams were in
Low LoD, while another class diagram was constructed in High LoD. This Low LoD
class diagram was used to describe the structure of classes in the system. Similar to
this project, Gwt-Portlets project also used a Low LoD class diagram to present the
high-level class structure in the project. Another two class diagrams showed the classes
and the relationship of important classes in the system. The Low LoD was also used
to present the higher level of abstraction of the system class diagram in JGAP project.
This project has two class diagrams from different versions of releases that showed the
class diagrams of the key classes in the system.

In Neuroph, three class diagrams were presented in the system repository. Two of
the diagrams were presented in High LoD. Those class diagrams were used to describe
the class diagrams of important or key classes in the system. Meanwhile, all JPMC
project‘s UML diagrams were constructed in High LoD. There were four class diagrams
showing the key classes of the system. The high-level abstractions of class structures
were presented in a package diagram and a component diagram.

The JavaClient and xUML-compiler project have only one High LoD diagram for
each project. The JavaClient project constructed a very complex and high LoD class
diagram that consisted of 67 classes. This class diagram consisted of classes that existed
in the first version of this system. Hence, it is different from other case studies that
normally showed the important, relevant or key classes in the system. The xUML-
compiler project constructed a High LoD class diagram that show the relations between
the domain-related classes and the external packages.

42 UML Usage in Open Source Software Development

In addition to LoD, we also evaluate the usage of reverse engineering in OSSD
projects. Initially, we expected the class diagrams that were constructed using reverse
engineering to have a High LoD. However, we found several RE-CDs that had Low
LoD in ArgoUML project. We found that only ArgoUML used reverse engineering
for reconstructing some of its class diagrams. However, several UML diagrams from
other projects also show several symptoms of RE-CDs (for example, “no aggregation
and composition relationship” and “multiple relationships for the same direction”).
Perhaps, these diagrams were constructed through reverse engineering, but were
subsequently modified manually and ended up looking like a forward engineering
design.

3.5.4 Frequency of Updating UML Models

This subsection presents the frequency of updating the UML models of the case studies.
Basically, we would like to know whether UML diagrams are used throughout the
projects or only in the initial phases. We analysed the case studies that have multiple
versions of releases to assess the frequency of updating the diagrams while the systems
evolve through subsequent releases. Even though there were multiple versions of
system releases for the Mars Simulation, JavaClient, JPMC, Gwt-Portlet, Maze and
xUML-compiler project, their UML diagrams were not changed. For instance, the Mars
Simulation project has released 26 versions of source code. The UML designs were only
uploaded on Dec 2009. Based on that date, we assume that this design corresponds
with the release version 2.87 and above. This indicates that the earlier 19 versions of
the software did not have a UML model. However, we could not disregard the fact
that the design may be created earlier than the date it was uploaded.

The result also shows that the frequency of updating UML diagrams is low. In
most of the case studies, a new UML diagram was created when there was a new
feature of the system introduced in a new version or release. Only the Neuroph and
ArgoUML project actually modified existing diagrams. Other projects only added new
diagrams to their documentation, but did not modify previously existing diagrams. In
the ArgoUML project, we found that there was an increasing amount of diagrams at the
same time as the number of project contributors increased. The work by Wen Zhang et
al. [186] shows that there was an increasing amount of participants in version 0.26. As
we can see in Table 3.6, the ArgoUML project updated and added a lot of UML diagrams
in version 0.26. We hypothesize that the documentation was elaborated to cater for
a group of newcomer developers that was looking for information about the design.
The creation of UML diagrams is perhaps being used to ease the communication of
the new developers. It is also possible that the new software developers created this
diagram to help their understanding of the system. In the next subsection, we discuss
the ArgoUML project as an example of a project that did update their UML designs
across multiple versions of releases.

Results and Findings 43

Table 3.6: Add, Remove and Modify of UML Diagrams in ArgoUML Project

Add Remove Modify

1 0.10.1 15 0 0 OldMDocument

2 0.12 18 0 0 CookbookM2003MwasMadded

3 0.14 0 0 0 CookbookM0.14MwasMaddedMbutMnoMchangesMforMUMLMdiagram

4 0.16 1 1 0 CookMbookM0.16MwasMadded.MKeyMclassesMclassMdiagramMwasMtakenMout

5 0.18.1 0 0 0 CookbookM0.18.1MwasMaddedMbutMnoMchangesMforMUMLMdiagram

6 0.20 3 0 0 CookbookM0.20MwasMadded.M

7 0.22 0 0 0 CookbookM0.22MwasMaddedMbutMnoMchangesMforMUMLMdiagram

8 0.24 1 0 0 CookbookM0.24MwasMadded

9 0.26 8 0 3 CookbookM0.26MwasMadded.

10 0.26.2 0 0 0 CookbookM0.26.2MwasMaddedMbutMnoMchangesMforMUMLMdiagram

UML Diagram RemarksNo Release
Version

ArgoUML

Table 3.7 shows which types of diagrams were used across subsequent versions over
time. The table shows that in the early versions of the software, diagrams were made
that represent the high-level structure of the system (component, package and class).
As development time progresses, diagrams are added that represent the dynamic
behaviour of the system through activity diagrams (v 0.16) and sequence diagrams (v
0.26). Also, at the later stages of development, component diagrams are no longer used.
We believe this trend to be typical of the use of modeling in software development in
general (for non-embedded applications): Firstly, the developers design the overall
structure (using component diagrams) and later continue to flesh out using behavioural
diagrams of the design. Figure 3.2 shows the evolution of UML diagrams in every
version of release. Figure 3.2 also shows the evolution of the number of classes. It is
explicitly shown that UML diagrams are rapidly created in the early stage of software
release and then occasionally updated.

3.5.5 Key Classes

This study shows that UML diagrams do not cover the entire scope of the implementa-
tion. Class diagrams only show the key classes in the system. The OSSD developers
identified the main classes of the system and showed these in a high-level class di-
agram. Perhaps, the package diagram is usually not used to present the high-level
abstraction because it is too brief and a complete class diagram is not used because
it contains too much information. In addition, we contacted one of the developers
of the case studies. He confirmed that the developer in his project constructed UML
diagrams only for important classes. Thus, we believed that there is a need for a class
diagram abstraction or condensation method to produce this kind of diagram; as also
suggested by Ichii et al. [82]. The studies performed by Andriyevska et al. [17] and
Osman et al. [133] may be useful for the class diagram abstraction.

44 UML Usage in Open Source Software Development

Table 3.7: List of UML Diagrams used in ArgoUML Project

No
Release
Version

Date Source
Component
Diagram

Package
Diagram

Class
Diagram

Activity
Diagram

Sequence/
Interaction
Diagram

1 0.10.1 09.10.2002
Old7Design7
Document

Yes Yes Yes No No

2 0.12 18.08.2003
Cookbook720037and7
Old7Design7
Document

Yes Yes Yes No No

3 0.14 05.12.2003
Cookbook720037and7
Old7Design7
Document

Yes Yes Yes No No

4 0.16 19.07.2004 Cookbook-0.16 No Yes Yes Yes No
5 0.18.1 30.04.2005 Cookbook-0.18.1 No Yes Yes Yes No
6 0.20 09.02.2006 Cookbook-0.20 No Yes Yes Yes No
7 0.22 08.08.2006 Cookbook-0.22 No Yes Yes Yes No
8 0.24 12.02.2007 Cookbook-0.24 No Yes Yes Yes No
9 0.26 27.09.2008 Cookbook-0.26 No Yes Yes Yes Yes

10 0.26.2 19.11.2008 Cookbook-0.26.2 No Yes Yes Yes Yes
11 0.28 23.03.2009 Cookbook-0.26.2 No Yes Yes Yes Yes
12 0.28.1 16.08.2009 Cookbook-0.26.2 No Yes Yes Yes Yes
13 0.30 06.03.2010 Cookbook-0.26.2 No Yes Yes Yes Yes
14 0.30.1 06.05.2010 Cookbook-0.26.2 No Yes Yes Yes Yes
15 0.30.2 08.07.2010 Cookbook-0.26.2 No Yes Yes Yes Yes
16 0.32 28.01.2011 Cookbook-0.26.2 No Yes Yes Yes Yes
17 0.32.1 23.02.2011 Cookbook-0.26.2 No Yes Yes Yes Yes
18 0.32.2 03.04.2011 Cookbook-0.26.2 No Yes Yes Yes Yes
19 0.34 15.12.2011 Cookbook-0.26.2 No Yes Yes Yes Yes

935

1457
1523

1789

1855

2132 2153

Number of Classes, 1809

15

33

36

37

42 Number of UML Diagram, 42

0

5

10

15

20

25

30

35

40

45

0

500

1000

1500

2000

2500

0.10.1 0.12 0.14 0.16 0.18.1 0.20 0.22 0.24 0.26 0.26.2 0.28 0.28.1 0.30 0.30.1 0.30.2 0.32 0.32.1 0.32.2 0.34

T
ot

al
 n

o.
 o

f
C

la
ss

es

N
o.

 o
f

U
M

L
 D

ia
gr

am

Release Version

Figure 3.2: ArgoUML Evolution in UML Diagrams and Number of Classes

Conclusion and Future Work 45

3.5.6 Threats to Validity

This section describes the threats to validity of this study. In terms of case study
selection, there could be more case studies if we include more open source repositories
and also include projects developed other than Java programming language. The
selected projects may not be representative of all the OSSD because the selected case
studies can be considered as small and medium type of system development and
also specific to Java-based project. In addition, referring to figure 3.1, we also do not
have projects with a number of classes between 250 and 800. The result could be
different if more large projects are included in this study. We used the keywords of
“Class Diagram” when we search for the suitable case study. We realized that there
are possibility that we missed some projects that have UML diagrams, but stored in
CASE tool’s format (such as .zargo-ArgoUML and .uml-StarUML). The study was done
based on using only the information in the project repositories and also the projects’
websites. It may be the case that developers use UML in their communication or for
internal use without uploading their diagrams in the project repository. This study
also only uses the date listed as the upload date of the documents in the repositories.
The document may be created far before the uploaded date. Thus, the matching of the
date of documentation and the version may not be accurate.

3.6 Conclusion and Future Work

This study explored if UML diagrams are used in OSSD projects. To this end, ten case
studies were collected from online repositories. Four main questions were studied:
What types of UML diagrams are used? How does the ratio of the design relates to
the size of the implementation? What level of detail is used in UML diagrams? and
How does timing of changes in the implementation relate to the changes in UML
diagrams/documentation? The main purpose of UML modeling in projects is to ease
the communication between the developers. This also seems to apply to OSSD projects.
UML diagrams (specifically class diagrams) with a low level of detail are used to show
a high-level abstraction of the structure of the system. UML diagrams with a high-level
of detail are used to elaborate key aspects of the design or complex aspects of the
design. By studying the evolution of UML models across versions, we found that the
focus of modeling shifts from structural aspects in the early phases of development, to
dynamic behaviour in the later stages of development.

The frequency of updating UML models is low. We found two triggers for updating
UML diagrams: 1) if there are changes in the features of the system, and 2) if there
is a group of newcomers joining the project. The latter cause confirms the role of
UML models as a way of codifying design knowledge for communicating the design.
Overall, this chapter shows that open source projects can be used as empirical sources
for studying the usage of UML modeling.

46 UML Usage in Open Source Software Development

For future work, it would be interesting to extend this study by performing a
broader survey or interview OSSD developers to find out the reasons for or against
using UML diagrams in their development. Also, it is interesting to ask developers
for their pattern in updating UML models. Furthermore, future work could be to find
more case studies and to extend the case studies to languages other than Java. This
would allow differentiating results between programming languages.

Chapter4
Assessing the Correctness and
Completeness of UML CASE tools
in Reverse Engineering

This chapter focuses on Computer-aided Software Engineering (CASE) tools that
offer functionality for reverse engineering into Unified Modeling Language (UML)
models. Such tools can be used for design recovery and round-trip engineering.
For these purposes, the quality and correctness of the reverse engineering capability
of these tools are of key importance: Do the tools recover all important information
from the source code? Are the reverse engineering results correct? What kind of
information is presented in the result? Based on these questions, we compare eight
UML CASE tools (six commercial tools and two open source tools). We evaluate i)
the types of input that these tools can handle, ii) the types of diagrams that can be
reconstructed, and iii) the quality of resulting diagrams.

4.1 Introduction

The Unified Modeling Language (UML) is the standard for graphically representing
the design of object-oriented software systems. While UML diagrams are created in
forward design, these diagrams are poorly maintained. Maintaining correspondence

This chapter is adapted from publications entitled “An Assessment of Reverse Engineering Capa-
bilities of UML Case Tools”, In Proceedings of the 2nd Annual International Conference of Software
Engineering & Applications (SEA 2011) and “Correctness and Completeness of CASE tools in Reverse
Engineering Source Code into UML Model”, In GSTF Journal on Computing vol.2, num.1 (2012)

48 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

(between design and implementation) is particularly challenging because over time an
implementation tends to evolve considerably from its initial design [118]. Design mod-
els produced during the design phase are often forgotten during the implementation
phase-under time pressure usually–and thus, present major discrepancies with their
actual implementation are frequently present [72]. Lethbridge et al. [103] confirm the
widely held belief that software engineers typically do not update the documentation
as timely or completely as software process personnel and managers advocate. Tools
support during maintenance, re-engineering or re-architecting activities has become
important to decrease the time software personnel spend on manual source code
analysis and help to focus attention on important program understanding issues [97].

Nowadays, a lot of commercial and open source CASE tools support reverse en-
gineering. These tools provide the capability in reconstructing package and class
diagrams based on source code, objects and/or executable files. These tools also pro-
vide an automated and semi-automated analysis of the software system regarding
the software structure such as class, attribute and operation. Some of the CASE tools
extend the UML reverse engineering capabilities by supporting sequence diagrams
reconstruction (based on static analysis).

For this research, our motivation is to discover to what extent the CASE tools
are able to reverse engineer UML diagrams out of source code. This information is
useful because RE-CDs is one of the important inputs in this research. Particularly
in UML class diagrams, we want to know what type of information provided in the
RE-CD compared to the typical information that may exist in class diagrams (domain
model/forward design). The study of this chapter also aim to gather information
about CASE tool(s) that are suitable for the research in this thesis. In order to find the
answers, we examined and compared the reverse engineering capabilities provided
by the CASE tools. In total, eight CASE tools have been selected in this study, namely
Visual Paradigm, Rational Software Architect, StarUML, Altova UModel, MyEclipse,
Enterprise Architect, MagicDraw and ArgoUML. To understand how the tools analyze
class diagram, we conduct three experiments.

The first experiment aims at discovering the capability of the evaluated CASE tools
in performing the round-trip engineering [80] task. The second experiment evaluates
the tools’ capabilities of identifying class relationships (association, aggregation and
composition) based on the code stated in [72]. The third experiment assesses the
correctness and completeness of the tools in reverse engineering source codes into class
diagrams.

The chapter is structured as follows. Section 4.2 presents the related work. Section
4.3 briefly describes the examined tools and properties used in this evaluation. Section
4.4 describes the sample cases and Section 4.5 explains the approach of this experiment.
Section 4.6 presents our results and findings. Our evaluation is discussed in Section
4.7. This is followed by our conclusion and future work in Section 4.8.

Related Work 49

4.2 Related Work

This section discusses work that related to this study. The following researchers have
conducted several evaluations and comparisons of reverse engineering tools.

Kollmann et al. [94] presented a study that examined the reverse engineering
capabilities of two CASE tools (Rational Rose, Borland Together), and compared the
result with two academic prototypes (Fujaba, IDEA). Their study investigates the
strengths, weaknesses and similarities of the tools’ capability. In our research, we
examine six commercial CASE tools and two open source CASE tools that we believe
are commonly used in the industry. We extend the examination by observing the
capabilities of the tools in reverse engineering the source code into package diagram
and sequence diagram.

Koskinen and Lehmonen [97] analysedten reverse engineering tools in term of four
aspects: data structures, visualization mechanisms, information request specification
mechanisms and navigation features. Their research focused on the information
retrieval capabilities of the selected tools. However, not all of their selected tools were
capable of reconstructing UML diagrams. In our study, we selected tools that support
reconstruction of UML models.

Bellay and Gall [22] presented a study that compared reverse engineering tools
for the C programming language. Four reverse engineering tools were selected in the
study. Their study aimed to discover the strength and weakness of the selected reverse
engineering tools based on their usability, extensibility and applicability for embedded
software systems. The tools selected in their study were different in functionality and
capability. In contrast, our evaluated tools are comparable because the functionalities
of the evaluated tools are relatively similar.

Gahalaut and Khandnor [64] presented a study about reverse engineering Java
code. The study aimed to compare bytecode reverse engineering tools (decompiler)
with UML reverse engineering tools (Altova UModel and Enterprise Architect). The
inputs for this comparison were Java source code and Java class files. They stated
that the decompiler and the UML reverse engineering tools generated the same class
structures. However, our extended study found that although the structure were about
the same, the detail in class information and the relationship were different if we
compare RE-CDs that are constructed based on the class file and Java source file.

Akehurst et al. [13] focused on providing solutions to the issues of mapping
qualified associations and the UML 2.0 semantic variations of an association into Java 5.
They presented a comparison of forward engineering functionality of some CASE tools.
In contrast, our evaluation covers forward and reverse engineering of class diagrams
based on the user’s view. Their study was centered on how to generate code based
on the design. Our study evaluates and compares the tools’ capabilities to reverse
engineer basic class information and relationships.

Boklund et al. [30] performed a comparative study of forward and reverse engi-

50 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

neering in UML tools; focused on three-tier layered web services application. They
evaluated four modeling tools in the perspective of UML-Modeling, UML-based Code
Generation and Reverse Engineering UML-diagram from code. However, not all tools
that they have selected can be used in their evaluation. In contrast, our selected tools
are comparable in term of the tools capability and functionality.

Kearney and Power [87] proposed a framework and automated tool for benchmark-
ing UML CASE tools reverse engineering capabilities. The automated tools presented
in this study tightly rely on the input from software metrics tools. Although we conduct
our experiment semi-automated, we present more information rather than concentrate
only on software metrics.

4.3 Examined Tools and Properties

This section describes the examined tools and properties that are involved in this
experiment.

4.3.1 Examined Tools

The CASE tools were chosen based on the following criteria:

• Capable of performing forward and reverse engineering in Java.
• Capable of exporting UML Model to XML Metadata Interchange (XMI) format.

In total, eight well-known CASE tools are selected as listed in Table 4.1. For
commercial CASE tools, we used fully functional evaluation and academic evaluation
versions. We used SDMetrics [180] (version 2.11 – academic license) to extract UML
model information from different versions and different type of XMI files.

4.3.2 Examined Properties

The examined properties are divided into two parts: Reverse Engineering Capability
and Class Diagram Properties.

Reverse Engineering Capability

The reverse engineering tool’s capabilities are evaluated from three perspectives: UML
diagrams, supported programming languages and supported types of source.

• UML Diagrams
The selected types of UML diagram are: package diagram, class diagram and
sequence diagram. We analysed all selected diagrams by evaluating (1) the
process of reconstructing (reverse engineer) the diagrams, and (2) the output
in term of completeness and representation. Only static analysis is used for
reconstructing those diagrams.

Examined Tools and Properties 51

Table 4.1: List of Evaluated CASE Tools

No CASE Tool Information Vendor License Type
1 Visual Paradigm

8.1
http://www.visual-
paradigm.com

Visual
Paradigm

Evaluation

2 MagicDraw 17.0 http://www.magicdraw.com No
Magic

Evaluation
(academic)

3 Altova Umodel
2011

http://www.altova.com Altova Evaluation

4 Enterprise Archi-
tect 8.0

http://www.sparxsystems.
com.au

Sparx
System

Evaluation

5 Rational Soft-
ware Architect
8.0.1

http://www-142.ibm.com
/software/products/my/en/
swarchitect-websphere

IBM Evaluation

6 MyEclipse 8.6 http://www.myeclipseide.
com

Genuitec Evaluation
(academic)

7 StarUML 5 http://staruml.sourceforge.
net

StarUML Open Source

8 ArgoUML http://argouml.tigris.org Tigris.org Open Source

• Supported Programming Languages
We study the capability of the CASE tools to reverse engineer source code from
several common programming languages: PHP5, C++, Java, C#, Delphi, Python
and Visual Basic (V.B). However, we perform reverse engineering using a sample
case developed in Java. Other programming languages are evaluated based on
the documentation/manual provided by the CASE tools’ provider.

• Additional Types of Input Formats
The supported input-types for reverse engineering UML diagrams (in addition
to source code; e.g. binaries).

Class Diagram Properties

We evaluate the class diagram properties based on the following elements:

• Attributes and Methods
– Number of attributes: The tools’ ability to reconstruct all attributes including

the type of attribute (public, private, protected) defined in the source code.
– Number of operations: The tools’ ability to reconstruct all methods (of all:

public, private, protected, constructor) defined in the source code.
• Relationship

– Number and types of relationship: The ability of the tools to reconstruct all
relationships between classes.

52 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

– Association relationship: The capability of the tool in detecting association
and binary association [68] relationship (i.e. aggregation1 and composition2).

4.4 Sample Cases

This section describes the sample of cases that are used in this evaluation.

4.4.1 Movie Catalog System (MovieCat)

This sample case is derived from [177]. We altered the relationships in this class
diagram to make sure all types of relationship were presented. This sample case is
selected because of a little amount of classes and the class diagram can be altered to
suit our purpose in this research. We use this sample case to evaluate the class diagram
properties.

4.4.2 Automatic Teller Machine (ATM) Simulation System

This sample case is selected because it has a fully functional simulation system, a
forward design and a complete implementation source code. It is developed by the
Department of Mathematics and Computer Science, Gordon College [28]. The complete
software documents consist of 22 designed classes. Various types of relationships
were used in the UML diagram such as association, composition, dependency and
inheritance. Some of the elements (especially class relationship) in this sample case
have been altered to suit our requirement for the experiment. This sample case was
used to evaluate the reverse engineering capability.

4.5 Approach

This section explains our approach to evaluating the tools. The evaluation is divided
into two parts which are: Round-trip Capability and Reconstruction of UML Diagram
types.

4.5.1 Round-trip Capability

We performed the round-trip capability experiment to assess the completeness of the
CASE tools in recovering all information specified in the forward design (illustrated

1Aggregation (or shared aggregation) is a part-of relationship [63]. It is used when part of an instance (or
class) is independent which means, if the related instance is deleted, the other instance may still exist.

2Composition (or composite aggregation) is a strong form of aggregation that requires a part instance be
included in at most one composite at a time. If a composite is deleted, all of its parts are normally deleted
with it [68].

Approach 53

UML Design UML Design’

Source Code

Code Engineering Reverse Engineering

Compare

1 2

3

Figure 4.1: Round-trip Engineering Experiment

in Figure 4.1). We expected to get an overview of an automation of software lifecycle
phases (i.e. software design->code generation->reverse engineering) using CASE
tools. This experiment begins with creating the forward design class diagram (UML
Design) that consisted of: (i) Attributes and Methods (private, protected, public) and,
(ii) Relationships (association, aggregation, composition, inheritance). We generate
the source code based on the UML Design through “Code Engineering” process, and
produce the UML Design’ by reverse engineer this source code. Then, we compare the
UML Design and UML Design’.

4.5.2 Reconstruction of UML Diagram Types (package/class/sequence)

To assess the capability and the quality of the reverse engineering of UML diagrams,
we conduct the following experiments.

UML Diagrams Reconstruction Capability

We evaluate the supported types of (reverse engineered) diagrams by i) reconstructing
the diagram using the CASE tools and/or ii) finding the information on the tools’
documentation/manuals. The tools’ capabilities of reconstructing UML diagrams are
analysed using a three-level scale which are described as follows:

• “+” : The tool is able to reverse engineer the specified diagram.
• “o” : The tool is able to reverse engineer the specified diagram, but present

minimal information. For instance, the CASE tool is capable of presenting classes,
attributes and operations but not relationships. Another example is the tool
needed user intervention to generate the sequence diagram.

• “-” : The tool is unable to reverse engineer the specified diagram.

The information about the supported programming language and supported types
of reverse engineering sources are gathered from the tool’s documentation or/and
manuals.

54 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

Detection of Aggregation, Association and Composition Relationship

The evaluation of reconstructing various types of class relationship is performed by
using the source code defined in [72]. We created a source code that represents each
evaluated relationship (i.e. aggregation, association and composition). Then, we
reverse engineer this source code to evaluate the ability of the CASE tools in detecting
multiple types of relationship.

Correctness and Completeness (CnC) of Reconstructed UML Diagram

This experiment aims at evaluating the completeness and correctness of the RE-CD
constructed by the CASE tools. For the expected result (concrete result), we manually
extract all class diagram information from the sample case design document and
implementation code. For instance, we calculate (manually) the number of attribute
and operation in every class in the class diagram. Then, the class diagram information
gathered from RE-CDs (from each tool) are compared with the expected result. The
evaluation is divided into two parts:

• CnC of Class Information: We tested all possible options to reconstruct the best
RE-CD for each tool. The diagrams then exported to XMI files. We extract the
metrics from the XMI files and compare the class diagram information with our
expected result.

• CnC of Reconstruction of Class Relationship: All possible reverse engineering options
are evaluated to achieve the best view of class relationship. Then, we manually
compare the RE-CD relationships with our expected result.

4.6 Result and Findings

In this section, we present our findings which include: Reverse Engineering Capability
and Class Diagram Properties.

4.6.1 Reverse Engineering Capability

In this subsection, we present the capability of the CASE tools in reconstructing the
UML Diagrams, the supported programming languages and the supported types of
source.

UML Diagrams

The results in Table 4.2 show that most of the tools were capable of reconstructing
package diagrams. Visual Paradigm, MagicDraw and Altova UModel are good at
reconstruction package diagram because these tools can perform this task automatically.
An example of a reverse engineered package diagram is shown in Figure 4.2.

Result and Findings 55

Table 4.2: Supported UML Diagrams for Reverse Engineering

No Tools UML Diagram
Package Class Sequence

1 Visual Paradigm 8.1 + + o
2 MagicDraw 17.0 + + o
3 Altova Umodel 2011 + + -
4 Enterprise Architect 8.0 o + -
5 Rational Software Architect 8.0.1 o + -
6 MyEclipse 8.6 o + o
7 StarUML 5 o + o
8 ArgoUML o o -

In terms of the class diagram, all the evaluated tools are good at automatically
reconstructing RE-CD (from source code) except ArgoUML. The reason is that the
ArgoUML was unable to reconstruct the class relationship other than inheritance. All
CASE tools give an option to generate the class diagram separately using the “drag
and drop” function.

The reconstruction of sequence diagrams requires a lot of manual intervention
because the users need to provide the information on the methods and classes that
should be in the sequence diagram. Based on our experiment, only four tools have
the capability of reverse engineering sequence diagrams. An example of a reverse
engineered sequence diagram is illustrated in Figure 4.3.

The Supported Programming Languages

The supported programming languages results are presented in Table 4.3. It shows
that the Enterprise Architect is able to reverse engineer all the programming languages
listed in this evaluation. We also found that all evaluated tools were able to reverse
engineer source code in Java.

The Types of Source

Overall, all evaluated CASE tools can reverse engineer class diagrams out of source
code files (e.g. .java, .cpp and .cs). The CASE tools also offer an option to specify the
source directory, and then automatically determine the source code file from the direc-
tory. Visual Paradigm, Altova and Enterprise Architect are capable of decompiling and
reconstructing class diagram based on Java bytecode (.class), dynamic link library (.dll),
execution file (.exe) and Java archive (.jar). Then, the tools generate class information
that enable the users to construct a class diagram. The supported types of source are
presented in Table 4.4.

56 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

Figure 4.2: Altova Reverse Engineered Package Diagram

Figure 4.3: Reverse Engineered Sequence Diagram using Altova

Result and Findings 57

Table 4.3: Supported Programming Language for Reverse Engineering

No Tools PHP 5 C++ Java Delphi Phyton V.B C# Total ‘Y’
1 Visual

Paradigm
Y Y Y N Y N N 4

2 Altova
UModel

N N Y N N Y Y 3

3 MyEclipse N N Y N N N N 1
4 StarUML N Y Y N N N Y 3
5 MagicDraw N Y Y N N N Y 3
6 Rational

Software
Architect

N Y Y N N Y Y 4

7 Enterprise
Architect

Y Y Y Y Y Y Y 7

8 ArgoUML N Y Y N N N Y 3

4.6.2 Class Diagram Properties

This subsection presents the assessment of the class diagram properties. The results
are divided into: Round-trip Findings, Class Relationship Test, and Class Diagram
Correctness and Completeness.

Round-trip Findings

The CASE tools successfully round-trip the information for class attributes and op-
erations. However, the round-trip result for class relationships is different amongst
the CASE tools. In general, all CASE tools correctly round-trip association and inheri-
tance relationship. The aggregation and composition relationships were presented as
association. Only Rational Software Architect presented aggregation and composition
as a dependency. These aggregation and composition relationships were failed to be
detected during the round-trip experiment due to the code-engineering process (trans-
form design to source code) that defined those relationships as a link declaration [177]
in the source code. Therefore, the tools cannot differentiate the types of relationship
(example is in Figure 4.4). The discontinuity that may exist between object-oriented
modeling language and programming language may be the reason behind this result.
This discontinuity arises from the ambiguous concept in modeling languages and
lack of corresponding concepts in programming languages [72]. These relationships
represent different knowledge in software design. Unable to recognize these relation-
ships correctly may hinder the traceability between source code and design, hence,
obstructing software analysis.

58 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

(a) Forward Engineering Class Diagram

(b) Reverse Engineered Class Diagram

Figure 4.4: Round-trip Test Result

Result and Findings 59

Table 4.4: Additional Types of Input Format

No Tools Source Code
Class/Object
/Dynamic
Link Library

Executable Other

1 Visual
Paradigm

.java, .cpp,

.h, .php
.dll, .class, .inc .exe, .jar Source

Directory,
.zip

2 AltovaUModel .java .dll, Global
Cache (GAC),
MSVS .Net,
.class

.exe, .jar Source
Directory

3 MyEclipse .java - - Source
Directory

4 StarUML .java, .cpp,
.h, .cs

- - Source
Directory

5 MagicDraw .java, .cpp,
.h, .cc, .cs

- - Source
Directory

6 Rational Soft-
ware Architect

.java, .cpp,

.h, .cc
- - Source

Directory
7 Enterprise

Architect
.java, .h, .cs,
.hpp, .pas,
.php, .php4,
.inc, .py, .vb,
.cls, .frm, .ctl

.class, .dll .exe, .jar Source
Directory

8 ArgoUML .java, .cpp, .cs .class .jar Source
Directory

Class Relationship Test

The results of this experiment are illustrated in Table 4.5. It shows that all CASE
tools are unable to reconstruct the specified relationships based on the source code
(defined in [72]). Visual Paradigm, Altova UModel, StarUML, MyEclipse, MagicDraw
and Enterprise Architect unable to generate the association relationships, while the
aggregation and composition relationships were presented as association relationships.
An example of aggregation test results is shown in Figure 4.5.

Class Diagram Correctness and Completeness

Class Diagram Correctness and Completeness (CnC) evaluation is divided into two
parts: Attributes and Methods, and Relationship.

60 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

Table 4.5: Class Relationship Test Result

No Tools Association Aggregation Composition
1. Visual Paradigm No relationship

presented
Present as asso-
ciation

Present as asso-
ciation

2. Altova UModel No relationship
presented

Present as asso-
ciation

Present as asso-
ciation

3. MyEclipse No relationship
presented

Present as asso-
ciation

Present as asso-
ciation

4. StarUML No relationship
presented

Present as asso-
ciation

Present as asso-
ciation

5. MagicDraw Present as de-
pendency

Present as asso-
ciation and de-
pendency

Present as asso-
ciation and de-
pendency

6. Rational Software
Architect

Present as de-
pendency

Present as de-
pendency

Present as de-
pendency

7. Enterprise Archi-
tect

No relationship
presented

Present as asso-
ciation

Present as asso-
ciation

8. ArgoUML No relationship
presented

No relationship
presented

No relationship
presented

1. CnC of Attributes and Methods evaluation presents the capability of the CASE
tools in identifying class attributes and methods (or operations). The results are
presented in Figure 4.6 and the explanations are the following:

• Number of Attribute(NA): We expected the tools to extract 79 attributes
(NA) from the sample case. Visual Paradigm, Enterprise Architect and
Rational Software Architect successfully extracted all the attributes. How-
ever, Rational Software Architect can only show the attributes by using the
“Drag and Drop” function instead of using the “Transform” function. The
class diagram generated from the “Transform” function did not show any
attribute even though it exist in the tools “Project Explorer” pane. Further-
more, the generated XMI file also does not include any attribute. Other tools
like Altova UModel, MyEclipse, StarUML and MagicDraw were unable to
extract all the expected attributes.

• Number of Operations(NO): We expected the tools to extract 91 operations.
However, most of the tools found more than expected. The reason is that
the additional operations come from the “superclass” operations. StarUML
did not completely extract all operations because it was unable to extract 4
constructors of 4 classes. On the other hand, Visual Paradigm extracted 77
operations.

Result and Findings 61

Figure 4.5: Example of Diagram on Aggregation Test

0

20

40

60

80

100

120

VisualDParadigm AltovaUModel MyEclipse StarUML MagicDraw Enterprise
Architect

RationalDSoftware
Architect

ArgoUML

N
o.

 o
f

A
tt

ri
b

ut
es

/O
p

er
at

io
n

s

NumberDofDAttribute NumberDofDOperation

Figure 4.6: Number of Attributes and Methods

62 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

Table 4.6: Relationship Correctness

Association Inheritance
No Tools No. of

Relationship
Total Correctness

(%)
Total Correctness

(%)
1 Visual

Paradigm
31 27 54.05 4 100

2 StarUML 31 27 54.05 4 100
3 Enterprise

Architect
31 27 54.05 4 100

4 Rational
Software
Architect

30 26 67.57 4 100

5 MagicDraw 31 27 54.05 4 100
6 MyEclipse 20 16 27.03 4 100
7 Altova

UModel
31 27 54.05 4 100

8 ArgoUML 4 0 0 4 100

2. CnC of Class Relationship evaluates the tools’ capability of extracting association
and generalization (inheritance) relationships. Other class relationships are not
included in this evaluation as the Round-trip results (see Section 4.6.2) shows
that the evaluated tools can only identify these relationships. For this purpose,
we extracted all link declarations from our sample case (ATM simulation system)
and used it as the expected result. In total, there are 41 relationships identified
that consist of 37 association relationships and 4 generalization relationships.
Of these relationships, three of them were bidirectional. The overall results
are presented in Table 4.6. We found that only Rational Software Architect
was capable of reconstructing bidirectional relationship. Other tools (except
ArgoUML) reconstruct bidirectional relations by means of two separate links
in opposite directions (example in Figure 4.7). Rational Software Architect also
capable of presenting two separated relationships that directed to the same class
as a single relationship. Other tools identified this kind of relationships as two
separated associations.

4.7 Discussion

This section discusses the experiment results.

• Strength : Most of the tools are excellent in recovering the class attributes and
methods. From the result, the tools were capable of extracting source code, visu-

Discussion 63

Figure 4.7: Bidirectional Relationship with Two Separate Links

alizing the class diagram and enabling manipulation of the generated diagrams.
Some of the tools such as Altova UModel and Visual Paradigm are able to gen-
erate the class diagram automatically; most of the tools need user intervention
to drag and drop the classes in the project explorer-canvas to recreate a class
diagram. This drag and drop function can be useful to the user to select the
reverse engineered classes that they desired to visualize in the class diagram. Of
course, user intervention requires additional effort.

• Weakness: All CASE tools are unable to identify all the class relationships cor-
rectly. Most of the tools identify aggregation and composition relationships as
association relationships. Rational Software Architect has presented the result
differently by presenting dependency relationships for all class relationships that
were tested. For further investigation, we tested all evaluated tools by gener-
ating the source code based on the design and then we reverse engineered the
generated source code to produce the design (Round-trip). As the result, this
test indicated that we were unable to generate the same design that we created.
We observed the generated source code and it showed that the tools did not dif-
ferentiate code generation between those types of relationship. This may be the
reason of the tools are unable to recover the class relationship correctly. Incorrect
code generation would lead to inaccurate synchronization between source code

64 Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering

and software design document. The design document becomes out-of-sync that
decays the knowledge of the document.
The tools’ weaknesses in generating code (forward engineering) and reverse
engineer source code for class relationship have mentioned by Ralf Kollmann
et al. (2002) [94] and Akehurst et al. (2007) [13]. Although this study is more
recent, the tools are still unable to generate correct class relationships. However,
two tools (MagicDraw, Rational Software Architect) give additional information
by presenting dependency relationships as an addition to class relationship
(association, aggregation and composition). The aggregation and composition
relationship are essential to show how the software works. This relationship
information may give some hints for the software engineer or the software
maintainer which classes are important based on the software design before they
browse the source code. The class relationship knowledge (especially which class
to initialize after another) has to be discovered before the software engineer or
software maintainer touch the source code.

Today, CASE tools support the reverse engineering capability not only by using
source code as input but also support object or class files and executable files such as .jar
and .exe. Some tools such as Altova UModel, Rational Software Architect and Visual
Paradigm offer more functionality where they are able to present sequence diagrams
based on the reverse engineering result. Although they are not able to automatically
generate the sequence diagram, it at least may help the software engineer or the
software maintainer to understand the class interactions.

Overall, from the user point of view, the functionality to do reverse and forward
engineering are easy to access by the user and the tools give good instruction and
information to the user to use the functionality and analyze the results.

The experiments that were conducted in this chapter rely on manual evaluation of
the test result and from the support of software metrics tool. As we know that some of
the inputs are based on XMI files, we did not consider a faulty XMI generation by UML
CASE tools. We also did not consider if the software metrics tool used was unable to
extract some of the metrics from the XMI files.

4.8 Conclusion and Future Work

This chapter has provided an assessment of the reverse engineering capability of eight
CASE tools (six commercial and two open source). We have assessed the tools by
evaluating the reverse engineering features that are provided. In summary, all CASE
tools are capable of performing reverse engineering from source code to class diagrams
and package diagrams. Some of the tools can also reverse engineer sequence diagrams,
but need a little help from the user. The tools also support various types of input
formats other than source code, such as class or object files and executable files. Even

Conclusion and Future Work 65

though these input formats offer additional options to the user, the resulting diagrams
differ from the results from using source code as input.

Generally, there are not many differences between the capabilities of the CASE
tools in reverse engineering into UML. Almost all the evaluated tools have relatively
the same strengths and weaknesses: CASE tools do not completely show all class
information, and CASE tools are also not capable of correctly and completely presenting
the class relationships – especially aggregation and composition.

For future work, we propose this evaluation to be extended to larger systems to
evaluate the scalability and performance of the tools. Also, future research in reverse
engineering should try to come up with abstraction mechanisms for leaving out details
and emphasize important information from RE-CD.

From this research, after the correctness and completeness of the RE-CD is identified,
the studies on condensation of RE-CD in Chapter 7, 8 and 9 will consider the following
information:

1. Aggregation and composition as association relationship.
2. Two directional relationships (with different direction) should present as bidirec-

tional relationship.
3. Two directional relationships (with the same direction) should present as a single

relationship.
4. Only several CASE tools are suitable to reverse engineer source code to the class

diagrams.

Part II

UML Class Diagram
Simplification

Chapter5
Eliciting Developer’s Views on
Simplifying Class Diagrams

Class diagrams play an important role in software development. However, in some
cases, these diagrams contain a lot of information that makes it hard for software
maintainers to use them to understand a system. In order to reduce the amount of
information in a class diagram, a method to simplify a class diagram is needed. This
simplified class diagram can be obtained by leaving out details that are not needed
by keeping the important information. In this chapter, we aim to discover how to
simplify class diagrams in such way that the system is easier to understand. For
this study, we performed a semi-structured survey to elicit the information about
what type of information developers would include or exclude in order to simplify
a class diagram. This study involved 32 software developers with 75 percent of
the participants having more than five years of experience with class diagrams.
As for the results, we found that the important elements in a class diagram are
class relationship, meaningful class names and class properties. We also found
that, in a simplified class diagram, GUI related information, private and protected
operations, helper classes and library classes could be excluded. In this survey, we
also tried to discover what types of features needed for automatic class diagram
simplification tools.

This chapter is a more detailed version of a publication entitled “Class Diagram Simplification: What is
in the Developer’s Mind?”, In Proceedings of the 2nd International Workshop on Experience and Empirical
Studies in Software Modelling (EESSMod 2012)

70 Eliciting Developer’s Views on Simplifying Class Diagrams

5.1 Introduction

UML models which are usually created during the design phase are often poorly kept
up-to-date during the realization and maintenance phase[172]. As the implementation
evolves, correspondence between design and implementation degrades from its initial
design [118]. For legacy software, reliable designs are often no longer available, while
those are considered valuable for maintaining such systems.

Normally, to understand a software system, a software developer needs both source
code and design. When new software developers want to join a development group;
they need a starting point in order to understand the whole project before they are
able to modify. It is important for a software developer to have an overview of the
system before they started the software maintenance activity. Tools that support during
maintenance, re-engineering or re-architecting activities have become important to
decrease the time software personnel spend on manual source code analysis and help to
focus attention on important program understanding issues [22]. In Chapter 3, we have
demonstrated that the forward design class diagrams constructed by the developers
in the open source software development community typically consist of critical or
key classes in the system. These classes are considered as the required relevant classes
to understand the system. For this reason, this study specifically aims at simplifying
UML class diagrams by leaving out unnecessary information without affecting the
developer’s understanding of the entire software. To this end, we have conducted a
survey to gather information from software developers about what type of information
should not be included in a class diagram and what type of information they focus on.
We prepared a questionnaire that consists of 15 questions which were divided into 3
parts in order to discover this information. In total, there were 32 participants that are
professional software developers in the Netherlands.

The chapter is structured as follows. Section 5.2 discusses related work and followed
by Section 5.3 that describes the survey methodology. Section 5.4 describes the result
and findings. We discuss our findings in Section 5.5 and present our conclusions in
Section 5.6. This is followed by our suggestion for future work in Section 5.7.

5.2 Related Work

In this section, we discuss some studies that are related to the research in this chapter.

5.2.1 Eye Tracking

Yusuf et al. [183] performed a study on assessing the comprehension of UML class
diagrams via eye tracking. They used eye-tracking equipment to collect a subject’s
activity data in a non-obtrusive way as the subjects are interacting with the class
diagram in performing a given task. Also, audio and video were recorded on every

Survey Methodology 71

subject during these tasks. Their goal was to obtain an understanding of how human
subjects use different types of information in UML class diagrams in performing their
tasks. The subjects are asked to answer several questions by viewing the class diagrams.
They created two types of questions: (1) questions that deal with the basics of the class
diagram, and (2) questions related to the software design. They concluded that experts
tend to use such things as stereotype information, colouring, and layout to facilitate
more efficient exploration and navigation of class diagrams. Also, experts tend to
navigate/explore from the center of the diagram to the edges, whereas novices tend to
navigate/explore from top-to-bottom and left-to-right. Thus, subjects have a variation
in the eye movements depending on their UML expertise and software-design ability
in resolving a given task.

5.2.2 Software Visualization

Koschke [95] performed a study of software visualization (SV) usage domains: software
maintenance, reverse engineering, and re-engineering. The goal of their study was to
help to ascertain the current role of software visualization in software engineering from
the perspective of researchers in these SV usage domains. Most of the questions were
opinion-related questions, meaning that they asked the subject whether he/she thought
that the visualization is appropriate (for example). Another part of the questionnaire
asked what kind of instruments they use in visualizing software and how they visualize
the software. The result of this study demonstrated that when the subject visualizing
artifacts, only 13 out of 82 subjects answered using “UML”. The most answered with
“graph” (49 subjects). This survey suggested that a suitable way of visualization be
achieved if we have a good understanding of when and why a certain visualization
technique is used based on the user’s purpose and their task. However, because of the
variety of purposes and users’ need, experiments in this field seem difficult.

