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Chapter 7

Hard Real-time Scheduling of Adaptive
Streaming Applications

THE initial scheduling framework in the DaedalusRT design flow considers the
CSDF MoC as the analysis model and the PPN MoC as the implementation

model. For adaptive streaming applications, we have proposed P3N as the imple-
mentation model in Chapter 6. However, an analysis MoC for adaptive streaming
applications is still missing in DaedalusRT. More importantly, we need proper opera-
tional semantics for such a MoC that potentially allows adaptive execution of the
MoC and easy HRT analysis. In this chapter, we propose a new analysis MoC in the
DaedalusRT design flow that models adaptive streaming applications.

There already exist some adaptive MoCs in literature [89, 114, 129]. Unfor-
tunately, each of them has certain drawback that does not fulfill our needs. For
instance, we would like to explicitly have the notion of mode in an adaptive MoC. A
mode of an adaptive MoC is essentially a static MoC, e.g., the CSDF MoC, when
the values of all dynamic parameters are fixed. As a result, the existing HRT analysis
developed in DaedalusRT for the CSDF MoC can be reused. For the adaptive MoCs
shown in Figure 1.6 on page 10, parameterized CSDF and VPDF MoCs are thus
excluded from our consideration because they do not have the notion of mode. At
the same time, the expressiveness of MCDF is too restricted.

Furthermore, support for the HRT scheduling and the associated analysis is
limited in the existing MoCs, especially during mode transitions. In particular, we
wish to have a composable analysis for mode transitions. That is, the analysis of any
mode transition is independent from the mode transitions occurred in past. This
composable analysis will significantly reduce the complexity of the analysis, as the
complexity merely depends on the number of allowed transitions. This is crucial for
applications with a large number of modes and possible transitions. As a by-product
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116 Chapter 7. Hard Real-time Scheduling of Adaptive Streaming Applications

Notation Meaning
c a computation
∆ transition delay
L iteration latency
p a dynamic parameter
Π a set of parameter vectors defined in Definition 7.2.1
ψ parameters used for actors defined in Definitions 7.2.4 and 7.2.5
x Maximum-Overlap Offset (MOO)

Table 7.1: Additional notations used in Chapter 7 besides the ones introduced in
Chapter 2.

of this composable analysis, the implementation efficiency of such a HRT system to
support adaptive behavior will be much higher. No complex calculation is needed at
run-time, as most of parameters (see Section 7.3) can be computed at compile-time.

Based on the discussion above, we develop a new MoC, Mode-Aware Data
Flow (MADF), in this chapter that has the advantages of SADF and VPDF. In-
spired by SADF, we characterize the adaptive application behavior with individual
modes1 (see Definition 7.2.7) and transitions (see Definition 7.2.11) between them.
Similar to VPDF, the length of production/consumption sequences for an actor
varies from one mode to another. The length is only fixed when the mode is known.
Based on the clear distinction between modes and transitions, we define operational
semantics, in particular a novel transition protocol, to avoid timing interference
between modes and transitions. As a result, our HRT analysis is simpler than the
state-of-the-art timing analysis [47]. To ease discussion, we use additional notations
listed in Table 7.1 besides the ones introduced in Chapter 2.

Scope of Work

We assume that an adaptive streaming application does not have cyclic data depen-
dences. The considered MPSoC platforms in this chapter are homogeneous, i.e.,
they may contain multiple, but the same type of programmable PEs with distributed
memories. Moreover, the platform must be predictable, which means timing guaran-
tees are provided on the response time of hardware components and OS schedulers.
The precision-timed (PRET) [79] platform is such an example. On the software side,
we assume partitioned scheduling algorithms, i.e, no migration of actors between
PEs is allowed. The considered scheduling algorithms on each PE include Fixed-
Priority Pre-emptive Scheduling (FPPS) algorithms, such as RM [80], or dynamic

1“Scenario” for SADF is equivalent to “mode” in our case.
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scheduling algorithms, such as EDF [80].

7.1 Related Work

For FSM-SADF [47], the authors proposed an approach to compute worst-case per-
formance among all mode transitions, assuming the self-timed transition protocol
(explained later in Section 7.2.3). Although it is an exact analysis, the approach has
inherently exponential time-complexity. Moreover, the approach leads to timing
interference between modes upon mode transitions, which makes this approach not
applicable for our problem. In contrast, our approach does not introduce interfer-
ence between modes due to the novel transition protocol proposed in Section 7.2.3.
The timing behavior of individual modes and during mode transitions can be ana-
lyzed independently. In addition, our approach considers allocation of actors on
PEs, which by itself is a harder problem than the one in [47]. In [48], the authors
proposed to model scenario transitions in a single FSM. Delays due to scenario
reconfiguration are given and explicitly modeled in the FSM. The problem addressed
in this chapter is different as we aim at deriving such a delay.

In [45], the author proposes to use a linear model to capture worst-case transition
delay and period during scenario transitions of FSM-SADF. Our Maximum-Overlap
Offset (MOO, see Section 7.2.3) transition protocol is conceptually very similar to
the linear model. However, we obtain the linear model in a different way, specifically
simplified for the adopted hard real-time scheduling framework. For instance, finding
a reference schedule is not necessary in our case, but being crucial in the tightness
of the analysis proposed in [45]. Moreover, our approach solves the problem of
changing graph structure during mode transitions, which was not studied in [45].

For VPDF [129], the analysis has been limited to computing buffer sizes under
throughput constraints so far. The execution of a VPDF graph on MPSoC platforms
under HRT constraints has not been studied. In particular, the allocation of actors
and how to switch from one mode to another one are not discussed. Moreover,
delay due to mode transitions has not been investigated. Our approach, on the other
hand, takes these important factors into account. Therefore, our analysis results are
directly reflected in a real implementation.

Mode-controlled data flow (MCDF) [89] is another adaptive MoC whose proper-
ties can be partly analyzed at compile-time. The MCDF MoC primarily focuses on
SDR applications, where different sub-graphs need to be active in different modes.
This is achieved by using switch and select actors. The author implicitly assumes
self-timed scheduling during mode transitions. Based on this assumption, a worst-
case timing analysis is developed. Similar to the case of SADF, use of the self-timed
scheduling introduces timing interference between modes. As a consequence, the
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analysis must take into account the sequence of mode transitions of interest. Al-
though the author provides an upper bound of timing behavior for a parameterized
sequence of mode transitions, the accuracy is still unknown. In contrast, our ap-
proach results in a timing analysis of mode transitions that is independent from
already occurred transitions. Moreover, the analysis results are directly reflected in
the final implementation. In this sense, our analysis is exact in the timing behavior
of mode transitions.

In [93], an analysis is proposed to reason about worst-case response time of
a task graph in case of mode change. However, the task graph has very limited
expressiveness and is not able to model adaptive application behavior. In this chapter,
we define a more expressive MoC that is amenable to adaptive application behavior.

In [104, 108], the authors focus on timing analysis for mode changes of real-time
tasks. The starting times of new mode tasks need to be delayed to avoid overloading
PEs. The algorithms to compute the starting times were provided. Both works are
related to ours because actors allocated on the same PE may also overload the PE
after mode transitions. In this case, the starting times of actors in the new mode
need to be delayed. In [104, 108], it was assumed that tasks are independent. The
proposed algorithms are thus not applicable to the adaptive MoCs, since the starting
times of actors in the adaptive MoCs depend on each other due to data dependencies.
Moreover, the algorithms in [104, 108] involve high computational complexity
because fixed-point equations must be solved at every step in the algorithms.