Bassil et al. [21] conducted a study of SV tools that existed in the year 2000. This
study focused on functionality, practicality, cognitive and code analysis aspects that
users may be looking for at SV tools. The participants of this study were users of such
tools in their industries or users that used SV in a research setting. The participants
were asked to rate the usefulness and importance of these aspects in their SV tools,
and came up with their own desires. In general, the participants were quite pleased
with the SV tool at hand. Their study found that the reliability of SV tool was the
most important aspect. This is followed by the ease of using the tool and the ease of
visualizing large-scale software.

5.3 Survey Methodology

In this section, we describe i) How the questionnaire was designed and why; and ii)
How the experiment was conducted.

72 Eliciting Developer’s Views on Simplifying Class Diagrams

5.3.1 Questionnaire Design

The questionnaire was organized into three parts, i.e. Part A, B and C. In total, there
were 15 questions. In Part A, we aimed to discover information about the respondent’s
personal characteristics, knowledge and experience with UML class diagrams. Mean-
while, in Part B and C, we aimed to discover information about how the respondents
indicate classes that should be included in a class diagram. For this survey, we divide
this questionnaire into two different sets of questions. Both sets of questions had the
same questions in Part A and C. However, we differentiated the questions in Part B.
The questionnaire can be found at [129].

Part A: Personal Background

Part A consisted of six questions. Questions 1 to 4 in this questionnaire were intended to
access the information about the status of the respondents, years of working with class
diagrams, where they learned UML, and how the respondents rate their skills in class
diagrams. In questions 5 and 6, we wanted to compare the respondents’ preferences
for software documents (i.e. UML models or source code) for understanding a system.
This comparison is conducted to find if there is any influence of the respondents’
answer based on their preferred software document.

Part B: Selected Cases

This part contained three questions and each question consisted of a class diagram. In
this part, the respondents were required to mark information that can be left out in the
provided class diagram without affecting their understanding of the system. They were
also allowed to write any comments or suggestions according to what information they
find unnecessary in a class diagram. The following systems were used in this survey:

1. Automated Teller Machine (ATM) simulation system: This fully functional
ATM simulation system provides a class design and a complete implementation
source code. The class design was made by using forward design. However,
the class design only consists of class names and relationships. The complete
software documents based on UML that were provided consists of 22 design
classes. We reverse engineered1 the system’s source code to reconstruct the detail
design of this system.

2. Pacman Game: Pacman’s Perilous Predicament is a turn based implementation
on the classic Pacman arcade game [44]. In this study, we utilized the diagram
of the second phase (milestone) of this project since the number of classes in the
class diagram is not too high. The amount of classes in the source code in this

1From the options of the list of CASE tool evaluated in Chapter 4, we use Enterprise Architect [153]
version 7.5 to produce RE-CD.

Survey Methodology 73

Table 5.1: Level of Detail Description

No. Class Diagram Elements
Low Level of
Detail
(LLoD)

Medium Level
of Detail
(MLoD)

High Level of
Detail
(HLoD)

1 Classes Names YES YES YES
2 Attributes Names NO YES YES
3 Type in Attributes NO NO YES
4 Operations NO YES YES
5 Operations Return Type NO YES YES
6 Parameters in operation NO NO YES
7 Relationships YES YES YES

system is 17 while only 15 classes are stated in the class diagram design. Both
forward and reverse engineered1 designs were used in this survey.

3. Library System: Library System is a system that enables users to borrow books
from the library. This system is taken from [55]. This complete system consists of
24 classes in the source code. The reverse engineered1 design was used for this
survey.

As mentioned, this survey consisted of two different sets of questions. This part
differentiates the set of questions by providing different types of class diagrams. The
information about the sets of class diagrams is shown in Table 5.1.

Level of detail (LoD) represents the amount of information that is used to specify
models [117] (in this study: the UML class diagram). Different LoD was used to
simulate different types of LoD that normally exist in a class diagram (as demonstrated
in Chapter 3). In every set of the questionnaire, both Medium Level of Detail (MLoD)
and High Level of Detail (HLoD) is used. Figure 5.1 shows how the class diagrams
with different LoD are constructed and Table 5.2 briefly describes the types of class
diagrams used in both sets of questionnaire.

In set A, ATM system in MLoD and Library System in HLoD were used and in set
B, ATM system in HLoD and Library System in MLoD were used. In addition, we also
used different sources of class diagrams by utilizing forward design and RE-CD to
simulate the different flavors of class diagrams that exist in the software industry.

Part C: Class Diagram Indicators for Class Inclusion

This part consisted of six open-ended questions. The aim of these questions was to
discover what developers think about which information is needed in a class diagram
and which information could be left out. Table 5.3 describes the questions in part C.

74 Eliciting Developer’s Views on Simplifying Class Diagrams

Source Code

Reverse
Engineered

Class Diagram

Low Level of
Details (LLoD)

Medium Level
of Details
(MLoD)

High Level of
Details (HLoD)

Reverse Engineer

Abstract

Figure 5.1: Level of Detail Class Diagrams Preparation

Table 5.2: Information on Set A and Set B

No. Class Diagram Set A Set B
1 ATM System Medium Level of Detail

(MLoD)
High Level of Detail
(HLoD)

2 Pacman Game Forward Engineered Design Reverse Engineered Design
3 Library System High Level of Detail (HLoD) Medium Level of Detail

(MLoD)

5.3.2 Experiment Description

The experiment was conducted on the 6th of June 2012 at Leiden Institute of Advanced
Computer Science (LIACS), Leiden. The participants of this survey were professional
software developers from Devnology [102] (a software developer community from all
over the Netherlands). In total, 32 Devnology members (out of 36) participated in the
survey. This survey was conducted as part of the Devnology community “Developer
Back to School” event at Leiden University. The participants had to answer every
question and were free to ask any questions during the questionnaire session. The time
given to answer the questionnaire was 60 minutes.

5.4 Results and Findings

This section presents our analysis and results of the answers given by the respondents.
This section is divided into three parts. In the first part, we present our findings of
part A (personal questions). The second part presents our findings of part B (selected
cases). In the last part, we present our findings of part C of the questionnaire. The full
responses to this survey are available at [131].

Results and Findings 75

Table 5.3: Detailed Explanation Part C

No. Question Description
1. Question C1: In software documentation, particularly in class

diagrams, what type of information do you look for to understand a
software system? (for example: relationships, operations, attributes,
etc.)

To learn the type of information
is important to understand the
software system.

2. Question C2: In a class diagram, what type of information do you
think can be left out without affecting your understanding of a
system?

a. Classes (for example: Helper class, Interface class, Library
class, …)

b. Operations (for example: private, protected, public,
constructor, …)

c. Relationships (for example: labels, multiplicities, self-
relations)

d. Other(s):

To find out the type of
information that can be left out
from a class diagram.

3. Question C3: Do you think that a class diagram should show the full
hierarchy of inheritance? If not, which parts could be left out? (for
example: parent, child, intermediate parent/child, leaf, …)

To find out what type of
information on inheritance
relationship is important.

4. Question C4: What criteria do you think indicate that a class (in a
class diagram) is important for understanding a system?

To discover the criteria
developers use to decide a class is
important in a class diagram.

5. Question C5: If you try to understand a class diagram, which
relationships do you look at first?
(Example: dependencies, inheritance, associations, etc .)

To determine which relationship
that can be considered important
in a class diagram.

6. Question C6: If there is a tool for simplifying class diagrams (e.g.
obtained from reverse engineering), what features \functions would
you expect from such a tool?

To find out what kind of features
or functions are desired for a
class diagram abstraction tool.

5.4.1 Part A: Personal Background

This part consists of six questions related to personal characteristics, knowledge and
experience. We present our findings for each question as well as other related informa-
tion.

Question A1: What is your role at the moment?

In this question, the respondents should state their role in software development.
The choices of answers that have been given to the respondents are Project Manager,
Architect, Designer, Programmer, and Tester. The respondents were allowed to select
more than one answer. As for the results, 81% of the respondents are programmers
and 50% of the respondents are software architects. As shown in Figure 5.2, 28% of
the respondents are software designers. Figure 5.2 also highlights that the majority
of the respondents are involved in the design and implementation phase in software
development. This means, half of the programmers are involved in designing the
software. All project managers that were involved in this study are also programmers.
This indicates that all the respondents that participated in this study are directly
involved in software development.

76 Eliciting Developer’s Views on Simplifying Class Diagrams

Project
Manager

Architect Analyst Designer Programmer Tester

% 9 50 13 28 81 3

0

20

40

60

80

100

%
 o

f
th

e
R

es
po

n
de

n
ts

% % % % % %

Figure 5.2: Role of the Respondents

> 10 years 7 to 9 years 5 to 6 years 3 to 4 years 1 to 2 years < 1 year

% 50 11 14 7 7 11

0

10

20

30

40

50

60

%
 o

f
th

e
R

es
po

n
d

en
ts

% % % % % %

Figure 5.3: Respondents Experience with Class Diagrams

Question A2: How many year(s) of experience do you have in working with class diagrams?

Out of 32 respondents, 28 (88%) of the respondents answered this question. Figure 5.3
shows the complete results of this question. From these results, we found that 50%
of the respondents are experienced with class diagrams for more than 10 years. The
results also show that 75% of the respondents have experience with class diagrams for
more than 5 years. Only about 11% (3 respondents) have less than 1 year experience in
class diagrams. Even though they have less experience in class diagrams, they have
the knowledge about UML as indicated by the answer of Question A3.

Question A3: Where did you learn about UML?

This question was intended to gather the information on (1) where the respondent
learned about UML and, (2) whether all the respondents know about UML or not.
The respondents were allowed to choose more than one answer. The choices were
the following: Did not learn UML, From Colleagues/Industrial Practice, Professional
Training, Learn by Myself, and polytechnic/University. The results show that 47% of

Results and Findings 77

0

HBO/University

LearnpbypMyself

ProfessionalpTraining

FrompColleaguesp/pIndustrialppractice

DidpnotplearnpUML

10 20 30 40 503 3 3 3 3 3

Figure 5.4: Where did the Respondent Learn about UML

the respondents had learned about UML in polytechnic or University and 25% have
taken professional training to learn UML. This indicates that 72% of the respondents
had formal training on UML. Meanwhile, 38% of the respondents learned UML by
themselves and 19% learned from their colleague(s) or industrial practice. There were
no participants that answered ‘No’. This shows that all participants of this survey have
some knowledge of UML. Figure 5.4 shows the complete results of this question.

Question A4: How do you rate your own skill in creating, modifying and understanding a
class diagram?

This question was aimed to gain knowledge about the skills of the respondents in
creating, modifying, and understanding class diagrams. Based on Figure 5.5, most of
the respondents (88%) have average and good skills in creating, modifying, and under-
standing class diagrams and only 3% have excellent skills related to class diagrams.
This indicates that over 90% of the respondents have average skills or above related to
class diagrams. Meanwhile, 2 respondents (6%) have low skills and only 1 respondent
(3%) has poor skills related to class diagrams. The 2 respondents that have low skills
are software architects (with no other role) and the only one respondent that has poor
skills is a programmer (with no other role).

Question A5: Indicate whether you (dis)like to look at the source code for understanding
a system? + Question A6: Indicate whether you (dis)like to look at UML models for
understanding a system?

Question A5 and A6 were aimed to discover the respondent’s opinion about the usage
of UML and source code as an artifact to understand a system. Most of the respondents
of this survey are programmers and we expected that the respondents would choose
the source code over UML. To present this result, we combined those two questions for
a comparison between the respondent’s like or dislike for UML and the respondent’s

78 Eliciting Developer’s Views on Simplifying Class Diagrams

Poor Low Average Good Exellent

% 3 6 44 44 3

0

10

20

30

40

50

%
 o

f
th

e
R

es
po

nd
en

ts

% % % % %

Figure 5.5: Respondent’s skill on Class Diagram

0

5

10

15

20

Strongly Dislike Dislike Neutral Like Really Like
UML Source Code

N
o.

 o
f

R
es

p
on

d
en

ts

Figure 5.6: Respondents Like or Dislike Source Code vs UML

like or dislike for source code. The results shown in Figure 5.6 indicate that in general,
there is no substantial difference between Like or Dislike of source code versus UML
design. We may say based on this result that even experienced programmers found
that UML is helpful for system understanding.

We further investigated this result by separating this according to the role of the
respondents (specifically programmer, software architect, and software designer).
Figure 5.7 shows the results of question A5 and A6 for respondents with the role of
a programmer. The results show that the programmers are a bit more positive about
source code than UML, but the difference is not substantial. These results seem almost
the same as the overall results shown in Figure 5.6.

It was quite a surprise to see that a lot of software architects like using source code
more than UML to understand a system (Figure 5.8). The same goes for the software
designers; they like using source code more than UML to understand a system (Figure
5.9).

Others:

Combination of Question A1 & A4

The combination of results in question A1 and A4 is shown in Figure 5.10. This

Results and Findings 79

0

5

10

15

Strongly
Dislike

Dislike Neutral Like Really Like

UML Source Code

N
o.

 o
f

R
es

p
on

d
en

ts

Figure 5.7: Programmers Like or Dislike Source Code vs UML

0
5

10
15

Strongly
Dislike

Dislike Neutral Like Really Like

UML Source Code

N
o.

 o
f

R
es

p
on

d
en

ts

Figure 5.8: Software Architects Like or Dislike Source Code vs UML

0

5

10

Strongly Dislike Dislike Neutral Like Really Like

UML Source Code

N
o.

 o
f

R
es

p
on

d
en

ts

Figure 5.9: Software Designers Like or Dislike Source Code vs UML

Poor Low Average Good Excellent

Tester 0 0 1 0 0

Programmer 1 0 12 12 1

Designer 0 0 3 5 1

Analyst 0 0 2 1 1

Architect 0 2 6 7 1

Project Manager 0 0 0 3 0

0

5

10

15

20

25

30

N
o.

 o
f

R
es

p
on

d
en

ts

Figure 5.10: Class Diagram Skill per Role

80 Eliciting Developer’s Views on Simplifying Class Diagrams

result surprisingly shows that there were software architects that rated themselves
poor in creating, modifying, and understanding class diagrams. However, based on
our informal interview with these respondents, a software architect mentioned that
they only use boxes and lines for their architectural work. This may be the reason why
there are software architects that have a poor skill in class diagrams.

5.4.2 Part B: Selected Cases

In Part B, the respondents have been provided with three class diagrams from different
systems and domains. Those class diagrams also varied in level of details (1 x LLoD, 1
x MLoD, 1 x HLoD). The results of this part were analyzed by combining the answers
based on the following categories: Attribute, Operation, Class, Relationship and
Package.

Category 1: Attribute

This category is divided into two subcategories: Properties and Types of Attribute.
We divided the Properties subcategory into three elements: Protected, Public and
Private. This basically means that if a respondent marked the private variables in
a class diagram or suggested to exclude the private attribute, we assumed that the
respondent chose not to include the private attribute element in class diagrams. We
also divided the Types of Attribute subcategory into three elements: No primitive
type, GUI related, and Constant. No primitive type means attribute that does not have
any primitive type. GUI related attributes are attributes that relate to Graphical User
Interface (GUI) libraries that are provided by development tools such as Textbox, Label
and Button.

Figure 5.11 shows the results of the Attribute category. 25% of the respondents
indicate a preference to leave out the GUI related attributes. For these respondents,
this information seemed not important and based on our informal interview, the
respondents were more concerned with classes that are created specifically for the
application. 19% of the respondents prefer to leave out Private and Constant types
of attributes. 13% of respondents propose to leave out Protected attributes. 3 out of
32 respondents (9%) think that all attributes should be left out. These respondents
commented they only need class names and relationships in a class diagram.

Category 2 : Operation

The results of the Operation category are presented in Figure 5.12. The results show
that 25% of the respondents chose to exclude the Constructors Without Parameters.
This type of operation is not important because it does not convey any important
information because the default initialization of an object is without parameters. Nev-
ertheless, 16% of the respondents suggested that all Constructors could be left out

Results and Findings 81

GUI Related Private Constant Protected Instance Variable Public

% % % % % % %25 19 19 13 6 0

0

5

10

15

20

25

30
%

 o
f

th
e

R
es

p
on

d
en

ts

Figure 5.11: Information of Attribute that Could be Left out

Constructor
Without
Parameter

Getters/Setters Constructor
General
Function

Event Handler

% 25 19 16 9 6

0

5
10
15
20

25
30

% % % % %

%
 o

f
th

e
R

es
p

on
d

en
ts

Figure 5.12: Types of Operation that could be Excluded in Class Diagrams

in a class diagram. For Getters and Setters, 19% of the respondents suggested that
these operations should be excluded from class diagrams. The reason for this could
be that it is a common operation that is created for accessing and modifying variables
in a class diagram. 9% of the respondents mentioned that General Functions should
not be included in class diagrams because these functions are commonly used and
well-known to programmers. Apart from the result presented in Figure 5.12, 15% of
the respondents indicated that all operations should be excluded from a class diagram.
These respondents mentioned that only class names and relationships are needed in a
class diagram.

Category 3: Class

Based on the respondents’ answers, we divide the class category into two subcategories:
(1) Types of Class and (2) Role (figure 5.13). The Types of Class subcategory consists
of Interface, Enumeration, and Abstract elements while the Role subcategory consists
of five elements which are Console, Listener, Input/Support Classes, Log, and GUI
Related. The Role means that the class(es) have a specific role in the system.

82 Eliciting Developer’s Views on Simplifying Class Diagrams

Figure 5.13: Class Category

Enumeration Interface abstract

% 38 19 13

0

10

20

30

40

%
 o

f
th

e
R

es
po

n
de

n
ts

% % %

Figure 5.14: Types of Class that could not be Included in Class Diagrams

For the subcategory Types of Class (Figure 5.14), 38% of the respondents chose
not to include Enumeration classes. Enumeration classes are classes whose values are
enumerated in the model as enumeration literals, which are not needed to understand a
system. This is followed by Interface classes with 19% and 13% suggested that Abstract
classes should not be included in simplified class diagrams.

Figure 5.15 shows the Role subcategory results. It shows that half of the respondents
suggested that GUI related classes and classes for logging tasks could be left out in order
to simplify a class diagram. Most GUI related classes are present in the Library system
and the Log class exists in the ATM system. The respondents suggested eliminating
these classes because without these classes they can still understand the system. The
Input role refers to classes that are used to take the input from the interface that directly
interact with the actor of the system. In the case of the ATM system, the “Money” and
“Card” classes are an example of input classes. 22% of the respondents said that this
type of class could be omitted from a class diagram. The “Console” and “Listener”
functions appear in the Pacman Game. These classes can be considered as classes that
interact with the user input and the other system input. 6% of the respondents chose to
exclude the listener classes from the class diagram while 3% of the respondents chose
to exclude the console classes.

Results and Findings 83

GUI Related Log Input Listener Console

% 50 50 22 6 3

0

10

20

30

40

50

60

% % % % %

%
 o

f
th

e
R

es
p

on
d

en
ts

Figure 5.15: Class Role that could be Excluded in Class Diagrams

Category 4: Relationship

The Relationship category is divided into two subcategories, which are Relationship
Label and Coupling ≤ 1. Almost all the respondents that participated in this survey
agreed that the Relationship element is important in a class diagram. However, there
are some information related to the Relationship element that could be omitted from
a class diagram. 31% of the respondents intend to exclude classes with Coupling ≤ 1
because it seems that classes that only have coupling ≤ 1 are not important and more
seen as a helper class. 6% of the respondents chose to remove the relationship labels.

Category 5: Package

The package category is introduced because there were several respondents that sep-
arated the class diagram in such way that there were two or more class diagrams
instead of one. The amounts of classes in the three class diagrams range from 15 to 22.
Specifically, in the Library System class diagram, there were 4 respondents that drew
several lines to separate the GUI related classes from the classes that were created by
the developer. They suggested that the class diagram should be separated into two
different diagrams. This basically means that they wanted to keep the GUI related
classes and classes created for the application separately.

5.4.3 Part C: Class Diagram Indicators for Class Inclusion/Exclusion

Part C consists of six open-ended questions. The analysis of this part was done
by observing the answers from the respondents and creating several keywords to
categorize these answers.

Type of Information in Class Diagrams for Understanding a Software System

The respondents were asked the following question: ‘In software documentation, partic-
ularly in class diagrams, what type of information do you look for to understand a software

84 Eliciting Developer’s Views on Simplifying Class Diagrams

Table 5.4: Keywords on Types of Information to Understand a System

No Category Keywords No Category Keywords
1

Relationship /
Connectivity /

Interaction

Association 3

Class
structure /
properties

Abstraction

Inheritance Method/Operation

Direction Attribute

Dependency Public Interface

Multiplicity Class Entities

2

Class
Semantic

Classname (meaningful) Size Large/Small

Class Behaviour Public Properties

Business Entities Class Hierarchy

Main Classes/Object/Purpose Object related

Class functionality and

responsibility 4
High level

Concept

Domain Design Pattern

Properties name and methods

name Overview

Reasoning
5

Others
Data

"Starting" point

All Generic ClassesOptional info

Class
Relationship

Class3Role3and
Responsibility

Class3Structure
and3Properties

High3level Others

% 81 59 44 34 6

0

10

20

30

40

50

60

70

80

90

% % % % %

%
 o

f
th

e
R

es
p

on
d

en
ts

Figure 5.16: Types of Information the Respondents Look for in Class Diagrams

system?’. Based on the answers, we created several keywords and categories as shown
in Table 5.4. The results in Figure 5.16 shows that class relationships are the most
important information in a class diagram that the respondents searched for, in order
to understand a class diagram. 81% of the respondents mentioned this. 59% of the
respondents searched for class Role and Responsibility (RnR) such as meaningful class
names and class functionality and behaviour. 44% of the respondents were looking
at class properties such as attributes, operations and class interfaces. This is followed
by 34% of the respondents that were looking at the high-level abstraction of the class
diagram for example design concepts, design patterns and class overviews.

Results and Findings 85

Helper%Class Library%Class Interfaces Logging
Persistency

Class
Utility%Class

Not%Related%to
Domain

Technical
Without

Relationship
3 44 25 22 9 3 3 3 3 3

0
5

10
15
20
25
30
35
40
45
50

3 3 3 3 3 3 3 3 3

%
 o

f
th

e
R

es
p

on
d

en
ts

Figure 5.17: Information of Classes that could be Omitted

These results show that the relationships between classes are important in class
diagrams. It is the primary information in a class diagram that most of the software
developers look into. The semantics of a class such as a meaningful name of classes,
operations and attributes also play a major role to assist the software developer in
understanding a system.

Type of Information that could be Omitted/Excluded

We asked the respondents to answer the following question: ‘In a class diagram, what
type of information do you think can be left out without affecting your understanding of a
system?’. The results are divided into four sections, which are: Classes, Operations,
Relationships, and Others.

In the section of classes, almost half of the respondents (44%) suggested that helper
classes could be omitted from a class diagram (see Figure 5.17). A quarter of the
respondents (25%) did not want library classes to appear in a class diagram. These
library classes could make a class diagram more complex. 22% of the respondents
suggested that the interface classes could be omitted from a class diagram.

In the section of Operations, the results (Figure 5.18) show that 66% of the respon-
dents chose to exclude private operations in a class diagram. 56% of the respondents
mentioned that constructors and destructors are not needed in a class diagram in order
to understand a system while only 9% of the respondents mentioned that they do
not need constructors without parameters. 41% of the respondents mentioned that
protected operations could be left out from a class diagram. A reason for this could be
that this type of operation can be assumed as a private operation, but appears public
to several classes only. It was quite a surprise that not many respondents suggested
removing getters and setters from the class diagram since these operations can be
integrated into other operations that a system actually needs.

In section Relationship, multiplicity is the most respondents mentioned not needed
in a class diagram. However, only 6% of the respondents mentioned this, which is a

86 Eliciting Developer’s Views on Simplifying Class Diagrams

Private
Constructor
/Destructor

Protected Getters6/Setters
Constructor

without
parameter

Supporting
/default
function

Public
Overload
function

GUI6event
handler

3 66 56 41 16 9 9 3 3 3

0

10

20

30

40

50

60

70

3 3 3 3 3 3 3 3 3

%
 o

f
th

e
R

es
p

on
d

en
ts

Figure 5.18: Information of Operations that could be Omitted

quite low percentage. 3% of the respondents do not need any Labels (or roles of the
relationships), Self Relations and References in a class diagram.

In terms of “Other information” in class diagrams that could be omitted, 9% of
the respondents stated that the private fields could be omitted from a class diagram.
Only 3% of the respondents suggested not to include technical, duplicates and UI
information in class diagrams.

The Criteria to Indicate Important Classes in Class Diagrams

We asked the respondents ‘What criteria do you think indicate that a class (in a class diagram)
is important for understanding a system?’. This question aimed to discover the criteria
to indicate important classes in a class diagram. As shown in Figure 5.19, 38% of
respondents think that the relationships are the most important criterion in a class
diagram. This also aligns with the results for question C1. 16% of the respondents
mentioned the following criteria are important in a class diagram: Meaningful class
name; Business or domain value; and Class position. Several respondents prefer
to search for the position of the class (in the layout) and most of the respondent’s
mentioned that classes located in the middle of a class diagram are the important
classes.

Type of Relationships that the Respondents Look at First

We asked the respondents ‘If you try to understand a class diagram, which relationships do
you look at first?’. In this question, we aimed to find out what type of relationship the
respondents look at first and three types of relationships were provided as example
answers (composition, aggregation, and realization). The results in Figure 5.20 show
that 41% of the respondents looked for association relationships, 19% searched for
dependency relationships, and 9% searched for inheritance relationships.

Discussion 87

Relationships
Meaningful
Classnames

BusinessI/
Domain Value

Position of
Class

FunctionalityI/
Responsibility

Size of Class
Simplified

Classes
Highlighted
Information

38 16 16 16 9 9 6 3

0

10

20

30

40

6 6 6 6 6 6 6 6 6

%
 o

f
th

e
R

es
p

on
d

en
ts

Figure 5.19: Important Criteria in a Class Diagram for Understanding a System

0

10

20

30

40

50

Association Dependency Inheritance

%
 o

f
th

e
R

es
p

on
d

en
ts

Figure 5.20: The Type of Relationship in Class Diagrams that the Respondents Look at First

Features/functions Expected in a Class Diagram Simplification Tool

We asked the respondents ‘If there is a tool for simplifying class diagrams (e.g. obtained
from reverse engineering), what features/functions would you expect from such a tool?’. In this
question, we tried to discover what kind of features the respondents are looking for if
there is a tool that could simplify a class diagram. The results (see Figure 5.21) show
that the respondents mainly want a tool that can hide/unhide information. The other
feature that relates to this is the drill up/down feature. 16% of the respondents wanted
to see more information about a class by hovering over a class in a class diagram for
example. Another feature that many respondents (13% of the respondents) wanted is
the changeable layout of the class diagram in which the navigation can be improved.

5.5 Discussion

In this section, we discuss the results and findings presented in the previous section.
The discussion is divided into four subsections: Class Properties, Class Role and
Semantics, Class Diagram Simplification Tool Features, and Threat to Validity.

88 Eliciting Developer’s Views on Simplifying Class Diagrams

Hide/Unh
ide

Informati
on

Drill
up/down

Show
more

Informati
on

Navigatio
n/Change
Layout

Give
Advice

Generate
Source
Code

Generate
from
different
XMI files

Classify
Classes in
Importanc

e

UIX
Classifier

Visual
indication
of data.

Generate
from
Source
Code

Change
Log

3 31 22 16 13 6 3 3 3 3 3 3 3

0

5

10

15

20

25

30

35

3 3 3 3 3 3 3 3 3 3 3 3

%
 o

f
th

e
R

es
p

on
d

en
ts

Figure 5.21: The Features that a Tool Should have for Simplifying UML Class Diagrams

5.5.1 Class Properties

Relationships in a class diagram are considered the important elements to understand
a system through class diagrams. Most of the respondents in this survey looked at the
association relationship first. This shows that the association relationship is important
in class diagrams. In this survey, we found that most of the respondents suggested
leaving out or separating the GUI related information from the class diagrams. The
respondents focus more on application-specific class diagrams information. The GUI
classes appear in RE-CD because Rapid Application Development (RAD) tools inject
or generate source code for this. In terms of class operations, most of the respondents
suggested leaving out the private and protected type of operations. These types of op-
erations are only used for internal classes and member classes for protected operations.
We also discovered that constructor/destructor operations could be omitted from class
diagrams. Particularly in Part B, we found that most of the respondents suggested that
constructors without parameters should be excluded.

5.5.2 Class Role and Responsibility (RnR)

One of the useful discoveries in this study is the importance of the class RnR in a class
diagram. By using this information, they can get an overall idea of how the system
works and get some hints of the functionalities of classes in a class diagram. In this
survey, we also discovered that classes that could be left out in a class diagram (in the
context of system overview) are helper classes, library classes and interface classes.
Most of the respondents suggested leaving out helper classes. Nevertheless, it is not
easy to automatically identify helper classes.

Conclusion 89

5.5.3 Class Diagram Simplification Tool Features

This study found that the desired features for a simplification tool are to hide/unhide
information; and drill up and down a class diagram. These features are desired because
they help to zoom in and zoom out in class diagrams. From our informal discussion
with the respondents, simplification of class diagrams is needed when they want to
understand the overall system design, but detailed information in class diagrams
is needed for modification tasks. Hence, both simplified and detailed diagrams are
essential.

5.5.4 Threats to Validity

In this subsection, we discuss the internal and external threats to the validity of this
survey.

Internal validity: The three selected cases used in Part B are considered as medium size.
The result may be different if a larger size of software system is used. In this survey,
we concerned about the time constraint for the respondents to complete the survey. By
using these selected cases, the survey was able to complete in given time frame. Also,
we believe that the class diagrams in these selected cases are representative.
External validity: We acknowledge that the number of respondents in this is small.
However, we showed that 75% of these respondents have experience more than 5 years
in class diagrams. We also believe that a survey and informal discussion about class
diagrams with 32 professional developers in the same place and time contribute to a
significant result.

5.6 Conclusion

This chapter presented a study on how to simplify a class diagram without affecting
their understanding of a system. In particular, the questions in this survey were
about what information could be left out from a class diagram and also what kind of
important information should remain. 32 professional software developers from the
Netherlands participated in this survey.

From the results, the most important elements in class diagrams are the relation-
ships. Class relationships are important to show the structure of a system. The type
of relationships that the developers look at first are the association and dependency
relations. In this survey, we discovered that the class diagram’s role and responsibility
are important because most of the respondents search for meaningful class names and
class roles in order to get a high-level understanding of how a system works. This
means, meaningful class names, operation names and attribute names are important
for system understanding.

90 Eliciting Developer’s Views on Simplifying Class Diagrams

To simplify a class diagram, most of the respondents chose to exclude GUI related
information and also library classes. This shows that most of the software developers
focus on application-specific classes, but not the generic or utility classes. Most of
the respondents also mentioned that helper classes should be excluded to simplify
a diagram. However, it is not easy to automatically identify helper classes. Private
operations, protected operations and constructors (without parameter) are types of
operations that could be left out in order to simplify a class diagram. These types
of operations seem not to be important. Although we are aware that research on
validation of our approach needs to be done, we found several useful indicators that
could be used for class diagrams simplification.

5.7 Future Work

This study was an early experiment on how to simplify class diagrams and we see a
number of ways to extend this work. In Part B, we have used RE-CDs and forward
engineered class diagrams in two separate groups. Also, we have used different Levels
of Detail in different sets of groups. A comparison of these different flavors of class
diagrams in terms of what information the respondents suggest to leave out can be
the future work to extend this study. It would be interesting to compare the results
between these class diagrams and see if there are any differences in what the software
developers are excluding from these diagrams. We propose to validate the resulting
class diagram by using an industrial case and discover the suitability of the simplified
class diagram for the practical usage.

From the results, we found that class role and responsibility are one of the important
indicators in a class diagram. The role and responsibility of a class are detected by
using the class names, operations names and attributes names. We suggest a study
on the names (classes, operations and attributes) that the software developers find
important or meaningful in order to understand a system. The results of this study are
used to predict the important classes in a class diagram in chapter 8.

Chapter6
Exploring the Suitability of
Object-Oriented Design Metrics as
Features for Class Diagram
Simplification

Class diagrams may include an overwhelming amount of information. For large
and complex class diagrams, there is a possibility that not all information in the
class diagram is important for understanding the system. In this chapter, we study
how to identify essential and secondary information in class diagrams. To this
end, we performed a survey with professionals, academics and students to enquire
how to decide which information in class diagrams is considered important. In
particular, we explore whether software design metrics can be used as a means of
identifying important classes in a class diagram.

In total, 25 complete responses were received. 76% of the respondents have average
or above skills with class diagrams. We discovered that the metric that counts
the number of public operations is the most important metric for indicating the
importance of a class in a diagram. Also, we discovered that class names and
coupling were influencing factors when it comes to excluding classes from a class
diagram.

This chapter is a more detailed version of a publication entitled “UML Class Diagram Simplification
- A Survey for Improving Reverse Engineered Class Diagram Comprehension”,In Proceedings of the 1st
International Conference on Model-Driven Engineering and Software Development(MODELSWARD 2013)

92 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

6.1 Introduction

The UML class diagram is one of the valuable artifacts in software development and
software maintenance. This diagram is helpful for software developers and software
maintainers in order to understand architecture, design, implementation and behavior
of software systems. UML class diagrams describe the static structure of programs at a
higher level of abstraction than source code [70].

Reverse engineering is one of the possible techniques to discover a software design
after the implementation phase. Reverse engineering is the process of analyzing the
source code of a system to identify its components and their interrelationships and
create design representations of the system at a higher level of abstraction [41]. With
this technique, recovery of a class diagram can be done based on the source code.
However, the resulting class diagrams from reverse engineering techniques often
suffers from too much detail and information. In particular, RE-CDs are typically a
detailed representation of the underlying source code, which makes it hard for the
software engineer to understand what the key elements in the software structure
are [126]. Although several Computer Aided Software Engineering (CASE) tools
have options to leave out several properties in a class diagram, they are unable to
automatically identify classes and information that are not useful or less important.
As part of a recent study [59], Fernández-Sáez et al. found that developers experience
more difficulties in finding information in reverse engineered diagrams than in forward
designed diagrams and also find the level of detail in forward designed diagrams more
appropriate than in reverse engineered diagrams. For this reason, the information
that is needed by developers or maintainers to be shown in a class diagram should be
discovered.

In this chapter, we aim at simplifying UML class diagrams by leaving out unneces-
sary information without affecting the developer’s understanding of the system. Based
on the feedback in Chapter 5, the software developers indicated that the system struc-
tural information (e.g. relationship and class elements) influence the determination of
classes that could be included (inclusion) and classes that could be omitted (exclusion)
in the class diagrams. To this end, we have conducted a survey to gather information
from IT professionals, researchers or academics and students about what type of infor-
mation they focus on. The survey directed to the structural information based on the
object-oriented design metrics (i.e. the metrics from size category, inheritance category
and coupling category). We prepared a questionnaire that consisted of 24 questions
that are divided into 3 parts in order to discover this information.

The chapter is structured as follows. Section 6.2 discusses related work. Section
6.3 describes the properties and tools for this research. Section 6.4 explains about the
survey methodology while Section 6.5 presents the results and findings. We discuss
our findings in Section 6.6. This is followed by our conclusions in Section 6.7 and future
work in Section 6.8.

Related Work 93

6.2 Related Work

In this section, we discuss several studies that are related to the research in this chapter.

6.2.1 Usage of design metrics

Design metrics have been used for various purposes in software engineering. The
Chidamber and Kemerer metrics (widely known as CK metrics) are well-known object-
oriented metrics that is commonly used in software maintenance and fault proneness
research.

In software maintenance, Li et al. [104] use object-oriented metrics (CK) to predict
software maintenance effort. Their study shows a strong relationship between main-
tenance effort and object-oriented metrics. Their study also validates the results to
prove the ability of these metrics to predict the maintenance effort. Binkley et al. [27]
investigate more specific to coupling metrics in predicting maintenance measure. Their
study found that the coupling dependency metrics (CDM) is suitable for predicting
maintenance measures (e.g. a low level of coupling undergoes less maintenance and
have fewer maintenance faults). They also found that CDM also suitable to predict the
number of run-time failures.

There are several works on the usage of object-oriented design metrics associated
with fault-proneness. Briand et al. [36] [35] found that several CK metrics were
associated with the fault-proneness of classes. Also, Tang et al. [163] found that the
Weighted Methods Per Class (WMC) and Response for a Class (RFC) metrics are
associated with fault-proneness. El Emam et al. [53] found that inheritance and Export
Coupling (EC) Metrics are associated with fault-proneness. In later research, Gyímothy
et al. [73] discovered the Coupling between object (CBO) is the best metrics to predict
fault-proneness.

In our study, we used several object-oriented metrics to predict the class should be
included and should be excluded in the class diagram. We measure the influence of
the object-oriented metrics in predicting class inclusion/exclusion by the score ranking
based on the respondents’ answers.

6.2.2 Automated Abstraction of Class Models

Falleri et al. [56] proposed an approach for class model normalization to produce a
simplified class diagram by removing redundant information. The Relational concept
analysis and Formal Concept analysis are used to process the normalization of the
class model. Similar to our study, they also suggest that the usage of elements name
for class model abstraction.

Egyed [51][52] proposed an approach for automated abstraction that allows de-
signers to “zoom out” on class diagrams to investigate and reason about their bigger
picture. This approach was based on a large number of abstraction rules. In total, the

94 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

article provides 121 rules to abstract a class diagram. However, this work is more
concentrated on the abstraction of classes relationship. It could not automatically select
the classes that should be included and should be excluded in class diagrams.

In our study, we conduct a survey to find out which object-oriented design metrics
influences the software developer in selecting the classes that should be included and
excluded.

6.3 Examined Properties and Tools

In this section, we describe i) the design metrics that we consider, and ii) the tools used
for this research.

6.3.1 Examined Properties

SDMetrics [180] is an object-oriented design measurement tool for the Unified Mod-
eling Language (UML). SDMetrics is capable of measuring 32 types of class diagram
metrics which are divided into five categories, namely Size, Coupling, Inheritance,
Complexity and Diagram. However, in this study, we only used 14 metrics from the
categories of Size, Coupling and Inheritance. These 14 metrics are selected based on
our initial experiments in Chapter 3. We reverse engineered the source codes of the
case studies presented in Chapter 3 and extracted all object-oriented design metrics
provided by SDMetrics. We found that only 14 metrics (as shown in Table 6.1) have
significant value for measurement.

6.3.2 Tools

SDMetrics [180] is used to measure the structural properties of object oriented design.
SDMetrics version 2.11 (academic license) is used for this purpose. We chose Enterprise
Architect [153] version 7.5 for creating forward design and RE-CDs for this survey.

6.4 Survey Methodology

This subsection describes the design of the questionnaire. We explain how the ques-
tionnaire was designed and why. We also describe our online survey experiment that
explains how the experiment was conducted.

6.4.1 Questionnaire Design

The questionnaire consisted of 3 parts i.e. part A, B and C. There was a total of 24
questions in this questionnaire.

Survey Methodology 95

Table 6.1: The Chosen Software Design Metrics [180]

No. Metrics Category Description
1 NumAttr Size The number of attributes in the class.
2 NumOps Size The number of operations in the class.
3 NumPubOps Size The number of public operations in a class.
4 Setters Size The number of operations in a class with a

name starting with ‘set’.
5 Getters Size The number of operations in a class with a

name starting with ‘get’, ‘is’, or ‘has’.
6 NOC Inheritance Number of Children (NOC) calculates the

number of immediate subclasses subordi-
nated to a class in the class hierarchy.

7 DIT Inheritance Depth Inheritance Tree (DIT) calculates the
longest path from the class (in the class
diagram) to the root of the inheritance tree.

8 CLD Inheritance Class Leaf Depth (CLD) calculates the
longest path from the class to a leaf node in
the inheritance hierarchy below the class.

9 Dep_Out Coupling
(import)

The number of dependencies where the
class is the client.

10 Dep_In coupling
(export)

The number of dependencies where the
class is the supplier.

11 EC_Attr Coupling
(import)

The number of times the class is externally
used as attribute type.

12 IC_Attr coupling
(export)

The number of attributes in the class have
another class or interface as their type.

13 EC_Par Coupling
(import)

The number of times the class is externally
used as parameter type.

14 IC_Par coupling
(export)

The number of parameters in the class
have another class or interface as their
type.

In part A, we aimed to discover the respondent’s personal characteristics and
experience with class diagrams. Meanwhile, Part B aimed to discover what object-
oriented design metrics that the respondents find influential in considering classes
that could be included in class diagrams. In part C, we aimed to discover what classes
the respondents leave out when looking at a diagram and what class diagram(s) the
respondents prefer when looking at different types of class diagram designs. This is
an online questionnaire and is hosted by LimeSurvey [5] and a printable version is
available at [130].

96 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

Table 6.2: Answers Multiple Choices Questions

Choices Answers

A Class(es) definitely should not be included
B Class(es) probably should not be included
C Class(es) sometimes be included
D Class(es) probably should be included
E Class(es) definitely should be included

Part A: Background of the Respondents

Part A consisted of 4 questions. Question 1 asked about the current status of the re-
spondents. Question 2 intended to collect information about the respondent’s location
(optional question). We asked how many years of experience the respondent has with
class diagrams in question 3. The last question asked the respondents to rate their skills
in creating, modifying and understanding class diagrams.

Part B: Class Diagram Indicators for Class Inclusion /Exclusion

This part consisted of 14 questions. The first 13 questions asked about the influence
of class diagram elements (based on object-oriented design metrics) to distinguish
classes that should be included or excluded. In detail, we asked opinions of software
developers on to whether they believe a particular metrics should be used for deciding
whether a class should be included or excluded. In each question, we briefly explained
about the metrics that was used in the question and five answers were offered. The
choices of answers are shown in Table 6.2.

The last question of part B (i.e. question 14) is to discover the reason of the respon-
dents for including and excluding a class in a class diagram. This question aimed to
collect the information complementary to object-oriented design metrics about the
reason of the respondents for including and excluding a class in a class diagram.

Part C: Practical Simplification Problems

Part C contained 6 questions. In this part, these well-known domain systems were
selected to avoid bias about the domain knowledge of the respondents. The following
class diagrams were involved in this survey:

1. Automated Teller Machine (ATM) simulation system: We used the forward
design of an ATM simulation system [28] that only contains class names and
class relationships. In total, there are 22 classes in this class diagram.

2. Library System: The Library System is a system that enables a user to borrow a
book from a library. This system which was taken from [55] contains 24 classes.
The RE-CD of this system was used in this questionnaire.

Survey Methodology 97

Table 6.3: Description of the Class Diagrams Used in the Questions

Question System Source of Diagram Level of Detail (LoD)

C1 ATM Machine Forward Design Low
C2 Library System Reverse Engineered High
C3 Pacman Game Forward Design High
C5 Pacman Game Reverse Engineered High

Table 6.4: Choices of Answers for Question 4

Choices Descriptions

A I prefer class diagram A (ATM System)
B I prefer class diagram B (Library system)
C I prefer class diagram C (Forward design Pacman)
D I prefer them all
E I do not prefer them
F It does not matter which one

3. Pacman Game: Pacman’s Perilous Predicament is a turn-based implementation
of the classic Pacman game. To accommodate its turn-based nature, the game
play mechanics will be changed into more of a puzzle game. This project can be
found at [44]. In this questionnaire, we used the diagram of the second phase
(Milestone 2). We used two types of diagrams from this system, namely the
forward design and the RE-CD. The forward design consists of 17 classes while
the RE-CD contains 15 classes. The forward design was detailed and hence,
similar to the source code.

We also tried to simulate the various flavours of class diagrams from the software
industry by providing different Levels of Detail (LoD) of class diagrams and the sources
of class diagrams. Different flavours of class diagrams allowed us to differentiate the
indicators of class exclusion. The information about the class diagrams used in part C
is shown in Table 6.3. Next to these 4 questions, we made another 2 questions in which
we asked the respondent which class diagram he/she prefers. In the first question
(question 4 in part C), the respondents were required to choose between an ATM
system, a Library system and the forward design of a Pacman system. The respondents
were also required to provide the reason they chose the answer. In the second question
(question 6 in part C), the respondents were required to choose between the forward
design and the RE-CD of Pacman. The respondents were also required to give the
reason they chose the answer. Table 6.4 and 6.5 show the answer options for the
multi-choice questions.

98 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

Table 6.5: Choices of Answers for Question 6

Choices Descriptions

A I prefer class diagram C (Forward design Pacman)
B I prefer class diagram D (Reverse engineered design Pacman)
C I prefer them Both
D I do not prefer them
E It does not matter which one

Table 6.6: Total of Reponses

Responses Amount

Complete Responses 25
Incomplete Responses 73
Total Responses 98

6.4.2 Experiment Description

The experiment was conducted online (hosted by Limeservice [5]). The questionnaire
was published online from 15th of May until the 3rd of August 2012.

We first invited students and researchers at the Leiden Institute of Advanced
Computer Science (LIACS), Leiden, to our online questionnaire. Then, we promoted
the questionnaire by using social media like Facebook, Twitter and LinkedIn. We also
promoted this questionnaire to multiple online software developer forums.

The respondents were provided the facility to save the answers and the respondents
could continue for a later time. The total respondents that entered this questionnaire
were 98 (see Table 6.6). However, only 25 respondents completed this questionnaire.
Most of the incomplete responses stopped after the questions in Part A.

6.5 Results and Findings

In this section, we present our results and findings from this survey. This section is
divided into three subsections: Background of the Respondents, Indicator for Class
Inclusion and Practical Simplification Problems.

6.5.1 Background of the Respondents (Part A)

This subsection presents the results of part A of the questionnaire in which we asked
after the respondent’s background information.

Results and Findings 99

Figure 6.1: Role of the Respondents

Figure 6.2: Location of the Respondents

Roles and Locations

For the respondents’ role, 40% of the respondents mentioned that their current status
is Researcher/Academic while 32% of the respondents are IT Professionals. 28% of the
respondents answered Student. None of the respondents answered “Other”. Figure 6.1
shows the results of all the respondents. This result shows that the distribution of the
respondent’s status is quite even.

For the respondents’ location, 45% of the respondents were from the Netherlands
and 32% of the respondents were from Malaysia. The detail of respondents’ location is
shown in Figure 6.2.

Skills and Experience with Class Diagrams

For the years of experience in using class diagram, 28% of the respondents stated
that their experience with class diagrams is less than 1 year. 24% of the respondents
mentioned that their experience with class diagrams is between 1 and 3 years while 16%
of the respondents answered this question with “3 - 7 Years”. 12% of the respondents
answered “7 - 10 Years” and 20% of the respondents mentioned that they had more
than 10 years of experience with class diagrams.

100 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

<616Year 16-636Years 36-676Years 76-6106Years 10+6Years

Excellent 0 0 0 0 4

Good 0 1 1 2 1

Average 1 5 3 1 0

Low 4 0 0 0 0

Poor 2 0 0 0 0

0

1

2

3

4

5

6

7

8
N

o.
 o

f
R

es
p

on
d

en
ts

Figure 6.3: Class Diagram Skill and Years of Experience

In Question A4, we asked the respondent to rate his/her skills in creating, modi-
fying and understanding class diagrams. 40% of the respondents answered Average,
while 20% answered “Good”. 16% of the respondents answered Excellent. 16% of the
respondents rated their skill are Low and 8% of the respondents have Poor skill of
class diagrams. This indicate that 76% of the respondents rated their skill of average or
above. The complete results of the combination of these two questions are shown in
Figure 6.3.

6.5.2 Indicator for Class Inclusion

In this subsection, we present the result of part B. This part consisted of 14 questions.
Each of these questions asked whether some metric-value could be used as an indicator
of the importance of a class. For example,
“ B3: Do you think that a high number of Public operations (NumPubOps) is an indicator that
a class should be included in a class diagram? ”

For questions B1 to B13, the respondents were provided 5 answer options (see
Table 6.2) to be chosen as their answer. We analyzed these 13 questions by using a
score-system. The score-system is shown in Table 6.7.

The metrics are grouped into three categories which are: Size, Coupling and Inher-
itance. The details of these metrics are explained in Table 6.1. Figure 6.4 shows the
results of the Size category. The average score for the metrics in category of size is 18.3.

Results and Findings 101

Table 6.7: Score-System Metrics - Question B1-B13

Answer Score

Class(es) definitely should not be included -2
Class(es) probably should not be included -1
Class(es) sometimes be included 0
Class(es) probably should be included 1
Class(es) definitely should be included 2

0

5

10

15

20

25

30

NumPubOps NumOps NumAttr Setters/Getters Average

N
o.

 o
f

P
oi

n
ts

Figure 6.4: Score Size Category (Question B1-B4)

From these results, we found that operations are very important in class diagrams. In
particular, public operations. This finding aligns with our findings in Chapter 5 where
the respondents did not like to see private and protected operations. In other words,
they find public operations better indicators for inclusion in a class diagram. As for
setters/getters, these have the lowest score in this category. This indicates that the
setters/getters are not an important element in a class diagram for the respondents. A
reason for this could be that it is a common operation. NumAttr and NumOps also
have an average amount of points. We can say that these metrics are normally needed
in a class diagram, but public operations are more preferred.

Figure 6.5 shows the results of the Coupling category. On average, the score for the
metrics in coupling category is 14.2. The results illustrate that Dep_Out and Dep_In
score 17 and 16 points, respectively. In Chapter 5, most of the respondents find the
class relationship is an important criteria of classes that should be included in class
diagrams. Therefore, if a class contains many dependencies, whether they are outgoing
or incoming, this class is important. This could be the reason that many respondents
stated that such a class should be included. EC_Attr has 15 points while IC_Attr has 17
points. If we compare the points between these two metrics and EC_Par (11 points)

102 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

0

2

4

6

8

10

12

14

16

18

Dep_Out IC_Attr Dep_In EC_Attr EC_Par IC_Par Average

N
o.

 o
f

P
oi

n
ts

Figure 6.5: Score Coupling Category (Question B5-B10)

and IC_Par (9 points), there is a huge difference. This indicates that the classes that
are declared and are used as an attribute are more important than the classes that are
declared and are used as a parameter in class operations.

The Inheritance category consists of three metrics: NOC, DIT, and CLD. The average
score for the metrics of this category is 10.7. From the results (Figure 6.6), NOC has
the highest score in this category (20 points). DIT and CLD have 7 points and 5 points,
respectively. These results suggest that the respondents may only be interested in
a part of an inheritance hierarchy. If a class has a high NOC, the class is important
since it has many immediate children and is also higher in the inheritance hierarchy.
However, if a class has a high DIT, then this class is somewhere at the bottom of this
hierarchy which means that there is a possibility that this class is not important. It is
not a surprise that CLD has a low score because normally if a class has a high number
of CLD then the class presents a very high-level of abstraction that is typically used to
group the classes under this class.

Question B14 asked the reasons for including or excluding a class from the class
diagram. The responses to open-ended question B14 were analyzed by grouping the
answers into categories. An answer to this open-ended question could contain multiple
keywords. The respondents stated that they wanted to include a class “when it is
important” but they did not say when a class is important. It is a weakness of the
survey-method that we could not ask for further questioning into more explicit factors
when this answer was given.

Figure 6.7 shows the results of the question based on the keywords. It shows
that there are three keywords that are related to the answers the most. These are
Important/Relevant Class (29.6%), Domain Related (25.9%), and Coupling (18.5%).
The keyword “Important/Relevant” is a broad term, but that is what the respondent
answered. Hence, this answer is really obvious, but we cannot use it as a recipe to

Results and Findings 103

0

5

10

15

20

25

NOC DIT CLD Average

N
o.

 o
f

P
oi

n
ts

Figure 6.6: Score Inheritance Category (Question B11-B13)

%
 o

f
th

e
R

es
p

on
d

en
ts

Figure 6.7: Keywords to Include a Class in a Class Diagram

decide which class is important for them. Coupling on the other hand is a factor
that was expected. We stated in the survey in Chapter 5 that relationships are very
important to understand a class diagram. Here, we found the same result. 18.5% of the
respondents said that if a class has many relations, then that class should be included.

“Domain Related” are classes related to the concept or domain. Without these
classes, it is hard for a software maintainer to understand a system. Five respondents
mentioned the reasons for exclusion. One of these reasons is when a class is too small
or that it can be combined with another class. Another respondent stated that he/she
excludes a class if this class does not contain any important attributes or operations.
Once again, the respondent did not state when an attribute or an operation is important.
One respondent stated that he did not need any children classes. In other words, he
only needs the parent classes. Another respondent mentioned that he would keep

104 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

the classes, but would exclude the attributes and operations from these classes to
get a high-level abstraction. This answer is not really relevant to what we asked,
but it is interesting to show the needs of the class names and class relationships to
understand a system. The last respondent stated that he/she excludes helper classes or
technical-specific classes since they are not needed to understand a system.

6.5.3 Practical Simplification Problems (Part C)

In this part, we tried to elicit characteristics about classes that should not be included
in a class diagram. This information is gathered by asking the respondents to select
classes that should be excluded from the class diagram of three actual system designs.

Coupling

In question C1, a class diagram of an ATM System (as shown in Figure 6.8) was
presented without attributes and operations. Through this question, we aimed to
elicit information about the influence of coupling category and class names. The
overall results of this question are shown in Figure 6.9. The results show that 48%
of the respondents chose to exclude the class Money and 36% of the respondents
chose to exclude the OperatorPanel and Status class from the class diagram. We
observed that these 3 classes have a relatively low coupling (≤ 2). Next, 32% of the
respondents excluded the classes Deposit, EnvelopeAcceptor, ReceiptPrinter, Transfer
and Withdrawal. The coupling of those classes is equal to 2. This means that the
exclusion of 8 out of 24 classes of this class diagram could be explained based on their
coupling. The classes that were important in this class diagram are Transaction and
ATM. Only 4% of the respondents chose these classes as should not be included. Both
classes have a high amount of coupling. This indicates that the amount of coupling
plays a major role in selecting the classes that should or should not be included in a
class diagram.

Meaningful Class Names

A RE-CD from a Library System (as shown in Figure 6.10) was used for question C2
(“Figure 10” in this questionnaire). All elements in a class diagram were presented
(in HLoD) and we expected to discover the factors that are influential in selecting the
classes that could be excluded. The results of the survey are shown in Figure 6.11.

From question C2, we found that class names also play a major role in determining
whether a class should be included or excluded. The top three classes that were chosen
to be excluded are AboutDialog, MessageBox and QuitDialog. From the class names,
the respondents were able to predict what the functionality of the class is. AboutDialog,
MessageBox and QuitDialog clearly referred to functionality that is used to display
information. Thus, these classes are not considered important because they are only

Results and Findings 105

N

ATMCardNReader

Card

Session

Transaction

Withdrawal Deposit TransferInquiry

AccountN
Information

ReceiptNPrinter

OperatorNPanel

NetworkNToBank
EnvelopeN
Acceptor

CashNDispenser

CustomerNConsole

Money

Receipt

balances

Log

Message

Status

Figure 6.8: Class Diagram A (ATM System)

106 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

Figure 6.9: Respondents Selection of Classes that Should not be Included in an ATM System

used to display messages - which is not core functionality of this application. On the
other hand, the 5 classes that not many respondents chose to exclude from the class
diagram are classes that are related to the domain and have coupling more than 2.
Borrower, Reservation, Loan, Item and Title are classes that have a meaningful name
that might indicate the functionality of the classes and also are core concepts of the
domain i.e. Library System.

Enumeration and Interface Classes

In question C3, the respondents were asked to select the classes that could be left out of
a forward designed Pacman Game class diagram. Most of the classes in this diagram
have relationships and meaningful class names. The complete result of this question
is presented in Figure 6.12. The results indicate that 64% of the respondents chose to
exclude class Direction from the class diagram. This class is an Enumeration class with
coupling equals to 0 which might be the reason why this class should not be included
in a class diagram. 52% of the respondents selected to exclude the Iterator class while
40% of the respondents chose to exclude the Iterable class. Both classes are interface
classes that might indicate that those classes are not important or at least not related
to the domain of the application. These results illustrate that the enumeration and
interface types of classes are candidates for suppression in a simplifying this class
diagram.

Results and Findings 107

Loan

x getBorrowerPf : Borrower
x getItemPf : Item
x getItemIdPf : int
x getTitleNamePf : String
x LoanPf
x LoanPObjId# ObjIdf
x readPRandomAccessFi lef : void
x writePRandomAccessFi lef : void

Borrower

x addLoanPObjIdf : void
x addReservationPObjIdf : void
x BorrowerPf
x BorrowerPString# String# String# String# String# Stringf
x el iminateLoanPObjIdf : void
x el iminateReservationPObjIdf : void
x errorBorrowerPbooleanf : Borrower
x getCityPf : String
x getCountryPf : String
x getLoanPf : String
x getNumberPf : String
x getStreetPf : String
x obtainBorrowerPObjIdf : Borrower
x obtainLoanPintf : Loan
x obtainNumLoansPf : int
x obtainNumReservationsPf : int
x obtenerReservaPintf : Reservation
x readPRandomAccessFi lef : void
x searchByNamePStringf : Borrower
x setCityPStringf : void
x setCountryPStringf : void
x setNumberPStringf : void
x setStreetPStringf : void
x setSurnamePStringf : void
x writePRandomAccessFilef : void

«property get»
x getCPPf : String

«property set»
x setCPPStringf : void

Item

x getIdPf : int
x getLoanPf : Loan
x getTitleNamePf : String
x isBorrowedPf : boolean
x ItemPf
x ItemPObjId# intf
x readPRandomAccessFilef : void
x setLoanPObjIdf : void
x wri tePRandomAccessFilef : void

Reserv ation

x getBorrowerPf : Borrower
x getTitlePf : Ti tle
x readPRandomAccessFi lef : void
x ReservationPf
x ReservationPObjId# ObjIdf
x writePRandomAccessFilef : void

Title

x addItemPObjIdf : void
x addReservationPObjIdf : void
x findOnAuthorPStringf : Ti tle
x findOnISBNPStringf : Ti tle
x findOnNamePStringf : Title
x getAuthorPf : String
x getISBNPf : String
x getItemPintf : Item
x getItemWithIdPintf : Item
x getNoItemsPf : int
x getNoReservationsPf : int
x getReservationPintf : Reservation
x getTitlePObjIdf : Ti tle
x getTitlePf : String
x getTypePf : int
x getTypeAsStringPf : String
x iterateTitlePbooleanf : Ti tle
x leerPRandomAccessFilef : void
x removeItemAtIndexPintf : void
x removeReservationPObjIdf : void
x setAuthorPStringf : void
x setISBNPStringf : void
x setTitlePStringf : void
x setTypePintf : void
x TitlePf
x TitlePString# String# String# intf
x writePRandomAccessFi lef : void

Persistent

x cleanPf : void
x deletePf : boolean
x getObjIdPf : ObjId
x iteratePString# booleanf : Persistent
u obtainObjectPObjIdf : Persistent
x PersistentPf
x readPRandomAccessFilef : void
x storePf : void
x updatePf : boolean
x wri tePRandomAccessFilef : void

Dialog

FindTitleDialog

~ cancelButton_ClickedPEventf : void
~ findButton_ClickedPEventf : void
x FindTitleDialogPFrame# booleanf
x FindTitleDialogPFrame# String# booleanf
x handleEventPEventf : boolean
~ okButton_ClickedPEventf : void
x showPf : void

Dialog

AboutDialog

x AboutDialogPFrame# boolean# Toolki tf
x handleEventPEventf : boolean
~ okButton_ClickedPEventf : void
x paintPGraphicsf : void
x showPf : void

Frame

Borrow erFrame

~ AddButton_ClickedPEventf : void
x BorrowerFramePf
x BorrowerFramePStringf
~ CancelButton_ClickedPEventf : void
x handleEventPEventf : boolean
x showPf : void

Frame

Borrow erInfoWindow

x BorrowerInfoWindowPf
x BorrowerInfoWindowPStringf
~ FindButton_ClickedPEventf : void
x handleEventPEventf : boolean
~ okButton_ClickedPEventf : void
x resultBorrowerPObjIdf : void
x showPf : void

Frame

Brow seWindow

x BrowseWindowPf
x BrowseWindowPStringf
~ closeButton_ClickedPEventf : void
x fil lPf : void
x handleEventPEventf : boolean
x showPf : void
~ updateBorrowerButton_ClickedPEventf : void
~ updateTitleButton_ClickedPEventf : void

Frame

CancelReserv ationFrame

~ borrowerList_ListSelectPEventf : void
~ cancelButton_ClickedPEventf : void
x CancelReservationFramePf
x CancelReservationFramePStringf
D checkStatusPf : void
~ findTitleButton_ClickedPEventf : void
x handleEventPEventf : boolean
~ okButton_ClickedPEventf : void
x resultTitlePObjIdf : void
x showPf : void

Dialog

FindBorrow erDialog

~ CancelButton_ClickedPEventf : void
x FindBorrowerDialogPFrame# booleanf
x FindBorrowerDialogPFrame# String# booleanf
~ FindButton_ClickedPEventf : void
x handleEventPEventf : boolean
~ okButton_ClickedPEventf : void
x showPf : void

Frame

LendItemFrame

~ cancelButton_ClickedPEventf : void
D CheckStatusPf : void
~ FindBorrowerInformation_ClickedPEventf : void
~ FindTitleButton_ClickedPEventf : void
x handleEventPEventf : boolean
~ itemList_ListSelectPEventf : void
x LendItemFramePf
x LendItemFramePStringf
~ okButton_ClickedPEventf : void
x resultBorrowerPObjIdf : void
x resultTi tlePObjIdf : void
x showPf : void

Frame

MainWindow

~ About_ActionPEventf : void
x actionPEvent# Objectf : boolean
~ Borrower_ActionPEventf : void
~ BrowseAll_ActionPEventf : void
~ Exit_ActionPEventf : void
x handleEventPEventf : boolean
~ InsertBorrower_ActionPEventf : void
~ InsertTi tle_ActionPEventf : void
~ LendItem_ActionPEventf : void
x MainWindowPf
x paintPGraphicsf : void
~ RemoveReservation_ActionPEventf : void
~ ReserveTitle_ActionPEventf : void
x resultBorrowerPObjIdf : void
x resultTi tlePObjIdf : void
~ ReturningItem_ActionPEventf : void
x showPf : void
~ Title_ActionPEventf : void
~ UpdateBorrower_ActionPEventf : void
~ UpdateTitleItems_ActionPEventf : void

Dialog

MessageBox

x handleEventPEventf : boolean
x MessageBoxPFrame# Stringf
~ okButton_ClickedPEventf : void
x showPf : void

Dialog

QuitDialog

x handleEventPEventf : boolean
~ noButton_ClickedPEventf : void
x QuitDialogPFrame# booleanf
x QuitDialogPFrame# String# booleanf
x showPf : void
~ yesButton_ClickedPEventf : void

Frame

Reserv ationFrame

~ cancelButton_ClickedPEventf : void
D checkStatusPf : void
~ findBorrowerButton_ClickedPEventf : void
~ FindTitleButton_ClickedPEventf : void
x handleEventPEventf : boolean
~ okButton_ClickedPEventf : void
x ReservationFramePf
x ReservationFramePStringf
x resultBorrowerPObjIdf : void
x resultTi tlePObjIdf : void
x showPf : void

Frame

ReturnItemFrame

~ cancelButton_ClickedPEventf : void
D checkStatusPf : void
~ findTitleButton_ClickedPEventf : void
x handleEventPEventf : boolean
~ itemList_ListSelectPEventf : void
~ okButton_ClickedPEventf : void
x resultTi tlePObjIdf : void
x ReturnItemFramePf
x ReturnItemFramePStringf
x showPf : void

Frame

TitleFrame

~ addButton_ClickedPEventf : void
~ cancelButton_ClickedPEventf : void
x handleEventPEventf : boolean
x showPf : void
x TitleFramePf
x TitleFramePStringf

Frame

TitleInfoWindow

~ findButton_ClickedPEventf : void
x handleEventPEventf : boolean
~ okButton_ClickedPEventf : void
x resultTi tlePObjIdf : void
x showPf : void
x TitleInfoWindowPf
x TitleInfoWindowPStringf

Frame

UpdateBorrowerFrame

~ CancelButton_ClickedPEventf : void
~ DeleteButton_ClickedPEventf : void
x handleEventPEventf : boolean
x showPf : void
x UpdateBorrowerFramePObjId# booleanf
~ UpdateButton_ClickedPEventf : void
D UpdateFramePObjIdf : void

Frame

UpdateTitleFrame

~ addItemButton_ClickedPEventf : void
~ cancelButton_ClickedPEventf : void
~ deleteButton_ClickedPEventf : void
x handleEventPEventf : boolean
~ removeItemButton_ClickedPEventf : void
x showPf : void
~ updateButton_ClickedPEventf : void
D UpdateFramePObjIdf : void
x UpdateTitleFramePObjId# booleanf

Obj Id

x equalsPObjectf : boolean
x escribirPRandomAccessFilef : void
x getIdPf : int
x getNamePf : String
x ObjIdPf
x ObjIdPString# intf
x readPRandomAccessFilef : void

Dborrower

Dti tleDborrowerDitem
Dborrower

Dtitle

Dloan

Dcurrent

Dti tle

Dti tle

Dcurrent

Dcurrent

Dborrower

Dti tle

Dborrower

Dti tle

Dti tle

Dcurrent

Dborrower

Figure 6.10: Class Diagram B (Library System)

108 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

Figure 6.11: Respondents Selection of Classes that should not be Included in a Library System

Figure 6.12: Respondents Selection of Classes that should not be Included in a Pacman Game
(Forward Design)

Results and Findings 109

Table 6.8: The Preferences between Class Diagram A (C1), B (C2) and C (C3)

AnswersL NumberLofL
RespondentsL

inL
xL

Respondent’sLRoleL Respondent’sLSkillL

StudentL Researcher/L
AcademicL

ITL
Pro.L

PoorL LowL AvgL GoodL ExcellentL

Ihpreferh
classh
diagramhAh
(Figureh6.8)h

5h 20h 0h 2h 3h 0h 0h 2h 1h 2h

Ihpreferh
classh
diagramhBh
(Figureh6.10)h

2h 8h 0h 1h 1h 0h 0h 2h 0h 0h

Ihpreferh
classh
diagramhCh
(Figureh6.13)h

12h 48h 6h 5h 1h 1h 3h 6h 1h 1h

Ihpreferh
themhallh

1h 4h 1h 2h 0h 0h 0h 0h 1h 0h

Ihdohnoth
preferhthemh

2h 8h 0h 0h 2h 0h 0h 0h 1h 1h

Ithdoeshnoth
matterh
whichhoneh

3h 12h 0h 0h 1h 1h 1h 0h 1h 0h

Total 25 100 7 10 8 2 4 10 5 4

Level of Detail

Referring to the class diagram A (question C1), class diagram B (question C2), and class
diagram C (question C3), the respondents have been asked which flavour of the class
diagram is preferred to be used. The detail information of LoD for the class diagrams
is explained in Table 6.3.

The results in Table 6.8 show that almost half of the respondents (48%) preferred
working with class diagram C (see Figure 6.13). This diagram is a HLoD forward
design class diagram. They mentioned that the class diagram is clear, the necessary
information is provided (e.g. attributes and operations) and most of the presented
classes are important. This diagram was preferred by students and researchers and one
IT Professional. 20% of the respondents preferred to use class diagram A. Most of the
respondents that chose this diagram were Researchers/Academic and IT Professionals
with the skill in class diagrams ranging from Average to Excellent. It seems that most
of the respondents that have a good skill and experience in class diagrams prefer to use
this diagram. The respondents mentioned that they preferred this diagram because it
is simple, less technical, domain-oriented, systematic and has meaningful classes. 8%
of the respondents preferred class diagram B. Another 8% did not prefer any of the

110 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

ConsoleControl

W bi: BufferedInputStream
W continueGame: boolean
W model: GameModel

A ConsoleControl»GameModelR : int
W execute»R : boolean
A gameOver»GameEventR : void
A run»R : void

PacShell

A main»String[]R : void

Character

W currentTile: Tile

A Character»TileR : int
A getNeighbour»DirectionR : Tile
A getTile»R : Tile
A move»DirectionR : boolean
A setTile»TileR : boolean

«enumeration»
Direction

NORTH
EAST
SOUTH
WEST

A getOpposite»R : Direction

GameEvent

W eventType: int
A source: GameModel

A getSource»R : GameModel

GameLevel

W ghostStarts: List<Tile>
W maze: Maze
W playerStart: Tile

A addGhostStart»TileR : void
A clearGhostStart»intR : boolean
A clearPlayerStart»R : void
A GameLevel»MazeR : int
A getGhosts»R : int
A getGhostStart»intR : Tile
A getMaze»R : Maze
A getPlayerStart»R : Tile
A isComplete»R : boolean
A setPlayerStart»TileR : void

«interface»
GameListener

A gameOver»GameEventR : void
A levelComplete»GameEventR : void
A playerDeath»GameEventR : void
A playerMove»GameEventR : void

GameListenerAdapter

A gameOver»GameEventR : void
A levelComplete»GameEventR : void
A playerDeath»GameEventR : void
A playerMove»GameEventR : void

GameModel

W ghosts: List<Ghost>
W level: GameLevel
W levels: List<String>
W listeners: List<GameListener>
W player: Player

A addGameListener»GameListenerR : void
A GameModel»StringR : int
A getGhost»intR : Ghost
A getMaze»R : Maze
A getNumGhosts»R : int
A getPlayer»R : Player
A loadLevel»StringR : void
A makeMove»DirectionR : boolean
A removeGameListener»GameListenerR : void
A resetLevel»R : void
A stateCheck»R : void
A updateGhosts»R : void

Ghost

W target: Character

A getNextMove»R : Tile
A Ghost»TileU CharacterR : int

Maze

W maxX: int
W maxY: int
W mazeTiles: Tile[][]
A passDots: int

A addExit»intU intU DirectionU booleanR : boolean
A addTile»intU intR : boolean
A clearMaze»R : void
A dotsRemaining»R : int
A getMaxX»R : int
A getMaxY»R : int
A getNeighbour»TileU DirectionR : Tile
A getPassDots»R : int
A getTile»intU intR : Tile
A isComplete»R : boolean
A iterator»R : Iterator<Tile>
A Maze»intU intU booleanR : int
A removeExit»intU intU DirectionU booleanR : boolean
A removeTile»intU intR : boolean
A setPassDots»intR : void

MazeIterator

W maxX: int
W maxY: int
W tileArray: Tile[][]
W xPointer: int
W yPointer: int

A hasNext»R : boolean
A MazeIterator»intU intU Tile[][]R : int
A next»R : Tile
A remove»R : void

Player

W lives: int

A getLives»R : int
A isDead»R : boolean
A loseLife»R : boolean
A Player»TileU intR : int
A setTile»TileR : boolean

Tile

W exits: map<DirectionUTile>
W visited: boolean
A xCoord: int
A yCoord: int

A addDot»R : void
A clearDot»R : void
A getExit»DirectionR : Tile
A getShortName»R : String
A getXCoord»R : int
A getYCoord»R : int
A hasDot»R : boolean
A removeExit»DirectionR : boolean
A setExit»DirectionU TileR : boolean
A Tile»intU intR : int
A toString»R : String

«interface»
Iterable<Tile>

«interface»
Iterator<Tile>

ConsoleView

A ConsoleView»R : int
A ConsoleView»GameModelR : int
A drawMaze»GameModelR : void
A gameOver»GameEventR : void
A levelComplete»GameEventR : void
A playerDeath»GameEventR : void
A playerMove»GameEventR : void

Figure 6.13: Pacman Game Forward Design (Class Diagram C)

presented class diagrams. As reason for this, they stated that there is “no story” in the
class diagrams and that the class diagrams only show the solution, not the foundation
of the domain.

Reverse Engineered Class Diagram which Conformed to Forward Design

In question C5, the class diagram used was slightly different from the class diagram
presented in question C3 because this class diagram was constructed by using a reverse
engineering technique (see Figure 6.14). In this question, we tried to discover if there
was any difference in selecting the classes that should not be included in a class diagram
in a Re-CD that is close or almost similar to the forward design class. The result shows
that the class Direction and PacShell were selected by 72% of the respondents to be left

Results and Findings 111

ConsoleControl

Wv bi»v BufferedInputStream
Wv continueGame»v boolean
Wv model»v GameModel

Uv ConsoleControlRGameModelT
Wv executeRTv»vboolean
Uv gameOverRGameEventTv»vvoid
Uv levelCompleteRGameEventTv»vvoid
Uv runRTv»vvoid

PacShell

Uv mainRString[]Tv»vvoid

«enumeration»
Direction

NORTH
SOUTH
EAST
WEST

Uv getOppositeRTv»vDirection

Character

Wv currentTile»v Tile

Uv CharacterRTileT
Uv getNeighbourRDirectionTv»vTile
Uv getTileRTv»vTile
Uv moveRDirectionTv»vboolean
Uv setTileRTileTv»vboolean

GameEvent

Wv source»v GameModel

Uv GameEventRGameModelT
Uv getSourceRTv»vGameModel

GameLevel

Wv ghostStarts»v List<Tile>
Wv maze»v Maze
Wv playerStart»v Tile

Uv addGhostStartRTileTv»vvoid
Uv clearGhostStartRintTv»vboolean
Uv clearPlayerStartRTv»vvoid
Uv GameLevelRMazeT
Uv getGhostsRTv»vint
Uv getGhostStartRintTv»vTile
Uv getMazeRTv»vMaze
Uv getPlayerStartRTv»vTile
Uv isCompleteRTv»vboolean
Uv setPlayerStartRTileTv»vvoid

GameListenerAdapter

Uv gameOverRGameEventTv»vvoid
Uv levelCompleteRGameEventTv»vvoid
Uv playerDeathRGameEventTv»vvoid
Uv playerMoveRGameEventTv»vvoid

GameModel

Wv ghosts»v List<Ghost>
Wv level»v GameLevel
Wv levels»v List<String>
Wv listeners»v List<GameListener>
Wv player»v Player

Uv addGameListenerRGameListenerTv»vvoid
Uv GameModelRStringT
Uv GameModelRGameLevelT
Uv getGhostRintTv»vGhost
Uv getMazeRTv»vMaze
Uv getNumGhostsRTv»vint
Uv getPlayerRTv»vPlayer
Uv loadLevelRStringTv»vvoid
Uv makeMoveRDirectionTv»vboolean
Uv removeGameListenerRGameListenerTv»vvoid
Uv resetLevelRTv»vvoid
Wv stateCheckRTv»vvoid
Wv updateGhostsRTv»vvoid

Ghost

Wv target»v Character

Uv getNextMoveRTv»vTile
Uv GhostRTileAvCharacterT

Iterable

Maze

Wv maxX»v int
Wv maxY»v int
Wv mazeTiles»v TilevR[][]T
Wv passDots»v int

Uv addExitRintAvintAvDirectionAvbooleanTv»vboolean
Uv addTileRintAvintTv»vboolean
Uv clearMazeRTv»vvoid
Uv dotsRemainingRTv»vint
Uv getMaxXRTv»vint
Uv getMaxYRTv»vint
Uv getNeighbourRTileAvDirectionTv»vTile
Uv getPassDotsRTv»vint
Uv getTileRintAvintTv»vTile
Uv isCompleteRTv»vboolean
Uv iteratorRTv»vIterator<Tile>
Uv MazeRintAvintAvbooleanT
Uv removeExitRintAvintAvDirectionAvbooleanTv»vboolean
Uv removeTileRintAvintTv»vboolean
Uv setPassDotsRintTv»vvoid

Iterator

MazeIterator

Wv maxX»v int
Wv maxY»v int
Wv tileArray»v TilevR[][]T
Wv xPointer»v int
Wv yPointer»v int

Uv hasNextRTv»vboolean
Uv MazeIteratorRintAvintAvTile[][]T
Uv nextRTv»vTile
Uv removeRTv»vvoid

Player

Wv lives»v int

Uv getLivesRTv»vint
Uv isDeadRTv»vboolean
Uv loseLifeRTv»vboolean
Uv PlayerRTileAvintT
Uv setLivesRintTv»vvoid
Uv setTileRTileTv»vboolean

Tile

Wv exits»v Map<DirectionAvTile>
Wv visited»v boolean
Wv xCoord»v int
Wv yCoord»v int

Uv clearDotRTv»vvoid
Uv getExitRDirectionTv»vTile
Uv getXCoordRTv»vint
Uv getYCoordRTv»vint
Uv hasDotRTv»vboolean
Uv removeExitRDirectionTv»vboolean
Uv resetDotRTv»vvoid
Uv setExitRDirectionAvTileTv»vboolean
Uv shortNameRTv»vString
Uv TileRintAvintT
Uv toStringRTv»vString

«interface»
GameListener

Uv gameOverRGameEventTv»vvoid
Uv levelCompleteRGameEventTv»vvoid
Uv playerDeathRGameEventTv»vvoid
Uv playerMoveRGameEventTv»vvoid

ConsoleView

Uv ConsoleViewRT
Uv ConsoleViewRGameModelT
Uv drawMazeRGameModelTv»vvoid
Uv gameOverRGameEventTv»vvoid
Uv levelCompleteRGameEventTv»vvoid
Uv playerDeathRGameEventTv»vvoid
Uv playerMoveRGameEventTv»vvoid

WtileArray

WmazeTiles

Wtarget

Wlevel

Wplayer

WplayerStart

Wmaze

Wsource

WcurrentTile

Wmodel

Figure 6.14: Reverse Engineered Pacman Game (Class Diagram D)

112 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

Figure 6.15: Respondents Selection of Classes that should not be Included in a Pacman Game
(Reverse Engineered Design)

out from the class diagram. Compared to question C3, the Iterator and Iterable classes
were differently presented in this reverse engineered diagram. The complete result of
question C5 is shown in Figure 6.15.

Reverse Engineered vs. Forward Engineer Class Diagram

Question C6 aimed to discover which type of class diagrams was preferred by the
respondents i.e. RE-CD or forward designed class diagrams. The RE-CD used in this
question was different from the RE-CD in question C2 because this RE-CD was derived
from a system that was implemented (or coded) closely with the forward design. The
results in Table 6.9 show that most of the respondents (mainly researcher) preferred
the class diagram D (the RE-CD from question C5 as illustrated in Figure 6.14). 40% of
the respondents chose this diagram because it is more detailed, clear, interface classes
and it is easier to understand. 20% of the respondents did not choose any of the two
class diagrams because they did not have a preference. The reason mentioned by these
respondents was that both class diagrams are equally good and similar. On the other
hand, 16% of the respondents preferred the class diagram C (from question C3). There
is no pattern of selection present in this result in terms of the respondents’ role and
skill.

If we compare the results of this question and the results of Section 6.5.3, we found
that RE-CD is chosen if the source code was closely following the forward design,
because then the difference between forward design and its RE-CD is small.

6.6 Discussion

In this section, we discuss the results and findings presented earlier in this chapter.
This section is divided into 5 parts which are: Respondents’ Background, Software

Discussion 113

Table 6.9: The Preference between Class Diagram C and D

AnswersL NumberLofL
RespondentsL

inL
xL

Respondent’sLRoleL Respondent’sLSkillL

StudentL Researcher/L
AcademicL

ITL
Pro.L

PoorL LowL AvgL GoodL ExcellentL

Ibpreferbclassb
diagrambDb
(Figureb6.13)b

10b 40b 1b 7b 2b 1b 1b 5b 2b 1b

Ibpreferbclassb
diagrambCb
(Figureb6.14)

4b 16b 1b 0b 3b 0b 1b 1b 1b 1b

Ibpreferbthemb
bothb

3b 12b 1b 2b 0b 0b 0b 2b 1b 0b

Ibdon’tbpreferb
themb

3b 12b 2b 1b 0b 0b 2b 0b 0b 1b

Itbdoesn’tb
matterbwhichb
oneb

5b 20b 2b 0b 3b 1b 0b 2b 1b 1b

TotalL 25L 100L 7L 10L 8L 2L 4L 10L 5L 4L

Design Metrics, Class Names and Coupling, Class Diagrams Preferences, and Threats
to Validity.

6.6.1 Respondents’ Background

In Part A, the respondents’ profiles to this questionnaire were quite evenly distributed.
The location of the respondents showed that most of the respondents are from The
Netherlands and Malaysia. This is due to the professional and personal network of the
author.

In terms of the respondent’s skill and experience with class diagrams, we found
that 72% of the respondents have more than 1 year of experience with UML and that
76% of the respondents have rated themselves average or above if it comes to creating,
modifying and understanding class diagrams. Even though 28% of the respondents
said that they had less than one year of experience, we can still state that all the
respondents have knowledge about class diagrams.

6.6.2 Software Design Metrics

We asked which metrics could be used as indicators for inclusion or exclusion of
classes from class diagrams. We classified metrics in 3 categories: Size, Coupling and
Inheritance. The overall ranking of the score is shown in Table 6.10.

114 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

Table 6.10: Overall Score for Software Design Metrics

No. Design Metrics Score

1 NumPubOps 25
2 NOC 20
3 NumOps 18
4 NumAttr 17
5 Dep_Out 17
6 IC_Attr 17
7 Dep_In 16
8 EC_Attr 15
9 Setters/Getters 13
10 EC_Par 11
11 IC_Par 9
12 DIT 7
13 CLD 5

In the Size category, we found that the higher number of public operations, is the
more people prefer this class. There is a clear preference for public operations over
operations in general because public operations are considered to more often stand for
important functionality.

In the Coupling category, we found that the classes that have many incoming
and outgoing dependencies are preferred for inclusion. We found that IC_Attr and
EC_Attr have higher scores than EC_Par and IC_Par. The reason might be that a class
that is declared as an attribute is more important because it can be used across many
operations in the class.

In the Inheritance category, we discovered that for a class that has a high NOC, the
class should be included in a class diagram. This parent class is helpful to show the
abstraction of a group of classes. For DIT, a higher number of DIT does not indicate it
is an important class because it basically means that this particular class is located very
low in the inheritance hierarchy which means that this class is too detailed and most of
the times not needed. For CLD, if a class has a high value for this metric this that this
class is very abstract, meaning that this class alone will not be enough to understand
the whole hierarchy.

As for the complete results, we found that NumPubOps has the highest points
across all metrics. Also, all the metrics received a positive score, even though some only
slightly, while a negative score is also possible. Hence, each of these can be considered
in our subsequent studies on how to best use these metrics in selecting classes for
in/exclusion.

Discussion 115

6.6.3 Class Names and Coupling

In Part C, we showed that coupling is a highly influential factor when we are trying
to exclude classes from a class diagram. Another influencing factor is the class name.
From our observation, the class names are an influencing factor since it may indicate the
class role and responsibility. Through class names, the respondents make assumptions
of the class functionality (role, responsibility, service) and as well as the flow of the
system. Many respondents excluded Graphical User Interface (GUI) related classes in
the Library system because of the class role and responsibility (class name based), and
coupling.

Aside from these two big influencing factors, many respondents excluded types
of classes like enumeration and interface. Either of these classes did not contain any
information in it or the coupling was very low. Another reason of why the interface
classes are excluded could be that these classes are generic and not key for the domain of
an application. Overall, we suggest that the role and responsibility of the classes (based
on class names) could be an influencing factor in deciding class inclusion/exclusion.

6.6.4 Class Diagram Preferences

In question C4, we found that most of the respondents preferred to use HLoD of
the forward design. The reasons the respondents gave was that this class diagram
is clear and the necessary information is provided in this class diagram. Meanwhile,
in question C6, most of the respondents had chosen the RE-CD (HLoD). The reason
might be that the RE-CD that was provided has few differences from the forward
design. The respondent stated that they preferred this diagram because they find it
more detailed and it is easier to understand. Some of the respondents also mentioned
that the interface classes are removed, which make it a better class diagram.

From our observation, the RE-CD of the Library system was not preferred because
the structures of the classes were not well-presented. This might be because the
implementation was not conforming to the design or there was no design in the system
before implementation.

6.6.5 Threats to Validity

Although the respondents of this survey were quite well distributed between the
status roles (Student, Researcher/Academic and IT Professional), we consider that the
amount of full responses was still a small number. The locations of the respondents
were biased to The Netherlands and Malaysia. Most of the questions in this study
require the respondent to choose the best answers. We have made several assumptions
about why the respondents chose these answers and these assumptions may not be
accurate.

116 Exploring the Suitability of Object-Oriented Design Metrics as Features for CD Simplification

6.7 Conclusion

In this survey, we revealed the metrics that indicate the classes that could be left out.
We also found the flavour of class diagrams that developers prefer to work with. From
the results, we found that the most important software design metric is the Number of
Public Operations. This means that if a class has a high number of public operations
then this indicates that this class is important and should be included in a class diagram.
In this survey, we also found that the class names and coupling are influencing factors
when selecting a class to be excluded from a class diagram.

With these results, we can highlight which classes should be included or excluded
in RE-CDs. This is based on our results and analysis by looking at the metrics and
behaviour the respondents had in Part C. Although the number of responses on this
questionnaire is not that high, we managed to find some influencing factors for deciding
on class-inclusion or exclusion from a class diagram.

6.8 Future Work

This chapter reports an early study on how to simplify class diagrams and we see a
number of ways to extend this work. We propose to validate the results by using an
industrial case study and discover the suitability of the simplified class diagram for
the practical usage. It would also be interesting to include other metrics that we have
not chosen and check whether they are important or not and ask why the respondent
chose the answer to get the reason.

From the results, we found that class role and responsibility are important indicators
in a class diagram. We would like to suggest a study on the names (class, operation
and attribute) that the software developers find important or meaningful in order to
understand a system. We discovered some weakness in the questionnaire and our
suggestion is to improve this questionnaire by increasing the amount of responses. It
would be interesting to see what the results are with a larger group of respondents.

Chapter7
Condensing Reverse Engineered
Class Diagram using
Object-Oriented Design Metrics

There is a range of techniques available to reverse engineer software designs from
source code. However, these approaches generate highly detailed representations.
The condensing of reverse engineered representations into more high-level design
information would enhance the understandability of reverse engineered diagrams.
This chapter describes an automated approach for condensing reverse engineered
diagrams into diagrams that look as if they are constructed as forward designed
UML models. To this end, we propose a machine learning approach. The training
set of this approach consists of a set of forward designed UML class diagrams
and reverse engineered class diagrams (RE-CD for the same system). Based on
this training set, the method learns to select the key classes for inclusion in the
high-level class diagrams. In this chapter, we studied a set of nine classification
algorithms from the machine learning community and evaluated which algorithms
perform best for predicting the key classes in an application.

7.1 Introduction

Up-to-date design documentation is important, not just for the initial design, but also
in later stages of development and in the maintenance phase. UML models created

This chapter is adapted from a publication entitled “An Analysis of Machine Learning Algorithms
for Condensing Reverse Engineered Class Diagrams”, In Proceedings of the International Conference on
Software Maintenance (ICSM 2013)

118 Condensing Reverse Engineered Class Diagram using Object-Oriented Design Metrics

during the design phase of a software project are often poorly kept up-to-date during
development and maintenance. As the implementation evolves, correspondence be-
tween design and implementation degrades [118]. For legacy software, faithful designs
are often no longer available, while these are considered valuable for maintaining such
systems.

A popular method to recover an up-to-date design of a system is reverse engineer-
ing. Reverse engineering is the process of analyzing the source code of a system to
identify the system’s components and their relationships and create design representa-
tions of the system at a higher level of abstraction [41]. Reverse engineering also refers
to methods aimed at recovering knowledge about a software system in support of
execution some of software engineering tasks [170]. Tool support during maintenance,
re-engineering or re-architecting activities has become important to decrease the time
that software personnel spends on manual source code analysis and helps to focus
attention on important program understanding issues [22]. However, current reverse
engineering techniques do not yet solve this problem adequately. In particular, RE-CDs
are typically a detailed representation of the underlying source code. This makes it
difficult for software engineers understand what the key elements in the software
structure are [125].