7.2 Model Definition

7.2.1 Mode-Aware Data Flow (MADF)

Definition 7.2.1 (Mode-Aware Data Flow (MADF)). A Mode-Aware Data Flow (MADF)
is a multi-graph defined by a tuple (A,Ac ,E ,Π), where

• A= {A1, . . . ,A|A|} is a set of dataflow actors;

• Ac is the control actor to determine modes and their transitions;

• E is the set of edges for data/parameter transfer;

• Π= {~p1, . . . ,~p|A|} is the set of parameter vectors, where each ~pi ∈Π is associ-
ated with a dataflow actor Ai .

Throughout this section, we use graph G1 shown in Figure 7.1 as the running
example to illustrate the definition of MADF and the hard real-time scheduling
analysis related to MADF. For G1, A = {A1,A2,A3,A4,A5} is the set of dataflow
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A1 A2 A3 A5
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OP1:

[p2[1]]
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Figure 7.1: An example of MADF graph (G1).

actors. Ac is the control actor. E = {E1, E2, E3, E4, E5, E6, E11, E22, E44, E55} is the set
of edges. For actor A5, ~p5 = [p5, p6] is the parameter vector. The input port IP1
of actor A5 has a consumption sequence [1[p5], 1[0]], which can be interpreted as
[p5, 0].

Definition 7.2.2 (Dataflow Actor). A dataflow actor Ai is described by a tuple
(Ii , ICi, Oi ,Ci , Mi ), where

• Ii = {IP1, . . . , IP|Ii |} is the set of data input ports of actor Ai ;

• ICi is the control input port that reads parameter vector ~pi for actor Ai ;

• Oi = {OP1, . . . ,OP|Oi |} is the set of data output ports of actor Ai ;

• Ci = {c1, . . . , c|C|} is the set of computations. When actor Ai fires, it performs
a computation ck ∈ Ci ;

• Mi : ~pi → {φ, C̄i} is a mapping relation, where ~pi ∈ Π, φ ∈ N+, and
C̄i ⊆ Ci is a sequence of computations [C̄i (1), . . . , C̄i (k), . . . , C̄i (φ)] with
C̄i (k) ∈ Ci , 1≤ k ≤φ.

Actor A2 in Figure 7.1 has a set of one input port I2 = {IP1}, a set of one output
port O2 = {OP1} as well as a control input port IC2. A set of computations C2 =
{c1, c2, c3} is associated with A2. The mapping relation M2 is given in Table 7.2. It
can be interpreted as follows: If p2 = 2, actor A2 repetitively performs computations
according to sequence C̄2 = [c1, c2] every time when firing A2. When p2 = 1, firing
A2 performs computation c3.
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Table 7.2: Mapping relation M2 for actor A2 in Figure 7.1.
~p2 = [p2] φ C̄2

2 2 [c1, c2]
1 1 [c3]

Table 7.3: Function MC5 defined for actor A5 in Figure 7.1.
S N2

SI1 [2,0]
SI2 [1,1]

Definition 7.2.3 (Control Actor). The control actor Ac is described by a tuple
(IC,Oc ,S,Mc ), where

• S = {SI1, . . . ,SI|S|} is a set of mode identifiers, each of which specifies a unique
mode;

• IC is the control input port which is connected to the external environment.
Mode identifiers are read through the control input port from the environ-
ment;

• Oc = {OC1, . . . ,OC|A|} is a set of control output ports. Parameter vector ~pi
is sent through OCi ∈Oc to actor Ai ;

• Mc = {MC1, . . . ,MC|A|} is a set of functions defined for each actor Ai ∈A. For

each MCi ∈Mc , MCi : S → N|~pi | is a function that takes a mode identifier
and outputs a vector of non-negative integer values.

For G1 in Figure 7.1, we have two mode identifiers S = {SI1,SI2}. At run-time,
control actor Ac reads these mode identifiers through control port IC (black dot in
Figure 7.1). For actor A5, MC5 ∈Mc is given in Table 7.3. As explained previously,
the parameter vector for actor A5 is ~p5 = [p5, p6]. Therefore, MC5 takes a mode
identifier and outputs a 2-dimensional vector as shown in the second column in
Table 7.3. For instance, mode SI1 results in a non-negative integer vector [2,0].

To further define production/consumption sequences with variable length, we
use the notation n[m] for a sequence of n elements with integer value m, i.e.,

n[m] = [
n times
︷ ︸︸ ︷

m, . . . , m]
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Definition 7.2.4 (Input Port). An input port IP of an actor is described by a tuple
(CNS, MIP), where

• CNS= [φ1[cns1], . . . ,φK[cnsK]] is the consumption sequence with φ phases,
where φ =

∑K
i=1φi is determined by the mapping relation M in Defini-

tion 7.2.2, and cns1, . . . , cnsK ∈N;

• MIP : ~pi →ψIP is a mapping relation, where ~pi ∈Π and

ψIP = {φ1, . . . ,φK , cns1, . . . , cnsK}. (7.1)

Definition 7.2.5 (Output Port). An output port OP of an actor is described by a
tuple (PRD, MOP), where

• PRD= [φ1[prd1], . . . ,φK[prdK]] is the production sequence with φ phases,
where φ =

∑K
i=1φi is determined by the mapping relation M in Defini-

tion 7.2.2, and prd1, . . . ,prdK ∈N.

• MOP : ~pi →ψOP is mapping relation, where ~pi ∈Π and

ψOP = {φ1, . . . ,φK ,prd1, . . . ,prdK}. (7.2)

The consumption/production sequence defined here is a generalization of that
for the CSDF MoC (see Section 2.2.2 on page 32). We can see that a CSDF actor has
a constant φ phases in its consumption/production sequences, whereas the length
of the phase of an MADF actor is parameterized by φ=

∑K
i=1φi . In addition, the

mapping relation MIP/MOP must be provided by the application designer. Consider
the two input ports IP1 and IP2 of actor A5 in Figure 7.1. The mapping relations
MIP1

and MIP2
are represented as follows:

MIP1
: ~p5 = [p5, p6]→ψIP1

= {φ1,φ2, cns1, cns2}= {1,1, p5, 0}, (7.3)

MIP2
: ~p5 = [p5, p6]→ψIP2

= {φ1,φ2, cns1, cns2}= {1,1,0, p6}. (7.4)

It can be seen that parameter p5 is mapped to cns1 of IP1, parameter p6 is mapped to
cns2 of IP2, and φ1 and φ2 both are constant equal to 1. Therefore, the consumption
sequence of IP1 is CNS = [1[p5], 1[0]] and the consumption sequence of IP2 is
CNS= [1[0], 1[p6]]. Similarly considering output port OP1 of actor A4, its mapping
relation MOP1

is given as:

MOP1
: ~p4 = [p4]→ψOP1

= {φ1,prd1}= {1, p4}. (7.5)

In this case, parameter p4 is mapped to prd1 and φ1 = 1. Therefore, production
sequence PRD= [1[p4]] is obtained for OP1 of A4.