This study is partially motivated by a scenario when new programmers want to
join the development team. They need a starting point in order to understand the
whole system before they are able to modify it. Provided with the software design, the
programmer will normally browse the class design and try to synchronize the design
with the source code. There is a need for programmers recognize which classes in the
system play important roles or can be considered as key classes in the system.

Fernández-Sáez et al. [59] found that developers experience more difficulties in
finding information in reverse engineered diagrams than in forward designed diagrams
and also find the level of detail in forward designed diagrams more appropriate
than in reverse engineered diagrams. In order to achieve better reverse engineered
representations, we need to learn which information from the implemented system
to include and which information to leave out. A method to assist software engineers
to focus on the key classes and aspects of the design is needed. The identification of
key classes can also be used to simplify complex class diagrams or help to predict the
severity of a defect in a software system.

This study specifically aims at providing suitable classification algorithms to decide
which classes should be included in a high-level class diagram. We seek an automated
approach to classifying the key classes in an application. We require algorithms that
are able to produce a score, not just a classification, so that a user potentially has the
option to choose a particular level of abstraction for representing a reverse engineered
design (in particular RE-CD).

In this chapter, we focus on the use of design metrics as predictors (input variables
used by the classification algorithm). The advantage of using design metrics is that
these can be obtained very efficiently with little effort. This fits our objective of creating

Related Work 119

a method of practical use to software developers. Also, we analyse the predictive
power of the predictors to know how influential each of these predictors are, with
respect to the performance of the classifier.

We explore several classification algorithms for predicting key classes that should
be included in a class diagram. As the input for this study, we use sets of source codes
from the open source projects with corresponding UML models that contain forward
designed class diagrams. We use these class diagrams as ‘ground truth’ to validate
the quality of the prediction algorithms. The methods we study will ‘learn’ from the
forward designed class diagrams which classes should be selected from the RE-CDs.
In total, nine algorithms were selected for this comparison study. These algorithms
will be evaluated in terms of accuracy and robustness with respect to the information
that they recommend to keep in and leave out of the class diagram. The candidate
set of algorithms includes: J48 Decision Tree, k-Nearest Neighbor (k-NN), Logistic
Regression, Naive Bayes, Decision Tables, Decision Stumps, Radial Basis Function
Networks, Random Forests and Random Trees.

We have collected a diverse collection of data sets consisting of nine pairs of UML
design class diagrams and associated Java source code derived from open source
software projects. The number of classes in the source code of these projects ranges
from 59 to 903. Out of these classes, 3% to 47% were found to be included in the
forward UML class diagram. The open source projects were chosen for a number of
reasons. We wanted the data to be representative for the diversity and complexity
of real world projects. The quality of documentation for open source projects varies
widely, and there is also a substantial variation in the ratio of classes in the forward
design versus classes in the source code. In open source projects, software design is not
a mandatory requirement, and these projects rely on volunteers working together in a
distributed fashion. Also, by using open source projects we make it easier for other
researchers to reproduce or compare against our results and develop new methods on
the same data.

The chapter is structured as follows: Section 7.2 discusses related research and
Section 7.3 describes the research questions. Section 7.4 explains the approach on how
we conducted the evaluation. Section 7.5 presents the results and Section 7.6 discusses
our findings. This is followed by conclusions and future work in Section 7.7.

7.2 Related Work

The following studies are related to our research from the perspective of identifying
key classes from software artifacts.

Zaidman and Demeyer [184] proposed a method for identifying key classes by
using Hyperlink-Induced Topic Search (HITS) web mining technique. They used
dynamic (runtime) analysis of source code as the input for the identification of key
classes. For validating their method, they manually identified key classes from the

120 Condensing Reverse Engineered Class Diagram using Object-Oriented Design Metrics

software documentation. Recall and precision were used to evaluate the approach
and they found that their approach was able to recall 90% of the key classes and
the precision was slightly under 50%. However, dynamic analysis approaches need
significant effort for collecting run-time traces.

Perin et al. [136] proposed ranking software artifacts using the PageRank algorithm.
They used the Pharo Smalltalk system and Moose re-engineering environment as case
studies. For the Pharo Smalltalk system, they reported that their approach was able to
detect 42% of the important classes (prediction based on classes) and to detect 52% of
the important classes when prediction was based on methods. However, no precision
result was presented for the Moose system.

Hammad et al. [77] proposed an approach to identify the critical software classes in
the context of design evolution. Version (commit) history and source code were used
as the input for this study. They assumed that the classes that were frequently changed
in the software evolution are the classes that are critical to the system. They found that
15% of the classes in the case studies were changed from six design changes.

Steidl et al. [154] presented an approach to retrieve important classes of a system
by using network analysis on the dependency graphs. They performed an empirical
study to find the best combination of centrality measurement and dependency graphs.
Classes recommended by their test project developers were used as the baselines. They
found that the centrality indices perform best when using the undirected dependency
graph that include information about inheritance, parameter and return dependency.

Our work also aims at identifying key classes, but we explore diverse classification
algorithms based on supervised machine learning. In contrast, static analysis is used
for our data collection as it is easy to obtain from open source projects. The aforemen-
tioned works validate their approach to identify the key classes in class diagrams by
comparing the prediction result with the information derived from software documen-
tation, repository and developer(s) recommendation. In this study, we validate our
approach by comparing selected classes against those actually found in the forward
design.

7.3 Research Questions

This section describes the research questions of this study that will be answered in
Section 7.5.

RQ1: Which design metrics are influential predictors in classifying key classes?
For each case study, we explore the predictive power of individual predictors.

RQ2: How robust is the classification to the inclusion of categories of predictors?
We explore how the performance of the classification algorithms is influenced by parti-
tioning the predictor-variables in different groups with different characteristics.

Approach 121

RQ3: What are suitable classification algorithms in classifying key classes?
The candidate classification algorithms are evaluated to find out which algorithm(s)
are suitable for classifying the key classes in a class diagram.

7.4 Approach

This section describes the Examined Predictors and Tools, Case Studies and Process.

7.4.1 Examined Predictors and Tools

In this section, we describe i) the metrics that we used as inputs to the prediction
algorithms, and ii) the tools used for this research.

Examined Predictors

We used a set of software metrics that are typically used to characterize design char-
acteristic of classes in class diagrams as input to our classification algorithms. The
SDMetrics [180] tool is capable of computing 32 types of class diagram metrics. These
metrics are divided into five categories, namely Size, Coupling, Inheritance, Com-
plexity and Diagram. We select 11 class diagram metrics from the Size and Coupling
category. These categories of metrics were selected for the following reasons: i) our
survey in Chapter 5 and 6 demonstrated that developers use Size and Coupling as
predictors of key classes, ii) experts in the area of software metrics (Briand et al. [36]
and Genero et al. [29]) stated that Coupling is an important structural dimension in
object-oriented design, iii) the work in [188] and [73] showed that WMC (a metric in
the Size category) and CBO (a metric in the Coupling category) are influential for defect
prediction. The specific set of 11 metrics used is shown in Table 7.1.

Tools

The tools used in this study are the following:

• Reverse Engineering Tool: MagicDraw[9] is a system modeling tool that provides
reverse engineering facilities. MagicDraw version 17.0 (academic evaluation
license) was used for this study.

• Software Metrics Tool: SDMetrics is a tool that computes a large set of metrics for
UML models. SDMetrics version 2.2 (academic license) was used for this study.

• Data Mining Tool: Waikato Environment for Knowledge Analysis (WEKA) is a
collection of machine learning algorithms for data mining tasks [178]. It contains
tools for data pre-processing, classification, clustering, and visualization. WEKA
version 3.6.6 was used for this study.

122 Condensing Reverse Engineered Class Diagram using Object-Oriented Design Metrics

Table 7.1: List of Class Diagram Metrics

Metrics Category Description
NumAttr Size The number of attributes in the class.
NumOps Size The number of operations in the class. Also known as

WMC in [40] and Number of Methods (NM) in [99].
NumPubOps Size The number of public operations in a class. Also known

as Number of Public Methods (NPM) in [99].
Setters Size The number of operations with a name starting with

‘set’.
Getters Size The number of operations with a name starting with

‘get’, ‘is’, or ‘has’.
Dep_Out Coupling

(import)
The number of dependencies where the class is the
client.

Dep_In Coupling
(export)

The number of dependencies where the class is the sup-
plier.

EC_Attr Coupling
(export)

The number of times the class is externally used as at-
tributes type. This is a version of OAEC +AAEC in
[34].

IC_Attr Coupling
(import)

The number of attributes in the class have another
class or interface as their type. This is a version of
OAIC+AAIC in [34].

EC_Par Coupling
(export)

The number of times the class is externally used as a
parameter type. This is a version of OMEC+AMEC in
[34].

IC_Par Coupling
(import)

The number of parameters in the class have another
class or interface as their type. This is a version of
OMIC+AMIC in [34].

7.4.2 Case Studies

We used the following criteria for selecting case studies:

• The software should be an open source software project that provides both the
implementation source code and forward design class diagram.

• The number of classes in the implementation (source code) ≥ 50 classes.

Based on these criteria, nine open source software/systems were selected. In these
projects, we selected a forward UML class diagram from the documentation and then
selected a matching version of the source code. The number of classes in these case
studies ranges from 59 to 903 (see Table 7.2). The ratio between the number of classes
included in the UML class diagram and the number of classes in the implementation

Approach 123

Table 7.2: List of Case Study

No. Project Total Classes in
Source Code (S)

Total Classes in
Design (D)

D:S ratio
as %

1 ArgoUML 903 44 4.9
2 Mars 840 29 3.5
3 JavaClient 214 57 26.6
4 JGAP 171 18 10.5
5 Neuroph 2.3 161 24 14.9
6 JPMC 121 24 19.8
7 Wro4J 87 11 12.6
8 xUML 84 37 44.1
9 Maze 59 28 47.5

(source code) spreads across a wide range: from 3 to 47%. This large range in character-
istics of the input may be a difficulty for building a reliable classifier for our domain.
For this reason, we focus on algorithms that will produce a score for a class concordant
with the likelihood that it would be included in the UML diagram. This will allow
a developer to vary the amount of classes included, i.e. the level of abstraction, by
changing the threshold on the score. We make the case studies used for this research
available at [6] for future research and for validation of this study. Detailed information
about these case studies can be found in Section 3.3.

7.4.3 Process

This subsection describes the steps performed for this study. The inputs for this process
are forward designs and RE-CDs (constructed from the source code of the case studies).
The output of the machine learning phase is the list of key classes that can be used to
condense a class diagram. The approach is illustrated in Figure 7.1.

Data Preparation

For data preparation, class diagram metrics were extracted from RE-CD (obtained
through reverse engineering process). Then, the information about the presence of a
class in the forward design was entered in a table.

The data preparation steps are described in Table 7.3. In this table, Step 1 to 3,
performed the extraction of all required data. Then, the data is cleaned up by removing
the external library and runtime classes since we only focused on the application and
domain related classes (as suggested in Chapter 5). Step 5 and 6 perform the merging
of data and Step 7 select the software metrics that are useful for prediction.

We expect that there is some noise in the predictors. For instance, the getters and

124 Condensing Reverse Engineered Class Diagram using Object-Oriented Design Metrics

MachinevLearningvMethods

class VTM4lass5iagramMLo5Y

phys ical ,,4ardReader

q atm

w 4ardReaderNE
w read4ardNE , 4ard
w eject4ardNE , void
w retain4ardNE , void

phys ical,,4ash5ispenser

q log
q cashOnQand

w 4ash5ispenserNE
w setIni tial4ashNE , void
w check4ashOnQandNE , boolean
w dispense4ashNE , void

phys ical ,,4us tomer4onsole

w 4ustomer4onsoleNE
w displayNE , void
w readPINNE , int
w readMenu4hoiceNE , int
w readVmountNE , Money

physical,,6nv elopeVcceptor

q log

w 6nvelopeVcceptorNE
w accept6nvelopeNE , void

physical,,Log

w LogNE
w logSendNE , void
w logResponseNE , void
w log4ash5ispensedNE , void
w log6nvelopeVcceptedNE , void

phys ical ,,Netw orkTo3ank

q log
q bankVddress

w NetworkTo3ankNE
w open4onnectionNE , void
w close4onnectionNE , void
w sendMessageNE , Status

phys ical,,OperatorPanel

q atm

w OperatorPanel NE
w getIniti al4ashNE , Money

phys ical ,,ReceiptPrinter

w ReceiptPrinterNE
w printReceiptNE , void

transac tion,,Inquiry

q from

w InquiryNE
I getSpecifi cs0rom4ustomerNE , Message
I completeTransactionNE , Receipt

transac tion,,5eposi t

q to
q amount

w 5epositNE
I getSpecifics0rom4ustomerNE , Message
I completeTransactionNE , Receipt

transac tion,,Transaction

I atm
I session
I card
I pin
I serialNumber
I message
I balances
q TRVNSV4TION_TYP6S_M6NU N[]E x { HWithdrawalHBfff {readOnly}
q nextSerialNumber x _
q state
q J6TTINJ_SP64I0I4S_ST VT6 x _ {readOnly}
q S6N5INJ_T O_3VNK_STVT6 x Y {readOnly}
q INVVLI5_PIN_STVT6 x U {readOnly}
q 4OMPL6TINJ_TRVNSV4TION_STVT6 x [{readOnly}
q PRINTINJ_R646IPT_STVT6 x] {readOnly}
q VSKINJ_5O_VNOTQ6R_STVT6 x = {readOnly}

I T ransactionNE
w makeTransactionNE , Transaction
w performTransactionNE , boolean
w performInval idPIN6xtensionNE , Status
w getSerialNumberNE , int
I getSpecifi cs0rom4ustomerNE , Message
I completeTransactionNE , Receipt

transac tion,,Trans fer

q from
q to
q amount

w TransferNE
I getSpeci fics0rom4ustomerNE , Message
I completeTransactionNE , Receipt

transac tion,,Wi thdraw al

q from
q amount

w WithdrawalNE
I getSpecifics0rom4ustomerNE , Message
I completeTransactionNE , Receipt

Runnable

atm,,VTM

q id
q place
q bankName
q bankVddress
q cardReader
q cash5ispenser
q customer4onsole
q envelopeVcceptor
q log
q networkTo3ank
q operatorPanel
q receiptPrinter
q state
q swi tchOn
q cardInserted
q O00_STVT6 x F {readOnly}
q I5L6_STVT6 x _ {readOnly}
q S6RVINJ_4USTOM6R_STVT6 x Y {readOnly}

w VT MNE
w runNE , void
w swi tchOnNE , void
w swi tchOffNE , void
w cardInsertedNE , void
w getI5NE , int
w getPlaceNE , String
w get3ankNameNE , String
w get4ardReaderNE , 4ardReader
w get4ash5ispenserNE , 4ash5ispenser
w get4ustomer4onsoleNE , 4ustomer4onsole
w get6nvelopeVcceptorNE , 6nvelopeVcceptor
w getLogNE , Log
w getNetworkTo3ankNE , NetworkTo3ank
w getOperatorPanelNE , OperatorPanel
w getReceiptPrinterNE , ReceiptPrinter
q performStartupNE , void
q performShutdownNE , void

atm,,Session

q atm
q pin
q state
q R6V5INJ_4VR5_STVT6 x _ {readOnly}
q R6V5INJ_PIN_STVT6 x Y {readOnly}
q 4QOOSINJ_TRVNSV4TION_STVT6 x U {readOnly}
q P6R0ORMINJ_TRVNSV4TION_STVT 6 x [{readOnly}
q 6J64TINJ_4VR5_STVT6 x] {readOnly}
q 0INVL_STVT 6 x = {readOnly}

w SessionNE
w performSessionNE , void
w setPINNE , void

banking,,VccountInformation

w V44OUNT_NVM6S N[]E x { H4heckingHB Hfff {readOnly}
w V44OUNT_V33R6VIVT IONS N[]E x { H4QKJHB HSVJSfff {readOnly}

banking,,3alances

q total
q avai lable

w 3alancesNE
w set3alancesNE , void
w getTotalNE , Money
w getVvai lableNE , Money

banking,,4ard

q number

w 4ardNE
w getNumberNE , int

banking,,Message

w WITQ5RVWVL x F {readOnly}
w INITIVT6_56POSIT x _ {readOnly}
w 4OMPL6T6_56POSIT x Y {readOnly}
w TRVNS06R x U {readOnly}
w INQUIRY x [{readOnly}
q message4ode
q card
q pin
q serialNumber
q fromVccount
q toVccount
q amount

w MessageNE
w toStringNE , String
w setPINNE , void
w getMessage4odeNE , int
w get4ardNE , 4ard
w getPINNE , int
w getSerialNumberNE , int
w get0romVccountNE , i nt
w getT oVccountNE , int
w getVmountNE , Money

bank ing,,Money

q cents

w MoneyNE
w MoneyNE
w MoneyNE
w toStringNE , String
w addNE , void
w subtractNE , void
w less6qualNE , boolean

banking,,Receipt

q headingPortion N[]E
I detail sPortion N[]E
q balancesPortion N[]E

I ReceiptNE
w getLinesNE , 6numeration

banking,,Status

w toStringNE , String
w isSuccessNE , boolean
w isInvalidPINNE , boolean
w getMessageNE , String

qamount

qcashOnQand

qlog

qlog

qlog

qatm

qamount

Iatm

Ibalances

Icard

Imessage

Isession

qatm

qlog

qamount

qtotal

qavai lable

qatm

qreceiptPrinter

qamount

qnetworkTo3ank

qenvelopeVcceptorqcustomer4onsole

qcash5ispenser

qcardReader

qcard

qoperatorPanel

VbstractedvReversev6ngineeredv4lassv5iagram

0orwardv6ngineeringv4lassv5iagram
c las s VTM4lass5iagramMLo5Y

physical ,,4a rdReader

q atm

w 4ardReaderNE
w read4ardNE , 4a rd
w eject4ardNE , vo id
w re ta in4ard NE , void

phys ica l,,4ash5ispenser

q log
q cashOnQand

w 4ash5ispenserNE
w setIni tial4ashNE , vo id
w check4ashOnQandNE , boo lean
w dispense4ashNE , vo id

physic al,,4ustomer4onso le

w 4ustomer4onso le NE
w disp layNE , vo id
w readPINNE , int
w readMenu4hoice NE , in t
w readVmountNE , Money

phys ic al,,6nv elopeVccep tor

q log

w 6nvelopeVcceptorNE
w accept6nvelopeNE , void

physical ,,Log

w LogNE
w logSendNE , void
w logResponseNE , vo id
w log4ash5ispensedNE , void
w log6nve lopeVcceptedNE , void

physic al ,,Netw orkTo3ank

q log
q bankVddress

w NetworkTo3ankNE
w open4onnection NE , void
w close4onnection NE , void
w sendMessageNE , Status

physical ,,OperatorPanel

q a tm

w Operato rPanel NE
w getIni tial4ashNE , Money

phys ica l,,ReceiptPrinter

w ReceiptP rinterNE
w printReceiptNE , void

transac tion,,Inquiry

q from

w Inqui ryNE
I getSpecifi cs0rom4ustomerNE , Message
I completeTransactionNE , Receipt

transac tion,,5epos it

q to
q amount

w 5eposi tNE
I ge tSpeci fi cs0rom4ustomerNE , Message
I comple teT ransactionNE , Receipt

transac tion,,Transaction

I atm
I session
I card
I pin
I serialNumber
I message
I balances
q TRVNSV4TION_TYP6S_M6NU N[]E x { HWithd rawa lHBfff {readOnly}
q nextSe rialNumber x _
q state
q J6TTINJ_SP64I0I4S_STVT6 x _ {readOnly}
q S6N5INJ_TO_3VNK_STVT6 x Y {readOnly}
q INVVLI5_PIN_STVT6 x U {readOnly}
q 4OMPL6TINJ_TRVNSV4TION_STVT6 x [{readOnly}
q PRINTINJ_R646IPT_STVT 6 x] {readOnly}
q VSKINJ_5O_VNOT Q6R_STVT6 x = {readOnly}

I Transaction NE
w makeTransactionNE , Transaction
w perfo rmTransactionNE , boolean
w perfo rmInva lidPIN6xtensionNE , Status
w getSeria lNumberNE , int
I getSpecifi cs0rom4ustomerNE , Message
I comp le teTransactionNE , Receipt

transaction,,Transfer

q from
q to
q amount

w T ransferNE
I getSpeci fics0rom4ustomerNE , Message
I completeTransaction NE , Rece ip t

trans action,,Withd raw al

q from
q amount

w Wi thd rawalNE
I ge tSpeci fi cs0rom4ustomerNE , Message
I comple teTransactionNE , Receipt

Runnable

atm,,VTM

q id
q place
q bankName
q bankVddress
q ca rdReader
q cash5ispenser
q customer4onsole
q envelopeVccep to r
q log
q ne tworkTo3ank
q opera torPanel
q rece iptPrin ter
q state
q switchOn
q ca rd Inserted
q O00_STVT6 x F {readOn ly}
q I5L6_ST VT6 x _ {readOnly}
q S6RVINJ_4USTOM6R_STVT6 x Y {readOnly}

w VTMNE
w runNE , void
w switchOnNE , void
w switchOffNE , void
w ca rd InsertedNE , void
w ge tI5NE , int
w ge tPlace NE , String
w ge t3ankNameNE , String
w ge t4ardReaderNE , 4ardReader
w ge t4ash5ispenserNE , 4ash5ispenser
w ge t4ustomer4onsole NE , 4ustomer4onsole
w ge t6nvelopeVccep torNE , 6nvelopeVccep to r
w ge tLogNE , Log
w ge tNetworkTo3ankNE , NetworkTo3ank
w ge tOperatorPane lNE , Opera torPanel
w ge tReceiptPrinterNE , Rece iptPrin ter
q pe rformStartupNE , void
q pe rformShutdownNE , void

atm,,Session

q atm
q pin
q state
q R6V5INJ_4VR5_STVT6 x _ {readOnly}
q R6V5INJ_PIN_ST VT6 x Y {readOnly}
q 4QOOSINJ_TRVNSV4TION_STVT6 x U {readOnly}
q P6R0ORMINJ_TRVNSV4TION_STVT 6 x [{readOnly}
q 6J64TINJ_4VR5_ST VT6 x] {readOnly}
q 0INVL_STVT6 x = {readOnly}

w SessionNE
w performSessionNE , void
w setPINNE , void

banking,,VccountInforma tion

w V44OUNT_NVM6S N[]E x { H4heckingHB Hfff {readOnly}
w V44OUNT_V33R6VIVTIONS N[]E x { H4QKJHB HSVJSfff {readOnly}

banking,,3alances

q to tal
q ava ilable

w 3alancesNE
w set3alancesNE , void
w getTotal NE , Money
w getVvai lableNE , Money

banking,,4a rd

q number

w 4ardNE
w getNumberNE , int

banking,,Message

w WITQ5RVWVL x F {readOnly}
w INITIVT6_56POSIT x _ {readOnly}
w 4OMPL6T6_56POSIT x Y {readOnly}
w TRVNS06R x U {readOnly}
w INQUIRY x [{readOnly}
q message4ode
q card
q pin
q se rialNumber
q fromVccoun t
q toVccount
q amoun t

w MessageNE
w toStringNE , String
w se tPINNE , vo id
w getMessage4odeNE , int
w get4ardNE , 4ard
w getPINNE , in t
w getSeria lNumberNE , int
w get0romVccountNE , int
w getToVccountNE , int
w getVmoun tNE , Money

banking ,,Money

q cen ts

w MoneyNE
w MoneyNE
w MoneyNE
w toStringNE , String
w addNE , void
w subtractNE , void
w less6qua lNE , boolean

banking,,Receipt

q headingPortion N[]E
I de ta il sPortion N[]E
q ba lancesPortion N[]E

I ReceiptNE
w ge tL inesNE , 6numera tion

bank ing ,,Status

w toStringNE , String
w isSuccessNE , boo lean
w isInval idPINNE , boo lean
w getMessageNE , String

qamoun t

qcashOnQand

qlog

qlog

qlog

qatm

qamount

Ia tm

Ibalances

Icard

Imessage

Isession

qatm

qlog

qamoun t

qto tal

qavai lable

qatm

qreceiptPrinter

qamount

qnetworkTo3ank

qenvelopeVcceptorqcustomer4onsole

qcash5ispenser

qcardReader

qca rd

qoperato rPanel

Reversev6ngineeredv4lassv5iagram

5atavforvSupervisedvMachinevLearning

IN
P

U
T

Listvofv4lassesv
inv0orwardv

5esign

4lassv
5iagramv
Metrics

5
V

T
V

v
P

R
6

P
V

R
V

T
IO

N
5

V
T

V
v

P
R

O
4

6
S

S
IN

J
O

U
T

P
U

T

Figure 7.1: Design Abstraction Process

Approach 125

Table 7.3: Data Preparation Steps

No. Preparation Step Description
1. List all the classes that appear in the

UML design-class diagram
To get the class in design vs. im-
plementation ratio

2. Reverse engineer the source code into a
class diagram using MagicDraw. Save
the class diagram in XML Metadata In-
terchange (XMI) file format

To get the design from the source
code prepared for the metrics
tool input

3. Calculate the software metrics of the
RE-CD using SDMetrics and save in
CSV format

Class diagram metrics calcu-
lation and data mining input
preparation

4. Manually remove external library
classes and runtime classes from the list

To extract only developed classes
in the source code

5. Merge the software metrics information
from the source code and the classes in
the forward design

To map between classes in de-
sign and classes from software
metrics obtained from the source
code

6. Amend the CSV file by adding the in-
formation of “In Design” properties (N
for not presented in Design Document,
Y for presented in Design Document)

Add the information about the
class in design in the software
metrics information

7. Remove software metrics properties
that show no significant information
(data cleanup) present an overall data
summary in plot graph

To extract only the selected inde-
pendent variable (class diagram
metrics) and present the sum-
mary of data

setters predictor completely relies on the conformance of source code to naming con-
ventions (e.g. ‘get’,‘has’). Not all case studies have this kind of naming convention.
In RQ2, we desired to explore the performance of the classification algorithms across
different group of predictors (based on predictors’ characteristics). Therefore, we ex-
perimented with different groups of predictors: Experiment A: the full set of predictors
(predictor set A), Experiment B: all metrics, but excluding metrics related to getters,
setters and Number of Public Operation (predictor set B), and Experiment C: a set of
predictors that only uses Coupling metrics (predictor set C). The details of all predictor
sets are shown in Table 7.4.

Data Processing

For every run of the classification algorithm, we randomly split the dataset (for every
case study) into 50% for the training set and the other 50% for the test set. To further

126 Condensing Reverse Engineered Class Diagram using Object-Oriented Design Metrics

Table 7.4: Predictor Sets

No. Predictor Predictor set A Predictor set B Predictor set C
1 NumAttr Yes Yes No
2 NumOps Yes Yes No
3 NumPubOps Yes No No
4 Setters Yes No No
5 Getters Yes No No
6 Dep_out Yes Yes Yes
7 Dep_In Yes Yes Yes
8 EC_Attr Yes Yes Yes
9 IC_Attr Yes Yes Yes
10 EC_Par Yes Yes Yes
11 IC_Par Yes Yes Yes

improve reliability, we ran each experiment 10 times using different randomization.
The main reason for doing this is that the data are typically imbalanced where the
number of classes in design (the ‘positives’) is very low compared to the number of
classes in the source code. If we would have used 10-fold cross validation, it means that
we use only 10% of the data for testing and 90% for training. Thus, the possibility of any
positives to be included in the test data was very low, and test set error measurements
would not have been reliable (refer [62] for more detail discussion). For example,
let say we have an imbalanced dataset with 900 examples with only 1% (9) of the
examples are positive. If we used 10-fold cross validation, there is a possibility of the
positive example is not included in the test set. Thus, the True Positive Rate (TPR)
calculation is not reliable in this situation. We avoided detailed fine-tuning because
we assumed our end users have no knowledge of data mining. Algorithms ran with
default WEKA configuration. We used WEKA as the tool and algorithms ran with
WEKA default parameter setting; Except for k-Nearest Neighbor, for which we used
two different neighborhood size settings (1 and 5 neighbors). A different number of k
in k-NN may present a substantial difference in classification performance. Therefore,
this experiment investigates two sets of k-NN: (a) k=1 (extreme lowest value of k, or
plain nearest neighbor); and (b) k=5 (which we believe it represents a more average k
value for the dataset).

Evaluation

In this study, the analyses are conducted using two evaluation measures: i) the uni-
variate analysis, and ii) the analysis of classification performance. These measures are
explained as follows:

Evaluation of Results 127

Univariate Analysis: To measure the predictive power of the predictors, we use the
information gain with respect to the class [76]. Univariate predictive power means
measuring how influential a single predictor is in predicting performance. The results
of this algorithm are normally used to select the most suitable predictor. Nevertheless,
in our study, we did not use it for predictor selection, but for an exploratory analysis of
the usefulness of various predictors (in this case: class diagram metrics).

For Univariate analysis, the predictors were evaluated by using the Information
Gain (InfoGain) Attribute Evaluator in WEKA. This method produces a value which
indicates the influence of a predictor in prediction performance based on the case
studies. A higher value of InfoGain denotes a stronger influence of the predictor (i.e.
closer to 1 is better).

Analysis of classification performance: As discussed in Chapter 2, classification per-
formance is analyzed by using the Area Under ROC Curves (AUC). The evaluation of
machine learning classification algorithms started with generating a confusion matrix
(as shown in Table 2.3), based on applying a classification algorithm using WEKA.

WEKA provides AUC calculations as a number between 0 and 1. A value closer to
1 means a better classification result, while a value close to 0.50 means the classification
performs almost randomly.

Based on an early observation on our case studies, we decided the threshold for the
AUC value = 0.60. This means, if the AUC value ≥ 0.60, the classification algorithm is
considered to be usable for prediction for our specific problem.

7.5 Evaluation of Results

This section presents our evaluation on i) predictive power of predictors and ii)
overview of benchmark AUC results.

7.5.1 Predictor Evaluation

This subsection presents our univariate analysis results that measure the predictive
performance of each predictor using information gain.

RQ1. The results show the influence of a predictor for the classification algorithm. A
class diagram metric is considered to be influential for prediction when the value of
the InfoGain Attribute Evaluator is greater than 0. Table 7.5 shows that out of eleven
class diagram metrics used in this study, nine of them influenced the prediction in
the JavaClient project while xUML and Mars have eight and seven influential class
diagram metrics. On the other hand, ArgoUML and JPMC have only one influential
class diagram metric. Table 7.5 also shows that the Coupling category metrics are
influential for every case study. In all cases, at least one of the Coupling metrics is

128 Condensing Reverse Engineered Class Diagram using Object-Oriented Design Metrics

Table 7.5: Univariate Predictor Performance (Information Gain)

Project NumAttr NumOps NumPubOps Setters Getters Dep_out Dep_In EC_Attr IC_Attr EC_Par IC_Par
ArgoUML 0.000 0.000 0.000 0.000 0.000 0.024 0.000 0.000 0.000 0.000 0.000
Mars 0.000 0.013 0.017 0.011 0.025 0.000 0.047 0.037 0.000 0.031 0.000
JavaClient 0.093 0.048 0.044 0.000 0.050 0.215 0.093 0.000 0.183 0.092 0.225
JGAP 0.073 0.056 0.000 0.078 0.000 0.047 0.000 0.000 0.000 0.058 0.000
Neuroph 0.000 0.054 0.062 0.000 0.000 0.000 0.084 0.000 0.000 0.106 0.000
JPMC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.059 0.000 0.000
Wro4J 0.000 0.000 0.000 0.000 0.000 0.000 0.212 0.111 0.000 0.196 0.000
xUML 0.168 0.281 0.281 0.306 0.147 0.240 0.000 0.000 0.085 0.000 0.506
Maze 0.000 0.000 0.000 0.000 0.000 0.000 0.171 0.178 0.000 0.125 0.000
No. of
InfoGain > 0 3 5 4 3 3 4 5 3 3 6 2
Average 0.037 0.050 0.045 0.044 0.025 0.058 0.067 0.036 0.036 0.068 0.081

Figure 7.2: Average AUC Score for Every Dataset.

listed as influential for prediction. This means that class diagram metrics categorized
in Coupling (i.e. IC_Par, EC_Par, IC_Attr, EC_Attr, Dep_In and Dep_out) have a strong
influence on prediction ability. If we compare Coupling metrics with Size metrics
(i.e. NumAttr, NumOps, NumPubOps, Getters, Setters) we found that only five case
studies listed at least one of the Size-metrics as influential predictor. EC_Par is the
most influential class diagram metrics because it is listed as influential in prediction
for six out of nine case studies.

RQ2. We have studied the predictors through three different experiments (based on the
predictor sets defined in Table 7.4). Figure 7.2 shows the average AUCs of classification
algorithms for all experiments. We expected to see a large difference in prediction
performance among the three experiments. However, there is not much difference in
prediction performance as we can see in Figure 7.2 the difference in average AUC is
only ± 0.02. From this figure, we found out that the performances slightly degrade for
experiment C, but the amount of degradation is not very significant. This means, even
though the number of predictors in experiment C is smaller than in experiments A

Evaluation of Results 129

Table 7.6: Results for Predictor set C.

No Project JW
f

k
2N

N
wh

d

k
2N

N
Dw

xd

F
u

n
ct

io
n

DL
og

is
ti

c

N
aï

ve
DB

ay
es

D
ec

is
io

n
DT

ab
le

D
ec

is
io

n
DS

tu
m

p

R
B

F
DN

et
w

or
k

R
an

d
om

DF
or

es
t

R
an

d
om

DT
re

e

h ArgoUML 0.50 0.69 0.69 0.54 0.56 0.50 0.55 0.50 0.64 0.60
0.00 0.04 0.05 0.05 0.06 0.00 0.07 0.07 0.04 0.03

6 Mars 0.53 0.69 0.75 0.61 0.62 0.52 0.70 0.58 0.73 0.61
0.06 0.03 0.05 0.05 0.13 0.05 0.07 0.16 0.09 0.08

7 JavaClient 0.76 0.83 0.86 0.81 0.79 0.78 0.75 0.80 0.86 0.81
0.09 0.03 0.04 0.05 0.04 0.07 0.06 0.04 0.04 0.05

W JGAP 0.54 0.60 0.62 0.67 0.66 0.51 0.59 0.65 0.72 0.60
0.07 0.05 0.07 0.12 0.09 0.02 0.04 0.10 0.10 0.17

x Neuroph 0.61 0.79 0.82 0.71 0.87 0.56 0.63 0.72 0.78 0.68
0.14 0.06 0.06 0.10 0.04 0.09 0.08 0.16 0.09 0.08

9 JPMC 0.54 0.66 0.67 0.69 0.57 0.50 0.58 0.61 0.69 0.59
0.08 0.06 0.06 0.08 0.08 0.01 0.03 0.06 0.09 0.08

z WroWj 0.63 0.70 0.68 0.77 0.77 0.62 0.70 0.69 0.74 0.68
0.18 0.09 0.19 0.16 0.15 0.12 0.13 0.21 0.14 0.14

f xUML 0.74 0.78 0.77 0.69 0.73 0.69 0.72 0.82 0.83 0.75
0.06 0.07 0.06 0.12 0.06 0.10 0.06 0.04 0.06 0.06

I Maze 0.67 0.61 0.64 0.60 0.68 0.58 0.63 0.60 0.70 0.59
0.07 0.10 0.14 0.11 0.08 0.07 0.06 0.10 0.10 0.08

3

No3DofDInfoGainD≥ G39G x f I z z 7 9 9 I x
Average G39h G3zh G3z6 G39f G39I G3xf G39x G399 G3zW G399

G3GI G3Gf G3Gf G3Gf G3hG G3hG G3Gz G3hG G3Gz G3Gf

Note : The first row for each predictor set is the average AUC, the second row lists the standard
deviation. Cells with AUC < 0.60 are highlighted.

and B, the set of predictors is still reliable for prediction purposes. This shows that the
Coupling category (Predictor Set C) strongly influences the prediction performance.

7.5.2 Benchmark Scoring Results

RQ3. The classification algorithms were evaluated by measuring the average and
standard deviation of the AUC over ten runs for each predictor set. Table 7.6 shows an
example of results for experiment C. We have highlighted those cells that contain very
weak classification results, i.e. AUC < 0.60. Note that an AUC of 0.50 means that the
classifier produces completely random result. For our study, we consider a value of
AUC of 0.60 or higher indicates a useful algorithm. This means, the classification algo-
rithms that are able to produce this score for almost all case studies for all experiments
are considered suitable for classifying key classes.

After performing the experiments, we found that the Random Forests and K-
Nearest Neighbor (k-NN(5)) algorithms perform the best in classifying the key classes
in class diagrams in terms of overall AUC, as well as robustness over various predictor
sets. Figure 7.3 shows the prediction performance of all selected classification algorithm.
This figure illustrates the number of case studies (for each predictor set) in which the

130 Condensing Reverse Engineered Class Diagram using Object-Oriented Design Metrics

Figure 7.3: AUC Score >= 0.60

=== Confusion Matrix ===
a b <-- classified as

36 21 | a = Y
16 141 | b = N

Forward Design Reverse Engineered Design

False Positive

False Negative

Abstract Class Design

Figure 7.4: Application of Random Forests Classification Algorithm.

classification algorithm produces an AUC score greater than 0.60. Random Forests and
k-NN(5) perform the best prediction where both classification algorithms produced
AUC scores above 0.60 for at least 8 case studies of all datasets. Meanwhile, Naive
Bayes, Random Tree, Function Logistic, RBF Network and Decision Stump performed
less robust prediction across all predictor set. These classification algorithms performed
reasonably well. They produced an AUC above the threshold for 6 to 8 case studies.
J48 and Decision Table appear not to be suitable to be used in these case studies, given
the low number of results with AUC ≥ 0.60 (between 3 to 5). The average AUC score
of more than 0.72 for Random Forests and k-Nearest Neighbor (k-NN(5)) shows their
suitability for all predictor set. Figure 7.4 illustrates the application of our method. In
particular, it applies the Random Forests classification algorithm to the JavaClient case

Discussion 131

study. As a result, a confusion matrix was generated. It shows that the total number of
classes is 214 with 57 of the classes in the forward design. The generated confusion
matrix shows that 36 out of 57 classes are correctly predicted as should be present in
the class diagram. Also, 141 out of 157 classes are correctly predicted as should be
omitted from the abstract class diagram. On the other hand, there are 21 false negatives
(predicted as leave out, but should be included) and 16 classes that are false positives
(predicted as ‘include’, but should not be included).

7.6 Discussion

With this result, we can conclude that the class diagram metrics from the Coupling
and Size category can be good predictors for classifying key classes in class diagrams.
In summary, there are three class diagram metrics that should be considered as in-
fluential predictors: Export Coupling Parameter (EC_Par), Dependency In (Dep_In)
and Number of Operation (NumOps). This finding is consistent with the findings in
Chapter 5 and Chapter 6 where the Number of Operation and Relationship (related to
coupling) are the elements that are most software developers looked at in order to find
the important classes in a class diagram.

The results show that k-NN(5) and Random Forests perform best and are suitable
classification algorithms in this study. We took a step forward by exploring this
classification algorithm by applying the algorithm individually to several case studies.
As a result, some of the predicted True Positive in the algorithm k-NN(5) are predicted
False Negative in the Random Forests and vice versa. We compared all the result
manually from those two algorithms applied to several case studies and some of the
true and false results are different. The possibility to enhance this predictive power
is by combining those classification algorithms to achieve the best result. Given the
imbalanced data, all selected algorithms were not able to produce high AUC scores.

This study was aimed at discovering suitable classification algorithms that could
provide a rank score concordant with the likelihood for classes to be included in the
UML class diagram. Based on this result, we are able to produce an approach for
ranking classes for importance. This will allow the software engineer to generate a
UML diagram at different levels of detail. To construct the abstraction of the class
diagrams, the software engineer may apply the abstraction of relationship in class
diagrams as presented by Egyed [52].

7.6.1 Threats to Validity

This study assumed that all the classes that existed in the forward designs were the
important classes. There is a possibility that some of these classes were not important
or not the key classes of the system. Also, there is a possibility that the forward design
used is too ‘old’ or in other words obsolete compared to the version of the source code

132 Condensing Reverse Engineered Class Diagram using Object-Oriented Design Metrics

used. Feedback from the system developer may enhance the accuracy of these key
classes from forward design. However, collecting such feedback requires more effort.

The input of this study is dependent on the RE-CD constructed by the MagicDraw
CASE tools. As mentioned in Chapter 4, there are several weaknesses of CASE tools’
reverse engineering features. This weakness may influence the accuracy of the class
diagram metrics calculation. There is a higher risk for large system that the CASE tool
may leave out several information of some classes.

We only cover nine open source case studies. Based on the amount of classes, we
can consider that the case studies represent small to medium size projects. The result
may differ if we include large systems in our case studies.

7.7 Conclusion and Future Work

In this study, we proposed an approach for condensing RE-CD by selecting the key
classes in it. We studied how well machine learning techniques perform in selecting
the key classes in a class diagram by using supervised learning methods. The machine
learning algorithms were trained on a set of open source projects. These projects
contain a forward design class diagram which was used as a reference (‘ground truth’)
for validating the quality of the condensation. Given the imbalanced nature of the data,
Area under ROC curve was used as a performance evaluator for these algorithms.

This study evaluated (1) the influential predictors in classifying key classes and,
(2) compared various machine learning classification algorithms on nine case studies
derived from open source software projects, to identify candidate algorithms with the
most accurate as well as robust behavior across predictor sets. We discovered that the
Export Coupling Parameter, Dependency In and Number of Operation are the most
influential predictors for classiying key classes in a class diagram. On these predictor
sets, Random Forests and k-Nearest Neighbor provided the best results. For all listed
case studies, the Random Forests method scores an AUC above 0.64 and the average
AUCs for every prediction set is 0.74. These algorithms are able to produce a predictive
score that can be used to rank important classes by relative importance. Based on this
class-ranking information, a tool can be developed that provides views of RE-CDs at
different levels of abstraction. In this was, developers may generate multiple levels
of class diagram abstractions, ranging from highly detailed class diagram (equal to
source code) to abstract class diagram (satisfying architect’s preference for high-level
views). In a broader perspective, this approach supports both the “Bottom-Up” and
also the “Top-Down” approach for understanding of programs [157].

The results of this research may be improved by finding complementary explanatory
variable. We also expect better results by taking the meaning of classes into account
(see Chapter 8). Finding the set of projects suitable for this study was a very time-
consuming task. This set can now be used by the scientific community as a benchmark
for further studies.

Conclusion and Future Work 133

7.7.1 Future Work

For future work, there is a number of ways to extend this work. Alternative input
parameters for predicting the key classes in a class diagram could be investigated.
This could include the use of other types of design metrics, for example, based on
(semantics of) the names of classes, methods and predictors. There are also possibilities
to use source code metrics such as Line of Code (LOC) and Lines of Comments as
additional predictors for the classification algorithms. Moreover, we could look at
the identification of ‘features’ as a unit of inclusion or exclusion in the UML class
diagrams. Also, more extensive benchmarking should take place, for instance by
learning models on one problem and testing it on another, or testing out an ensemble
approach that combines classification algorithms. Specific approaches exist to better
transfer knowledge across different problems, such as transfer learning.

Another approach to deal with limited availability of ‘ground truth’-data for vali-
dation is to use a semi-supervised or interactive approach, where a user first selects
some limited top level classes, then the system learns and recommends further classes
to be included, and the user responds by confirming or rejecting the recommendations.
Building an interactive application may also help to guide future research.

In terms of predictive performance, it could be interesting to compare the result of
this study with other approaches. This study uses the classes in the forward design as
the ‘ground truth’. In version history mining, the classes that are frequently changing
are seen as candidates for key classes [77]. It is also interesting to compare our approach
with other works that apply different algorithms such as HITS web mining (used in
[184]), network analysis on dependency graphs (used in [154]) and PageRank [136],
and provide guidelines in which cases that approach would be preferred, or to create
hybrid approaches.

We extend this research by validating the result of our proposed technique for
condensing UML class diagrams in Chapter 10. The result of this study also allows
us to create an automated tool to condense class diagrams. The automated tool is
presented in Chapter 9 .