122 Chapter 7. Hard Real-time Scheduling of Adaptive Streaming Applications

Definition 7.2.6 (Edge). An edge E ∈ E is defined by a tuple
�

(Ai ,OP), (Aj , IP)
�

,

where

• actor Ai produces a parameterized number of tokens to edge E through output
port OP;

• actor Aj consumes a parameterized number of tokens from E through input
port IP.

Considering edge E5 in Figure 7.1, it connects output port OP1 of actor A4 to
input port IP2 of actor A5.

Definition 7.2.7 (Mode of MADF). A mode SIi of MADF is a live CSDF [30]
graph, denoted as G i , obtained by setting values of Π in Definition 7.2.1 as follows:

∀k ∈Π : ~pk =MCk (SIi ), (7.6)

where function MCk is given in Definition 7.2.3.

Definition 7.2.8 (Mode of MADF Actor). An actor Ak in mode SIi , denoted by
Ai

k
, is a CSDF [30] actor obtained from Ak as follows:

~pk =MCk (SIi ). (7.7)

Figure 7.2(a) shows the CSDF graph in mode SI1 and Figure 7.2(b) shows the
CSDF graph in mode SI2. Consider function MC5 for actor A5 in Table 7.3 with
parameter vector ~p5 = [p5, p6]. For instance, mode SI1 results in ~p5 = [p5, p6] =
[2,0], where parameter values p5 = 2 and p6 = 0. Consequently, according to
mapping relations MIP1

and MIP2
given in Equations 7.3 and 7.4, cns1 = p5 = 2 can

be obtained for input port IP1 and cns2 = p6 = 0 for IP2. This determines actor A1
5

shown in Figure 7.2(a) for mode SI1.

Definition 7.2.9 (Inactive Actor). An MADF actor Ak
i is inactive in mode SIk if the

following conditions hold:

1. ∀IP ∈ Ii : CNS= [0, . . . , 0];

2. ∀OP ∈Oi : PRD= [0, . . . , 0].

Otherwise, Ak
i is called active in mode SIk .

For actor A1
4 shown in Figure 7.2(a), it has consumption and production sequence

[0]. Therefore, actor A4 is said to be inactive in mode SI1.
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A1
1 A2

1 A3
1 A5

1
[1, 0] [1, 1] [2, 0]
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(a) CSDF graph G1
1 of mode SI1.

A1
2 A2

2 A3
2 A5

2
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[0, 1]

Ac

[0, 1]

[1, 0]

[1] [1]

[1] [1][1] [1]

(b) CSDF graph G2
1 of mode SI2.

Figure 7.2: Two modes of the MADF graph in Figure 7.1.

7.2.2 Operational Semantics

During execution of a MADF graph, it can be either in a steady-state or mode
transition.

Definition 7.2.10 (Steady-state). A MADF graph is in a steady-state of a mode SIi ,
if it satisfies Equation (7.6) with the same SIi for all its actors.

Definition 7.2.11 (Mode Transition). A MADF graph is in a mode transition from
mode SIo to SIl , where o 6= l , if some actors have SIo for Equation (7.7) and the
remaining active actors have SIl for Equation (7.7).

In the steady-state of a MADF graph, all active actors execute in the same
mode. As defined previously in Definition 7.2.7 and shown in Figure 7.2(a) and
Figure 7.2(b), the steady-state of the MADF graph has the same operational semantics
as a CSDF [30] graph. We use 〈Ak

i , x〉 to denote the xth firing of actor Ai in mode
SIk . At 〈Ak

i , x〉, it executes computation

C̄i
�

(x − 1) mod φ+ 1
�

,
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where C̄i is given in Definition 7.2.2. The number of tokens consumed and produced
are specified according to Definitions 7.2.4 and 7.2.5, respectively. For instance, the
xth firing of Ak

i produces the following number of tokens through an output port
OP:

PRD
�

(x − 1) mod φ+ 1
�

.

In each mode SIk , the MADF graph is a live CSDF graph and thus has the notion
of graph iterations with a non-trivial repetition vector ~qk ∈ N|A| resulting from
Equation (2.14) on page 32. Next, we further define mode iterations.

Definition 7.2.12 (Mode Iteration). One iteration Itk of a MADF graph in mode
SIk consists of one firing of control actor Ac and qk

i ∈ ~q
k firings of each MADF

actor Ak
i .

Consider the two modes shown in Figure 7.2(a) and Figure 7.2(b). Repetition
vectors ~q1 and ~q2 are:

~q1 = [4,2,2,0,2],

~q2 = [2,1,1,1,2]. (7.8)

For any mode of a MADF graph, i.e., a live CSDF graph, under any valid
schedule, it has (eventually) periodic execution in time. This holds for CSDF graphs
under self-timed schedule [110], K-periodic schedule [31], and SPS [22]. The length
of the periodic execution, called iteration period, determines the minimum time
interval to complete one graph iteration (cf. Definition 7.2.12). The iteration period,
denoted by H k , is equal for any actor in the same mode SIk . During a periodic
execution, the starting time of each actor Ak

i , denoted by Sk
i , indicates the time

distance between the start of source actor Ak
src and the start of actor Ak

i in the same
iteration period. Based on the notion of starting times, we define iteration latency
Lk of a MADF graph in mode SIk as follows:

Lk = Sk
snk− Sk

src, (7.9)

where Sk
snk

and Sk
src are the earliest starting times of the sink and source actors,

respectively. Figure 7.3 illustrates the execution of both modes SI1 and SI2 given
in Figure 7.2 under the self-timed schedule. A rectangle denotes WCET of an
actor firing. The WCETs of all actors in both modes are given in the third row
of Table 7.4 on page 132. Now, it can be seen in Figure 7.3 that iteration period
H 1 =H 2 = 8. Based on the starting time of each actor, we obtain iteration latencies
L1 = S1

5 − S1
1 = 10− 0= 10 and L2 = S2

5 − S2
1 = 10− 0= 10 as shown in Figure 7.3.
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(a) Mode SI1 in Figure 7.2(a).
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(b) Mode SI2 in Figure 7.2(b).

Figure 7.3: Execution of two iterations of both modes SI1 and SI2 under self-timed
scheduling.

7.2.3 Mode Transition

While the operational semantics of a MADF graph in steady-state are the same
as that of a CSDF [30] graph, the transition of MADF graph from one mode to
another is the crucial part that makes it fundamentally different from CSDF. The
protocol for mode transitions has strong impact on the compile-time analyzability
and implementation efficiency. In this section, we propose a novel and efficient
protocol of mode transitions for MADF graphs.

During execution of a MADF graph, mode transitions may be triggered at run-
time by receiving a Mode Change Request (MCR) from the external environment.
We first assume that a MCR can be only accepted in the steady-state of a MADF
graph, not in an ongoing mode transition. This means that any MCR occurred
during an ongoing mode transition will be ignored. Consider a mode transition from
SIo to SIl . The transition is accomplished by the control actor reading mode identifier
SIl from its control input port (see the black dot in Figure 7.1) and writing parameter
values of ~pi to the control output port connected to each dataflow actor Al

i according
to function MCi given in Definition 7.2.3. Then, Al

i reads new parameter values
~pi from its control input port and sets the sequence of computations according
to mapping relation Mi in Definition 7.2.2. The production and consumption
sequences are obtained in accordance with MIP and MOP in Definition 7.2.4 and
Definition 7.2.5, respectively. Similar to the P3N MoC, we further define that mode
transitions are only allowed at quiescent points [94].