Chapter8
Condensing Reverse Engineered
Class Diagrams through Class
Name Based Abstraction

In this chapter, we report on a machine learning approach to condensing class
diagrams. This research focuses on building a classifier that is based on the names
of classes in addition to design metrics, and we compare to earlier work that is
based on design metrics only. We assess our condensation method by comparing
our condensed class diagrams to class diagrams that were made during the original
forward design. Our results show that combining text metrics with design metrics
leads to modest improvements over using design metrics only. On average, the
improvement reaches 5.3%. 7 out of 10 evaluated case studies show improvement
ranges from 1% to 22%.

8.1 Introduction

In our previous work (Chapter 7), we proposed an approach to simplify RE-CDs based
on static analysis. We used forward designs as ‘ground truth’ for what classes are
most important, and then used machine learning techniques to learn the relationship
between class characteristics measured in object-oriented design metrics, and the
importance of the class (in forward design or not). The classifier model delivers a score

This chapter is adapted from a publication entitled “Condensing Reverse Engineered Class Diagrams
through Class Name Based Abstraction”, 2014 World Congress on Information and Communication Tech-
nologies (WICT)

136 Condensing Reverse Engineered Class Diagrams through Class Name Based Abstraction

for each class that indicates the importance (likelihood to be in the forward design),
so that developers can explore the class diagrams at different levels of abstraction by
varying the threshold on the score.

In this chapter, we extend the previous work by introducing text based metrics
derived from class names. From our previous survey (Chapter 5), we found that
software engineers consider both design metrics (e.g. Coupling, Number of methods)
and class element names (i.e. Related to domain) to be key features to decide on the
importance of a particular class. The previous study (Chapter 7) is used as a baseline
and we also follow the experimental setup for this research. We derive several text
metrics from the set of class names. We then apply a set of classification algorithms
to the text metrics and compare the result with the design metrics and a combination
of both design and text metrics, using the Area Under the Curve (AUC) evaluation
measure.

The contributions of this study are the following:

• Formulation of text metrics based on class names for classification of key classes.
• Combining text metrics and design metrics for classification of key classes.
• Evaluation of the approach shows that the combination of text and design metrics

has improved the prediction performance.

This chapter is structured as follows: Section 8.2 discusses the related work. Section
8.3 describes the research questions. Section 8.4 explains the approach while Section
8.5 explains the experiment description. We present the analysis of results in Section
8.6 and discuss our findings in Section 8.7. This followed by conclusions and future
work in Section 8.8.

8.2 Related Work

In this section, we discuss related work. We consider studies on the usage of text in
software documentation and we found the research in the areas of code summarization
and analysis of execution traces are related to our topic.

8.2.1 Code Summarization

Code summarization is an approach to summarize source code to help program com-
prehension. Haiduc et al. [74] introduced automated source code summarization based
on the text retrieval approach. Their research used the natural language summarization
technique to summarize the source code using lexical (i.e. identifiers and comments)
and structural information (i.e. class, method, function). They generated a list of
important keywords of methods. The generated important keywords were validated
by six software developers. This preliminary study found that the method’s names

Related Work 137

influence the identification of important keywords in a method. Their study showed
that 98.7% of identified keywords are derived from methods’ name.

Haiduc et al. [75] extended the research by evaluating four text summarization
techniques for the purpose of code summarization. For this evaluation, they generated
various formations of text (e.g. by using weight – tf-idf, binary-entropy, log), as well
as different types of the text summarization techniques. The generated keywords
were validated by four software developers. They discovered that the combination
of text summarization technique (i.e. Lead+Vector Space Model) performed the best
result in capturing the meaning of methods and classes in an object-oriented source
code. It is interesting to see that their research also indicates that class names are
essential information in summarizing source code. This research has been replicated
and extended by Eddy et al. [50]. Eddy et al. extended the work by evaluating a
text retrieval technique (Hierarchical Pachinko Allocation Model). The validation
was performed by 14 software developers, and their results confirmed Haiduc et al.’s
findings.

Moreno et al. [114] proposed an automatic structured natural language summaries
generator specifically for Java classes. Differently from the work by Haiduc et al., they
use detailed structural class information (i.e. class stereotype) in addition to the class
identifier to generate a summary of classes. Their validation illustrates that 90% of
the generated class summaries were concise, readable and understandable. 69% of the
summaries did not miss the important information.

Our study shares with text summarization that we look for cues of importance in
the (key)words used in classes and method. Rather than aiming for a textual sum-
marization, we target graphical summaries. A difference between our work and the
text-based summarization approaches is that text-based summarization does not take
information about class relations into account. From that perspective, our approach
is more aimed at summarizing a design, while the text-based summarization is more
focussed on summarization of individual classes (which may be used to summarize a
system when seen as a set of classes). However, our work could benefit from mecha-
nisms for selecting important information of classes for inclusion in class diagrams.
We keep this as a proposal for future work.

8.2.2 Analysis of Execution Trace

Pirzadeh et al. [138] proposed a technique to simplify the analysis of execution traces
for understanding a system’s behavior. Their technique analyses execution traces by
analyzing the most relevant information about the execution traces according to the
execution phases.

Medini et al. [111] presented the Segment Concept AssigNer (SCAN) to assign
labels to sequences of methods and to discover relations between segments by using
execution traces as input. They utilized method-names, parameters and code-bodies.
They applied text processing to filter the collected text.

138 Condensing Reverse Engineered Class Diagrams through Class Name Based Abstraction

Lin et al. [105] proposed Unsupervised Induction of Concepts (UNICON) to clus-
ter large numbers of elements of semantically related words using an unsupervised
technique. The inputs of their study are: (1) a collocation database and, (2) a similarity
matrix of words. They used a clustering algorithm to break up a large set of data into
small subsets. Then, they apply UNICON to suggest a set of concepts of the word.

The related works discussed above use text derived from the execution trace to
understand the system. In contrast, we use the information that can be extracted from
the source code and design documentation (static analysis). The volume of text derived
from execution traces is so huge that the research in that line may only group the
execution in phases. However, we acknowledge the use of information derived from
execution traces as an interesting complement to our approach.

8.3 Research Questions

This section describes the main research question and sub-questions. The main ques-
tion of this research is the following:

MQ: Do text metrics derived from class names add value over design metrics to identify
key classes to be included in a class diagram?

In order to answer this question, the answers to the following questions need to be
explored:

• RQ1: What is the performance of text predictors?
• RQ2:. What are the most influential text predictor(s)?
• RQ3:. What is the performance of the classification algorithms in using text metrics as

predictors?
• RQ4:. Which set of predictors produces the best result compared to design metrics?

The research questions are answered in Section 8.6 and the main question is an-
swered in Section 8.8.

8.4 Approach

In this section, we describe our approach in conducting this experiment. The overall
framework of this experiment is shown in Figure 8.1. The input for this study are the
system documents (Step 1); which consist of the RE-CD in XML Metadata Interchange
(XMI) format and the Forward Design (FD). Section 8.4.1 describes the inputs in
detail. Then, we normalize the text (class names) by removing the non-informational
characters and words (Step 2). This includes converting class names into streams
of words. In total, there are four subprocess involved, which are Lexical Analysis,

Approach 139

System Document

Lexical Analysis

Stopwords Removal

Stemming

Word Filtering

Document
Preprocessing

Text Processing

Text Classification

Analyze Result

“In Design Information”

Class names

Text dictionary

Text metrics

Important class label + score

1
2

3

4

5

Figure 8.1: Overall Framework

Stopwords Removal, Stemming and Single Words Filtering. This process produces a
text dictionary (Section 8.4.2 describes this process in detail). We then define the text
metrics based on the text dictionary (Step 3). As a result, nine text metrics are invented.
The detailed information about the text metrics is described in Section 8.4.3. For text
classification (Step 4), we evaluate nine classification algorithms. Detailed information
about this is described in Section 8.4.4. Finally, we analyse the important classes and
classification score (Step 5).

8.4.1 System Document

A “raw" RE-CD is generated based on source code by using MagicDraw [9] (version
17.0). The class names in RE-CD will be used to form the predictors. Forward designs
(FD) are the designs that were created during the development of the system. We
assume all designs in the project’s documentation are forward design. The machine
learning algorithms use the FDs to learn the positive instances. The list of datasets
(OSSD projects) is shown in Table 8.1. The datasets were collected from different types
of domain. The detailed information about these projects can be found at Chapter 3.

8.4.2 Document Preprocessing

For data preparation, we use an automatic indexing procedure for English as mentioned
in [175] and also the document preprocessing procedure suggested by [18]. This
procedure includes lexical analysis, stop words removal, words filtering and stemming.
The processes of this procedure are the following.

Lexical Analysis of the Text

Lexical analysis refers to a technique of converting a stream of characters into a stream
of words [18]. One of the objectives of this technique is to identify the word from the
class names collection. From our observation, most of the class names consisted of one

140 Condensing Reverse Engineered Class Diagrams through Class Name Based Abstraction

Table 8.1: List of Case Study

No. Project Total Classes in
Re-CD (S)

Total Classes in
FD (D)

D:S ratio (%)

1. ArgoUML 903 44 4.87
2. Mars 840 29 3.45
3. JavaClient 214 57 26.64
4. gwt-Portlets 178 20 11.24
5. JGAP 171 18 10.52
6. Neuroph 161 24 14.90
7. JPMC 121 24 19.83
8. Wro4J 87 11 12.64
9. xUML 84 37 44.05
10. Maze 59 28 47.45

or more words. Normally, capital letters are used to separate these words. Therefore,
we separated the word(s) in class names from each document based on capital letters.
The algorithm for class names separation is presented in Algorithm 1. For instance, the
class name “PlayerSimulationData” will be separated into 3 different words: “Player”,
“Simulation” and “Data”. There are also several exceptional cases where class names
use multiple capital letters (such as “MMClassKeyword”, “GAAlgorithm”, “LMS”
and “IACNeuron”). This issue is addressed by lines 16-17 in Algorithm 1. Then, the
text documents generated from the lexical analysis process were loaded into a text
processing tool. RapidMiner version 5.3 [11] was used as the text processing tool.

Stop Words Removal

This study requires only significant (meaningful) keywords. Stop words such as
“the” or “and” help to build ideas, but do not carry any significance themselves [143].
Hence, these words are removed from the keywords’ list. For example, the class name
“PlantsAndAnimal” consists of the following words: “Plants”, “And”, and “Animal”.
The keywords “Plants” and “Animal” are meaningful keywords while the word “And”
is only used to connecting those keywords. This process was done automatically by
using the text processing tool (RapidMiner).

Stemming

A lot of words have the same root meaning but appear as different variants. A word
for instance “maintenance” and “maintain” have the same word root. Hence, the
stemming algorithm is used to resolve this issue. Stemming refers to a computational
procedure that reduces all words with the same root (or, if prefixes are left untouched,
the same stem) to a common form, usually by stripping each word of its derivational

Approach 141

Algorithm 1 Class Name Separation Algorithm

1: Input :
2: Document (D) = list of class names
3: Output :
4: Names = list of words
5: Method :
6: ClsNameChar = array of characters
7: while D not End of List do
8: Convert class names to array of characters (AC)
9: for count = 0 to AC.size do

10: if count = 0 and AC[count] is Uppercase then
11: Add AC[count] to ClsNameChar {#Begin of a word}
12: else if AC[count] is Uppercase and AC[count -1] is Lowercase then
13: Add ClsNameChar to Names {#A word is completed}
14: Empty ClsNameChar
15: Add AC[count] to ClsNameChar {#Begin of new word}
16: else if AC[count] is Uppercase and AC[count + 1] is UpperCase then
17: Add AC[count] to ClsNameChar {#For words that use only capital letters}
18: else
19: Add AC[count] to ClsNameChar
20: end if
21: end for
22: end while
23: return Names

and inflectional suffixes [106]. For this, we used the Porter stemming algorithm [140]
provided by the text processing tool (RapidMiner).

Word Filtering

Normally, a word consists of more than two characters. Hence, we remove all the
single character words.

8.4.3 Text Processing

The results of the previous process allow us to create a text dictionary [122]). The text
dictionary is formulated based on the following information:

• NumKeyword: Number of keyword(s) in a class name.
• InDoc: Number of documents (projects) where keywords occur.
• TotalOcc: The number of occurrences of words in all documents.
• SpecOcc: The number of occurrences of words in a specific document.

142 Condensing Reverse Engineered Class Diagrams through Class Name Based Abstraction

We formulated the text metrics based on the assumption that classes that have a lot
of frequently used keywords most likely are candidate for classes that should be
included (key classes) in the system. We make this assumption as we observe that
many important classes indicated in the case studies documents consist of popular (or
common) keywords. The list of common and uncommon words are illustrated in Table
8.2 and Table 8.3 respectively. The complete tables of common and uncommon words
can be found at [123]. The formulation of the text metrics is the following:

K = {k1..kn} is a set of n keywords (8.1)

F = {f1..fm} is a set of m documents (8.2)

TotalOcc(k, f) = Number of Occurance of k in f (8.3)

1. NumKeyword is the number of words in a class name. This metrics is gathered
by simply calculating the number of word(s) in a class name after the lexical
analysis process. The NumKeyword is represented as K in equation 8.1.

2. ExiInDoc counts the presence of a word in all documents. Therefore, ExiInDoc is
defined as follows:

ExiInDoc(k, f) = { 1 TotalOcc(k, f) > 0
0 Otherwise

(8.4)

Hence, we define presence function for a set of documents as:

ExiInDoc(k, F) =∑
f∈F

ExiInDoc(k, f) (8.5)

And therefore, we have:

ExiInDoc(K, F) = ∑
k∈K

ExiInDoc(k, F) (8.6)

For instance, the class name “AdminConsoleDisplay” consists of: “Admin”,
“Console”, and “Display”. “Admin” appears in 3 documents, “Console” appears
in 4 documents and “Display” appears in 6 documents. Hence, ExiInDoc for
“AdminConsoleDisplay” is 13.

3. MaxInDoc takes the counts on the presence of a word; which is the highest
count of all words in a class name. It is different from ExiInDoc where MaxInDoc
compares the value of every keywords in a class name and takes the highest
value. Hence, we define MaxInDoc as follows:

MaxInDoc(K, F) = max
k∈K

ExiInDoc(k, F) (8.7)

By using the example in ExiInDoc, the MaxInDoc value for “AdminConsoleDis-
play” is 6.

Approach 143

4. TotalOccAll counts the total number of occurrences of each word in a class name
from all documents. Therefore, the TotalOccAll for a class name is the following:

TotalOccAll(K, F) = ∑
k∈K

TotalOcc(k, F) (8.8)

For example, the number of occurrences in all documents for “AdminConsoleDis-
play” is 20 for “Admin”, 12 for “Console” and 7 for “Display”. Hence, the
TotalOccAll for “AdminConsoleDisplay” is 39.

5. MaxOccAll takes the highest number of occurrences of a word (in all documents)
in a class name.

MaxOccAll(K, F) = max
k∈K

TotalOcc(k, F) (8.9)

By using the example in TotalOccAll metric, the value of MaxOccAll for “Admin-
ConsoleDisplay” is 20.

6. TotalOccSpec counts the total number of occurrences of each word in a class
name from a specific document.

TotalOccSpec(K, f) = ∑
k∈K

TotalOcc(k, f) (8.10)

Let say, the occurrences in a document for “AdminConsoleDisplay” is 10 for
“Admin”, 6 for “Console” and 2 for “Display”. Hence, TotalOccSpec is 18.

7. MaxOccSpec takes the highest number of occurrences of a word in a class name
from a specific document.

MaxOccSpec(K, f) = max
k∈K

TotalOcc(k, f) (8.11)

By using the example in TotalOccSpec, the MaxOccSpec is 10.

8. WeightOccAll is the average value of all word occurrences of a class name in all
documents. It took the TotalAccAll and divided by the number of NumKeyword of
a class name. Hence, the calculation WeightOccAll is the following:

WeightOccAll(K, F) = TotalOcc(K, F)
NumKeyword(K, F) (8.12)

9. WeightOccSpec is the average value of all word occurrences of a class name in a
document. It took the TotalOccSpec and divided by the number of NumKeyword.

WeightOccSpec(K, f) = TotalOcc(K, f)
NumKeyword(K, f) (8.13)

144
C

ondensing
R

everse
E

ngineered
C

lass
D

iagram
s

through
C

lass
N

am
e

B
ased

A
bstraction

Table 8.2: The Top List of Common Words in Class Diagrams

No. word inDoc
Total
Occ

gwt-
portlet

Argo
UML

Java
Client

JGAP Mars Neuroph JPMC xUML Maze Wro4J

1 panel 6 188 12 70 0 0 90 3 12 0 1 0
2 descriptor 2 171 0 1 0 0 170 0 0 0 0 0
3 player 2 153 0 0 152 0 1 0 0 0 0 0
4 model 7 139 0 97 0 0 20 1 6 4 7 4
5 uml 1 105 0 105 0 0 0 0 0 0 0 0
6 list 5 100 2 37 0 1 59 0 0 0 1 0
7 action 3 96 0 94 0 0 0 0 0 1 1 0
8 impl 4 84 7 5 0 0 1 0 0 71 0 0
9 resourc 4 75 0 33 0 0 37 0 1 0 0 4
10 prop 1 75 0 75 0 0 0 0 0 0 0 0
11 data 9 70 11 3 32 5 1 2 11 3 0 2
12 tabl 5 67 0 37 0 1 23 1 5 0 0 0
13 cr 1 67 0 67 0 0 0 0 0 0 0 0
14 tab 2 63 0 24 0 0 39 0 0 0 0 0
15 diagram 2 62 0 53 0 0 0 0 0 9 0 0
16 fig 1 61 0 61 0 0 0 0 0 0 0 0
17 state 4 59 0 50 3 0 0 0 0 5 1 0
18 type 6 55 0 15 0 1 31 4 0 3 0 1
19 config 5 54 1 3 21 8 21 0 0 0 0 0
20 posit 3 52 1 1 50 0 0 0 0 0 0 0
21 event 6 50 6 16 0 2 15 0 6 5 0 0
22 column 2 47 0 46 0 0 1 0 0 0 0 0
23 interfac 2 44 0 10 34 0 0 0 0 0 0 0
24 vehicl 1 43 0 0 0 0 43 0 0 0 0 0

A
pproach

145

Table 8.3: The Top List of UnCommon Words in Class Diagrams

No. word inDoc
Total
Occ

gwt-
portlet

Argo
UML

Java
Client

JGAP Mars Neuroph JPMC xUML Maze Wro4J

1 zoom 1 1 0 1 0 0 0 0 0 0 0 0
2 zig 1 1 0 0 0 0 0 0 0 0 1 0
3 zero 1 1 0 1 0 0 0 0 0 0 0 0
4 zag 1 1 0 0 0 0 0 0 0 0 1 0
5 yoga 1 1 0 0 0 0 1 0 0 0 0 0
6 xmi 1 1 0 1 0 0 0 0 0 0 0 0
7 write 1 1 0 0 1 0 0 0 0 0 0 0
8 wrapper 1 1 0 0 0 0 0 0 0 0 0 1
9 workout 1 1 0 0 0 0 1 0 0 0 0 0
10 wind 1 1 0 0 0 0 1 0 0 0 0 0
11 win 1 1 0 1 0 0 0 0 0 0 0 0
12 wi 1 1 0 0 1 0 0 0 0 0 0 0
13 weather 1 1 0 0 0 0 1 0 0 0 0 0
14 waypoint 1 1 0 0 1 0 0 0 0 0 0 0
15 wave 1 1 0 0 0 0 0 0 0 0 1 0
16 watch 1 1 0 0 0 0 0 0 0 0 0 1
17 wai 1 1 0 0 0 1 0 0 0 0 0 0
18 void 1 1 0 0 1 0 0 0 0 0 0 0
19 visual 1 1 0 0 0 1 0 0 0 0 0 0
20 violat 1 1 0 1 0 0 0 0 0 0 0 0
21 viewer 1 1 0 0 0 0 0 0 0 0 1 0
22 vi 1 1 0 1 0 0 0 0 0 0 0 0
23 vecmov 1 1 0 0 1 0 0 0 0 0 0 0
24 valid 1 1 0 0 0 1 0 0 0 0 0 0

146 Condensing Reverse Engineered Class Diagrams through Class Name Based Abstraction

8.4.4 Text Classification

The text classification process presents the classification activity to find the result of the
class inclusion or exclusion in a class diagram. We use the Information Gain (InfoGain)
Attribute Evaluator in WEKA [76] to estimate the predictive power of the text predictor.
We prepared several sets of predictors. Then, we apply those sets of predictors to all
selected classification algorithms to get the AUC score.

8.4.5 Analyze Result

The InfoGain measures and the AUC scores from the text classification process are
analysed. We compare the performance of all evaluated classification algorithms across
all datasets.

8.5 Experiment Description

This section explains the dataset that we used in this study and the evaluation measure
for analyzing the results.

8.5.1 Dataset

All datasets in Chapter 7 were also used for this study. However, we added a project
(gwt-Portlets) to the datasets that we found suitable for this study. The list of datasets
is shown in Table 8.1. The datasets come from different types of domain. For instance,
ArgoUML and xUML come from the UML tool domain, Neuroph comes from the
neural network domain and JavaClient comes from the Application Programming
Interface (API) domain. The detailed information about these projects can be found at
Chapter 3.

The total number of classes in RE-CDs is between 59 and 903. The total number of
classes in FDs is between 11 and 57. The ratio between FDs and RE-CDs (D:S ratio)
is between 3% to 47%. For instance, let say if the D:S ratio of the JavaClient project is
26.6%, then only 26.6% of the classes that exist in the implementation (and hence in the
RE-CD) are also in the FD. Meanwhile, another 73.4% of the classes that exist in the
implementation does not appear in the FD. For the purpose of machine learning, only
26.6% of these classes are positive instances and the other 73.4% are negative instances.

With this information (Table 8.1), we see that most of these datasets are imbalanced
in positive and negative instances.

8.5.2 Evaluation Measures

This subsection describes the evaluation methods that were used in this study. This
evaluation is supported by the Waikato Environment Knowledge Analysis (WEKA)

Analysis of Results 147

[76]. The Information Gain Attribute Evaluator analysis [76] is used to evaluate the
influence of each individual text metrics in predicting class inclusion/exclusion. This
evaluation produces a score from 0 to 1 for every predictor. A value closer to 1 means
strong influence.

We used the Area Under the Curve (AUC) [79] for analyzing the performance of
the classification algorithm. WEKA provides the AUC calculation that produces a
value ranging from 0 to 1. An AUC score approaching 1 means a better classification
while a value close to 0.50 means the classifier performs almost randomly. The AUC
score is used for evaluation because it may avoid the issue of favouring models that
evaluation method just predict the majority outcome class. Because our data is typically
imbalanced, such a majority-based score is suitable.

8.5.3 Experiment

This subsection describes the experiment set up in this study. We randomly split 50%
the data in a 50% train and 50% test set. As mentioned before, the datasets are typically
imbalanced. In the sense that, the classes that are in the RE-CD but not in the FD
(the ‘negatives’) are highly dominated the entire dataset. If we use the 10-fold cross
validation, the chance that many positives are included in the test data is very low
because it uses 10% of the data for testing and 90% for training. Thus, the test set error
measurements would not have been reliable. We ran each of the experiment 10 times
using different randomizations to improve the reliability.

8.6 Analysis of Results

This section describes the analysis of results. Every subsection is presented to answer
the questions specified in Section 8.3.

8.6.1 RQ1 : Influence of Predictors

We applied the Information Gain Attribute Evaluator analysis to evaluate the influences
of individual predictors. The overall results of this evaluation are illustrated in Table
8.4. We consider a predictor as influential when the Information Gain value > 0. The
column Count counts the number of times that a predictor produces InfoGain values > 0
(means influential) across all ten case studies. Overall, out of ten evaluated case studies,
all individual text metrics are influential predictors for at least four case studies. This
means all text metrics are capable of influencing the prediction of the important classes
in a class diagram.

In terms of the predictive performance across case studies, the gwt-portlets, JPMC,
Maze, Neuroph and Wro4j projects recorded poor performance (see Table 8.4). From
our observation, the projects produce poor performance due to the fact that there is no

148 Condensing Reverse Engineered Class Diagrams through Class Name Based Abstraction

pattern in the class names in the positive instances group for most of the text metrics.
Thus, the text metrics could not influence the prediction for these projects.

The predictive performance increases when a case study has several keywords
(or ‘champion words’) that frequently appears in classes that grouped in the positive
instances. For these classes, the text metrics produced relatively similar values that
lead to homogeneity (or a uniform pattern) of data.

8.6.2 RQ2 : Most Influential Predictors

The TotalOccSpec and MaxOccSpec are the most influential predictors across all case
studies. These predictors are influential in six case studies while the WeightOccSpec is
influential in five case studies (Table 8.4). In addition, Table 8.4 also shows that the
average InfoGain values of these three predictors are recorded as among the highest
compared to other predictors. The top three most influential predictors come from
the text derived from individual case studies. These top three predictors are highly
correlated because these are derived from the same base information (SpecOcc). These
predictors (related to text from a specific project) have higher predictive influence than
metrics derived from all together.

8.6.3 RQ3 : Classification Algorithms Performance

In this study, we consider a classification algorithm to be suitable for prediction if its
AUC score is above 0.60. Prior study (Chapter 7) shows that the suitable classification
algorithm for class inclusion/exclusion based on design metrics are Random Forests
and Nearest Neighbor. However, when using just text metrics, Logistic Regressions
also provides suitable results. In addition, when design and text metrics are com-
bined, Decision Stumps also perform surprisingly well (Table 8.5). For the xUML and
JavaClient projects, AUC scores are higher than 0.60 for all evaluated classification
algorithms.

8.6.4 RQ4 : Set of Predictors Performance

In this subsection, we present a comparison between the combination of text and
design metrics with the text metrics and the design metrics separately. We also extend
the analysis by comparing the sets of results by using the Random Forests classification
algorithm that we found performed the best prediction.

A
nalysis

ofR
esults

149

Table 8.4: Information Gain Results for Text Predictors

No. Text Metrics Argo
UML

gwt-
portlet

Java
Client

JGAP JPMC Mars Maze Neuroph Wro4J xUML Count Average

1. TotalOccSpec 0.051 0.000 0.407 0.051 0.000 0.030 0.125 0.000 0.000 0.257 6 0.086
2. MaxOccSpec 0.048 0.000 0.407 0.085 0.149 0.022 0.000 0.000 0.000 0.146 6 0.092
3. WeightOccSpec 0.045 0.000 0.341 0.098 0.000 0.018 0.000 0.000 0.000 0.146 5 0.065
4. TotalOccAll 0.038 0.000 0.512 0.000 0.000 0.030 0.000 0.000 0.000 0.109 4 0.032
5. MaxOccAll 0.040 0.000 0.407 0.000 0.000 0.027 0.000 0.000 0.000 0.171 4 0.038
6. WeightOccAll 0.033 0.000 0.259 0.000 0.000 0.025 0.000 0.000 0.110 0.000 4 0.025
7. MaxInDoc 0.013 0.000 0.076 0.000 0.000 0.019 0.000 0.000 0.000 0.272 4 0.065
8. NumKeyword 0.016 0.000 0.178 0.000 0.000 0.025 0.102 0.000 0.000 0.000 4 0.069
9. ExiInDoc 0.013 0.000 0.152 0.000 0.000 0.021 0.000 0.064 0.000 0.000 4 0.043

No. of InfoGain > 0 9 0 9 3 1 9 2 1 1 6

Table 8.5: Classification Algorithms Performance on Predictors Sets (AUC Score ≥ 0.60)

Predictors sets J48 k-NN
(1)

k-NN
(5)

Logi.
Regr

Naive
Bayes

Dec.
table

Dec.
Stump

RBF Rand.
Forest

Rand.
Tree

Text (T) 4 5 9 9 8 2 6 7 9 5
Design (D) 5 8 9 7 8 3 7 7 9 6
Design_Text (DT) 7 6 9 8 9 4 9 9 9 6

∆(T-D)* -1 -3 0 2 0 -1 -1 0 0 -1
∆(DT - T)* 3 1 0 -1 1 2 3 2 0 1
∆(DT - D)* 2 -2 0 1 1 1 2 2 0 0

* Note : Positive values indicate improvement and negative values indicate degradation

150 Condensing Reverse Engineered Class Diagrams through Class Name Based Abstraction

Combination of Text and Design Metrics vs. Text Metrics

In Table 8.5, ∆(T-D) shows the classification performance comparisons between the
text metrics and the design metrics as predictors. The results in Table 8.5 show the
ability of classifiers to produce AUC scores ≥ 0.60 to all case studies. It shows that
the performance of J48, k-NN(1), Decision Table, Decision Stump and Random Tree
degrades while k-NN(5), Naive Bayes, RBF and Random Forests do not show any
changes in performance. Only Logistic Regression shows an improvement where it
could predict 2 more projects (compared to design metrics). We take a step further by
combining the text metrics and the design metrics. We compare the performance of
the combination of these metrics with the individual text metrics and design metrics
performance. The comparison between the combination of design and text metrics
(DT) and the text metrics (T) is shown in ∆(DT-T). Seven classification algorithms show
improvement when using a combination of design and text metrics while k-NN(5) and
Random Forests perform the same. Only logistic regression performance degrades but
the difference is only one project.

Combination of Design and Text Metrics vs. Design Metrics

In Table 8.5, ∆(DT-D) shows that using a combination of text and design metrics
performs better than using only design metrics. Six classification algorithms show
improvements while three classification algorithms present the same result for both
sets of predictors. However, k-NN(1) shows degradation in classification performance
for ∆(T-D) and ∆(DT-D).

Random Forests in Detail

We analyse the results of the Random Forests algorithm in detail by comparing the
prediction score for the three evaluated predictor sets (D, T and DT). In Table 8.6, five
projects demonstrate that the text metrics produce better results than the design metrics.
The improvement of text metrics using the Random Forests classifier is between 2%
to 7%. However, another five projects show degradation. The degradation recorded
are between -13% to -21%. On average, out of ten projects, the text metrics show
degradation of 5.6% compared to the design metrics. From our observation, the text
metrics perform better prediction than the object-oriented design metrics when the
total InfoGain value of text metrics is higher than the total InfoGain value of design
metrics (in other words, the text metrics dominate the influential features).

Table 8.6 presents that prediction performance by using a combination of both
metrics is better than using only the design metrics. Seven out of ten projects show
positive improvement. The improvement is between 1% to 22%. On average, by using
the combination of both metrics leads to an improvement of 5.3% over just design
metrics. Based on this data, it seems that the combination of the design and text metrics
produces the best result for the prediction of class inclusion/exclusion.

A
nalysis

ofR
esults

151

Table 8.6: Random Forests Result for Predictors Sets

Project Text (T) Design (D) ∆ (T-D) Improv. (%) Design +
Text (DT)

∆ (DT-D) Improv. (%)

ArgoUML 0.672 0.655 0.017 2.60 0.799 0.144 21.98
gwt-Portlets 0.603 0.564 0.039 6.91 0.597 0.033 5.85
JavaClient 0.895 0.844 0.051 6.04 0.929 0.085 10.07
JGAP 0.788 0.748 0.040 5.35 0.794 0.046 6.15
JPMC 0.733 0.692 0.041 5.92 0.773 0.081 11.71
Mars Simulation 0.645 0.766 -0.121 -15.80 0.830 0.064 8.36
Maze 0.584 0.674 -0.090 -13.35 0.635 -0.039 -5.79
Neuroph 0.683 0.835 -0.152 -18.20 0.849 0.014 1.68
Wro4J 0.588 0.742 -0.154 -20.75 0.695 -0.047 -6.33
xUML 0.727 0.847 -0.120 -14.17 0.840 -0.007 -0.83
Average 0.692 0.737 -0.045 -5.55 0.774 0.037 5.28

152 Condensing Reverse Engineered Class Diagrams through Class Name Based Abstraction

8.7 Discussion

In this section, we summarize and explain the result in the previous section. We also
describe the threat to validity for this study.

8.7.1 Text Metrics Predictors Performance

From the results in Section 8.6.1, we know that all individual text metrics are influential
predictors. However, Table 8.4 shows that the text metrics are suitable for only four
case studies (i.e. ArgoUML, JavaClient, Mars and xUML) The text metrics were not
able to influence the prediction of the gwt-portlets. From our further analysis, the
design metrics also were not influential in this case study. For this case study, the text
metrics produce a better result where it can produce the AUC ≥ 0.60 (as shown in Table
8.7). This is not possible to be achieved using design metrics predictor. Probably, the
combinations of the text metrics and design metrics for gwt-Portlets project influence
the prediction. The InfoGain is suitable to estimate the individual predictive power. We
could not see the influence of the combination of the text metrics and design metrics
through InfoGain measure.

8.7.2 Classification Algorithms

By using the text metrics, we found that the Random Forests, k-NN and Logistic
Regression are suitable to be used for prediction. However, by using a combination
of the design and text metrics as predictors, we found that the k-NN, Naive Bayes,
Decision Stump, Radial Basis Function (RBF) and Random Forests are suitable for this
purpose. From these algorithms, the Random Forests classifier was chosen for the
validation experiment because it produced the best AUC score among those classifiers.
From the results, we found that the combination of the design and text metrics is the
best set of predictors. Only k-NN (1) classifier showed a decrease in performance.
The performance of the text metrics predictors for this classifier maybe influences this
result.

8.7.3 Application of Classification Method

Based on the previous section, we have found that Random Forests is the most suitable
classification algorithm for our approach. The Random Forests classifier is capable of
producing scores for every class in a class diagram. Based on this, we developed a tool
(called Software Architecture Abstractor (SAAbs) [124]) to apply our approach to the
RE-CD (see Chapter 9). The tool produces a score of importance for all classes in a
class diagram. A higher score indicates that the class is more important or could be
included in class diagrams. With this ranking, abstractions of a class diagram based on
the importance of classes can be constructed.

D
iscussion

153

Table 8.7: Classification Result from Text Predictor (T)

Project J48 k-NN
(1)

k-NN
(5)

Logi.
Regr.

Naive
Bayes

Dec.
table

Dec.
Stump

RBF Rand.
Forest

Rand.
Tree

Project Per-
formance

ArgoUML 0.54 0.59 0.66 0.77 0.80 0.53 0.75 0.76 0.69 0.56 6
std. dev 0.08 0.06 0.08 0.04 0.02 0.09 0.06 0.02 0.07 0.04
gwt_portlet 0.52 0.60 0.61 0.65 0.63 0.50 0.57 0.53 0.63 0.56 5
std. dev 0.05 0.07 0.10 0.13 0.10 0.00 0.06 0.10 0.12 0.10
JavaClient 0.84 0.85 0.90 0.86 0.82 0.80 0.72 0.86 0.90 0.82 10
std. dev 0.04 0.04 0.03 0.05 0.03 0.06 0.04 0.04 0.04 0.07
JGAP 0.54 0.62 0.73 0.78 0.78 0.50 0.71 0.76 0.78 0.60 8
std. dev 0.08 0.07 0.07 0.08 0.05 0.00 0.03 0.06 0.07 0.10
JPMC 0.74 0.61 0.66 0.70 0.64 0.52 0.72 0.68 0.73 0.61 9
std. dev 0.05 0.07 0.07 0.07 0.07 0.06 0.02 0.11 0.12 0.09
Mars-Simulation 0.50 0.56 0.69 0.78 0.77 0.50 0.67 0.81 0.64 0.59 6
std. dev 0.00 0.08 0.05 0.03 0.02 0.00 0.03 0.02 0.07 0.05
Maze 0.60 0.56 0.51 0.57 0.48 0.51 0.54 0.50 0.60 0.57 2
std. dev 0.09 0.08 0.08 0.11 0.09 0.02 0.04 0.06 0.07 0.08
Neuroph 0.55 0.59 0.69 0.71 0.65 0.50 0.57 0.62 0.68 0.61 6
std. dev 0.05 0.06 0.06 0.12 0.06 0.00 0.06 0.06 0.08 0.07
Wro4j 0.50 0.57 0.65 0.70 0.50 0.50 0.53 0.47 0.57 0.59 2
std. dev 0.05 0.06 0.12 0.21 0.19 0.01 0.09 0.20 0.15 0.11
xUML 0.68 0.64 0.64 0.77 0.72 0.62 0.60 0.73 0.73 0.63 10
std. dev 0.08 0.10 0.05 0.08 0.07 0.08 0.03 0.06 0.04 0.06

Algorithm Perfor-
mance

4 5 9 9 8 2 6 7 9 5

154 Condensing Reverse Engineered Class Diagrams through Class Name Based Abstraction

8.7.4 Threats to Validity

This subsection describes the threats to validity of this study.

Threats to Internal Validity. The splitting of class names is done by separating the words
based on the occurrence of the capital letters. However, not all designs follow this
naming convention. There are several uses of characters such as “XYZ” and “123”
that do not carry any significant meaning. This leads to inaccuracy of counting the
occurrences of words.

Threats to External Validity. It is difficult to find open source software systems that have
both FD and source code. Hence, we use ten open source software systems in our
evaluation. These systems fall into the class of small to medium size software projects.
Hence, we could not generalize the result of this study of all software systems.

Threats to Construct Validity. To measure the classification algorithm performance, we
use the AUC as our evaluation metrics. The AUC can be considered as a standard
metrics in data mining [78] which is designed to evaluate imbalanced datasets [141].
Thus, we believe there is little threat to construct validity.

8.8 Conclusion and Future Work

This chapter aimed to come up with better methods for abstracting class diagrams out
of source code. To this end, we focused on the use of class names as a way of improving
the prediction of class inclusion/exclusion. In our study, we introduced text metrics
that capture the frequency of occurrence of class names. We found text metrics may help
to improve the results. However, using the text metrics in isolation does not produce
better predictions. A combination of text metrics and design metrics (DT) produces
the best result. We also studied which classifier algorithm works best for abstracting
classes. Out of nine evaluated classification algorithms, all evaluated classification
algorithms showed improvement in classifying class inclusion/exclusion by using
the combination of text and design metrics except for the k-NN(1) algorithm. The
evaluation was done by comparing the classification result with the result produced by
using design metrics as predictors. The Random forest classifier is the most suitable
for our study. By using this classification algorithm, we may improve the prediction on
average by 5.3%; the improvement for different software projects ranges between -6%
to 22%.

For future work, we plan to use additional sources of text in the source code (the
methods, parameter and attribute names) to enhance the text metrics. We also conduct
a user study on the usage of resultant diagrams constructed by the tool, which are
developed using this approach (see Chapter 10).

Chapter9
Interactive Scalable Abstraction of
Reverse Engineered UML Class
Diagrams

A large fraction of the time consumed in software development and maintenance
is spent on understanding the software, which indicates it is a critical activity.
Software documentation, including software architecture design documentation, is
an important aid in software comprehension. However, keeping documentation up-
to-date with evolving source code is often challenging and absence of an update or
more comprehensive design-level documentation is not uncommon. As a solution,
software architecture design may be recovered using reverse engineering process.
However, existing methods in the reverse engineering process produce complete
design diagrams that include all the details that exist in the source code. The
absence of abstraction from implementation details limits the usefulness of reverse
engineering process for understanding software.

This research aims to address this problem by providing a method and a tool that
allows developers to interactively explore a reverse engineered class diagram at
scalable levels of abstraction. To this end, we propose a Software Architecture
Abstraction (SAAbs) framework and an automated tool that implements this
framework. The SAAbs framework applies a machine learning scoring algorithm
to produce a class importance ranking for class diagrams; this ranking is the basis
for software architecture abstraction and visualization.

Part of this chapter is adapted from a publication entitled “Interactive Scalable Abstraction of Reverse
Engineered UML Class Diagrams”, In Proceedings of the 21st Asia-Pacific Software Engineering Conference
(APSEC 2014)

156 Interactive Scalable Abstraction of Reverse Engineered UML Class Diagrams

9.1 Introduction

Software comprehension is one of the most crucial tasks in software maintenance.
It consumes a lot of time and effort, especially for large and complex systems. The
documentation of software architecture or design is a highly useful artifact for system
comprehension. However, it is common that this artifact is not kept up-to-date. Reverse
engineering is one of the best options for recovering software architecture design
information from the implementation code. Current reverse engineering methods
suffer from several problems; one of them is that these methods reverse engineer the
complete design, without focusing on what is more important, resulting into diagrams
with too much information. Recent Computer Aided Software Engineering (CASE)
tools offer to leave out several properties in a class diagram such as attributes and
parameters. However, these tools do not identify which classes are more and which
are less important, making it hard for the developer to focus or quickly understand
the design at various levels of abstraction. A study by Fernandez-Saez et al.[59]
found that many subjects in their controlled experiment did not consider reverse
engineered diagrams to be helpful in maintaining software, which might be caused by
the information overload in these class diagrams.

Often, when a new software developer is assigned to a maintenance task, several
common questions may arise as part of the software comprehension activity. For
instance, Where to start? Which classes are important? As software documentation
is commonly out-of-sync, the software comprehension task becomes more difficult.
Therefore, a software exploration tool is needed that fulfills several cognitive elements.
Storey et al. [156] identify a number of cognitive elements important in software
comprehension, we focus on the following: E3: Provide Abstraction Mechanisms;
E5: Provide overviews of the system architecture at various levels of abstraction; E4:
Support goal-directed hypothesis-driven comprehension; E6: Support the construction
of multiple mental models; E11: Indicate the maintainer’s current focus; and E15:
Provide effective presentation styles.

In our previous chapters (7 and 8), we have conducted two studies that leverage
static software design metrics to predict the relative importance of classes in class
diagrams. These chapters study the usage of object-oriented metrics and class element
names as features. The results suggest that the combination of both sets of features
produces the best prediction (compared to the individual set of features), with Random
Forests providing the most accurate and robust prediction results. Our proposed
framework builds on those findings. For a more in depth review of the machine
learning aspects, we refer to these chapters.

The main goal of this research is to provide an overview of the framework that can
be used to develop an automatic tool to assist software comprehension through high-
lighted UML class diagrams. For this purpose, we introduce the Software Architecture
Abstraction (SAAbs) framework. The SAAbs framework applies machine learning

Related Work 157

classification algorithm to produce an ordered list of classes based on predicted im-
portance. The list is then used by the SAAbs tool to generate UML class diagrams of
various levels of abstraction.

The contributions of this chapter are the following:

• A tool-supported method for Software Architecture Abstraction using UML Class
Diagrams;

• Multi-level abstraction and multi-level of detail visualization of Software Archi-
tecture through UML class diagram.

This chapter is structured as follows: Section 9.2 discusses the related research and
Section 9.3 describes the SAAbs Overview. Section 9.4 discusses the tool. This followed
by the conclusions and future work in Section 9.5.

9.2 Related Work

The core capability of the SAAbs framework is to produce a score that reflects the rela-
tive importance of classes in a reverse engineered complete class diagram. Therefore,
we found the following studies are related.

9.2.1 The Usage of Network Metrics

Steidl et al. [154] perform network analysis on dependency graphs to identify impor-
tant classes in a system. An empirical study was conducted to find the best combination
of these network analysis metrics for class importance prediction. The prediction per-
formance was validated by comparing prediction results with the classes recommended
by project developers.

Thung et al. [164] extends the work by Osman et al. [127] by analyzing network met-
rics as features for predicting what classes in a system are important. They compared
the results with the object-oriented design metrics in [127]. Their study discovered that
the prediction performance of Random Forests is better after they used network metrics
compared to object-oriented metrics. They found that the object-oriented metrics are
reliable features for prediction.

9.2.2 The Usage of Software Version History

Hammad et al. [77] propose an approach that assigns importance scores to classes and
sets of collaborating classes based on the frequency of changes of classes in software
evolution. The importance scores are assigned based on the number of commits made
for a class in a version control system. Itemset mining was used for assigning scores to
sets of related classes.

158 Interactive Scalable Abstraction of Reverse Engineered UML Class Diagrams

Bieman et al. [24] investigate a method to identify and visualize frequently changed
classes. The analysis of their study involves the implementation structure of the system
and classes change logs. They present measures for class change-proneness i.e. Local
change-proneness, Pair change coupling and Sum of pair coupling.