Definition 7.2.13 (Quiescent Point of MADF). For a transition from mode SIo to
SIl , a quiescent point of a MADF actor Ai is a firing 〈Al

i , x〉 in a mode iteration Itl
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that satisfies
¬∃〈Al

i , y〉 ∈ Itl : y < x. (7.10)

Figure 7.4 shows an execution of G1 in Figure 7.1 with two mode transitions.
For instance, the MCR at time tMCR1 = 1 denotes a transition request from mode
SI2 to SI1. The mode transition of actor A1 is only allowed at the quiescent point
(time 2 in Figure 7.4) right before the first firing in mode iteration It1 of mode SI1.

Definition 7.2.13 defines mode transitions of MADF graphs as a partially ordered
actor firings. However, it does not specify at which time instance a mode transition
actually starts. Therefore, below, we focus on the transition protocol that defines
the points in time for occurrences of mode transitions. To quantify the transition
protocol, we introduce a metric, called transition delay, to measure the responsiveness
of a protocol to a MCR.

Definition 7.2.14 (Transition Delay). For a MCR at time tMCR calling for a mode
transition from mode SIo to SIl , the transition delay ∆o→l of a MADF graph is
defined as

∆o→l = σ o→l
snk − tMCR, (7.11)

where σ o→l
snk

is the earliest starting time of the sink actor in the new mode SIl .

In Figure 7.4, we can compute the transition delay for MCR1 occurred at time
tMCR1 = 1 as∆2→1 = 18− 1= 17.

Self-timed (ST) Transition Protocol

In the existing adaptive MoCs like FSM-SADF [47], a protocol, referred here as
Self-Timed (ST) transition protocol, is adopted. The ST protocol specifies that actors
are scheduled in the self-timed manner not only in the steady-state, but also during a
mode transition. For FSM-SADF upon a MCR, a firing of a FSM-SADF actor in
the new mode can start immediately after the firing of the actor completes the old
mode iteration. The only possible delay is introduced due to availability of input
data. One reason behind the ST protocol is that the ST schedule for a (C)SDF graph
(steady-state of FSM-SADF2) leads to its highest achievable throughput. However,
the ST protocol generally introduces interference of one mode execution with
another one. The time needed to complete mode transitions also fluctuate as the
transition delay of an ongoing transition depends on the transitions occurred in the
past. We consider this as an undesired effect because mode transitions using the ST
protocol become potentially slow and unpredictable. Another consequence of the

2The steady-state of SADF is defined similarly to that of MADF. The only difference is that a
scenario of FSM-SADF is a SDF graph, whereas a mode of MADF is a CSDF graph.
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Figure 7.4: An execution of G1 in Figure 7.1 with two mode transitions under the
ST transition protocol. MCR1 at time tMCR1 denotes a transition request from mode
SI2 to SI1, and MCR2 at time tMCR2 denotes a transition request from mode SI1 to
SI2.

incurred interference between modes using the ST transition protocol is the high
time complexity of analyzing transition delays, because transition delays cannot be
analyzed independently for each mode transition. The analysis proposed in [47]
uses an approach based on state-space exploration, which has the exponential time
complexity.

Consider G1 in Figure 7.1 and an execution of G1 with the two mode transitions
illustrated in Figure 7.4. The execution is assumed under the ST schedule for both
steady-state and mode transitions of G1. After MCR1 at time tMCR1, the transition
from mode SI2 to SI1 introduces interference to execution of the new mode SI1 from
execution of the old mode SI2. The interference increases the iteration latency of
the new mode SI1 to L1 = S1

5 − S1
1 = 18− 2 = 16 from initially 10 as shown in

Figure 7.3(a) when G1 is only executed in the steady-state of mode SI1. Even worse,
the interference is further propagated to the second mode transition after MCR2
at time tMCR2. In this case, the iteration latency L2 = S2

5 − S2
1 = 42− 23 = 19 is

increased from initially 10 as shown in Figure 7.3(b) when G1 is only executed in
the steady-state of mode SI2. This example thus clearly shows the problem of the ST
protocol. That is, it introduces interference between the old and new modes due to
mode transitions, thereby increasing the iteration latency of the new mode in the
steady-state after the transition. Furthermore, the increase of iteration latency also
potentially increases transition delays as it will be shown in the next section.

Maximum-Overlap Offset (MOO) Transition Protocol

To address the problem of the ST transition protocol explained above, we introduce
in this chapter our new transition protocol, called Maximum-Overlap Offset (MOO).
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Figure 7.5: An illustration of the Maximum-Overlap Offset (MOO) calculation.

Definition 7.2.15 (Maximum-Overlap Offset (MOO)). For a MADF graph and a
transition from mode SIo to SIl , Maximum-Overlap Offset (MOO), denoted by x,
is defined as

x =

(

maxAi∈Ao∩Al (So
i − S l

i ) if maxAi∈Ao∩Al (So
i − S l

i )> 0

0 otherwise,
(7.12)

where Ao ∩Al is set of actors active in both modes SIo and SIl .

Basically, we first assume that the new mode SIl starts immediately after the
source actor Ao

src of the old mode SIo completes its last iteration Ito . All actors Al
i of

the new mode execute according to the earliest starting times S l
i and iteration period

H l in the steady-state. Under this assumption, if the execution of the new mode
overlaps with the execution of the old mode in terms of iteration periods H o and H l ,
we then need to offset the starting time of the new mode by the maximum overlap
among all actors. In this way, the execution of the new mode will have the same
iteration latency as that of the new mode in the steady-state, i.e., no interference
between the execution of both old and new modes.

Consider MCR1 at time tMCR1 shown in Figure 7.4. Obtaining MOO x is
illustrated in Figure 7.5. We first assume that the new mode SI1 starts at the time
when the source actor A2

1 completes the last iteration at time 8 (see bold, dashed
line in Figure 7.5). Actors A1

i in the new mode start as if they executed in the
steady-state of mode SI1. Then, we can see that, for actor A3, the execution of A1

3 in
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Figure 7.6: The execution of G1 with two mode transitions under Maximum-Overlap
Offset (MOO) protocol.

the new mode SI1 according to S1
3 in Figure 7.3(a) overlaps 4 time units (solid bar in

Figure 7.5) with the execution of A2
3 in the old mode SI2 in terms of iteration periods

H 2 and H 1. This is also the maximum overlap between the execution of actors in
modes SI2 and SI1. According to Definition 7.2.15, x can be obtained through the
following equations:

S2
1 − S1

1 = 0− 0,

S2
2 − S1

2 = 1− 1= 0,

S2
3 − S1

3 = 9− 5= 4,

S2
5 − S1

5 = 10− 10= 0.