9.2.3 Other Related Work

The Software Model Extractor (SoMoX) is a software analysis tool that capable to
reverse engineer a source code into component models. The SoMoX tool uses abstract
syntax tree (AST) as the input data model to detect components based on hierarchical
clustering of basic components derived from classes and interface [90].

Mancoridis et al. [108] investigate a technique to produce a high-level system
organization of source code by using automatic clustering. They propose an automated
software modularization environment to construct a hierarchical view of the system
organization based on source code. The software extracts the module-level dependency
from source code, cluster the entities and visualize the output.

In contrast to the works mentioned above, our proposed framework identifies the
important class diagram by combining the object-oriented design metrics and text
metrics as the features. The Random Forests classification algorithm is used as we
found performing the best in Chapter 7 and 8.

9.3 SAAbs Overview

This section explains the overall framework of SAAbs and the implementation of each
step in the framework to the SAAbs tool.

The overall framework of SAAbs is shown in Figure 9.1. This framework consists
of three stages: Input, Process and Output. In the Input stage, the XMI file format
of the system-to-analyze design source is identified (step 1, see Section 9.3.1). In the
Process stage, the XMI file is parsed to retrieve the system-to-analyze design structure
(i.e., the classes, attributes, relationships, textual information; step 2, Section 9.3.2). We
derive two types of features from the design structure: Object-Oriented Design Metrics
and Text metrics (Section 9.3.3). In addition, the user establishes ‘ground truth’ by
loading a forward design, applying a given set of heuristics, or identifying a small set
of key classes manually (step 4, Section 9.3.3). The classification process then learns
a prediction model, and applies it to all classes to produce a score that reflects the
relative importance of the class (detail in Section 9.3.4). This information allows the
classes to be ranked based on its importance in the class diagram (step 5, Section 9.3.5).
This ranking of classes is used to create various types of visualization for architecture
abstraction of the system-to-analyze (step 6, 9.3.6). The implementation of the SAAbs
tool is described in Section 9.3.7.

SAAbs Overview 159

Input

1 XMI

2

3

4

Process

 XMI Parser

Feature

Extraction

Classification

Output

6

7

Class Ranking

Visualization

Figure 9.1: Overall Framework : Input, Process and Output

9.3.1 Input: XMI

An XMI file is the primary input for this tool. XMI is an XML-variant that is purposely
invented to enable the exchange of UML models metadata information. However,
the role of XMI file is not yet uniform for software design because every CASE tool
generates their own flavour of XMI file even though they used the same structure. This
issue still not resolved even though it has already been mentioned in 2003 by Stevens
[155]. Our tool supports XMI versions 1.0, 1.1, 1.2, 2.0 and 2.1 as an input. It also allows
multi-flavor of XMI and multiple version of XMI.

9.3.2 Process: XMI Parser

The XMI parser extracts all relevant information from the class diagram. We use the
SDMetrics [180] OpenCore library that provides a robust XMI parser to solve the
multi-flavor XMI issue. This parser has been proven in Chapter 4 to extract software
metrics out of XMI files generated by eight CASE tools. Using this parser, we extract
the classes, operations, attributes and relationship information.

160 Interactive Scalable Abstraction of Reverse Engineered UML Class Diagrams

Figure 9.2: Selection of the Candidate-Important Classes

9.3.3 Process: Feature Extraction

The main purpose of this step is to prepare the data for the classification process, which
includes selecting a number of key classes as ‘ground truth’ to be used for learning, and
creating the low-level required predictor features from the class information extracted
in the previous step (i.e. Object-oriented design metrics and Text metrics).

To create and validate a model that can rank all classes on relative importance,
‘ground truth’ information is required that identifies a number of key classes. The
result in Chapter 7 demonstrated that candidates for important classes can be derived
from the system’s forward designs. Hence, we allow the user to load a forward design,
or identify some key classes manually based on domain knowledge. Figure 9.2 shows
the example of important classes candidates selection.

Alternatively, a heuristical algorithm can be used to set ‘ground truth’. The heuris-
tical algorithm is based on prior research that indicated that classes that have high
coupling and high number of operations, are more likely to be the important classes in
a class diagram ([132] and [133]). Thus, we can use this information to rank candidate-
classes automatically as ‘ground truth’. Algorithm 2 shows the algorithm for “Establish
Ground Truth”. Users can indicate the percentage of candidate classes that will be used
for learning. For example, if a user indicates 25%, the tool selects the top 25% classes of
the ranked list as the true positive instances. The 75% of classes that were not selected
become the true negative instances for the machine learning.

SAAbs Overview 161

Algorithm 2 “Establish Ground Truth" Rank Algorithm.

1: Input :
2: Document (D) = Design Document (XMI)
3: Output :
4: ListImpClsCand = Table of Class Metrics
5: Method :
6: Dep_In = Dependency In
7: Dep_Out = Dependency Out
8: EC_Par = Export Coupling Parameter
9: EC_Attr = Export Coupling Attribute

10: IC_Par = Import Coupling Parameter
11: IC_Attr = Import Coupling Attribute
12: NumOps = Number of Operation
13: CouplingMeasure = Sum of Coupling Metrics
14: Extract all Metrics to ListImpClsCand
15: add Column SumCoupling to ListImpClsCand
16: while D not EOF do
17: CouplingMeasure = 0
18: CouplingMeasure = Sum of (Dep_In, Dep_Out, EC_Par, EC_Attr, IC_Par, IC_Attr)
19: add CouplingMeasure to SumCoupling Column
20: end while
21: sort ListImpClsCand based on SumCoupling, NumOps
22: remove SumCoupling Column
23: return ListImpClsCand {return ranked classes metrics}

One may expect that the actual prediction result based on this “ground truth”
would be the same as the one automatically suggested by this Establish Ground Truth
algorithm. However, this is not the case: the actual classifier suggests other important
classes instead of the ones provided as “ground truth”. One of the reasons is that the
machine learning algorithm uses more fine-grained features than the ones used to
suggest the “ground truth”. That said, this method should be seen more as a backup
alternative to using the forward design or manual selection of key classes, which should
be seen as a more appropriate way of setting ground truth. The heuristic algorithm
may actually support a user in carrying out this task by suggesting classes to consider.

After ‘ground truth’ has been set, relevant low-level features are extracted from
available design information. From Chapter 7 and 8, we concluded that the combi-
nation of Object-oriented Metrics and Text Metrics is capable of producing a good
prediction of important classes. We list the object-oriented metrics to be used according
to Chapter 7 as items 1-11 in Table 9.1. Item number 11 to 20 in Table 9.1 are the text
metrics that are formulated from the class names.

162 Interactive Scalable Abstraction of Reverse Engineered UML Class Diagrams

Table 9.1: The List of Prediction Features

No Metrics Description
1 NumAttr The number of attributes of a class.
2 NumOps The number of operations of a class (Weighted Methods per

Class (WMC) in [40] and Number of Methods (NM) in [99]).
3 NumPubOps The number of public operations of a class (also known as

Number of Public Methods (NPM) in [99]).
4 Setters The number of operations with the operation names starting

with ‘set’.
5 Getters The number of operations with the operation names starting

with ‘get’, ‘is’, or ‘has’.
6 Dep_Out The number of dependencies in which the class is the client.
7 Dep_In The number of dependencies in which the class is the supplier.
8 EC_Attr The number of times the class is externally used as attributes

type (a version of OAEC +AAEC in [34]).
9 IC_Attr The number of attributes in a class that has another class or

interface as their type (a version of OAIC+AAIC in [34]).
10 EC_Par The number of times the class is externally used as parameter

type (a version of OMEC+AMEC in [34]).
11 IC_Par The number of parameters in the class that has another class

or interface as their type (a version of OMIC+AMIC in [34]).
12 NumKeyword The number of words contains in a class name [128].
13 ExiInDoc Counts the presence of a word in all documents [128].
14 MaxInDoc The highest number of presence of a word from a class name

in all documents [128].
15 TotalOccAll Counts the total number of occurrences of each word in a class

name from all documents [128]
16 MaxOccAll The highest number of occurrences in all documents of a word

in a class name [128].
17 TotalOccSpec Counts the total number of occurrences of each word in a class

diagram in a specific document [128].
18 MaxOccSpec The highest number of occurrences of the word in a class

name in a specific document [128].
19 WeightOccAll The average value of all word occurrences of a class name in

all documents [128].
20 WeightOccSpec The average value of all word occurrences of a class name in

a document [128].

SAAbs Overview 163

Figure 9.3: The SAAbs Tool Displaying Ranking of Classes

9.3.4 Process: Classification

As a next step, we build and validate scoring models, and apply these to the classes
to generate a rank score for importance. We have experimented extensively with a
range of machine learning algorithms in prior work, which resulted in the choice of the
Random Forests algorithm as the most reliable and robust algorithm for this task ([127],
[128]). For the training set, we use 50% of the data for the training and the other 50%
for testing. Since the score can only be produced for classes in the test set, we switch
the training set to the test set, and the test set to the training set to get a complete score
for every class in the class diagram.

9.3.5 Output: Class Ranking

There are several cases where multiple instances share the same score. Therefore, we
improve this ranking by using the coupling and number of coupling measures. We
rank these instances by prioritizing the instances that have highest total number of
coupling measures. The ranking is followed by the number of operations if the total
number of coupling measures is the same. An example of the prediction score and the
rank of classes is shown in Figure 9.3.

164 Interactive Scalable Abstraction of Reverse Engineered UML Class Diagrams

Figure 9.4: Textual Results of Classification

9.3.6 Output: Visualization

The visualization in the SAAbs tool is divided into two sections: (i) Prediction Informa-
tion, and (ii) Architecture Viewer. The details are the following.

Prediction Information

The prediction information displays information about all features used for prediction
and the classification results (as demonstrated in Figure 9.4). The values of all features
(UML design metrics and text metrics) are displayed to provide the information about
the system-to-analyze. The tool also provides the result of the class ranking and also
the evaluation measures of the classification algorithm. The Area Under the ROC
Curve (AUC) are displayed to show the prediction performance of the classification
algorithm.

Architecture Viewer

The SAAbs tool offers users to view a system-to-analyze according to the amount of
important classes the user desires to display. It also offers to zoom in/out the class
diagram of the system-to analyze. Also, it can limit the information to different levels of
detail by hiding classes elements. The details of the Architecture Viewer visualization
of SAAbs tool are the following:

1. SAAbs Slider: Displaying System-to-analyze Architectural Abstraction
By introducing a slider, the SAAbs tool offers the architecture to be viewed in the
form of class diagrams or/and package diagrams. The generated class diagram

SAAbs Overview 165

displays all the information (classes, operations, attributes and relationships)
while the package diagram shows a combination of the class diagram and the
package diagram (without operation and attribute; the relationship of packages
is presented based on the relationship between classes). In detail, the following
views are offered:

(a) Hide Classes: Display important classes based on the selected level of detail
(as a percentage). Classes that are less important are hidden. With this
feature, class and package diagrams can be simplified. Examples of the
SAAbs viewer Graphical User Interface (GUI) are illustrated in Figure 9.5.

(b) Color Classes: Display all classes in class/package diagrams. The tool dif-
ferentiates the important and less important classes in the class diagram
by highlighting the less important classes in red (example in Figure 9.6).
Another option (Grayscale coloring), the tool highlight the less important
classes in gray. In this option, the less important classes gradually turn
darker to indicate that the classes are less important than others (example in
Figure 9.7). The SAAbs tool also has the option to color all classes (in gray)
to illustrate the class importance.

2. Hiding Class Diagram Elements: In order to simplify the class diagram, the respon-
dents in [133] have mentioned that some class diagram elements may be hidden:
a) getters and setters, and b) constructor. Thus, SAAbs offers the option to hide
the getters and setters, constructors, and also attributes and operations.

3. Viewing Diagrams: The SAAbs tool provides basic diagram viewing features
which are: a) Zooming in and out, b) Zoom in a selected area and c) Class
Diagram Rotation. These features allow the users to focus on specific parts of the
viewed diagram.

9.3.7 Implementation

The SAAbs tool has been developed using the Java programming language. Netbeans
7.3 [115] was used as the integrated development environment (IDE) for building this
tool. We used SDMetrics (Version 2.3-Academic license) for object-oriented metrics
extraction and the SDMetrics OpenCore (version 2.31) library for parsing the XMI
files. To produce the text dictionary, RapidMiner [11] is used for processing the class
names (however, this tool is not yet integrated with the SAAbs tool). The Waikato
Environment for Knowledge Analysis (WEKA) [76] library is used for the machine
learning classification purposes.

To visualize the output, PlantUML [10] is used for generating the class and the
package diagram. PlantUML is a component that renders UML diagrams as Scalable
Vector Graphics (SVG). SVG offers an excellent quality for zoom-in and zoom-out. For
more details, the tool is available at [134] and the demonstration can be found at [124].

166 Interactive Scalable Abstraction of Reverse Engineered UML Class Diagrams

(a) 20% of Abstraction

(b) 50% of Abstraction

Figure 9.5: SAAbs tool Viewing Class+Package Diagram in Different Level of Abstraction

SAAbs Overview 167

Figure 9.6: Highlighting of Less Important Classes

Figure 9.7: Greyscale Coloring: Less Important Classes with Darker Shades of Gray.

168 Interactive Scalable Abstraction of Reverse Engineered UML Class Diagrams

9.4 Discussion

In this section, we discuss the SAAbs as a Software Exploration Tool. In general, there
are three main activities in the reverse engineering process: Data gathering, Knowledge
organization and Information Exploration. According to Tilley et al. [167], information
exploration holds the key to program understanding. Storey et al. [157], outlined the
cognitive designed elements for software comprehension (as illustrated in Figure 2.2).
As mentioned in the introduction of this chapter, we would like to provide a tool that
fulfilled the following cognitive elements.

9.4.1 E3: Provide abstraction mechanism

With the multilevel abstraction feature within the SAAbs tool, software developers
abstract the class diagram to any preferred level, by using a “Slider” that can be used
to effectively control the level of abstraction, or coloring of the classes. In this way, the
software developer can learn the software design from the bottom (a high number of
classes) to up (a smaller number of (important) classes).

9.4.2 E4: Support goal-directed, hypothesis-driven comprehension

Goal-directed and hypothesis-driven approaches to understanding are normally used
in top-down comprehension. Top-down comprehension is suitable for users that
are familiar with the system domain. The SAAbs tool facilitates this requirement by
allowing users to manually select the important class candidates that they want to
focus on.

9.4.3 E5: Provide overviews of the system architecture at various levels of
abstraction

Viewing a system at various levels of abstraction is needed for top-down software
exploration. The “Slider” in our tool can generate multiple class diagram at various
levels of abstraction. It can be used for a bottom-up approach as well as for the top-
down approach. Furthermore, our tool also can generate the abstraction of software
designs in different (separated) windows for different focus of abstraction (i.e. different
“ground truth”) for comparing abstraction results.

9.4.4 E6: Support the construction of multiple mental models & E11: Show
the path that led to the current focus

Often, different users require different views on the same system. Therefore, a facility
to construct multiple models is needed to cater for the needs of different users. Because
UML diagrams are our main focus, the SAAbs tool provides two types of diagrams:

Conclusion and Future Work 169

Class Diagrams and Package Diagrams with multiple levels of detail. Users can exclude
the attributes, operations, getters/setters and constructor methods. This provides users
with some options to construct a class-based views based on their own preferences. The
SAAbs tool also provides a facility to show all classes of the system through colouring
or transparency highlighting subsets of classes that are identified as important.

9.4.5 E15: Provide effective presentation style

Our tool provides multiple options for software design representation that purposely
to reduce the software design complexity. The SAAbs tool provides two main features
to reduce the complexity of software design: 1) The condensation of class diagrams
(multilevel levels of abstraction) can reduce the complexity of a design by leaving
out less important class diagram and reduce the amount of relationship and, 2) High-
lighting the important classes to emphasize the classes that the users should focus
on.

9.5 Conclusion and Future Work

This study presents a tool-supported framework for visualizing a software system at
various levels of abstraction. The SAAbs tool includes features to automatically predict
the importance of classes in a class diagram. It also provides a scalable and interactive
visualization of software systems. Abstraction of class diagrams, highlighting classes
and multiple levels of details are the main features of the tool. This research discusses
how this tool links to several cognitive design elements for program comprehension.

We validate the effectiveness of our proposed framework by studying the usefulness
of the tool in assisting software developers in a program comprehension task. The
validation results are presented in Chapter 10.

The presented tool is an early development of implementing our findings in this
research. We consider several ways to enhance and improve the SAAbs tool. Amongst
possible future work are the following:

1. Improve the layout option to be more interactive and dynamic; provide users
options to modify the layout of the diagram dynamically and provide several
automated layout options (hierarchy, centralization).

2. Provide interactive learning or semi-structured learning options. In this way, the
abstraction of class diagrams can be done interactively and real-time based on
the feedback from the users on which classes should be included or excluded (i.e.
by changing the “ground truth” in real-time).

Part III

Validation and Conclusion

Chapter10
Validation

This chapter describes a study to validate the Software Architecture Abstraction
(SAAbs) framework. This framework is purposely invented to simplify reverse
engineered class diagrams by selecting the important classes in a system. Using
the condensed class diagrams generated by the SAAbs tool, we validate the SAAbs
framework based on the user view of these class diagrams. This study focuses on
the usefulness of the condensed class diagrams for program comprehension.

10.1 Introduction

In this chapter, we present the validation of the SAAbs framework to enhance software
comprehension of the RE-CD. Based on the previous chapters, we have found that
Random Forests is the most suitable classification algorithm for this approach. Based
on this, we have developed a tool (called Software Architecture Abstractor (SAAbs)
tool - described in Chapter 9) to apply our approach to the RE-CD. As a result, the
tool produces a ranking of importance classes for all classes in a class diagram. A
higher score indicates that the class is important. With this ranking, condensations
of a class diagram based on the importance of classes can be constructed. By using
the condensations of the class diagrams, we carried out a survey to validate our
approach. This validation aims at i) discovering the understandability of condensed
class diagrams, ii) finding whether the condensed class diagram generated by this
approach is helpful in understanding the software design and, iii) validating the SAAbs
tool in assisting software developers to understand the software.

This chapter is part of a publication entitled “Interactive Scalable Abstraction of Reverse Engineered
UML Class Diagrams”, In Proceedings of the 21st Asia-Pacific Software Engineering Conference (APSEC
2014)

174 Validation

The chapter is structured as follows. Section 10.2 describes the research questions
and is followed by Section 10.3 that explains the experiment design. Section 10.4
demonstrates the results and we discuss our findings in Section 10.5. This is followed
by the conclusions and our suggestions for future work in Section 10.6.

10.2 Research Question

In this chapter, we aim at answering the following question:

MQ: Can the SAAbs framework help the software developers for system comprehension?

In order to answer the main question, four research questions need to be explored.
The research questions are the following:

• RQ1: What is the level of understandability of the condensed class diagrams created by
SAAbs framework?

• RQ2: What level of abstraction is preferred to produce an overview of a software design
(in particular, based on the respondents’ background)?

• RQ3: Does the condensed class diagram represent the important information out of the
reverse engineered class diagram?

• RQ4: What is the relative usefulness of SAAbs tool for different respondents’ back-
ground?

10.3 Experiment Design

In this section, we describe the study design. We explain the design of the questionnaire
and how we conduct the study.

10.3.1 Questionnaire Design

The questionnaire is divided into four parts, which are: Personal Background, Choices
of Class Diagram, Software Architecture Abstraction (SAAbs) framework and The
SAAbs tool. The explanations of these parts are the following.

Part A: Personal Background

In this part, we collect information about the respondent background. The respondents
were asked about their skill, experience, frequency of using UML class diagrams and
also their experience in reverse engineering source code into UML Class Diagrams.
This information is used to discover the relation between the respondents’ background
and their answers.

Experiment Design 175

Table 10.1: Type of Class Diagram used in this study

Class Diagram Type of Class Diagram Description
CD.FD Forward Design Displays the forward design
CD.25 25% condensation of the

RE-CD
Displays only 25% of classes in
the class diagram and excludes
the other classes.

CD.50 50% condensation of the
RE-CD

Displays only 50% of classes in
the class diagram and excludes
the other classes.

CD.75 75% condensation of the
RE-CD

Displays only 75% classes of
classes in the class diagram and
excludes the other classes.

CD.RE RE-CD Shows 100% of all reverse engi-
neered classes in the class dia-
gram

Part B: Choices of Class Diagram

This part aims at discovering the level of understanding of class diagrams generated
by the SAAbs framework. We used an ATM simulation system [28] as a sample case.
We describe the ATM system requirement at the beginning of this question. Then, we
provide five class diagrams in which the respondents are obliged to rate all presented
class diagrams in term of design comprehension. Detailed information about the class
diagrams is shown in Table 10.1.

The ATM simulation project in [28] provides a complete UML diagrams. We use the
forward design of this system (CD.FD) and we reverse engineer the ATM simulation
system source code into a class diagram to produce the CD.RE. In order to produce the
condensation of the RE-CDs (CD.25, CD.50 and CD.75), the following information is
used:

• the RE-CD (in XMI) as the diagram to be condensed.
• the analysis phase class diagram as the input for the important classes candidate.

We load all information into the SAAbs tool to generate the ranking of the important
classes in the class diagram and also reconstruct CD.25, CD.50 and CD.75.

In this study, the respondents are required to give opinions on their understand-
ability (based on a 6-point scale) of all provided class diagrams (see Table 10.1). They
also need to choose the preferred class diagram for program comprehension and give
their suggestion(s) to improve the presented class diagrams. This part is formulated to
answer RQ1 and RQ2.

176 Validation

Part C: Software Architecture Abstraction (SAAbs) Framework

This part aims at verifying the condensation result from the SAAbs framework. We
want to investigate whether the condensed class diagram generated by the SAAbs
framework represents the important information out of the RE-CD; and investigate
whether this information (important classes) is useful to understand the system.

A Pacman game [44] was used as a case study of this part. For this question, we
provide: a) the explanation of the game at the beginning of this question, b) A Pacman
game RE-CD, and c) A 50% condensation of the Pacman game RE-CD. The Pacman’s
game RE-CD was constructed by using the latest version of the source code (version
4). Then, a 50% condensation of the RE-CD was created by using the SAAbs tool. The
50% of condensation is chosen to represent the condensation of the RE-CD because
the number of classes that appear is not too small and not too large. We condense
this diagram by using the first version (release) of forward design of this project as
candidates of important classes.

The respondents are asked to study the class diagrams and give their judgment in
terms of the usefulness of condensed RE-CDs in understanding the system. This part
is formulated to answer RQ3.

Part D: The SAAbs Tool

This part aims at validating the SAAbs tool. We asked the respondents to give their
opinion on the tool in assisting them for software comprehension. Respondents were
also asked to indicate the best feature of the tool and suggestions for improvement and
enhancement of the tool. This part will answer RQ4.

10.3.2 Experiment Description

In this subsection, we clarify how the experiment is conducted. The flow of this
experiment is shown in Figure 10.1. The respondents were selected from different types
of background, i.e. students, academic researchers and IT professionals. Depending on
the respondent’s background, we asked the respondents to answer different questions.
For students, they are obliged to answer Part A, B and C, and graduate students
(academic researcher, IT professional) need to answer all questions. The respondents
are divided into these groups because we are focused on the experienced respondents
in the software implementation in evaluating the tool in Part D.

The answers were written on the prepared response sheets. The respondents may
answer the questions in Part A, B and C directly. However, before answering Part
D, the respondents are given a “live” tool demonstration (individual or in a small
group). The respondents are offered to use the tool or to load their own input to the
tool after the presentation. We also conducted an informal question and answer session
to make sure that the respondents have a detailed understanding of the tool. Then, the
respondents are allowed to answer Part D.

Results 177

Start

End

Respondents
answer Part A,

Part B and Part C
Is Student ?

“Live” Tool
Demonstration

Answer
Part D

Part A: Personal Background
Part B: Choices of Class Diagram
Part C: Software Architecture
Abstraction Technique Yes

No

Part D: The SAAbs Tool

Figure 10.1: Flow of the Experiment

52%
39%

9%

A.Student

B.Researcher/Ac
ademic

C.IT
Professional

(a) Respondents’ Role

57%

36%

2% 3% 2%

Sweden

The Netherlands

China

Japan

Belgium

(b) Respondents’ Location

Figure 10.2: Distribution of the Respondents

10.4 Results

In total, we received 65 responses to this survey. However, due to incomplete of
answers, we only count 63 respondents. The answered questionnaires can be found
at [121]. The respondents are coming from three different roles which are i) Students
(52%), ii) Academic Researcher (39%) and iii) IT professional (9%). The majority of
the respondents are from Sweden and the Netherlands, and other locations are China,
Japan and Belgium. The distribution of the respondents’ role is illustrated in Figure
10.2. In terms of the respondents’ experience in class diagrams, 27% of the respondents
have < 1 year of experience while another 36% of the respondents have in between 1 to
3 years (see Figure 10.3). 35% of the respondents have more than 3 years of experience
in class diagrams. In Figure 10.4, we show the skill of the respondents in understanding
the class diagram. This figure demonstrates that 76% of the respondents have an average
and above skill in understanding class diagrams while in total 22% of the respondents
have low or poor skill in understanding class diagrams.

178 Validation

0

5

10

15

20

25

30

35

40

A. < 1 year B. 1-3 years C. 3-7 years D. 7-10 years E. 10+ years No answer

%
 o

f
th

e
R

es
po

n
d

en
ts

Figure 10.3: Respondents’ Experience with Class Diagram

0

5

10

15

20

25

30

35

40

A. Poor B. Low C. Average D. Good E. Excellent

%
 o

f
th

e
R

es
po

nd
en

ts

Figure 10.4: Skills of Understanding Class Diagram

In terms of the usage of class diagrams, 14% of the respondents do not use class
diagrams at all for software comprehension. 33% of the respondents use class diagrams
if required, and 43% of the respondents sometimes use class diagrams. Only 10% of the
respondents frequently use class diagrams for software comprehension.

In terms of RE-CD, the majority of the respondents (70%) has low or poor experience
in RE-CDs, while 30% indicated that they have an average and good experience in reverse
engineering source code into class diagrams. The remaining results are presented based
on the research questions mentioned in Section 10.2.

10.4.1 RQ1: The Understandability of Condensed Class Diagrams

Figure 10.5 shows the overall results of the understandability of condensed class dia-
gram. The detail information on CD.FD, CD.25, CD.50, CD.75 and CD.RE is explained
in Table 10.1. We found that one of the condensed RE-CDs generated using our ap-
proach is more understandable than the FD. The CD.25 rated on average 4.58 points
(out of 6) compared to CD.FD that is rated on average 4.08 points. CD.RE has been

Results 179

CD.FD CD.25 CD.50 CD.75 CD.RE

1
2

3
4

5
6

A
ve

ra
g

e
 S

co
re

Figure 10.5: The Understandability of Condensed Class Diagram

rated 2.87 points on average that makes this diagram has the lowest rating from the
respondents. This result shows that condensed RE-CDs scored better ratings than the
RE-CD. On the other hand, the line chart (in Figure 10.5) indicates the understandabil-
ity rating decreases when the number of classes increases. Therefore, we believe that
the number of classes influences the respondents’ judgment. In the next subsections,
we further investigate the rating results by relating the respondents’ background and
their average rating.

Respondents’ Role vs. Understandability Score

Figure 10.6 illustrates the average rating for each class diagram based on the respon-
dents’ role. The overall result shows that the rating of CD.25 is higher than the CD.FD.
However, referring to Figure 10.6, the IT professional prefer the forward design (CD.FD)
over the CD.25. It is quite clear that the rating of the class diagram is decreasing accord-
ing to the number of classes for the academic researcher group. However, the average
rating for students for CD.50 and CD.75 is almost equal.

Respondents’ Experience vs. Understandability Score

From the perspective of the respondents’ experience, the results show that respondents
that have 3 - 7 years experience in class diagrams prefer forward design (CD.FD)
compared to condensed class diagrams (CD.25, CD.50, CD.75) and the CD.RE. The
results (see Figure 10.7) also show that the average rating for CD.50 and CD.75 is
almost equal for the respondents that have > 1 year experience in class diagrams.

180
Validation

0

1

2

3

4

5

6

0

5

10

15

20

25

30

35

A.Student B.Researcher/
Academic

C.IT
Professional

A.Student B.Researcher/
Academic

C.IT
Professional

A.Student B.Researcher/
Academic

C.IT
Professional

A.Student B.Researcher/
Academic

C.IT
Professional

A.Student B.Researcher/
Academic

C.IT
Professional

A
ve

ra
ge

 S
co

re

N
o.

 o
f

th
e

R
es

p
on

d
en

ts
Scorel1 Scorel2 Scorel3 Scorel4 Scorel5 Scalel6

CDFD_Average CD25_Average CD50_Average CD75_Average CDRE_Average

CDFD CD25 CD50 CD75 CDRE

Figure 10.6: The Respondents’ Role vs. Understandability Score

0

1

2

3

4

5

6

0

5

10

15

20

25

< 1 year 1-3 years 3-7 years < 1 year 1-3 years 3-7 years < 1 year 1-3 years 3-7 years < 1 year 1-3 years 3-7 years < 1 year 1-3 years 3-7 years

A
ve

ra
ge

 S
co

re

N
o.

 o
f

th
e

R
es

p
on

d
en

ts

Score 1 Score 2 Score 3 Score 4 Score 5 Score 6

CDFD_Average CD25_Average CD50_Average CD75_Average CDRE_Average

CDFD CD25 CD50 CD75 CDRE

Figure 10.7: The Respondents’ Experience vs. Understandability Score

Results 181

0

10

20

30

40

50

60

CD.25 CD.50 CD.75 CD.RE No Answer

%
 o

f
th

e
R

es
p

on
d

en
ts

Figure 10.8: Choices of Class Diagrams

10.4.2 RQ2: Choices of Class Diagram

In the previous question, we assess the understandability of the condensed class
diagrams. In contrast, this question is intended to compare the respondents’ preference
between the condensed RE-CDs (CD.25, CD.50, CD.75) and the RE-CD (CD.RE). We
want to know which class diagram is preferred to be used for understanding the system.
The forward design is not offered as an option because this diagram is most likely will
be chosen by the respondents as the preferred class diagram. The respondents were
asked to choose the class diagram that they preferred for software comprehension.
Therefore, the respondents may only choose those between 4 diagrams and they
also need to explain their motivation behind their choice. The overall results of the
respondent’s choices are demonstrated in Figure 10.8.

Based on the responses in RQ1, we expected that the number of classes presented
in the question will play a significant role in choosing the class diagram. However, it is
interesting to see that the number of classes does not seem to influence the decision in
choosing a class diagram. The results demonstrated that CD.25 (the smallest amount
of classes) and CD.RE (the highest amount of classes) are two main class diagrams
chosen by the respondents. Figure 10.8 shows that almost half (49%) of the respondents
chose CD.25 as their preferred class diagram for viewing the system. In total, 31 of the
respondents prefer the class diagram in CD.25 for system understanding. 42% of these
respondents prefer this class diagram because it is small, simple and easy to look into.
32% of these respondents mentioned that this class diagram showed an appropriate
level of condensation of the class diagram that show important classes in the class
diagram.

For the CD.RE, 25% of the respondents prefer this diagram for system understand-
ing. Completeness is the main reason for choosing this class diagram. 63% of the
respondents that prefer this diagram mentioned that this class diagram is complete and
shows detailed information. 19% of these respondents stated that this class diagram is
compact, concise and comprehensive. Even though only 6 respondents (11%) chose the

182 Validation

0

10

20

30

40

50

60

CD.25 CD.50 CD.75 CD.RE

%
 o

f
th

e
R

es
p

on
de

n
ts

A. < 1 year B. 1-3 years C. 3-7 years

Figure 10.9: The Respondents’ Experience vs. Choice of Class Diagram

CD.50, 85% of these respondents indicate that this class diagram has the appropriate
level of condensation that helps the overview of the system.

Respondents’ Experience vs. Choices of Class Diagram

From the perspective of respondents’ experience, the results in Figure 10.9 show that
from 25% of condensation to 50% of condensation the percentage of the respondents
that chosen these diagrams is decreasing and start increasing from CD.75 to CD.RE.
Figure 10.9 also suggests that the more experienced respondents chose class diagram
with a higher amount of classes.

10.4.3 RQ3: Software Architecture Abstractor Framework

In part C, we asked the respondents to compare the RE-CD and the condensed RE-CD
to know how useful this diagram (generated by the SAAbs tool) in representing the
important information in the RE-CD. Out of 63 respondents, 5 respondents did not
answer this question. Figure 10.10 shows the results of this part. On average, the
respondents have given a rate of 4.72 on a scale of 1 to 6. This indicates the 50%
condensation of RE-CD constructed by using this framework is useful for software
comprehension. 67% of the respondents rated 5 and above while 9% of the respondents
rated below 4.

10.4.4 RQ4: Usefulness of the SAAbs Tool

In total, 29 respondents answered this question (only academic researcher and IT
professional). As can be seen in Figure 10.11, 93% of the respondents have given the

Results 183

0

10

20

30

40

50

60

1 2 3 4 5 6 No Answer

%
 o

f
th

e
R

es
p

on
d

en
ts

Figure 10.10: Level of Abstraction of RE-CD for Software Comprehension

0

10

20

30

40

50

1 2 3 4 5 6

%
 o

f
th

e
R

es
p

on
de

n
ts

Figure 10.11: The Rating of the Usefulness of SAAbs Tool

rate of 5 and above while 7% respondents have given the rate below 5. On average, the
respondents give 5.40 out of 6 points. This suggests that the SAAbs tool may be useful
for understanding a system.

The respondents were also asked to answer the reason for the score given to the tool.
As a result, 50% of the respondents mentioned that the tool is able to show the multiple
levels of condensation. 40% of the respondents mentioned the ability of the tool to
show the important classes (e.g. highlighting with color) and 40% of the respondents
mentioned that this tool is helpful for showing an overview of systems. The remainder
of this section describes the results in detail.

SAAbs Features vs Respondents’ Background

We further analyze the relationship between the choices of the best features and
the respondent’s background information. The respondent’s background covers the
respondent’s role, skill and experience in using class diagrams. The respondents’ expe-
rience only includes group < 1 year, 1-3 years and 3-7 years of experience because the
majority of the respondents (97%) is coming from those groups. The reasons mentioned
by the respondents are analyzed by capturing the keywords of their answers. Then,
we group these keywords to the related features. Overall, four main features which are
mostly mentioned by the respondents: (1) Multilevel Class Diagram Abstraction, (2)

184 Validation

0

10

20

30

40

50

60

70

Multi-level Class
Diagram

Abstraction

Highlighting
Important Classes

(Color)

Combination of
Package+Class
Diagram View

Class Importance
Prediction

%
 o

f
th

e
R

es
po

nd
en

ts
A. Student B.Researcher/Academic C. IT Professional

Figure 10.12: The Respondent’s Role vs the Tool’s Features

Highlighting Important Classes, (3) Combination of Package and Class Diagram View
and (4) Class Importance Prediction. Hence, we only analyze those four mostly chosen
features.

Role vs. Features
As can be seen in Figure 10.12, the academic researcher group prefers the Multi-level
Class Diagram condensation over Highlighting (Coloring) important classes. In con-
trast, the IT Professionals like the Highlighting of Important Classes more than the
Multi-level Class Diagram Abstraction.

Experience vs. Features
Figure 10.13 shows the relationship between the respondent’s role and their choices of
most valued features. It is interesting to see that the preference of Multi-level Class
Diagram Abstraction decreases when the years of experience in using the class di-
agrams is increased. This may indicate that the more experienced respondents are,
the less likely they want to simplify the diagram. On the other hand, the preference
for Highlighting Important classes increases with the years of experience in using
class diagrams. This result suggests that highlighting important classes is preferred
when a software developer becomes more experienced. However, both features are
of equal interest to (60%) respondents that have 1-3 years of experience. Figure 10.13
demonstrates that the respondents are slightly more interested in the Combination of
Package+Class Diagram view as the years of experience are higher.

Skill vs. Features
Figure 10.14 provides the overall result of the relationship between skill in under-
standing class diagram and the tool’s features. There is not much different for the

Results 185

0

20

40

60

80

100

Multi-level Class
Diagram Abstraction

Highlighting
Important Classes

(Color)

Combination of
Package+Class
Diagram View

Class Importance
Prediction

%
 o

f
th

e
R

es
po

n
de

n
ts

A. < 1 year B. 1-3 years C. 3-7 years

Figure 10.13: The Tool’s Features vs the Respondent’s Experience

0

10

20

30

40

50

60

A.mPoor B.mLow C.mAverage D.mGood

%
 o

f
th

e
R

es
p

on
d

en
ts

MultiVlevelmClassmDiagrammAbstraction HighlightingmImportantmClassesm(Color)
CombinationmofmPackagekClassmDiagrammView ClassmImportancemPrediction

Figure 10.14: The Respondent’s Skill vs the Tool’s Features

Multi-level Class Diagram Abstraction and Highlighting Class Diagram features for all
levels of skill. However, there is a small percentage that shows that the Combination
of Package+Class Diagram View is more attractive for the respondents that have the
skill of average and good in understanding class diagrams.

Limitations and Improvements

To improve this tool, we asked the respondents about: (1) the weakness of the tool
and (2) the improvement needed for this tool. In general, both results shows that the
enhancements or improvements needed for this tool mainly referred to: (1) Important
Classes Prediction, (2) Layout and (3) Additional Tool’s Features. Figure 10.15 shows
the results on the limitations of the tool.

For Important class prediction, the respondents show their concern about the
prediction result. They are concerned about the suitability of the machine learning
techniques in classifying the important classes of “big systems” and also the validation
of the result (human validation of the important classes prediction of the tool). In terms
of layout, the respondents suggested that the tool should give more options to the

186 Validation

0

5

10

15

20

25

30

35

Prediction
Result/Issue

Tool's Feature Layout Integration with
Reverse

Engineering

Reponse/
Performance

Generalization of
tool

%
 o

f
th

e
R

es
po

n
de

n
ts

Figure 10.15: The Limitations of the SAAbs Framework and Tool

tool’s user to modify the layout. The modification includes: editing class diagrams,
change of color, various types of class diagram layout (e.g. centering, hierarchy) and
highlighting of private and public attributes.

10.5 Discussion

In this section, we discuss the scoring of class diagrams, the limitation of SAAbs tool
and the threats to validity.

10.5.1 Choosing a Class Diagram

At the beginning of our analysis, we expected that the respondents preferred class
diagrams that have a low number of classes. However, our expectation applied for
CD.25 but the other preferred class diagram is CD.RE. This result shows that the
number of classes is not the main reason for choosing the class diagram. Also, the
representation of the class diagram also influences the decision of choosing the best
class diagram for system understanding.

According to the reasons of choosing a class diagram, the respondents indicate that
the chosen class diagram is easy to understand. Even though CD.RE shows the highest
number of classes, the respondents mentioned that this class diagram is understandable.
One of the reasons is that the class diagram presents the separation of features where
the two major classes are presented in the middle of the class diagram. Those classes
represent two independent groups of functionalities that are ATM related system and
the simulation/graphical user interface (GUI) related purposes (see questionnaire in
[121] for more detail). This suggests that class diagrams with a high number of classes
are practical for software comprehension provided that the layout shows suitable
clustering or grouping of functionality (as suggested by the software developers in
Chapter 5).

Discussion 187

10.5.2 Limitation of SAAbs

As described in the previous sections, we proposed the SAAbs framework and tool to
assist the software developer for the software comprehension assignment. However,
several limitations have been identified before and after the validation experiment was
conducted.

For important class prediction, object-oriented design and text metrics are used as
predictors. As mentioned in [127], combining those metrics results in a better prediction
than using only one particular set of metrics for important class prediction. However,
the text metrics are limited to systems that are developed using the English language
(for the class element name); Thus, if a system is developed based on another language,
these predictors need to be adjusted. This problem due to the stemming algorithm that
is used to formulate the text metrics.

Although the object-oriented design metrics have reasonable predictive power, we
are considering other features to enhance the prediction results. For instance, the use
of network metrics as described by Thung et al. [164].

Another concern about the framework component is the usage of “Show Suggestion”
to suggest the candidates for important classes. This suggestion may not be correct
because it is based on the amount of coupling and number of operations. It may include
several lookup/descriptor classes (like a lookup table) that have a lot of relationships,
but these classes are not frequently considered as important classes. In the SAAbs tool,
the selected important class candidates are shown in the class list. Users can select
the lookup/descriptor classes and other insignificant classes to be excluded from the
important class candidates.

10.5.3 Threats to Validity

In this subsection, we discuss the internal and external threats to validity of the valida-
tion experiments.

Internal Validity: The selection of case studies may influence the result of this experiment.
The respondents need to comprehend a system in a limited time. We believe that we
have minimized this threat as we used a small to medium size of class diagrams, well-
known projects domain, and the respondents were given a briefing and comprehensive
description of the projects.

In this experiment, we tried to discover the suitable features of the tool in regard to
the respondents’ background. We asked the respondents to indicate the best feature of
the tool. We realized that the term “best feature” in the question might not precisely
indicates suitable feature. Nonetheless, we believe that the question yields the interest
of the respondent on features that are considered suitable features for a particular
respondent.

188 Validation

External Validity: The distribution of the respondent’s role could be a threat to external
validity. The role of respondents is not equally distributed where the majority of
the respondents are students. However, we have shown that the distribution of the
students and graduate students (academic researcher and IT professional) is almost
equal. Although we do not deny that the experience in industry and academia are
different, in terms of class diagram understanding, we believe that the difference is
small.

10.6 Conclusion and Future Work

This experiment aims at validating the SAAbs framework and tool in assisting the
software developer in understanding software systems. We showed that the condensed
RE-CDs produced by the SAAbs tool (particularly 25%, 50% and 75% of condensation)
are understandable. Furthermore, the respondents considered that the tool that real-
ized the SAAbs framework is useful in aiding the software developer to understand
software.

From the results, it is interesting to see that the main class diagram (that is chosen
for system overview) is the 25% condensation of RE-CD and the RE-CD (full RE-CD).
This result shows that the layout influences the selection of a class diagram for viewing
the system rather than the number of classes in class diagrams. The respondents
indicate that the condensed RE-CD is also useful for understanding the system. On
average, the respondents give 4.72 out of 6 points that indicate the condensed RE-CD
is useful for software comprehension.

The SAAbs tool was developed to realize the SAAbs framework in providing
a platform for assisting software comprehension. In this experiment, we assess the
respondent’s judgment on the usefulness of this tool. On average, the respondents gave
5.4 out of 6 points that indicate this tool is helpful during the software comprehension.
The result also demonstrated that the respondents that have more experience intend to
view all classes in the class diagram and highlight the important classes. In contrast,
the less experienced respondents prefer to limit the classes in the class diagram by
reducing the class diagram for software comprehension task.

This validation experiment shows an interesting and promising result. There are
several ways to enhance and strengthen this validation. We are looking forward to
improving the validation by:

• A user study on the usage of the SAAbs tool in the real software comprehension
task (task-oriented validation), and

• Online user validation (i.e. publish the tool online and assess the user experience
about the tool).

Chapter11
Conclusions

UML is recognized as the standard for describing software designs. Keeping UML
designs up-to-date with evolving source code is challenging and time-consuming.
For this purpose, automatic recovery of design diagrams in UML notation out of
implementation artifacts (i.e. source code, execution files/library) is an attractive op-
tion to obtain and maintain up-to-date design representations of systems. However,
understanding reverse engineered UML diagrams is often difficult. Hence, this
research aims at providing an automated framework to simplify reverse engineered
UML diagrams (specifically class diagram) for assisting software comprehension.
In this chapter, we summarize the findings based on the research questions posed in
Chapter 1 of this thesis. We describe the contributions of this research and outline
future work.

11.1 Summary of Findings

The goal of this research is to devise an automated framework for simplifying UML
class diagrams to assist the software comprehension task. The following is the main
research question that has been formulated to clarify the scope of this research:

Main RQ: What method of condensing of reverse engineered class diagrams helps develop-
ers to understand the design of software systems?