Therefore, it results in an offset x =max(0,0,4,0) = 4 to the start of mode SI1 and
is shown in Figure 7.6. The starting time of the new mode SI1, namely the source
actor A1

1, must be first delayed to the time when A1
2 completes the iteration period

H 2 in the last iteration, namely time 8 as shown as the first bold line in Figure 7.6.
In addition, the MOO x = 4 must be further added to the starting time of A1

1 (the
second bold line in Figure 7.6). Figure 7.6 also shows another transition from mode
SI1 to SI2 with a MCR occurred at time tMCR2 = 23. The starting time of the source
actor A2

1 in the new mode SI2 must be first delayed to the time 28 (the thrid bold line
in Figure 7.6), namely the time when A1

1 completes the last iteration in the old mode
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SI1. To calculate the MOO x for this transition, the following equations hold:

S1
1 − S2

1 = 0− 0,

S1
2 − S2

2 = 1− 1= 0,

S1
3 − S2

3 = 5− 9=−4,

S1
5 − S2

5 = 10− 10= 0.

Thus, the equations above result in x =max(0,0,−4,0) = 0. For this transition, the
new mode SI2 starts at time 28 as shown in Figure 7.6.

The MOO protocol offers several advantages over the ST protocol. Essentially,
the MOO protocol retains the iteration latency of the MADF graph in the new
mode the same as the initial value, thereby avoiding the interference between the old
and new modes. For instance, after MCR1 and MCR2 in Figure 7.6, mode SI1 and
SI2 still have the initial iteration latency L1 = 10 and L2 = 10 as shown in Figure 7.3.
Therefore, efficiently computing the starting time of MADF actors in the new mode
becomes feasible and it plays an important role in deriving a hard-real time schedule
for the MADF actors. As a result, analysis of the worst-case transition delay is much
simpler (see Theorem 7.3.1) than that of the ST protocol, because the transition
delay does not depend on the order of the transitions occurred previously.

Concerning the transition delay, it may be the case that the MOO protocol
results in initially longer transition delay than the ST protocol does due to the offset
given in Definition 7.2.15. For MCR1 occurred at time tMCR1, the transition delay
of the MOO protocol is ∆2→1 = 22− 1= 21 as shown in Figure 7.6, whereas the
transition delay of the ST protocol is equal to ∆2→1 = 18− 1 = 17 as shown in
Figure 7.4. On the other hand, let us consider the same transition request MCR2
occurred at time tMCR2 = 23 shown in Figures 7.4 and Figure 7.6. For MCR2, the
ST protocol results in transition delay∆1→2 = 42− 23= 19 as shown in Figure 7.4.
In contrast, the transition delay for the MOO protocol is∆1→2 = 38− 23= 16 as
shown in Figure 7.6. The MOO protocol could provide shorter transition delay
than the ST protocol, thereby faster responsiveness to a mode transition.

7.3 Hard real-time Scheduling of MADF

Based on the proposed MOO protocol for mode transitions, in this section, we
propose a HRT scheduling framework for MADF. We further show an analysis
technique for mode transitions in MADF to reason about transition delays, such
that timing constraints can be guaranteed. The HRT scheduling framework for
acyclic MADF graphs is an extension of the SPS [22] framework initially developed
for acyclic CSDF graphs.
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As explained in Section 2.3, the key concept of the SPS framework is to derive a
periodic taskset representation for a CSDF graph. Since the steady-state of a mode
can be considered as a CSDF graph according to Definitions 7.2.7 and 7.2.10, it is
thus straightforward to represent the steady-state of a MADF graph as a periodic
taskset and schedule the resulting taskset using any well-known HRT scheduling
algorithm. Using the SPS framework, we can derive the two main parameters for
each MADF actor in mode SIk , namely the period (T k

i in Equation (2.16) on page 34)
and the earliest starting time (Sk

i in Equation (2.17) on page 35). Under SPS, the
iteration period in mode SIk is obtained as H k = qk

i T k
i , ∃Ak

i ∈A. Below, we focus
on determining the earliest starting time of each actor in the new mode upon a
transition. From the earliest starting time, we can reason about the transition delay
to quantify the responsiveness of a transition.

Upon a MCR, a MADF graph can safely switch to the new mode if all of its actors
have completed their last iteration in the old mode. In this case, the firings of MADF
actors in the new mode do not overlap with the firings of actors in the old mode.
This is called synchronous protocol [104] in real-time systems with mode change.
One of its advantages is the simplicity, i.e., the synchronous protocol does not
require any schedulability test at both compile-time and run-time. However, other
protocols lead to earlier starting times than the synchronous protocol. Therefore,
the synchronous protocol sets an upper bound on the earliest starting time for each
MADF actor in the new mode.

Lemma 7.3.1. For a MADF graph G under SPS and a MCR from mode SIo to SIl at
time tMCR, the earliest starting time of actor Al

i , σ̂ o→l
i , is upper bounded by

σ̂ o→l
i = F o

src+ So
snk+ S l

i , (7.13)

where F o
src indicates the time when the source actor Ao

src completes its last iteration Ito of
the old mode SIo and is given by

F o
src = t o

S +
� tMCR− t o

S

H o

�

H o . (7.14)

t o
S is the starting time of mode SIo and H o is the iteration period of mode SIo .

Proof. As explained previously for a transition from mode SIo to SIl , the upper
bound of the earliest starting time for each actor Al

i is computed in such a way that
no firings of actors Ao

i and Al
i occur simultaneously. This means, the start of an actor

Al
i must be later than all actors Ao

i have completed the last iteration Ito of the old
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Table 7.4: Actor parameter for G1 in Figure 7.1.
Mode SI1 SI2

Actor A1
1 A1

2 A1
3 A1

5 A2
1 A2

2 A2
3 A2

4 A2
5

WCET 1 4 1 1 1 8 1 3 1
period (Ti ) 2 4 4 4 4 8 8 8 4

starting time (Si ) 0 2 6 14 0 4 12 8 20
utilization (ui )

1
2 1 1

4
1
4

1
4 1 1

8
3
8

1
4

mode SIo . Given that mode SIo starts at time t o
S , the completion time of all actors

Ao
i in the last iteration Ito can be thus computed as

F o
snk = t o

S +
� tMCR− t o

S

H o

�

H o + So
snk+H o . (7.15)

where F o
snk

is the time when the old mode SIo completes the last iteration Ito . It
is assumed that the sink actor Ao

snk
is the last actor to complete the iteration, i.e.,

∀Ao
i ∈A, So

i ≤ So
snk

. Given Equation (7.14), Equation (7.15) can be rewritten as

F o
snk = t o

S +
� tMCR− t o

S

H o

�

H o + So
snk = F o

src+ So
snk.

Now, starting the source actor Al
src at any time later than F o

snk
is valid without

introducing simultaneous execution of actors Ao
i and Al

i . Therefore, the earliest
starting time of source actor Al

src is σ̂ o→l
src = F o

snk
. For any actor Al

i ∈ A \Al
src, its

earliest starting times must satisfy Equation (2.17) on page 35 imposed by the SPS
framework. That is, the earliest starting starting time σ̂ o→l

i of actor Al
i can be

obtained by adding S l
i to σ̂ o→l

src . �

Let us consider the actor parameters given in Table 7.4 for G1 in Figure 7.1.
The third row shows the WCET for each actor in modes SI1 and SI2. Based on
WCETs, the period (fourth row in Table 7.4) and the earliest starting time (fifth row
in Table 7.4) for each actor in the steady-state of both modes are obtained according
to Equations 2.16 and 2.17, respectively. Given ~q2 in Equation (7.8), we can also
compute iteration period H 2 = q2

1 T 2
1 = 2×4= 8. Now consider the mode transition

from mode SI2 to SI1 shown in Figure 7.7. Assume that the MCR occurs at time
tMCR = 13 and mode SI2 starts at time t 2

S = 8. The completion time of the last
iteration It2 is equal to the completion time of the sink actor A2

5 computed as

F 2
snk = t 2

S +
� tMCR− t 2

S

H 2

�

H 2+ S2
5 = 8+

�13− 8

8

�

8+ 20= 36.
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Figure 7.7: Upper bounds of earliest starting times for transition from mode SI2 to
SI1.