We decomposed this main research question into five research questions (described
in Chapter 1). At the start of our research, we conducted two studies to investigate
the usage of UML diagram in open source software development (OSSD) and the
state-of-the-art of reverse engineering source code into class diagrams. In doing so,
we identified several OSSD projects that are suitable for our research. We highlight

190 Conclusions

Table 11.1: Summary of Background Research Findings.

Study Findings

UML usage in OSSD
1. In software development, the focus of modeling

shifts from an initial focus on structural aspect in the
early phases of development towards fleshing out be-
havioural aspects of the design in the later stages of
development.

2. The frequency of updating UML diagrams is low when
compared to the frequency of updating source code.
As triggers for the updating of models, we identify: i)
major changes to the software, and ii) the joining of a
group of new developers into the project.

Reverse engineering
of source code into
class diagrams

1. Existing CASE tools are not able to correctly recover
aggregation and composition relationships from the
source code.

2. Existing CASE tools are not able to correctly recov-
er/represent the bidirectional relationship.

3. There is a wide variety in the quality of the class di-
agrams that are obtained via reverse engineering by
different CASE tools. Not all CASE tools are suitable
for reverse engineering source code to UML class dia-
grams.

findings of these studies in Table 11.1. Next, we recapitulate our research questions
and their main findings.

11.1.1 RQ1: Which information in class diagrams do developers find im-
portant for understanding software designs?

For this question, we conducted a semi-structured survey to gather data about develop-
ers’ views of classes that could be left out from a class diagram and classes that should
remain for good understandability of the system design. In this survey, 32 professional
software developers participated.

Our analysis focused on the characteristics of classes that could be left out. We
discovered that class relationships, and the role and responsibility of classes play major
roles in determining class inclusion/exclusion.

Specifically for class exclusion, we found that library classes and Graphical User

Summary of Findings 191

Interface (GUI) classes (esp. when generated automatically by an Integrated Develop-
ment Environment (IDE)) could be left out from the class diagram. These categories
of classes have a small relation to the application domain. In other words, this study
shows that for gaining an understanding of a new software system, developers (at least
in their initial exploration) focus on classes that are related to the application domain.

The aforementioned findings give us insights into the information of class diagrams
that are important for software developers (for inclusion) and information in class
diagrams that can be left out (for exclusion) in order to simplify a class diagram. Our
subsequent research is to use this information to devise an automated approach to
assist software comprehension.

11.1.2 RQ2: Which object-oriented design metrics do developers find most
indicative for class importance?

The second research question aimed to study the relevance of object-oriented design
metrics in deciding on class inclusion and exclusion in class diagrams. We addressed
this question by performing an online survey involving 25 participants from different
types of background (i.e. students, academic researchers and IT professionals).

This research also discovered that the number of public operations (NPO) is the
most important object-oriented design metrics in deciding the class inclusion: classes
that have a high NPO are more likely to be recommended for inclusion in the class
diagram. The findings of this survey suggest that object-oriented design metrics
(esp. from the size and coupling category) are relevant features for deciding on class
inclusion and exclusion.

11.1.3 RQ3: How to automatically condense class diagrams using object-
oriented design metrics?

We studied the suitability of the object-oriented design metrics as features for predict-
ing class inclusion and exclusion in class diagrams. We applied a machine learning
approach to construct a classifier for class inclusion/exclusion using supervised learn-
ing methods. Nine open source software projects have been collected as case studies
for this.

Our study focused on the application and domain related classes. Therefore, we
filter the classes in these projects by removing external library and runtime classes.
These projects were selected because they all contain UML designs that are manually
created during the forward design. In these cases, we use the classes that exist in the
forward design as the ‘ground truth’, which is used for the training of the classifier. We
also compare the performance of nine classification (i.e. machine learning) algorithms
to determine the most suitable algorithms for deciding class inclusion/exclusion. These
classification algorithms produce a score for every class. This score enables the ranking
of classes according to their likelihood of inclusion. Because our datasets are typically

192 Conclusions

imbalanced, we use the Area under the ROC Curve (AUC) to evaluate the performance
of the classification algorithms.

Our findings demonstrate that Export Coupling Parameter (EC_Par), Dependency
In (Dep_In) and Number of Operation (NO) are the most influential features in clas-
sifying class inclusion/exclusion. The classification that is based on all features (i.e.
the 11 object-oriented design metrics) achieves the best AUC value. This means that
all features are considered valuable for the class inclusion/exclusion classification.
This research also found that Random Forests and k-Nearest Neighbor algorithms are
the most suitable for our prediction purpose. For nine case studies, Random Forests
produces an AUC score above 0.64 with an average AUC score of 0.74.

It is not reasonable to expect that this approach could produce a 100% correct
prediction of class inclusion/exclusion. One reason for this is the imbalance in the
dataset which is the basis for learning. Nevertheless, these datasets present realistic
scenarios found in software projects. This research has commenced a novel approach
of using machine learning based on the condensation of the RE-CDs.

11.1.4 RQ4: Can the automatic condensation of class diagrams be en-
hanced by using class names?

Prior research (RQ1 and RQ2) indicated that the role and responsibility of classes
conveyed important information about a design. We tried to capture these notions in
our prediction by exploring the use of features based on class names. We came up with
text metrics based on class names by using text processing methods.

The experiments in this chapter followed the same structure as the experiment
for RQ3 where we evaluate each feature’s predictive power as well as the feature’s
performance. Nine classification algorithms (as in RQ3) were used in this experiment
and ten OSSD projects (nine of them from RQ3) were used as case studies. We use
the result of RQ3 as a reference benchmark to evaluate the improvement of the text
metrics in class inclusion/exclusion prediction. We study the effects of using different
categories of features, namely: text metrics (T), object-oriented design metrics (D) and
a combination of text and object-oriented design metrics (DT).

Our findings illustrate that using only text metrics does not perform as good
as using only design-metrics (object-oriented design metrics). However, using text
metrics in addition to design metrics leads to a small improvement over using only
design metrics in the prediction of class inclusion/exclusion. On average, the addition
of text metrics to object-oriented design metrics improved the prediction by 5.1%.
Across different projects, the improvement of adding text-metrics to design metrics
ranges from -6% to 22%. When taking the perspective of the classification algorithms,
performance was improved using the combination features (DT) for all algorithms
except k-NN (1) algorithm. By comparing the AUC score of all algorithms, the Random
Forests produces the best result that indicates this algorithm is the most suitable
algorithm for this purpose.

Summary of Findings 193

In terms of the predictive power of the text metrics, we found that the text metrics
calculated from the individual case studies have better predictive power than the text
metrics based on the combination of all case studies. This indicates that the text metrics
features are truly domain-oriented.

This research demonstrates an improvement of class inclusion/exclusion prediction
by using class names. We expect to further improve performance if we use other textual
information such as operation-, parameter- and attribute-names as prediction features.

11.1.5 RQ5: Does our automated framework for condensing of class dia-
grams help developers to understand the design of software sys-
tems?

We validated our framework by conducting a semi-structured survey (a user study)
to assess the respondents (students, academic researchers, IT professionals) opinion
on the usefulness of the condensed class diagrams and our SAAbs tool in assisting in
software comprehension.

The respondents were asked to give their opinion on a set of various class diagrams.
We used the following diagrams: 1) the original forward design (FD); 2) the reverse
engineered class diagram (RE-CD) (as produced by a CASE tool); and 3) abstracted
RE-CDs (here 3 levels of abstraction were used: 25%, 50% and 75%). In total, 63
respondents participated this survey.

Our findings demonstrated that the level of 25% abstraction of RE-CD is rated
most understandable compared to other diagrams. The results showed that the rate
of understanding decreases when the amount of classes increases. We compared the
respondents’ preferred class diagrams between three levels of abstracted RE-CDs (25%,
50%, 75%) and the RE-CD (without abstraction).

The respondents were also asked to choose the one diagram that they prefer for
using for system comprehension. The result shows that there are two main groups
of the respondents: those that prefer to use the 25%-abstraction of the RE-CD and
those that prefer the RE-CD. It is beyond our expectation that the RE-CD is chosen for
system comprehension. Störrle [158] indicates that “layout quality does impact the
understanding of UML diagram”. When we observe the layout quality of the RE-CD
(based on the four level design principle [159]), we found that the RE-CD presented
in the questionnaire have a good layout quality, even though the number of classes is
high. This may be the respondents’ reason for choosing this diagram.

In this experiment, we also assess the respondents’ judgment on our SAAbs tool
that was developed to automate our approach. On average, the respondents give
a score of 5.4 on a 6 point-scale for the usefulness of the tool. In the future, further
studies should explore the use of the tool for performing maintenance tasks - both in
experiments and in industrial settings.

194 Conclusions

11.2 Contributions

The contributions of this research are summarized as follows:

• Discovery of developer reasoning about class diagram simplification. This
research found out which criteria developers use when selecting classes for
creating a simplified system design.

• Developing a classifier for class inclusion/exclusion prediction based on the
object-oriented design features. This research presented a novel approach for
predicting class inclusion/exclusion using object-oriented design metrics as
features. This approach showed how machine learning classification algorithms
can be used to classify classes that could be included and classes that could be
omitted.

• Developing a classifier for class inclusion/exclusion based on the text features
of class names. We invented text metrics based on class names and enhanced
the prediction performance by combining these text-based features with object-
oriented design metrics.

• An automated tool to support software comprehension by interactive explo-
ration of various levels of design abstraction. We developed an automated tool
for scalable and interactive condensation of class diagrams. This tool provides
multiple visualization techniques and offers various types of views to assist
developers in software comprehension tasks.

• Findings on the use of modeling in open source projects. We expounded the
use of UML modeling in open source projects. Amongst others, we described
the types of diagrams used, the levels of detail of their representation and the
frequency of updating models. In addition, we identified and explained a pattern
regarding the change of focus on different types of diagram used over time.
Also, we identified a relation between the size of the models and the size of the
implementation.

• Construction of a benchmark of open source projects using UML. This re-
search collected 10 open source projects that can be used as the benchmark
for predicting important classes in class diagrams. The projects were derived
from diverse types of domains and various sizes (the number of classes ranges
from 59 to 900).

11.3 Discussion

In this section, we reflect on the result of this research.

Discussion 195

11.3.1 Software Comprehension

To understand a system, software developers normally explore the system’s artifacts
(e.g. source code, software design). This activity supports the building of a cognitive
design elements by software developers. Storey et al. [157][156] has proposed a set of
15 guidelines elements that are recommended for software exploration tools. Out of
these 15 guidelines, we fulfilled 6 that fit the object-oriented system context.

In Chapter 5 and 6, we found that software developers focused on some information
(such as class names and relationship) in class diagrams to understand a system. This
is consistent with findings by Ko. et al [93] that software developers search for relevant
code based on identifier-names and comments. Once the developers found the relevant
code, they start to look at other related code (tracing relationships between classes).

In a broader perspective, the SAAbs tool provides multiple architecture views that
may constitute an architecture reconstruction [96][139]. The work by Riva [144] iden-
tified multiple levels of reverse engineering (implementation, Design, Architecture).
In contrast to our approach, those levels are seen as separate discrete levels which
use concepts at different levels of abstraction for representing the system. We believe
that extracting higher level concepts are a much needed step in reverse engineering.
However, this requires a different ground truth compared to the one that we used in
our research. An actual gap in abstraction levels needs to be bridged. Our approach
focused instead on simplification through leaving out information.

11.3.2 Condensation of Class Diagrams

The condensation of class diagrams is the core discovery of this research. Commonly,
condensation can be achieved in two ways: by abstraction or aggregation (or a combi-
nation thereof) [109]. In our research context, we use abstraction instead of aggregation
because we want to facilitate both the bottom-up and top-down comprehension. For
this purpose, aggregation is not suitable because this method sometimes presents too
abstract views (or “big jump” view) compared to the complete design.

One may argue that using the abstraction method has the risk of loss precision
and coherency (because of eliding details). Also, the question of “what is the right
level of abstraction?” should be answered. We mitigated this risk and answered the
aforementioned question by providing the multiple levels of design abstraction. In
this way, the users may construct multiple levels of abstraction based on their need.
Such scaling allows the gradual construction of the abstraction of from a big to a small
number of classes (and vice versa). Also, the multiple levels of abstraction caters for
the different demands on system views of different stakeholders.

In the following subsection, we discuss two important inputs of our abstraction
methods: a) the “ground truth” and, b) the features used to identify the important
classes.

196 Conclusions

The “Ground Truth”

To find the important classes in a class diagram, we apply a supervised machine learn-
ing approach. As the baseline or “ground truth”, we use the classes that are included
in the (man-made) forward design. We believed that the forward design is closely
related to the system domain and represents the key system functionalities. Based on
our survey in Chapter 5, most of the professional software developers indicated that
the domain related class are important classes.

In contrast, Hammad et al. [77] and Bieman et al. [24] used version history informa-
tion to establish their baseline of key classes. They assume that classes that frequently
change in the evolution of a software are important classes. This is also a reasonable
assumption. However, this approach also has some threats: classes that frequently
change may also be classes that are not important in the domain, but more facility- or
manager-classed such as lookup classes, log classes and graphical user interface (GUI)
classes.

The Features to Identify the Important Classes

We used two main types of features for our classification: Object-oriented design met-
rics and text metrics. Both features proved to have some contribution to the ability
to predict the important classes in a class diagram. We discuss these features in the
following.

Feature: Object-oriented Design Metrics. Amongst the object-oriented design metrics, we
only focused on metrics from the size- and coupling-category. As a result, we found
that the Export Coupling Parameter (EC_Par), Dependency In (Dep_In) and NumOps
are the most influential metrics for predicting the important classes.

The EC_Par and Dep_In metrics are coupling-type metrics. This means that the
relationships of a class are an important factor in determining class importance. This
result is aligned with the findings of Briand et al. [36] and Genero et al. [29] which
also indicate that coupling is an important structural dimension in object-oriented
design. Also, Steidl et al. [154] and Thung et al. [164] worked with information on
class relationships to identify important classes in a class diagram. At the same time,
coupling remains merely a syntactical aspects of a design.

From a maintenance perspective, error-prone classes can also be considered as
important classes (because this is where lots of maintenance effort will be focussed).
Work in the area of prediction of faulty classes by Zhou et al. [188] and Gyimothy et al.
[73] mentions that coupling and numbers of methods (WMC) are the most influential
features to predict faulty classes. Likewise, we also found that the Number of opera-
tions (same with WMC) is one of the influential features. Hence, we can conclude that
the object-oriented design metrics are useful generic, application-independent features
for predicting important classes.

Future Work 197

Feature: Text Metrics. This research also shows that text metrics based on class names
could be used as predictors for class importance. However, the object-oriented design
metrics perform better than the text metrics. Our prediction’s performance increases
only when we combine these two predictors sets together. Work related to code
summarization [74][75][50] indicates that method-names and class-names are suitable
to summarize a class. These works found that method-names constitute better criteria
to summarize a class compared to class-names. Based on this, we expect a better
performance of our approach if we include other textual elements such as text in
methods, parameters and attributes.

The text-metrics that are calculated based on individual software projects (case
studies) demonstrated a higher predictive power compared to metrics calculated
based on the combined set of software projects. The projects in our study come from
different types of domain; hence, it is difficult to retrieve or predict the domain-related
words across all domains. Klint et al. [91] shows that the collection of domain-related
words are challenging and requires a lot of efforts for a particular domain; thus, a text
metrics-based generalize the prediction model is difficult to realize.

The research opens an extensive perspective of condensing class diagrams in order
to ease the system comprehension. In the next section, we discuss directions for future
work.

11.4 Future Work

Our research can be considered as an initial work on simplifying reverse engineered
UML diagrams through machine learning. Based on the respondents of our surveys
(Chapter 5, 6 and 10), we can outline several directions for future work to improve this
work as well as implementing the technique to a broader perspective. The remaining
subsections describe directions for future work.

11.4.1 Enriching the Ground Truth

In Chapter 7 and 8, we used supervised machine learning to classify class inclusion/ex-
clusion. We assume that forward designed class diagrams (i.e. provided as part of the
documentation of these projects we studied) as the ‘ground truth’. We believe that
incorporating other information as the ‘ground truth’ may improve the classification
result. Several suggestions on which complementary sources of information to use are
the following:

• Version history: Classes that frequently change during the software evolution
could be classes that are important to the system. Also, other information such as
the severity level (based on defect classifications for a particular class) could be a
candidate to enrich the ‘ground truth’.

198 Conclusions

• Eye tracking information: One small field of empirical research focuses on
detecting important information in design documents based on tracking the focus
of human eyes when looking at a software design on a computer screen. The
information that users focus on in class diagrams could be additional information
to our ‘ground truth’.

• Software documentation: We only used the classes that are presented in the
class diagram (in software documentation) for the ‘ground truth’. We believe
there are more information in the text (such as classes that frequently mentioned)
that may improve our baseline of this study.

• Interactive Learning: Thung et al. [164] have demonstrated the improvement
of the AUC score when an optimistic classification technique is used. This
technique is a form of semi-supervised learning technique where users can give
input to generate a finer statistical model. Therefore, we believe that interactive
and dynamic refinement of the ‘ground truth’ may improve the selection of the
important classes in class diagrams.

• Dynamic Analysis: Dynamic analysis is the analysis of the properties of a run-
ning program [19]. This analysis can for example, measure the classes that are
being used most by an application. This information can be used to enhanced
the ‘ground truth’.

11.4.2 Exploring Features

This research has looked at the use of object-oriented design metrics, text metrics
and network metrics (work by Thung et al. [164]) as features for classifying class
inclusion/exclusion. We believe that there is other information that may be used
as features to predict class inclusion/exclusion. We believe that information from
operation-, parameter- and attribute-names may offer a significant predictive power
to the classification. There is also another possibility to use the information from the
software repository as additional features. Information such as source code metrics
and text from bug reports may be added to the features to improve the classification
result.

11.4.3 Task-oriented Validation

Preliminary findings of our user study show that the result of our approach and tool is
understandable and helpful for the software comprehension task. Therefore, we believe
that a validation based on more realistic maintenance tasks is required to strengthen
the validation of our proposed framework and get a broader perspective to enhance
the tool and technique. Through such a task-oriented validation, one could gather
more information on the tool’s actual usage.

Future Work 199

11.4.4 Class Segmentation

The respondents in Chapter 5 suggested a segmentation (grouping) of classes based
on features and functionality: Classes that have similar functionality or together
implement one feature should preferably be presented in the same segment or group.
Novel feature location techniques are needed to identify features in the class diagrams.

Another possible technique that can be used for class segmentation is program
slicing [169],[181]. Program slicing removes those parts of the program that have
no effect upon the semantic interest and concentrates on the selected aspects related
to some concern. Often these techniques are based on tracing of data-flow and de-
pendency analysis. It is also possible to combine the aforementioned technique with
our approach. Provided with the information of a specific feature (by using program
slicing or feature location), our approach can produce a rank of classes that suggest the
relevant classes to the features. Our existing visualization feature may help to visualize
the segmentation (and its embedding in a larger design).

11.4.5 Visualization of Result

In Chapter 10, the respondents gave several valuable suggestions to improve the pre-
sentation of the class diagram viewer. Therefore, we believe the following enhancement
may benefit to the tool:

• Layout: Investigation and application of more layout options such as central and
hierarchical layout.

• Interactive Viewer: Interactive editing to allow users full control of the layout of
diagrams.

AppendixA
Case Study Candidates

In this Appendix, we list the candidate projects for our case studies (Table A.1).
Item mark with * are the selected case studies.

Table A.1: List of Case Study Candidates

No Project Source
1 ArgoUML* http://sourceforge.net/projects/argouml/
2 Bookszenbooks http://code.google.com/p/bookszenbooks/
3 cmpt371t1 http://code.google.com/p/cmpt371t1/
4 Concurrentadt http://code.google.com/p/concurrentadt/
5 CrimsonPortal http://code.google.com/p/crimsonportal/
6 DBForms http://jdbforms.sourceforge.net/UsersGuide/html

/index.html
7 DocDoku http://code.google.com/p/docdoku/
8 driving-bc http://code.google.com/p/driving-bc/
9 DRMJ-Webshop http://code.google.com/p/drmj-webshop/
10 EmpScheduler2008 http://code.google.com/p/empscheduler2008/
11 Epydoc http://epydoc.sourceforge.net/api/epydoc-

module.html
12 europa-ps http://code.google.com/p/europa-pso/
13 Fipa-english-

auction
http://code.google.com/p/fipa-english-auction-
interaction-protocol/

14 Fuge http://fuge.sourceforge.net/dev/index.php
15 gelsanalyzer http://code.google.com/p/gelsanalyzer/downloads

/detail?name=MVC%20Class%20Diagram %20Itera-
tion2.png&can=2&q=

202 Case Study Candidates

16 GNetWatch http://gnetwatch.sourceforge.net/doc.html
17 Google-voice-java http://code.google.com/p/google-voice-java/
18 Gotogate http://gotogate.googlecode.com/svn/trunk/
19 gwavmerger http://gwavmerger.sourceforge.net/gwm-

design/design.html
20 gwt-portlets* http://code.google.com/p/gwtportlets/
21 gwtuml http://code.google.com/p/gwtuml/
22 httpdbase4j http://httpdbase4j.berlios.de/
23 Jalli http://jalli.berlios.de/
24 Java Kohonen Neu-

ral Network Library
http://jknnl.sourceforge.net/

25 Javaassessment http://code.google.com/p/javaassessment /down-
loads/list

26 JavaClient* http://java-player.sourceforge.net/
27 JGAP* https://sourceforge.net/project/screenshots.php?

group_id=11618
28 jjack http://jjack.berlios.de/
29 jpmc* http://jpmc.sourceforge.net/diagrams.html
30 Jvending http://jvending.sourceforge.net/
31 Krank http://code.google.com/p/krank/
32 Mandragora Project http://mandragora.sourceforge.net/referenceguide

/how-to-extend.html
33 Mars Simulation* https://sourceforge.net/apps/mediawiki/mars-

sim/index.php?title=UML_Diagrams
34 Maze-Solver* http://code.google.com/p/maze-

solver/wiki/MazeModelDoc
35 monopolj http://code.google.com/p/monopolj/
36 MyDas http://code.google.com/p/mydas/
37 Netbeams http://code.google.com/p/netbeams/wiki/ DataSen-

sorPlatform
38 network-keeper http://code.google.com/p/network-

keeper/wiki/Diagrams
39 Neuroph* http://neuroph.sourceforge.net/
40 nmt-cs326-g5 https://code.google.com/p/nmt-cs326-g5/
41 Novosoft Metadata

Framework
http://nsuml.sourceforge.net/index.html

42 Nymp http://code.google.com/p/nymph/
43 ObjectLabKit http://objectlabkit.sourceforge.net/apidocs /net/ob-

jectlab/kit/datecalc/jdk/CalendarPeriodCountCal-
culator.html

203

44 ObjectListView http://objectlistview.sourceforge.net/cs/index.html
45 OpenMeeting http://code.google.com/p/openmeetings/
46 pacpounder https://code.google.com/p/pacpounder/
47 Pendulim http://code.google.com/p/pendulim/
48 Portions http://portions.sourceforge.net/en/guide.html
49 Primitive Collections http://pcj.sourceforge.net/docs/guide/pcj-

guide.html
50 Qt OIC Container 3.5 http://qtioccontainer.sourceforge.net/uml.html
51 RandyLoops http://randyloops.sourceforge.net/
52 rpcstruts https://code.google.com/p/rcpstruts/
53 StarUML http://staruml.sourceforge.net/docs/api-

doc/Modeling%20Elements/UML%20Model %20El-
ements /Foundation/Core/package-summary.html

54 tiOPF http://tiopf.sourceforge.net/Doc/Concepts
/4_BuildingAnAbstractBOMWithTheComposite.shtml

55 Topology data script-
ing

https://sourceforge.net/apps/mediawiki/free-
cad/index.php?title=Topological_data_scripting

56 wro4J* http://code.google.com/p/wro4j/
57 Xuml-compiler* http://code.google.com/p/xuml-compiler/

List of Figures

1.1 Thesis Roadmap . 7

2.1 Integrated Model [174] . 14
2.2 Cognitive Design Elements for Software Exploration [156] 15
2.3 The Software Development Life Cycle . 16
2.4 Relationship between Forward Eng., Reverse Eng. and Other Related

Terms [41] . 16
2.5 Taxonomy of UML Version 2.4 [68] . 18
2.6 Tours Online Class Diagram (Domain Analysis) 19
2.7 Tours Online Class Diagram (Design Level) 20
2.8 Tours Online RE-CD (Code Level) . 20
2.9 The Process of Supervised Machine Learning [98] 24
2.10 ROC and Precision-Recall Curves under Class Skew 29

3.1 Classes in Design vs Classes in Implementation 40
3.2 ArgoUML Evolution in UML Diagrams and Number of Classes 44

4.1 Round-trip Engineering Experiment . 53
4.2 Altova Reverse Engineered Package Diagram 56
4.3 Reverse Engineered Sequence Diagram using Altova 56
4.4 Round-trip Test Result . 58
4.5 Example of Diagram on Aggregation Test 61
4.6 Number of Attributes and Methods . 61
4.7 Bidirectional Relationship with Two Separate Links 63

5.1 Level of Detail Class Diagrams Preparation 74
5.2 Role of the Respondents . 76
5.3 Respondents Experience with Class Diagrams 76

206 LIST OF FIGURES

5.4 Where did the Respondent Learn about UML 77
5.5 Respondent’s skill on Class Diagram . 78
5.6 Respondents Like or Dislike Source Code vs UML 78
5.7 Programmers Like or Dislike Source Code vs UML 79
5.8 Software Architects Like or Dislike Source Code vs UML 79
5.9 Software Designers Like or Dislike Source Code vs UML 79
5.10 Class Diagram Skill per Role . 79
5.11 Information of Attribute that Could be Left out 81
5.12 Types of Operation that could be Excluded in Class Diagrams 81
5.13 Class Category . 82
5.14 Types of Class that could not be Included in Class Diagrams 82
5.15 Class Role that could be Excluded in Class Diagrams 83
5.16 Types of Information the Respondents Look for in Class Diagrams . . . 84
5.17 Information of Classes that could be Omitted 85
5.18 Information of Operations that could be Omitted 86
5.19 Important Criteria in a Class Diagram for Understanding a System . . . 87
5.20 The Type of Relationship in Class Diagrams that the Respondents Look

at First . 87
5.21 The Features that a Tool Should have for Simplifying UML Class Diagrams 88

6.1 Role of the Respondents . 99
6.2 Location of the Respondents . 99
6.3 Class Diagram Skill and Years of Experience 100
6.4 Score Size Category (Question B1-B4) . 101
6.5 Score Coupling Category (Question B5-B10) 102
6.6 Score Inheritance Category (Question B11-B13) 103
6.7 Keywords to Include a Class in a Class Diagram 103
6.8 Class Diagram A (ATM System) . 105
6.9 Respondents Selection of Classes that Should not be Included in an ATM

System . 106
6.10 Class Diagram B (Library System) . 107
6.11 Respondents Selection of Classes that should not be Included in a Library

System . 108
6.12 Respondents Selection of Classes that should not be Included in a Pac-

man Game (Forward Design) . 108
6.13 Pacman Game Forward Design (Class Diagram C) 110
6.14 Reverse Engineered Pacman Game (Class Diagram D) 111
6.15 Respondents Selection of Classes that should not be Included in a Pac-

man Game (Reverse Engineered Design) 112

7.1 Design Abstraction Process . 124
7.2 Average AUC Score for Every Dataset. 128

LIST OF FIGURES 207

7.3 AUC Score >= 0.60 . 130
7.4 Application of Random Forests Classification Algorithm. 130

8.1 Overall Framework . 139

9.1 Overall Framework : Input, Process and Output 159
9.2 Selection of the Candidate-Important Classes 160
9.3 The SAAbs Tool Displaying Ranking of Classes 163
9.4 Textual Results of Classification . 164
9.5 SAAbs tool Viewing Class+Package Diagram in Different Level of Ab-

straction . 166
9.6 Highlighting of Less Important Classes . 167
9.7 Greyscale Coloring: Less Important Classes with Darker Shades of Gray. 167

10.1 Flow of the Experiment . 177
10.2 Distribution of the Respondents . 177
10.3 Respondents’ Experience with Class Diagram 178
10.4 Skills of Understanding Class Diagram . 178
10.5 The Understandability of Condensed Class Diagram 179
10.6 The Respondents’ Role vs. Understandability Score 180
10.7 The Respondents’ Experience vs. Understandability Score 180
10.8 Choices of Class Diagrams . 181
10.9 The Respondents’ Experience vs. Choice of Class Diagram 182
10.10Level of Abstraction of RE-CD for Software Comprehension 183
10.11The Rating of the Usefulness of SAAbs Tool 183
10.12The Respondent’s Role vs the Tool’s Features 184
10.13The Tool’s Features vs the Respondent’s Experience 185
10.14The Respondent’s Skill vs the Tool’s Features 185
10.15The Limitations of the SAAbs Framework and Tool 186

List of Tables

1.1 Research Methods used in this Research . 6

2.1 Definitions of Program Comprehension . 12
2.2 The nine classification algorithms . 26
2.3 Confusion Matrix or Contingency Table . 27
2.4 Common Performance Measures and Terms 27

3.1 List of Case Studies . 35
3.2 Levels of Detail in UML models . 36
3.3 UML Diagram Usage . 37
3.4 Classes in Design versus Classes in Implementation 40
3.5 LoD and Forward/Reverse Class Diagram 41
3.6 Add, Remove and Modify of UML Diagrams in ArgoUML Project . . . 43
3.7 List of UML Diagrams used in ArgoUML Project 44

4.1 List of Evaluated CASE Tools . 51
4.2 Supported UML Diagrams for Reverse Engineering 55
4.3 Supported Programming Language for Reverse Engineering 57
4.4 Additional Types of Input Format . 59
4.5 Class Relationship Test Result . 60
4.6 Relationship Correctness . 62

5.1 Level of Detail Description . 73
5.2 Information on Set A and Set B . 74
5.3 Detailed Explanation Part C . 75
5.4 Keywords on Types of Information to Understand a System 84

6.1 The Chosen Software Design Metrics [180] 95

210 LIST OF TABLES

6.2 Answers Multiple Choices Questions . 96
6.3 Description of the Class Diagrams Used in the Questions 97
6.4 Choices of Answers for Question 4 . 97
6.5 Choices of Answers for Question 6 . 98
6.6 Total of Reponses . 98
6.7 Score-System Metrics - Question B1-B13 . 101
6.8 The Preferences between Class Diagram A (C1), B (C2) and C (C3) . . . 109
6.9 The Preference between Class Diagram C and D 113
6.10 Overall Score for Software Design Metrics 114

7.1 List of Class Diagram Metrics . 122
7.2 List of Case Study . 123
7.3 Data Preparation Steps . 125
7.4 Predictor Sets . 126
7.5 Univariate Predictor Performance (Information Gain) 128
7.6 Results for Predictor set C. 129

8.1 List of Case Study . 140
8.2 The Top List of Common Words in Class Diagrams 144
8.3 The Top List of UnCommon Words in Class Diagrams 145
8.4 Information Gain Results for Text Predictors 149
8.5 Classification Algorithms Performance on Predictors Sets (AUC Score ≥

0.60) . 149
8.6 Random Forests Result for Predictors Sets 151
8.7 Classification Result from Text Predictor (T) 153

9.1 The List of Prediction Features . 162

10.1 Type of Class Diagram used in this study 175

11.1 Summary of Background Research Findings. 190

A.1 List of Case Study Candidates . 201

Bibliography

[1] IEEE standard for software maintenance. IEEE Std 1219-1998, pages i–, 1998.
(cited on page 15).

[2] BerliOS. http://www.berlios.de/, 2012. (cited on page 33).

[3] Google search engine. http://www.google.com, 2012. (cited on page 33).

[4] GoogleCode. http://code.google.com/, 2012. (cited on page 33).

[5] Limeservice. https://www.limeservice.com/en/, 2012. (cited on pages 95
and 98).

[6] Object-oriented dataset. http://www.liacs.nl/~hosman/DataSets.rar,
2012. (cited on pages 6 and 123).

[7] SourceForge. http://sourceforge.net/, 2012. (cited on page 33).

[8] GitHub. https://github.com/, 2014. (cited on page 33).

[9] MagicDraw. http://www.nomagic.com/, 2014. (cited on pages 34, 121
and 139).

[10] PlantUML. http://plantuml.sourceforge.net/, 2014. (cited on
page 165).

[11] RapidMiner. http://rapidminer.com/, 2014. (cited on pages 140 and 165).

[12] A. Abraham. Rule-based expert systems. Handbook of measuring system design,
2005. (cited on page 22).

[13] D. Akehurst, G. Howells, and K.M. Maier. Implementing associations: UML
2.0 to Java 5. Software and Systems Modeling, 6(1):3–35, March 2007. (cited on
pages 49 and 64).

[14] J. Al Dallal and L.C. Briand. A precise method-method interaction-based co-
hesion metric for object-oriented classes. ACM Trans. Softw. Eng. Methodol.,
21(2):8:1–8:34, March 2012. (cited on page 28).

http://www.berlios.de/
http://www.google.com
http://code.google.com/
https://www.limeservice.com/en/
http://www.liacs.nl/~hosman/DataSets.rar
http://sourceforge.net/
https://github.com/
http://www.nomagic.com/
http://plantuml.sourceforge.net/
http://rapidminer.com/

212 Bibliography

[15] S.A. Alvarez. An exact analytical relation among recall, precision, and classifi-
cation accuracy in information retrieval. Boston College, Boston, Technical Report
BCCS-02-01, pages 1–22, 2002. (cited on page 27).

[16] J.R. Anderson, R.S. Michalski, J.G. Carbonell, and T.M. Mitchell. Machine learning:
An artificial intelligence approach, volume 2. Morgan Kaufmann, 1986. (cited on
page 22).

[17] O. Andriyevska, N. Dragan, B. Simoes, and J.I. Maletic. Evaluating UML class
diagram layout based on architectural importance. In Proceedings of the 3rd
IEEE International Workshop on Visualizing Software for Understanding and Analysis,
VISSOFT ’05, pages 1–6, Washington, DC, USA, 2005. IEEE Computer Society.
(cited on page 43).

[18] R.A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999. (cited on
page 139).

[19] T. Ball. The concept of dynamic analysis. SIGSOFT Softw. Eng. Notes, 24(6):216–
234, October 1999. (cited on pages 17 and 198).

[20] V. R. Basili. Evolving and packaging reading technologies. Journal of Systems and
Software, 38(1):3 – 12, 1997. (cited on page 11).

[21] S. Bassil and R.K. Keller. Software visualization tools: survey and analysis. In
Proceedings of 9th International Workshop on Program Comprehension (IWPC 2001),
pages 7–17, 2001. (cited on page 71).

[22] B. Bellay and H. Gall. A comparison of four reverse engineering tools. In
Proceedings of the Fourth Working Conference on Reverse Engineering, WCRE ’97,
pages 2–, Washington, DC, USA, 1997. IEEE Computer Society. (cited on pages 49,
70 and 118).

[23] K.H. Bennett and V.T. Rajlich. Software maintenance and evolution: A roadmap.
In Proceedings of the Conference on The Future of Software Engineering, ICSE ’00,
pages 73–87, New York, NY, USA, 2000. ACM. (cited on page 11).

[24] J.M. Bieman, A.A. Andrews, and H.J. Yang. Understanding change-proneness in
OO software through visualization. In Proceedings of the 11th IEEE International
Workshop on Program Comprehension, pages 44–53, 2003. (cited on pages 158
and 196).

[25] T.J. Biggerstaff, B.G. Mitbander, and D.E. Webster. Program understanding and
the concept assignment problem. Communication ACM, 37(5):72–82, May 1994.
(cited on page 11).

[26] D. Billsus and M.J. Pazzani. Learning collaborative information filters. In
Proceedings of the Fifteenth International Conference on Machine Learning, pages
46–54. Morgan Kaufmann Publishers Inc., 1998. (cited on page 27).

Bibliography 213

[27] A.B. Binkley and S.R. Schach. Validation of the coupling dependency metric
as a predictor of run-time failures and maintenance measures. In Proceedings
of the 20th international conference on Software engineering, pages 452–455. IEEE
Computer Society, 1998. (cited on page 93).

[28] R.C. Bjork. ATM simulation system. http://www.math-cs.gordon.edu/
courses/cs211/ATMExample/, 2002. (cited on pages 52, 96 and 175).

[29] M.G. Bocco, M. Piattini, and C. Calero. A survey of metrics for UML class
diagrams. Journal of Object Technology, 4(9):59–92, 2005. (cited on pages 121
and 196).

[30] A. Boklund, S. MankeFors-Christiernin, C. Johansson, and H. Lindell. A compara-
tive study of forward and reverse engineering in UML tools. IADIS International
Conference Applied Computing 2007, 2007. (cited on page 49).

[31] G. Booch. Object Solutions: Managing the Object-oriented Project. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA, 1995. (cited on page 18).

[32] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language user guide.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1999.
(cited on page 31).

[33] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. (cited on
page 26).

[34] L. Briand, P. Devanbu, and W. Melo. An investigation into coupling measures
for C++. In Proceedings of the 19th International Conference on Software Engineering,
ICSE ’97, pages 412–421, New York, NY, USA, 1997. ACM. (cited on pages 122
and 162).

[35] L.C. Briand, J. Wüst, J.W. Daly, and D. Victor Porter. Exploring the relationships
between design measures and software quality in object-oriented systems. Journal
of systems and software, 51(3):245–273, 2000. (cited on page 93).

[36] L.C. Briand, J. Wüst, S.V. Ikonomovski, and H. Lounis. Investigating quality
factors in object-oriented designs: An industrial case study. In Proceedings of
the 21st International Conference on Software Engineering, ICSE ’99, pages 345–354,
New York, NY, USA, 1999. ACM. (cited on pages 93, 121 and 196).

[37] R. Brooks. Towards a theory of the comprehension of computer programs.
International journal of man-machine studies, 18(6):543–554, 1983. (cited on page 13).

[38] O. Chapelle, B. Schlkopf, and A. Zien. Semi-Supervised Learning. The MIT Press,
1st edition, 2010. (cited on page 23).

[39] N.V. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer. Smote: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321–
357, 2002. (cited on page 28).

http://www.math-cs.gordon.edu/courses/cs211/ATMExample/
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/

214 Bibliography

[40] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design.
IEEE Trans. Softw. Eng., 20(6):476–493, June 1994. (cited on pages 122 and 162).

[41] E.J. Chikofsky and J.H. Cross II. Reverse engineering and design recovery: A
taxonomy. IEEE Softw., 7(1):13–17, January 1990. (cited on pages 16, 17, 92, 118
and 205).

[42] E. Chung, C. Jensen, K. Yatani, V. Kuechler, and K.N. Truong. Sketching and
drawing in the design of open source software. In Proceedings of the 2010 IEEE
Symposium on Visual Languages and Human-Centric Computing, VLHCC ’10, pages
195–202, Washington, DC, USA, 2010. IEEE Computer Society. (cited on page 33).

[43] C.L. Corritore and S. Wiedenbeck. An exploratory study of program compre-
hension strategies of procedural and object-oriented programmers. International
Journal of Human-Computer Studies, 54(1):1–23, 2001. (cited on pages 12 and 13).

[44] A. Craig, A. Dinardo, and R. Gillespie. Pacman game. http://code.google.
com/p/tb-pacman/, 2009. (cited on pages 72, 97 and 176).

[45] P. Dayan, M. Sahani, and G. Deback. Unsupervised learning. In The MIT
Encyclopedia of the Cognitive Sciences. The MIT Press, 1999. (cited on page 23).

[46] S. Demeyer. Research methods in computer science. In Procedings of the Interna-
tional Conference of Software Maintenance (ICSM 2011), page 600, 2011. (cited on
page 5).

[47] B. Dobing and J. Parsons. Current practices in the use of UML. In ER (Workshops),
volume 3770 of Lecture Notes in Computer Science, pages 2–11. Springer, 2005.
(cited on pages 32 and 33).

[48] B. Dobing and J. Parsons. How UML is used. Commun. ACM, 49(5):109–113, May
2006. (cited on pages 32 and 33).

[49] S. Ducasse and D. Pollet. Software architecture reconstruction: A process-
oriented taxonomy. IEEE Trans. Software Eng., 35(4):573–591, 2009. (cited on
page 13).

[50] B.P. Eddy, J.A Robinson, N.A Kraft, and J.C. Carver. Evaluating source code
summarization techniques: Replication and expansion. In Proceedings of the IEEE
21st International Conference on Program Comprehension (ICPC), pages 13–22, May
2013. (cited on pages 137 and 197).

[51] A. Egyed. Semantic abstraction rules for class diagrams. In Automated Software
Engineering, 2000. Proceedings ASE 2000. The Fifteenth IEEE International Conference
on, pages 301–304. IEEE, 2000. (cited on page 93).

[52] A. Egyed. Automated abstraction of class diagrams. ACM Trans. Softw. Eng.
Methodol., 11(4):449–491, October 2002. (cited on pages 93 and 131).

http://code.google.com/p/tb-pacman/
http://code.google.com/p/tb-pacman/

Bibliography 215

[53] K. El Emam, W. Melo, and J.C. Machado. The prediction of faulty classes using
object-oriented design metrics. Journal of Systems and Software, 56(1):63–75, 2001.
(cited on page 93).

[54] J. Erickson and K. Siau. Theoretical and practical complexity of modeling meth-
ods. Commun. ACM, 50(8):46–51, August 2007. (cited on page 33).

[55] H.-E. Eriksson, M. Penker, and D. Fado. UML 2 Toolkit. John Wiley & Sons, Inc.,
New York, NY, USA, 2003. (cited on pages 73 and 96).

[56] J.-R. Falleri, M. Huchard, and C. Nebut. A generic approach for class model
normalization. In Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering, ASE ’08, pages 431–434, Washington, DC,
USA, 2008. IEEE Computer Society. (cited on page 93).

[57] J.-M. Favre. GSEE: a generic software exploration environment. In Proceedings
of the 9th International Workshop on Program Comprehension (IWPC 2001), pages
233–244, 2001. (cited on page 13).

[58] T. Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–
874, 2006. (cited on pages 25, 27 and 28).

[59] A.M. Fernández-Sáez, M.R.V. Chaudron, M. Genero, and I. Ramos. Are forward
designed or reverse-engineered UML diagrams more helpful for code mainte-
nance?: A controlled experiment. In Proceedings of the 17th International Conference
on Evaluation and Assessment in Software Engineering, EASE ’13, pages 60–71, New
York, NY, USA, 2013. ACM. (cited on pages 4, 92, 118 and 156).

[60] A.M. Fernández-Sáez, M. Genero, and M.R.V. Chaudron. Does the level of detail
of UML models affect the maintainability of source code? In Proceedings of the
2011th International Conference on Models in Software Engineering, MODELS’11,
pages 134–148, Berlin, Heidelberg, 2012. Springer-Verlag. (cited on page 36).

[61] A. Field. Discovering Statistics Using SPSS. SAGE Publications, 2005. (cited on
page 26).

[62] G. Forman and M. Scholz. Apples-to-apples in cross-validation studies: pitfalls
in classifier performance measurement. ACM SIGKDD Explorations Newsletter,
12(1):49–57, 2010. (cited on pages 28 and 126).

[63] M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3 edition,
2003. (cited on pages 37, 38 and 52).

[64] A.K. Gahalut and P. Khandnor. Reverse engineering : An essence for software
re-engineering and program analysis. International Journal of Engineering and
Technology, 2:2296–2303, 2010. (cited on page 49).

216 Bibliography

[65] M. Grechanik, K.S. McKinley, and D.E. Perry. Recovering and using Use-case-
diagram-to-source-code traceability links. In Proceedings of the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering, ESEC-FSE ’07, pages 95–104, New York,
NY, USA, 2007. ACM. (cited on page 37).

[66] T.J. Grose, G.C. Doney, and S.A. Brodsky. Mastering XMI: Java Programming with
XMI, XML and UML. John Wiley & Sons, Inc., New York, NY, USA, 2001. (cited
on page 21).