In Figure 7.7, F 2
snk

corresponds to the earliest starting time of the source actor A1
1

(bold dashed line). Finally, we can compute the earliest starting time for each actor
in the new mode SI1 by adding S1

i . Considering for instance the sink actor A1
5 in

the new mode with S1
5 = 14, the upper bound of its earliest starting time can be

obtained as
σ̂2→1

5 = F 2
src+ S2

5 + S1
5 = F 2

snk+ S1
5 = 36+ 14= 50.

We can thus compute the transition delay (cf. Definition 7.2.14) as

∆̂2→1 = σ̂2→1
5 − tMCR = 50− 13= 37.

Although the upper bound of the earliest starting times is easy to obtain for
MADF actors in the new mode, it does not provide a responsive mode transition.
Therefore, here we aim at deriving a lower bound of the earliest starting times with
the proposed MOO protocol.

Lemma 7.3.2. For a MADF graph under SPS and a MCR from mode SIo to SIl at time
tMCR, the earliest starting time of actor Al

i using the MOO protocol is lower bounded by
σ̌ o→l

i given as
σ̌ o→l

i = F o
src+ x + S l

i , (7.16)

where F o
src is given in Equation (7.14) and x is given in Equation (7.12).

Proof. Under the MOO protocol, the start of actor Al
i must be later than the time

when Ao
i , if any, completes its last iteration in the old mode SIo . We assume that the

source actor Al
src is the first actor to start in the new mode SIl , i.e., ∀Al

i ∈A, S l
i ≥ S l

src.
Thus, the starting time of the source actor Al

src is at least equal to the completion
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Figure 7.8: Earliest starting times for transition from mode SI2 to SI1 with the MOO
protocol.

time of the last iteration of Ao
src, denoted by F o

src. Given F o
src in Equation (7.14), it

thus holds σ̌ o→l
src ≥ F o

src Then, the offset x because of the MOO protocol given in
Equation (7.12) must be taken into account. Consequently, the earliest starting
time of Al

src is lower bounded by σ̌ o→l
src = F o

src+ x. For any actor Al
i ∈A \Al

src, its
earliest starting times must satisfy Equation (2.17) on page 35 imposed by the SPS
framework. Hence, the earliest starting time σ̌ o→l

i of actor Al
i can be obtained by

adding S l
i to σ̌ o→l

src . �

Let us consider again the transition from mode SI2 to SI1. With the MOO
protocol, the mode transition is illustrated in Figure 7.8. Upon the MCR at time
tMCR = 13 and t 2

S = 8, source actor A2
1 completes its last iteration It2 in the old mode

SI2 at the time (cf. Equation (7.14)) given as

F 2
src = F 2

1 = t 2
S +
� tMCR− t 2

S

H 2

�

H 2 = 8+
�13− 8

8

�

8= 16

This is the earliest possible time at which mode transition is allowed. For MOO, x
can be computed according to Equation (7.12). Therefore, the following equations
hold:

S2
1 − S1

1 = 0− 0,

S2
2 − S1

2 = 4− 2= 2,

S2
3 − S1

3 = 12− 6= 6,

S2
5 − S1

5 = 20− 14= 6.
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It thus yields x = max(0,2,6,6) = 6, i.e., an offset x = 6 is added to F 2
src. It can

be seen in Figure 7.8 that the source actor A1
1 starts at time F 2

src+ x = 16+ 6= 22.
Finally, the earliest starting times of actors in mode SI1 can be determined by adding
S1

i . Considering for instance A1
5 in the new mode, the lower bound of its earliest

starting time can be obtained as:

σ̌2→1
5 = F 2

src+ x + S1
5 = 16+ 6+ 14= 36.

Now, the transition delay (cf. Definition 7.2.14) can be obtained as

∆̌2→1 = σ̌2→1
5 − tMCR = 36− 13= 23.

Scheduling Analysis under a Fixed Allocation of Actors

During a mode transition of a MADF graph according to the MOO protocol,
actors execute simultaneously in the old and new modes. The derived starting
time in Lemma 7.3.2 for each actor is only the lower bound because the allocation
of actors on PEs is not taken into account yet. That means, the derived starting
times according to Lemma 7.3.2 can be only achieved during mode transitions when
each actor is allocated to a separate PE. In a practical system where multiple actors
are allocated to the same PE, the PE may be potentially overloaded during mode
transitions. To avoid overloading PEs, the earliest starting times of actors may be
further delayed.

Lemma 7.3.3. For a MADF graph under SPS, a MCR from mode SIo to SIl , and an
m-partition of all actors Ψ= {Ψ1, . . . ,Ψm}, where m is the number of PEs, the earliest
starting time of an actor Al

i without overloading the underlying PE is given by

σ o→l
i = F o

src+δ
o→l + S l

i , (7.17)

where F o
src is computed by Equation (7.14) and δo→l is obtained as

δo→l = min
t∈[x,So

snk]
{t : Uj (k)≤UB, ∀k ∈ [t , So

snk]∧∀Ψ j ∈Ψ}. (7.18)

UB denotes the utilization bound of the scheduling algorithm used to schedule actors on
each PE. Ψ j contains the set of actors allocated to PE j . Uj (k) is the total utilization of
PE j at time k demanded by both mode SIo and SIl actors, and is given by

Uj (k) =
∑

Ao
d∈Ψ j

�

uo
d − h(k − So

d ) · u
o
d

�

︸ ︷︷ ︸

U o
j (k)

+
∑

Al
d∈Ψ j

�

h(k − S l
d − t ) · u l

d

�

︸ ︷︷ ︸

U l
j (k)

, (7.19)
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Figure 7.9: Allocation of all MADF actors in Figure 7.1 to 3 PEs.

Ao
d
∈Ψ j is an actor active in the old mode SIo and allocated to PE j . Al

d
∈Ψ j is an actor

active in the new mode SIl and allocated to PE j . h(t ) is the Heaviside step function.

Proof. Lemma 7.3.2 shows the lower bound of the earliest starting time for actor
Al

i in the new mode SIl . However, starting Al
i at time σ̌ o→l

i may overload PE j , i.e.,
the resulting total utilization of PE j , denoted by Uj (σ̌

o→l
i ), exceeds UB. Therefore,

in this case, the earliest starting time σ o→l
i must be delayed by δo→l such that

Uj (σ
o→l
i )≤UB holds. From Equation (7.17) and Equation (7.16), we can see that

δo→l is lower bounded by x which corresponds to the MOO protocol. In addition,
δo→l is upper bounded by So

snk
if we consider Equation (7.17) and Equation (7.13)

on page 131.
δo→l of interest is the minimum time t in the bounded interval [x, So

snk
] that

satisfies two conditions.
Condition 1: for each PE j , the total utilization cannot exceed UB at time t , i.e.,

Uj (t ) ≤ UB. The total utilization Uj (t ) in Equation (7.19) consists of two parts,
namely U o

j (t ) and U l
j (t ). U o

j (t ) denotes the PE capacity occupied by the actors in

mode SIo that are not completed yet. Additional PE capacity U l
j (t ) is demanded by

the already released actors in the new mode SIl .
Condition 2: We need to check all time instants k > t in the interval [t , So

snk
],

such that Uj (k)≤UB, to guarantee that each PE j is not overloaded during the mode
transition. �

Figure 7.9 shows all actors of G1 in Figure 7.1 allocated to 3 PEs and let us
assume that the actors allocated to each PE are scheduled using the EDF algorithm.
The utilization bound of EDF is given as UB= 1 [80]. Given this allocation and the
transition from mode SI2 to SI1 shown in Figure 7.8, the lower bound of the earliest
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Figure 7.10: Earliest starting times for transition SI2 to SI1 on 2 PEs shown in
Figure 7.9.

starting time σ̌2→1
1 = 22 for actor A1

1 cannot be achieved. At time 22, only actor A2
1

has completed the last iteration It2 on PE1. Starting the new mode SI1 at time 22
corresponds to δ2→1 = x = 6. The total utilization of PE1 demanded by the actors
in the old mode SI2 at time 22, i.e., U 2

1 (6), can be computed as follows:

U 2
1 (6) =

∑

A2
d∈Ψ1

u2
d − h(6− S2

d ) · u
2
d , d ∈ {1,3,4,5}

= u2
1 − h(6) · u2

1 + u2
3 − h(−6) · u2

3 + u2
4 − h(−2) · u2

4 + u2
5 − h(−14) · u2

5

= 0+ u2
3 + u2

4 + u2
5 =

1

8
+

3

8
+

1

4
=

3

4

Enabling A1
1 in the new mode SI1 at time 22 would yield

U1(6) =U 2
1 (6)+ u1

1 =
3

4
+

1

2
>UB= 1,

thereby leading to being unschedulable on PE1. In this case, the earliest times of all
actors in mode SI1 must be delayed by δ2→1 = 8 to time 24 as shown in Figure 7.10.
At time 24, the total utilization demanded by mode SI2 actors is

U 2
1 (8) =

∑

A2
d∈Ψ1

u2
d − h(8− S2

d ) · u
2
d , d ∈ {1,3,4,5}

= u2
1 − h(8) · u2

1 + u2
3 − h(−4) · u2

3 + u2
4 − h(0) · u2

4 + u2
5 − h(−12) · u2

5

= 0+ u2
3 + 0+ u2

5 =
1

8
+

1

4
=

3

8
.
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Now, enabling A1
1 in the new mode at time 24 results in the total utilization of PE1

as

U1(8) =U 2
1 (8)+ u1

1 =
3

8
+

1

2
< 1.

Next, assuming that the new mode SI1 starts at time 24, we need to check that the
remaining actors in the new mode SI1, namely A1

3 and A1
5, can start with S1

3 and S1
5

respectively without overloading PE1. For instance, enabling A1
3 at time 24 results in

starting time σ2→1
3 = 24+ S1

3 = 24+ 6= 30. At time 30, the total utilization of PE1
can be obtained according to Equation (7.19) as follows:

U 2
1 (8+ 6) =

∑

A2
d∈Ψ1

u2
d − h(14− S2

d ) · u
2
d , d ∈ {1,3,4,5}

= u2
1 − h(14) · u2

1 + u2
3 − h(2) · u2

3 + u2
4 − h(6) · u2

4 + u2
5 − h(−6) · u2

5

= 0+ 0+ 0+ u2
5 =

1

4
,

U 1
1 (8+ 6) =

∑

A1
d∈Ψ1

�

h(14− S1
d − 8) · u1

d

�

, d ∈ {1,3,5}

= h(6)u1
1 + h(0)u1

3 + h(−8)u1
5

=
1

2
+

1

4
=

3

4
,

U1(8+ 6) =U 2
1 (8+ 6)+U 1

1 (8+ 6) = 1=UB.

Hence, actors A2
5, A1

1, and A1
3 are schedulable on PE1 using EDF. Similarly, starting

A1
5 at time σ2→1

5 = 24+ S1
5 = 38 still keeps the resulting set of actors schedulable on

PE1.
Using Lemma 7.3.3, we can quantify the maximum and minimum transition

delays for any transition from mode SIo to SIl .

Theorem 7.3.1. For a MADF graph under SPS, a fixed allocation of all MADF actors
Ψ= {Ψ1, . . . ,Ψm} to m PEs, and a MCR from mode SIo to SIl , the minimum transition
delay is given by

∆o→l
min = δ

o→l + S l
snk (7.20)

and the maximum transition delay is given by

∆o→l
max = δ

o→l + S l
snk+H o , (7.21)

where δo→l is computed by Lemma 7.3.3, S l
snk

is the starting time of the sink actor in
the new mode SIl , and H o is the iteration period of the old mode SIo .
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Proof. For a MCR from mode SIo to SIl , the transition delay ∆o→l of a MADF
graph is given in Definition 7.2.14 as ∆o→l = σ o→l

snk
− tMCR, where the earliest

starting time of the sink actor is calculated as σ o→l
snk
= F o

src+δ
o→l +S l

snk
according to

Lemma 7.3.3. Therefore,∆o→l can be rewritten as∆o→l = F o
src+δ

o→l+S l
snk
− tMCR.

Essentially,∆o→l is composed of three parts. In the first part, the MOO transition
protocol together with a fixed allocation of the MADF actors determine δo→l . The
second part S l

snk
results from the SPS framework. These two parts thus can be

determined at compile-time. The third part F o
src− tMCR depends on when the MCR

occurs, namely at tMCR, which can only be determined at run-time. In the following,
we distinguish two cases for tMCR:

Case 1: Assume that the MCR occurs at the end of an iteration of the source actor
in the old mode SIo , i.e., tMCR = F o

src. Then, the source actor shall be only delayed by
δo→l to start in the new mode SIl according to Lemma 7.3.3, thereby guaranteeing
the fastest possible start of the new mode SIl . As a consequence, it results in the
minimum possible transition delay. Therefore, substituting tMCR = F o

src, we obtain

∆o→l
min = F o

src+δ
o→l + S l

snk− F o
src = δ

o→l + S l
snk.

Case 2: Assume that the MCR occurs at the beginning of an iteration of the
source actor in the old mode SIo , i.e., tMCR = F o

src −H o . Then, the source actor
cannot start in the new mode before it completes the whole iteration in the old
mode SIo followed by the delay δo→l according to Lemma 7.3.3. Therefore, the
maximum transition delay is computed as follows:

∆o→l
max = F o

src+δ
o→l + S l

snk− (F
o
src−H o) = δo→l + S l

snk+H o .

�

It can be seen from Theorem 7.3.1 that the maximum and minimum transition
delays solely depend on the allocation of MADF actors and the old and new modes
in question, irrespective of the previously occurred transitions. The old and new
modes determine H o and S l

snk
, respectively, while the allocation of MADF actors

determines the value of δo→l . Here, the offset x due to our MOO protocol is
captured in δo→l and can be considered as performance overhead if x 6= 0. The
other parts, namely H o and S l

snk
, in the maximum and minimum transition delays

cannot be avoided as they will be present in any transition protocol.