[67] M. Grossman, J.E. Aronson, and R.V. McCarthy. Does UML make the grade?
Insights from the software development community. Inf. Softw. Technol., 47(6):383–
397, April 2005. (cited on page 33).

[68] Object Management Group. Unified Modeling Language (UML), Superstructure,
Version 2.4.1, August 2011. (cited on pages 18, 39, 52 and 205).

[69] Object Management Group. ISO/IEC 19509:2014 Information technology – Object
management group XML metadata interchange (XMI). http://www.iso.org/
iso/catalogue_detail.htm?csnumber=61845, 2014. (cited on page 21).

[70] Y.-G. Guéhéneuc. A systematic study of UML class diagram constituents for
their abstract and precise recovery. In Proceedings of the 11th Asia-Pacific Software
Engineering Conference, APSEC ’04, pages 265–274, Washington, DC, USA, 2004.
IEEE Computer Society. (cited on page 92).

[71] Y.-G Guéhéneuc. Taupe: towards understanding program comprehension. In
Proceedings of the 2006 conference of the Center for Advanced Studies on Collaborative
research, page 1. IBM Corp., 2006. (cited on page 21).

[72] Y.-G. Guéhéneuc and H. Albin-Amiot. Recovering binary class relationships:
Putting icing on the UML cake. In Proceedings of the 19th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications,
OOPSLA ’04, pages 301–314, New York, NY, USA, 2004. ACM. (cited on pages 48,
54, 57 and 59).

[73] T. Gyímothy, R. Ferenc, and I. Siket. Empirical validation of object-oriented
metrics on open source software for fault prediction. IEEE Transactions on Software
Engineering, 31(10):897–910, 2005. (cited on pages 93, 121 and 196).

[74] S. Haiduc, J. Aponte, and A Marcus. Supporting program comprehension with
source code summarization. In Proceedings of the ACM/IEEE 32nd International
Conference on Software Engineering (ICSE), volume 2, pages 223–226, May 2010.
(cited on pages 136 and 197).

http://www.iso.org/iso/catalogue_detail.htm?csnumber=61845
http://www.iso.org/iso/catalogue_detail.htm?csnumber=61845

Bibliography 217

[75] S. Haiduc, J. Aponte, L. Moreno, and A Marcus. On the use of automated text
summarization techniques for summarizing source code. In Proceedings of the
17th Working Conference on Reverse Engineering (WCRE), pages 35–44, Oct 2010.
(cited on pages 137 and 197).

[76] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The
WEKA data mining software: An update, 2009. (cited on pages 26, 127, 146, 147
and 165).

[77] M. Hammad, M.L. Collard, and J.I. Maletic. Measuring class importance in the
context of design evolution. In Proceedings of the IEEE 18th International Conference
on Program Comprehension (ICPC 2010), pages 148–151, 2010. (cited on pages 120,
133, 157 and 196).

[78] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2011. (cited on
page 154).

[79] J.A. Hanley and B.J. McNeil. The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology, 143(1):29–36, April 1982. (cited
on pages 28 and 147).

[80] T. Hettel, M. Lawley, and K. Raymond. Model synchronisation: Definitions for
round-trip engineering. In Theory and Practice of Model Transformations, pages
31–45. Springer, 2008. (cited on page 48).

[81] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empirical assess-
ment of MDE in industry. In Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 471–480, New York, NY, USA, 2011. ACM.
(cited on page 33).

[82] M. Ichii, T. Myojin, Y. Nakagawa, M. Chikahisa, and H. Ogawa. A Rule-based
automated approach for extracting models from source code. In Proceedings of
the 19th Working Conference on Reverse Engineering, WCRE ’12, pages 308–317,
Washington, DC, USA, 2012. IEEE Computer Society. (cited on page 43).

[83] I. Jacobson. Object Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley Professional, 1 edition, June 1992. (cited on page 18).

[84] G. Jalloul. UML by Example. Cambridge University Press, New York, NY, USA,
2004. (cited on page 19).

[85] S. Jarzabek. Effective software maintenance and evolution: A reuse-based approach.
CRC Press, 2007. (cited on page 17).

[86] R. Kazman and S.J. Carriere. View extraction and view fusion in architectural
understanding. In Proceedings of the Fifth International Conference on Software Reuse,
pages 290–299, Jun 1998. (cited on page 13).

218 Bibliography

[87] S. Kearney and J.F. Power. REM4j - A framework for measuring the reverse
engineering capability of UML CASE tools. In SEKE, pages 209–214. Knowledge
Systems Institute Graduate School, 2007. (cited on page 50).

[88] A. Kent and J.G. Williams. Encyclopedia of Computer Science and Technology: Volume
35 - Supplement 20: Acquiring Task-Based Knowledge and Specifications to Seek Time
Evaluation. Encyclopedia of Computer Science Series. Taylor & Francis, 1996.
(cited on page 12).

[89] A. Kent and J.G. Williams. Encyclopedia of Microcomputers: Volume 25 - Supplement
4. Microcomputers Encyclopedia. Taylor & Francis, 2000. (cited on page 12).

[90] B. Klatt, M. Küster, K. Krogmann, and O. Burkhardt. A change impact analysis
case study: Replacing the input data model of SoMoX. Recall, 71:99–58. (cited on
page 158).

[91] P. Klint, D. Landman, and J. Vinju. Exploring the limits of domain model recovery.
In Proceedings of the 29th IEEE International Conference on Software Maintenance
(ICSM2013), pages 120–129, Sept 2013. (cited on page 197).

[92] A.J. Ko and B.A. Myers. A framework and methodology for studying the causes
of software errors in programming systems. Journal of Visual Languages & Com-
puting, 16(1):41–84, 2005. (cited on page 4).

[93] A.J. Ko, B.A Myers, M.J. Coblenz, and H.H. Aung. An exploratory study of
how developers seek, relate, and collect relevant information during software
maintenance tasks. Software Engineering, IEEE Transactions on, 32(12):971–987,
Dec 2006. (cited on pages 4 and 195).

[94] R. Kollman, P. Selonen, E. Stroulia, T. Systä, and A. Zundorf. A study on the
current state of the art in tool-supported UML-based static reverse engineering.
In Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE’02),
WCRE ’02, pages 22–, Washington, DC, USA, 2002. IEEE Computer Society. (cited
on pages 49 and 64).

[95] R. Koschke. Software visualization in software maintenance, reverse engineering,
and re-engineering: A research survey. Journal of Software Maintenance, 15(2):87–
109, March 2003. (cited on page 71).

[96] R. Koschke. Architecture reconstruction. In Andrea De Lucia and Filomena
Ferrucci, editors, Software Engineering, volume 5413 of Lecture Notes in Computer
Science, pages 140–173. Springer Berlin Heidelberg, 2009. (cited on page 195).

[97] J. Koskinen and T. Lehmonen. Analysis of ten reverse engineering tools. In
K. Elleithy, editor, Advanced Techniques in Computing Sciences and Software Engi-
neering, pages 389–394. Springer Netherlands, 2010. (cited on pages 48 and 49).

Bibliography 219

[98] S.B. Kotsiantis. Supervised machine learning: A review of classification tech-
niques. In Proceedings of the 2007 Conference on Emerging Artificial Intelligence
Applications in Computer Engineering: Real Word AI Systems with Applications in
eHealth, HCI, Information Retrieval and Pervasive Technologies, pages 3–24, Amster-
dam, The Netherlands, The Netherlands, 2007. IOS Press. (cited on pages 23, 24
and 205).

[99] A. Lake and C.R. Cook. Use of factor analysis to develop OOP software complex-
ity metrics. Technical report, Oregon State University, Corvallis, OR, USA, 1994.
(cited on pages 122 and 162).

[100] M. Lanza and S. Ducasse. Polymetric views - A lightweight visual approach
to reverse engineering. IEEE Transactions on Software Engineering, 29(9):782–795,
Sept 2003. (cited on page 13).

[101] J.-F Le Gall. Random trees and applications. Probab. Surv, 2(245-311):15–43, 2005.
(cited on page 26).

[102] F. Leemhuis. Devnology community. http://devnology.nl/, 2012. (cited
on page 74).

[103] T.C. Lethbridge, J. Singer, and A. Forward. How software engineers use docu-
mentation: The state of the practice. IEEE Softw., 20(6):35–39, November 2003.
(cited on pages 3 and 48).

[104] W. Li and S. Henry. Object-oriented metrics that predict maintainability. Journal
of systems and software, 23(2):111–122, 1993. (cited on page 93).

[105] D. Lin and P. Pantel. Induction of semantic classes from natural language text.
In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’01, pages 317–322, New York, NY, USA, 2001.
ACM. (cited on page 138).

[106] J.B. Lovins. Development of a Stemming Algorithm. June 1968. (cited on
page 141).

[107] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke. On the comprehension of pro-
gram comprehension. ACM Transactions on Software Engineering and Methodology
(TOSEM), 23(4):31, 2014. (cited on page 12).

[108] S. Mancoridis, B.S. Mitchell, C. Rorres, Y. Chen, and E.R. Gansner. Using au-
tomatic clustering to produce high-level system organizations of source code.
International Conference on Program Comprehension, 1998. (cited on page 158).

[109] M.T. Maybury. Generating summaries from event data. Inf. Process. Manage.,
31(5):735–751, September 1995. (cited on page 195).

[110] A. McCallum and K. Nigam. A comparison of event models for naive bayes text
classification. In AAAI-98 workshop on learning for text categorization, volume 752,
pages 41–48. Citeseer, 1998. (cited on page 26).

http://devnology.nl/

220 Bibliography

[111] S. Medini, G. Antoniol, Y.-G. Guéhéneuc, M. Di Penta, and P. Tonella. SCAN: An
approach to label and relate execution trace segments. In Proceedings of the 19th
Working Conference on Reverse Engineering (WCRE 2012), pages 135–144, Oct 2012.
(cited on page 137).

[112] G.A. Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. The Psychological Review, (2):81–97, March
1956. (cited on page 4).

[113] T.M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1
edition, 1997. (cited on pages 22 and 23).

[114] L. Moreno, J. Aponte, G. Sridhara, A Marcus, L. Pollock, and K. Vijay-Shanker.
Automatic generation of natural language summaries for java classes. In Pro-
ceedings of the IEEE 21st International Conference on Program Comprehension (ICPC),
pages 23–32, May 2013. (cited on page 137).

[115] NetBeans. Netbeans Integrated Development Environment (IDE). https://
netbeans.org/features/index.html, 2014. (cited on page 165).

[116] D. Ng, D.R. Kaeli, S. Kojarski, and D.H. Lorenz. Program comprehension using
aspects. In ICSE 2004 Workshop WoDiSEE’2004, 2004. (cited on page 12).

[117] A. Nugroho. The effects of UML modeling on the quality of software. PhD thesis,
Leiden University, the Netherlands, 2010. (cited on page 73).

[118] A. Nugroho and M.R.V. Chaudron. A survey of the practice of design – Code
correspondence amongst professional software engineers. In Proceedings of the
First International Symposium on Empirical Software Engineering and Measurement,
ESEM ’07, pages 467–469, Washington, DC, USA, 2007. IEEE Computer Society.
(cited on pages 48, 70 and 118).

[119] Object Management Group (OMG). http://www.omg.org, 2014. (cited on
page 32).

[120] M. Orr. Introduction to radial basis function networks. Technical report, Institute
for Adaptive and Neural Computation, Edinburgh University, 1996. (cited on
page 26).

[121] M.H. Osman. Answered questionnaire. http://www.liacs.nl/~hosman/
ValidationAll.rar, 2014. (cited on pages 177 and 186).

[122] M.H. Osman. An example of the text dictionary. www.liacs.nl/~hosman/
TextDictionary.csv, 2014. (cited on pages 6 and 141).

[123] M.H. Osman. The list of common and uncommon words. http://www.liacs.
nl/~hosman/CommonAndUncommon.xlsx, 2014. (cited on page 142).

[124] M.H. Osman. SAAbs tool demonstration. http://www.youtube.com
/watch?v=dHBB5wA2wDI, 2014. (cited on pages 152 and 165).

https://netbeans.org/features/index.html
https://netbeans.org/features/index.html
http://www.omg.org
http://www.liacs.nl/~hosman/ValidationAll.rar
http://www.liacs.nl/~hosman/ValidationAll.rar
www.liacs.nl/~hosman/TextDictionary.csv
www.liacs.nl/~hosman/TextDictionary.csv
http://www.liacs.nl/~hosman/CommonAndUncommon.xlsx
http://www.liacs.nl/~hosman/CommonAndUncommon.xlsx

Bibliography 221

[125] M.H. Osman and M.R.V. Chaudron. Correctness and completeness of case tools
in reverse engineering source code into uml model. GSTF Journal on Computing,
2(1):193–201, 2012. (cited on pages 36 and 118).

[126] M.H. Osman and M.R.V. Chaudron. An assessment of reverse engineering capa-
bilities of UML CASE tools. In Proceedings of 2nd Annual International Conference
on Software Engineering and Application (SEA 2011), pages 7–12, December 12-13,
2011. (cited on page 92).

[127] M.H. Osman, M.R.V. Chaudron, and P. van der Putten. An analysis of machine
learning algorithms for condensing reverse engineered class diagrams. In Pro-
ceedings of the 29th IEEE International Conference on Software Maintenance (ICSM
2013), pages 140–149, Sept 2013. (cited on pages 157, 163 and 187).

[128] M.H. Osman, M.R.V. Chaudron, and P. van der Putten. Condensing
reverse engineered class diagram using text mining. Technical report,
Leiden University, the Netherlands (http://www.liacs.nl/~hosman/
TechnicalReport-2014-02.pdf), 2014. (cited on pages 162 and 163).

[129] M.H. Osman and A. van Zadelhoff. Original questionnaire. http://www.
liacs.nl/~hosman/Questionnaire.rar, 2012. (cited on page 72).

[130] M.H. Osman and A. van Zadelhoff. Structured questionnaire.
http://www.liacs.nl/~hosman/The_Presence_of_Classes_in_
Class_Diagrams.pdf, 2012. (cited on page 95).

[131] M.H. Osman and A. van Zadelhoff. Survey data. http://www.liacs.nl/
~hosman/SurveyData.rar, 2012. (cited on page 74).

[132] M.H. Osman, A. van Zadelhoff, and M.R.V. Chaudron. UML class diagram
simplification - A survey for improving reverse engineered class diagram com-
prehension. In MODELSWARD, pages 291–296, 2013. (cited on page 160).

[133] M.H. Osman, A. van Zadelhoff, D.R. Stikkolorum, and M.R.V. Chaudron. UML
class diagram simplification: What is in the developer’s mind? In Proceedings of
the Second Edition of the International Workshop on Experiences and Empirical Studies
in Software Modelling, EESSMod ’12, pages 5:1–5:6, New York, NY, USA, 2012.
ACM. (cited on pages 43, 160 and 165).

[134] M.H. Osman and L. Wei. The SAAbs tool. https://github.com/aislimau/SAAbs,
2014. (cited on pages 6 and 165).

[135] N. Pennington. Stimulus structures and mental representations in expert compre-
hension of computer programs. Cognitive psychology, 19(3):295–341, 1987. (cited
on page 12).

[136] F. Perin, L. Renggli, and J. Ressia. Ranking software artifacts. In 4th Workshop on
FAMIX and Moose in Reengineering (FAMOOSr 2010), 2010. (cited on pages 120
and 133).

http://www.liacs.nl/~hosman/TechnicalReport-2014-02.pdf
http://www.liacs.nl/~hosman/TechnicalReport-2014-02.pdf
http://www.liacs.nl/~hosman/Questionnaire.rar
http://www.liacs.nl/~hosman/Questionnaire.rar
http://www.liacs.nl/~hosman/The_Presence_of_Classes_in_Class_Diagrams.pdf
http://www.liacs.nl/~hosman/The_Presence_of_Classes_in_Class_Diagrams.pdf
http://www.liacs.nl/~hosman/SurveyData.rar
http://www.liacs.nl/~hosman/SurveyData.rar

222 Bibliography

[137] S.L. Pfleeger and B.A. Kitchenham. Principles of survey research: Part 1: Turning
lemons into lemonade. SIGSOFT Softw. Eng. Notes, 26(6):16–18, November 2001.
(cited on page 5).

[138] H. Pirzadeh, A. Hamou-Lhadj, and M. Shah. Exploiting text mining techniques
in the analysis of execution traces. In Proceedings of the 27th IEEE International
Conference on Software Maintenance (ICSM 2011), pages 223–232, Sept 2011. (cited
on page 137).

[139] D. Pollet, S. Ducasse, L. Poyet, I Alloui, S. Cimpan, and H. Verjus. Towards a
process-oriented software architecture reconstruction taxonomy. In Proceedings
of the 11th European Conference on Software Maintenance and Reengineering (CSMR
’07), pages 137–148, March 2007. (cited on page 195).

[140] M.F. Porter. Readings in information retrieval. chapter An Algorithm for Suffix
Stripping, pages 313–316. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1997. (cited on page 141).

[141] F.J. Provost, T. Fawcett, and R. Kohavi. The case against accuracy estimation
for comparing induction algorithms. In Proceedings of the Fifteenth International
Conference on Machine Learning, ICML ’98, pages 445–453, San Francisco, CA,
USA, 1998. Morgan Kaufmann Publishers Inc. (cited on page 154).

[142] F.D. Rácz and K. Koskimies. Tool-supported compression of UML class diagrams.
In «UML»’99—The Unified Modeling Language, pages 172–187. Springer, 1999.
(cited on page 4).

[143] A. Rajaraman and J.D. Ullman. Mining of Massive Datasets. Cambridge University
Press, New York, NY, USA, 2011. (cited on page 140).

[144] C. Riva. Reverse architecting: an industrial experience report. In Proceedings of
the 7th Working Conference on Reverse Engineering (WCRE2000), pages 42–50, 2000.
(cited on page 195).

[145] S. Robitaille, R. Schauer, and R.K. Keller. Bridging program comprehension
tools by design navigation. In Proceedings of the IEEE International Conference on
Software Maintenance (ICSM 2000), pages 22–32, 2000. (cited on page 13).

[146] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-oriented
Modeling and Design. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1991.
(cited on page 18).

[147] J. Rumbaugh, I. Jacobson, and G. Booch, editors. The Unified Modeling Language
Reference Manual. Addison-Wesley Longman Ltd., Essex, UK, UK, 1999. (cited
on page 19).

[148] P. Runeson and M. Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Softw. Engg., 14(2):131–164, April
2009. (cited on page 5).

Bibliography 223

[149] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3:211–229, 1959. (cited on page 23).

[150] T. Schäfer, M. Eichberg, M. Haupt, and M. Mezini. The SEXTANT software
exploration tool. IEEE Trans. Softw. Eng., 32(9):753–768, 2006. (cited on page 13).

[151] B. Sharif and J.I. Maletic. The effect of layout on the comprehension of UML
class diagrams: A controlled experiment. In 5th IEEE International Workshop on
Visualizing Software for Understanding and Analysis (VISSOFT 2009), pages 11–18.
IEEE, 2009. (cited on page 21).

[152] B. Shneiderman and R.E. Mayer. Interactions in programmer behavior: A model
and experimental results. International Journal of Parallel Programming, 8(3):219–
238, 1979. (cited on page 12).

[153] SparxSystems. Enterprise Architect. http://www.sparxsystems.com.au/,
2013. (cited on pages 34, 72 and 94).

[154] D. Steidl, B. Hummel, and E. Juergens. Using network analysis for recommenda-
tion of central software classes. In Proceedings of the 19th Working Conference on
Reverse Engineering, WCRE ’12, pages 93–102, Washington, DC, USA, 2012. IEEE
Computer Society. (cited on pages 120, 133, 157 and 196).

[155] P. Stevens. Small-scale XMI programming: A revolution in UML tool use?
Automated Software Eng., 10(1):7–21, January 2003. (cited on pages 22 and 159).

[156] M.-A.D. Storey, F.D. Fracchia, and H.A. Müller. Cognitive design elements to
support the construction of a mental model during software exploration. Journal
of Systems and Software, 44(3):171 – 185, 1999. (cited on pages 15, 156, 195 and 205).

[157] M.-A.D. Storey, F.D. Fracchia, and H.A. Mueller. Cognitive design elements to
support the construction of a mental model during software visualization. In
Proceedings of the 5th International Workshop on Program Comprehension (WPC ’97),
WPC ’97, pages 17–, Washington, DC, USA, 1997. IEEE Computer Society. (cited
on pages 14, 132, 168 and 195).

[158] H. Störrle. On the impact of layout quality to understanding UML diagrams. In
Proceedings of the 2011 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 135–142. IEEE, 2011. (cited on pages 21 and 193).

[159] H. Störrle. On the impact of layout quality to understanding UML diagrams: Size
matters. In Juergen Dingel, Wolfram Schulte, Isidro Ramos, Silvia Abrahão, and
Emilio Insfran, editors, Model-Driven Engineering Languages and Systems, volume
8767 of Lecture Notes in Computer Science, pages 518–534. Springer International
Publishing, 2014. (cited on pages 21 and 193).

[160] D. Sun and K. Wong. On evaluating the layout of UML class diagrams for
program comprehension. In Proceedings of 13th International Workshop on Program
Comprehension (IWPC 2005), pages 317–326. IEEE, 2005. (cited on page 21).

http://www.sparxsystems.com.au/

224 Bibliography

[161] R.S. Sutton. Introduction: The challenge of reinforcement learning. Machine
Learning, 8(3-4):225–227, 1992. (cited on page 24).

[162] T. Systä. Static and Dynamic Reverse Engineering Techniques for Java Software Systems.
PhD thesis, University of Tampere, Finland, 2000. (cited on page 4).

[163] M.-H. Tang, M.-H. Kao, and M.-H. Chen. An empirical study on object-oriented
metrics. In Software Metrics Symposium, 1999. Proceedings. Sixth International,
pages 242–249. IEEE, 1999. (cited on page 93).

[164] F. Thung, D. Lo, M.H. Osman, and M.R.V. Chaudron. Condensing class diagrams
by analyzing design and network metrics using optimistic classification. In
Proceedings of the 22nd International Conference on Program Comprehension, ICPC
2014, pages 110–121, New York, NY, USA, 2014. ACM. (cited on pages 157, 187,
196 and 198).

[165] Tigris.org. ArgoUML. http://argouml.tigris.org/, 2014. (cited on
page 39).

[166] S. Tilley and S. Huang. A qualitative assessment of the efficacy of UML diagrams
as a form of graphical documentation in aiding program understanding. In
Proceedings of the 21st annual international conference on Documentation, pages
184–191. ACM, 2003. (cited on page 21).

[167] S.R. Tilley, P. Santanu, and D.B. Smith. Towards a framework for program
understanding. In Proceedings of 4th Workshop on Program Comprehension (WPC’96),
pages 19–28. IEEE, 1996. (cited on page 168).

[168] K.M. Ting. Matching model versus single model: A study of the requirement to
match class distribution using decision trees. In J.-F. Boulicaut, F. Esposito, F. Gi-
annotti, and D. Pedreschi, editors, Machine Learning: ECML 2004, volume 3201
of Lecture Notes in Computer Science, pages 429–440. Springer Berlin Heidelberg,
2004. (cited on page 28).

[169] F. Tip. A survey of program slicing techniques. Journal of programming languages,
3(3):121–189, 1995. (cited on page 199).

[170] P. Tonella, M. Torchiano, B. Du Bois, and T. Systä. Empirical studies in reverse
engineering: State of the art and future trends. Empirical Softw. Engg., 12(5):551–
571, October 2007. (cited on page 118).

[171] P. van der Putten and M. van Someren. A Bias-variance analysis of a real
world learning problem: The CoIL challenge 2000. Mach. Learn., 57(1-2):177–195,
October 2004. (cited on pages 25 and 26).

[172] A. Van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and C. Riva. Symphony:
View-driven software architecture reconstruction. In Proceedings of the 4th IEEE/I-
FIP Working Conference on Software Architecture (WICSA 2004), pages 122–132.
IEEE, 2004. (cited on pages 3 and 70).

http://argouml.tigris.org/

Bibliography 225

[173] A. von Mayrhauser and A.M. Vans. From code understanding needs to reverse
engineering tool capabilities. In Proceedings of the Sixth International Workshop on
Computer-Aided Software Engineering (CASE ’93), pages 230–239, Jul 1993. (cited
on page 13).

[174] A. Von Mayrhauser and A.M. Vans. Program comprehension during software
maintenance and evolution. Computer, 28(8):44–55, 1995. (cited on pages 13, 14
and 205).

[175] E. Voorhees. Natural language processing and information retrieval. In
M. Pazienza, editor, Information Extraction, volume 1714 of Lecture Notes in Com-
puter Science, pages 32–48. Springer Berlin Heidelberg, 1999. (cited on page 139).

[176] W3C. Extensible markup language (XML). http://www.w3.org/XML/, 2014.
(cited on page 21).

[177] B.E. Wampler. The Essence of Object-Oriented Programming with Java and UML.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001. (cited
on pages 52 and 57).

[178] I.H. Witten, E. Frank, and M.A. Hall. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, Amsterdam, 3 edition, 2011. (cited on
pages 23, 25, 26 and 121).

[179] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan,
A. Ng, B. Liu, P.S. Yu, Z.-H. Zhou, M. Steinbach, D.J. Hand, and D. Steinberg.
Top 10 algorithms in data mining. Knowl. Inf. Syst., 14(1):1–37, December 2007.
(cited on page 26).

[180] J. Wüst. SDMetrics. http://www.sdmetrics.com/, 2013. (cited on pages 35,
50, 94, 95, 121, 159 and 209).

[181] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of program slicing.
SIGSOFT Softw. Eng. Notes, 30(2):1–36, March 2005. (cited on page 199).

[182] K. Yatani, E. Chung, C. Jensen, and K.N. Truong. Understanding how and
why open source contributors use diagrams in the development of Ubuntu. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’09, pages 995–1004, New York, NY, USA, 2009. ACM. (cited on page 33).

[183] S. Yusuf, H. Kagdi, and J.I. Maletic. Assessing the comprehension of UML class
diagrams via eye tracking. In Proceedings of the 15th IEEE International Conference
on Program Comprehension, ICPC ’07, pages 113–122, Washington, DC, USA, 2007.
IEEE Computer Society. (cited on pages 21 and 70).

[184] A. Zaidman and S. Demeyer. Automatic identification of key classes in a soft-
ware system using webmining techniques. J. Softw. Maint. Evol., 20(6):387–417,
November 2008. (cited on pages 119 and 133).

http://www.w3.org/XML/
http://www.sdmetrics.com/

226 Bibliography

[185] M.V. Zelkowitz and D.R. Wallace. Experimental models for validating technology.
Computer, 31(5):23–31, May 1998. (cited on page 6).

[186] W. Zhang, Y. Yang, and Q. Wang. Network analysis of OSS evolution: An
empirical study on ArgoUML project. In Proceedings of the 12th International
Workshop on Principles of Software Evolution and the 7th Annual ERCIM Workshop
on Software Evolution, IWPSE-EVOL ’11, pages 71–80, New York, NY, USA, 2011.
ACM. (cited on page 42).

[187] J. Zhi, V. Garousi-Yusifoğlu, B. Sun, G. Garousi, S. Shahnewaz, and G. Ruhe.
Cost, benefits and quality of software development documentation: A systematic
mapping. Journal of Systems and Software, 99(0):175 – 198, 2015. (cited on page 32).

[188] Y. Zhou and H. Leung. Empirical analysis of object-oriented design metrics for
predicting high and low severity faults. IEEE Transactions on Software Engineering,
32(10):771–789, 2006. (cited on pages 121 and 196).

Samenvatting

Softwareonderhoud is een van de meest kritieke activiteiten in de softwareontwikke-
lingscyclus (SDLC). Het bestaan van onderhoudsactiviteiten in software geeft aan dat
de software nog steeds operationeel en relevant is. Onderhoud is noodzakelijk om te
garanderen dat het systeem aan de veranderende verwachtingen van de gebruikers
blijft voldoen. De primaire taak in softwareonderhoud is het verbeteren van fouten en
het implementeren van veranderingsverzoeken.

Ongestructureerde code, onvoldoende domeinkennis en ontoereikende documen-
tatie zijn veelvoorkomende problemen in softwareonderhoud. Deze problemen hebben
een hoge impact op de prestatie van het onderhoud, omdat ze een significante invloed
hebben op het begrijpen van de software. Softwarebegrip probeert kritieke informatie
zoals de structuur van het systeem, het gedrag, en de interne en externe interacties
van de modules uit te lichten. Onderzoek heeft aangetoond dat het begrijpen van de
software de helft van de onderhoudstaak in beslag neemt. Softwaredocumentatie is
een van de beste hulpmiddelen voor softwarebegrip. Echter, documentatie is vaak
verouderd of in sommige gevallen niet beschikbaar.

Het achterhalen van softwarearchitectuur of softwarestructuur vanaf de imple-
mentatiecode is een gevestigd onderzoeksveld in softwareontwikkeling, genaamd
Reverse Engineering. Tegenwoordig bieden diverse CASE-hulpmiddelen reverse-
engineeringmogelijkheden die beloven de systeemarchitectuur terug te halen uit
de broncode en deze te representeren in UML. Echter, het begrijpen van de resul-
terende UML-modellen is nogal ingewikkeld, omdat de gereverse-engineerde UML-
diagrammen een enorme hoeveelheid informatie bevatten.

Gemotiveerd door het bovenstaande, richt dit onderzoek zich erop om een raam-
werk te construeren dat het begrip van software ondersteunt door static analysis
reverse engineering. Met enquêtes hebben we informatie van professionele software-
ontwikkelaars verzameld over welke aspecten van een ontwerp zij indicatoren vinden
voor het belang van informatie in softwareontwikkeling (wanneer deze gerepresen-
teerd worden met UML-klassendiagrammen).

228 Samenvatting

De vondsten van het onderzoek leidden ons ertoe om objectgeoriënteerde ontwerp-
metrieken en tekstmetrieken voor dit doel te gebruiken. Classificatiealgoritmes uit
Machine Learning worden toegepast om een waarde te geven aan het belang van een
klasse in het softwareontwerp, gebaseerd op bovenstaande metrieken. Deze machine-
learningalgoritmes produceren een rangorde van klassen die de centrale informatie
vormt voor het versimpelen van het gereverse-engineerde klassendiagram.

Uit de literatuur is het bekend dat verschillende belanghebbenden verschillende
voorkeuren hebben voor het bestuderen van een systeem. In het bijzonder willen ze het
systeem kunnen zien op meerdere niveaus van abstractie. Om dit te bewerkstelligen
ondersteunt onze benadering het genereren van meerdere lagen op een schaalbare
manier, dat de gebruiker in staat stelt om klassendiagrammen te bestuderen van hoog
niveau van overzicht (met een klein aantal klassen) tot een gedetailleerder niveau (met
een veel groter aantal klassen). Met het door ons geautomatiseerde raamwerk wordt
het begrip van softwarestructuur van automatisch gereverse-engineerde klassendia-
grammen praktischer. Onze oplossing draagt op deze manier bij aan het verbeteren
van de efficiëntie in softwareonderhoud.

List of Publications

Below is the list of publications, which were (main) authored during this Phd research:

1. Hafeez Osman and Michel R.V. Chaudron (2011) An Assessment of Reverse
Engineering Capabilities of UML Case Tools. In Proceedings of the 2nd Annual
International Conference on Software Engineering and Applications (SEA 2011), pages
7-12, Singapore [Chapter 4]

2. Hafeez Osman and Michel R.V. Chaudron (2012) Correctness and Completeness
of CASE tools in Reverse Engineering Source Code into UML Model. GSTF
Journal on Computing vol.2, num.1, pages 193-201 [Chapter 4]

3. Hafeez Osman, Michel R.V. Chaudron and Peter van der Putten (2012) Classify-
ing Presence of Classes in UML Design using Software Metrics. In Proceedings
of the 21st Belgian-Dutch Conference on Machine Learning (BENELEARN 2012), page
76, Ghent, Belgium

4. Hafeez Osman, Arjan van Zadelhoff, Dave R. Stikkolorum and Michel R.V. Chau-
dron (2012) UML Class Diagram Simplification: What is in the Developer’s
Mind? In Proceedings of the 2nd International Workshop on Experience and Empiri-
cal Studies in Software Modelling (EESSMod 2012), pages 31-36, Innsbruck, Austria
[Chapter 5]

5. Hafeez Osman, Arjan van Zadelhoff and Michel R.V. Chaudron (2012) UML
Class Diagram Simplification - A Survey for Improving Reverse Engineered
Class Diagram Comprehension. In Proceedings of the 1st International Conference
on Model-Driven Engineering and Software Development (MODELSWARD 2013),
pages 291-296, Barcelona, Spain [Chapter 6]

6. Hafeez Osman, Michel R.V. Chaudron and Peter van der Putten (2013) An Anal-
ysis of Machine Learning Algorithms for Condensing Reverse Engineered
Class Diagrams. In Proceedings of the 29th International Conference on Software
Maintenance (ICSM 2013), Eindhoven, the Netherlands [Chapter 7]

230 List of Publications

7. Hafeez Osman and Michel R.V. Chaudron (2013) UML Usage in Open Source
Software Development : A Field Study. In Proceedings of the 3rd International
Workshop on Experience and Empirical Studies in Software Modelling (EESSMod 2013),
pages 23-32, Miami, USA [Chapter 3]

8. Hafeez Osman, Michel R.V. Chaudron and Peter van der Putten (2014) Inter-
active Scalable Abstraction of Reverse Engineered UML Class Diagrams. In
Proceedings of the 21st Asia-Pacific Software Engineering Conference (APSEC 2014),
Jeju, Korea [Chapter 9 and 10]

9. Hafeez Osman, Michel R.V. Chaudron and Peter van der Putten (2014) Condens-
ing Reverse Engineered Class Diagrams through Class Name Based Abstrac-
tion. In Proceedings of the 2014 World Congress on Information and Communication
Technologies (WICT), Malacca, Malaysia [Chapter 8]

The following is the publication which were co-authored and are related to this
thesis. However, these works are not included (in this thesis) due to secondary
contribution.

10. Ferdian Thung, David Lo, Hafeez Osman and Michel R. V. Chaudron (2014)
Condensing Class Diagrams by Analyzing Design and Network Metrics us-
ing Optimistic Classification. In Proceedings of the 22nd International Conference
on Program Comprehension (ICPC 2014), Hyderabad, India

11. Truong Ho Quang, Michel R.V. Chaudron, Ingimar Samúelsson, Jóel Hjaltason,
Bilal Karasneh and Hafeez Osman (2014) Automatic classification of UML Class
diagrams from images. In Proceedings of the 21st Asia-Pacific Software Engineering
Conference (APSEC 2014), Jeju, Korea

Acknowledgments

Over the past four years, many people and organizations have contributed to the com-
pletion of this thesis. First and foremost, I want to thank my sponsor, the government
of Malaysia, for giving me the opportunity to enhance my knowledge and experience
through this Ph.D journey. I wish the knowledge that I have gained through this
journey would benefit our lovely country.

To my colleagues (and ex-colleagues) in Software Engineering Section, LIACS: Ana Fer-
nandez, Ariadi Nugroho, Bilal Karasneh, Dave Stikkolorum, Ramin Etemaadi and
Werner Heijstek. Thank you for your kind advice and non-stop support to this research
(also regarding living in the Netherlands). I feel really fortunate to be part of this group.

My roommates in LIACS: Ali Mirsoleimani and Ben Ruijl. Thanks for the support and
advice. I enjoyed our ‘lunch meetings’ and discussions.

LIACS students: Arjan van Zadelhoff, Wei Liu and Mahya Mirtar. Thank you for helping
me with the research and the tool. Other LIACS (ex-)members: I would like to thank
Mohamed Bamakhrama, Mohamed Tlais, Abdel, ShengFa, Ricardo, Rafael, Alex, Di
Liu, Jelena, Emanuel, Asep Maulana, Frank and Marijn. Also, I would like to thank
other LIACS members that participate in the survey and experiments in this research.
Thank you for your time and efforts.

To my friends in Chalmers: Abdullah, Truong, Antonio, Imed, Håkan and Grisha, thank
you for helping me with the research experiments, research collaborations and your
warm welcome during my visits there.

I also want to take this opportunity to express my gratitude to our collaborator, Dr.
David Lo and Ferdian Thung from Singapore Management University. Thank you for
your ideas on how to improve the method invented in this research.

To (ex-) Malaysian In Leiden: Thank you Zuwairi and Farah, Liew and Wong, Hidayah,
Che Zuhaida, Fadzrul and Zarina, Dennis and Kak Emma, Casper and Kak Jie, Dr.

232 Acknowledgments

Azman and Dr. Nik, Norlela, Naqiuddin, Yuvendran, Shafa’atussara, Syibli and Alia,
Roslina and Zaleha. I am glad to be part of our Malaysia family here.

To my family: My parents, Khelah Mohd Idris, Osman Hassan, and Zaiton Sharif, also
my parents-in-law, Jamaludin Bador and Aznor Yacob, thank you for your prayers,
love and support. I would like to thank my sisters Hafeza and Insyirah, and my brother
Fakhri for their prayers and for taking a good care of our lovely mother while I am not
around.

The biggest thank you is to my lovely wife, Normal Aznita. I really appreciate your
patience, understanding and sacrifice. Thank you for completing my life. Last but not
least, I would like to thank my kids, Ash-Syifa and Firas for always throw me their
lovely smile that always makes me happy.

Mohd Hafeez Osman
Leiden, March 2015

About the Author

Mohd Hafeez Osman was born on April 20, 1979 in Ipoh, Malaysia. He graduated
his B.Sc. (hons) in Computer Science (major: computer system) from the University
Teknologi Malaysia (UTM) in 2001. Then, he immediately continues his study and
graduated his M.Sc. in Computer Science – Real Time Software Engineering in 2003
from the same university.

His first employment was in August 2002 as a software engineer for a software
company. After working for several companies, in 2004, he started working as the
Information Technology (I.T.) Officer for the government of Malaysia. After being
working for eight years in the I.T. industry, he received a Malaysian Government
Federal Training Award (HLP). This award allows him to take a four years study leave
with a full Ph.D scholarship. On September 2010, he started his Ph.D journey at Leiden
Institute of Advanced Computer Science (LIACS), under the supervision of Prof. Dr.
Michel R.V. Chaudron and Dr. Peter van der Putten.

After finishing his Ph.D study, Hafeez will resume his job as the I.T. officer for
the Malaysia government and continue his interest in Software Engineering, Artificial
Intelligence and Computer Networks.

	I Introduction and Background
	Introduction
	Research Context
	Problem Statement
	Research Objective
	Research Methods
	Roadmap

	Definitions
	Software Comprehension
	Program Comprehension Model
	Cognitive Design Elements for Software Exploration

	Forward and Reverse Engineering
	Forward Engineering
	Reverse Engineering
	Static and Dynamic Analysis

	The Unified Modeling Language
	UML Class Diagram
	UML Class Diagram for Software Comprehension
	XML Metadata Interchange

	Machine Learning
	Definition of Machine Learning
	Types of Machine Learning
	Machine Learning Classification Algorithms
	Performance Measure For Classification Algorithms

	Summary

	UML Usage in Open Source Software Development
	Introduction
	Related Work
	Case Study
	Approach
	Results and Findings
	Usage of UML Diagrams
	Ratio between Design and Implementation
	Level of Detail (LoD)
	Frequency of Updating UML Models
	Key Classes
	Threats to Validity

	Conclusion and Future Work

	Assessing the Correctness and Completeness of UML CASE tools in Reverse Engineering
	Introduction
	Related Work
	Examined Tools and Properties
	Examined Tools
	Examined Properties

	Sample Cases
	Movie Catalog System (MovieCat)
	Automatic Teller Machine (ATM) Simulation System

	Approach
	Round-trip Capability
	Reconstruction of UML Diagram Types (package/class/sequence)

	Result and Findings
	Reverse Engineering Capability
	Class Diagram Properties

	Discussion
	Conclusion and Future Work

	II UML Class Diagram Simplification
	Eliciting Developer's Views on Simplifying Class Diagrams
	Introduction
	Related Work
	Eye Tracking
	Software Visualization

	Survey Methodology
	Questionnaire Design
	Experiment Description

	Results and Findings
	Part A: Personal Background
	Part B: Selected Cases
	Part C: Class Diagram Indicators for Class Inclusion/Exclusion

	Discussion
	Class Properties
	Class Role and Responsibility (RnR)
	Class Diagram Simplification Tool Features
	Threats to Validity

	Conclusion
	Future Work

	Exploring the Suitability of Object-Oriented Design Metrics as Features for Class Diagram Simplification
	Introduction
	Related Work
	Usage of design metrics
	Automated Abstraction of Class Models

	Examined Properties and Tools
	Examined Properties
	Tools

	Survey Methodology
	Questionnaire Design
	Experiment Description

	Results and Findings
	Background of the Respondents (Part A)
	Indicator for Class Inclusion
	Practical Simplification Problems (Part C)

	Discussion
	Respondents' Background
	Software Design Metrics
	Class Names and Coupling
	Class Diagram Preferences
	Threats to Validity

	Conclusion
	Future Work

	Condensing Reverse Engineered Class Diagram using Object-Oriented Design Metrics
	Introduction
	Related Work
	Research Questions
	Approach
	Examined Predictors and Tools
	Case Studies
	Process

	Evaluation of Results
	Predictor Evaluation
	Benchmark Scoring Results

	Discussion
	Threats to Validity

	Conclusion and Future Work
	Future Work

	Condensing Reverse Engineered Class Diagrams through Class Name Based Abstraction
	Introduction
	Related Work
	Code Summarization
	Analysis of Execution Trace

	Research Questions
	Approach
	System Document
	Document Preprocessing
	Text Processing
	Text Classification
	Analyze Result

	Experiment Description
	Dataset
	Evaluation Measures
	Experiment

	Analysis of Results
	RQ1 : Influence of Predictors
	RQ2 : Most Influential Predictors
	RQ3 : Classification Algorithms Performance
	RQ4 : Set of Predictors Performance

	Discussion
	Text Metrics Predictors Performance
	Classification Algorithms
	Application of Classification Method
	Threats to Validity

	Conclusion and Future Work

	Interactive Scalable Abstraction of Reverse Engineered UML Class Diagrams
	Introduction
	Related Work
	The Usage of Network Metrics
	The Usage of Software Version History
	Other Related Work

	SAAbs Overview
	Input: XMI
	Process: XMI Parser
	Process: Feature Extraction
	Process: Classification
	Output: Class Ranking
	Output: Visualization
	Implementation

	Discussion
	E3: Provide abstraction mechanism
	E4: Support goal-directed, hypothesis-driven comprehension
	E5: Provide overviews of the system architecture at various levels of abstraction
	E6: Support the construction of multiple mental models & E11: Show the path that led to the current focus
	E15: Provide effective presentation style

	Conclusion and Future Work

	III Validation and Conclusion
	Validation
	Introduction
	Research Question
	Experiment Design
	Questionnaire Design
	Experiment Description

	Results
	RQ1: The Understandability of Condensed Class Diagrams
	RQ2: Choices of Class Diagram
	RQ3: Software Architecture Abstractor Framework
	RQ4: Usefulness of the SAAbs Tool

	Discussion
	Choosing a Class Diagram
	Limitation of SAAbs
	Threats to Validity

	Conclusion and Future Work

	Conclusions
	Summary of Findings
	RQ1: Which information in class diagrams do developers find important for understanding software designs?
	RQ2: Which object-oriented design metrics do developers find most indicative for class importance?
	RQ3: How to automatically condense class diagrams using object-oriented design metrics?
	RQ4: Can the automatic condensation of class diagrams be enhanced by using class names?
	RQ5: Does our automated framework for condensing of class diagrams help developers to understand the design of software systems?

	Contributions
	Discussion
	Software Comprehension
	Condensation of Class Diagrams

	Future Work
	Enriching the Ground Truth
	Exploring Features
	Task-oriented Validation
	Class Segmentation
	Visualization of Result

	Case Study Candidates
	List of Figures
	List of Tables
	Bibliography
	Samenvatting
	List of Publications
	Acknowledgments
	About the Author