7.4 Case Study

In this section, we present a case study of using the proposed MADF MoC and
the developed HRT scheduling explained in Section 7.3. With the case study, we
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show that the MADF MoC is able to capture different application modes and the
transitions between them. Then, the main focus of the case study is to analyze
the transition delays and to demonstrate the effectiveness of the proposed MOO
transition protocol.

We consider a real-life adaptive application from the StreamIT benchmark
suit [54], called Vocoder, which implements a phase voice encoder and performs
pitch transposition of recorded sounds from male to female. We modeled Vocoder
with a MADF graph with 4 modes, which capture different workloads. The MADF
graph of Vocoder is shown in Figure 7.11. Depending on the desired quality of audio
encoding and various performance requirements, users may switch between four
different modes of Vocoder at run-time. The four modes S = {SI8,SI16,SI32,SI64}
specify different lengths of the Discrete Fourier Transform (DFT), denoted by
dl ∈ {8,16,32,64}. Mode SI8 (dl= 8) requires the least amount of computation at the
cost of the worst voice encoding quality among all DFT lengths. Mode SI64 (dl= 64)
produces the best quality of voice encoding among all modes, but is computationally
intensive. The other two modes SI16 and SI32 explore the trade-off between the
quality of the encoding and computational workload. A transition from one mode
to any other one is possible, thereby resulting in totally 12 possible transitions. At
run-time, reconfiguration of the parameter dl is triggered by the environment, e.g.,
the user in this case. Subsequently, control actor Ac propagates dl to the dataflow
actors shown in Figure 7.11 through the dashed-lined edges.

We measured the WCETs of all dataflow actors in Figure 7.11 in the four modes
on an ARM Cortex-A9 [1] PE. All dataflow actors were compiled using the compiler
arm-xilinx-eabi-gcc 4.7.2 with the vectorization option. The WCETs of
all actors in all four modes are given in Table 7.5. It is worth to note that in mode
SI8, actors Spec2Env and male2female exhibit exceptionally high WCETs. It is because
parameter dl represents the size of the inner-most loop in the computation of actors
Spec2Env and male2female. Small dl (in this case dl = 8) leads to the fact that the
inner-most loop cannot be vectorized by the compiler. In the other modes from SI16

to SI64, larger sizes of the inner-most loop (dl equal to 16, 32, and 64, respectively)
lead to full vectorization of the computation of actors Spec2Env and male2female.
Therefore, in these three modes, the WCETs of actors Spec2Env and male2female
are even smaller than the ones in mode SI8. The dataflow actors of Vocoder are
allocated to 4 PEs as shown in Figure 7.12. This allocation guarantees that the
shortest periods (maximum throughput) in the steady-states of all modes can be
achieved.

Table 7.6 shows the performance results for the four modes in their steady-state
under SPS. For instance, the second column at the first row in Table 7.6 indicates
that it is guaranteed for sink actor WriteWave to produce 256 samples per 917,451
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Figure 7.11: MADF graph of Vocoder.
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Table 7.5: WCETs of all actors in Vocoder (in clk.).
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clock cycles in mode SI8. This is the “worst-case” performance among all four
modes because the Spec2Env actor exhibits exceptionally high workload (cf. WCETs
in Table 7.5 and Definition 2.3.2 on page 34) in mode SI8. Consequently, actor
Spec2Env becomes the “bottleneck” actor, so that mode SI8 cannot be scheduled with
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Figure 7.12: Allocation of dataflow actors of Vocoder to 4 PEs. The control edges
are omitted to avoid cluttering.

Table 7.6: Performance results of four modes of Vocoder in the steady-state.
Mode Period (T in clk.) Total utilization (U ) Iteration latency (L)

SI8 917,504 1.24 7,339,608
SI16 148,864 2.36 1,191,436
SI32 178,176 3.19 1,425,448
SI64 300,288 3.4 2,402,550

higher throughput (shorter period). Nevertheless, all mode SI8 actors as a whole
require a total utilization of only 1.24 (see the third column in Table 7.6) which is
the least among all modes. From Table 7.6, we can see that MADF together with
the SPS framework brings another advantage of efficiently utilizing PE resources.
For example, in case that Vocoder is switched to a mode with lower utilization,
idle capacity of PEs can be efficiently utilized by admitting other applications at
run-time without introducing interference to the currently running Vocoder.

Now, we focus on the performance results of the MOO protocol, namely
transition delays, for all possible transitions between the four modes of Vocoder.
Table 7.7 shows both the minimum and maximum transition delays in accordance
with Theorem 7.3.1 for all transitions. We can see in the second column of Table 7.7
that, in the best case, the transition delays for 6 out of 12 transitions remain the
same as the iteration latencies of the new modes. This can be seen as x = 0 shown
in the fourth column. In these 6 transitions, the proposed MOO protocol does not
introduce any extra delay. In the 6 remaining transitions, as expected, the MOO
protocol introduces offset x > 0 to the transitions from an old mode with a longer
iteration latency to a new mode with a shorter iteration latency. For instance, the
largest x (in bold shown in Table 7.7) happens in case of a transition from mode SI8

with the longest iteration latency (see the fourth column in Table 7.6) to mode SI16
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Table 7.7: Performance results for all mode transitions of Vocoder.
Transition ∆o→l

min (in clk.) ∆o→l
max (in clk.) x (in clk.) δo→l (in clk.)

(SIo to SIl )

SI8→ SI64 3,636,815 4,554,266 1,234,264 1,234,264
SI8→ SI32 2,903,988 3,821,439 1,478,540 1,478,540
SI8→ SI16 2,728,479 3,645,930 1,537,043 1,537,043
SI16→ SI64 2,402,550 2,551,480 0 0
SI16→ SI32 1,425,448 1,574,378 0 0
SI16→ SI8 7,339,608 7,488,538 0 0
SI32→ SI64 2,402,550 2,580,731 0 0
SI32→ SI16 1,425,448 1,603,629 234,012 234,012
SI32→ SI8 7,339,608 7,517,789 0 0
SI64→ SI32 2,402,550 2,702,869 977,102 977,102
SI64→ SI16 2,402,550 2,702,869 1,211,114 1,211,114
SI64→ SI8 7,339,608 7,639,927 0 0

with the shortest iteration latency. To quantify x, we compute the percentage of x
compared to both minimum and maximum transition delays as

Ωmin =
x

∆o→l
min

× 100%, Ωmax =
x

∆o→l
max

× 100%.

Ωmin varies from the worst-case 56% to the best case 16% with an average of 41%,
whereas Ωmax varies from the worst-case 44% to the best case 14% with an average
of 33%. Therefore, the increase of the transition delays due to the MOO protocol is
reasonable for this real-life application.

Next, we consider the effect of the actor allocation shown in Figure 7.12 on the
earliest starting times of actors in the new mode upon a transition (cf. Lemma 7.3.3).
In this particular example, we find out that no extra delay is incurred to any actor in
all transitions due to the fixed actor allocation. This can be seen from the fourth and
fifth columns in Table 7.7, where δo→l = x.


